From:	Carolann Knapp
To:	DEQ-ROP
Cc:	Nixon, Shane (DEQ); Rogers, William (DEQ); Steve Niehaus
Subject:	N5831 Section 1-ROP Renewal Application
Date:	Wednesday, November 14, 2018 3:05:08 PM
Attachments:	image001.png
	Wild CO2 Renewal App Sub 111418.pdf
	PTE Calculations Wild CO2 Plt.pdf
	A-001 MAP Revised.pdf
	A-001 CAM Revised pdf
	N5831 Current Permit Workup for 2019 Renewal.doc

Hello,

On behalf of Breitburn Operating L.P., we are submitting the ROP renewal application for our Wilderness CO2-Hayes 29, Section 1 in an electronic format with hard copies to follow by mail to Mr. Nixon. Attached you will find the ROP Application Form, ROP Mark-up, PTE Calculations, PM-MAP, and the CAM plan. We hope you find this package administratively complete, should you not, feel free to contact me.

Sincerely,

Maverick Natural Resources, LLC (Parent of Breitburn Operating L.P.) 1165 Elkview Blvd. Gaylord, MI 49735 Ph# 989-731-9369 Email: <u>Carolann.knapp@mavresources.com</u> www.mavresources.com

""Live simply, love generously, care deeply, speak kindly, leave the rest to God." Ronald Reagan

Effective immediately, my email address has changed. Please update your address book accordingly.

Breitburn Operating L.P. (a wholly owned subsidiary of Maverick Resources, LLC) 1165 Elkview Drive Gaylord, MI 49735

DEQ/AQD Received Date: 11-19-18 **Renewal Application No.** 201800149

November 14, 2018

Mr. Shane Nixon, MDEQ AQD-Cadillac District Supervisor 120 W. Chapin St. Cadillac, MI 49601-2158

#MI-ROP-N5831-2014b Re: Wilderness CO2/Hayes 29 Plant (Section 1)

On behalf of Breitburn Operating L.P., we are submitting the ROP Renewal package for the Wilderness CO2/Hayes 29, Section 1. Breitburn would like to request that EUENGINE5 be omitted from the ROP permit as you will see in our ROP markup. EUENGINE5 has been permanently decommissioned since 2014.

Enclosed in the renewal package is the ROP Markup, ROP Application, Potential-to-Emit Calculation, PMMAP, CAM Plans, and Y2017 MAERS Report.

We hope you will find this application complete, should you need anything else please feel free to contact me.

Sincerely,

vlankhapp

Carolann Knapp EH&S Rep

Cc: Mr. Bill Rogers, MDEQ AQD

RENEWABLE OPERATING PERMIT RENEWAL APPLICATION FORM

DEQ/AQD Received Date: 11-19-18 Renewal Application No. 201800149

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Refer to instructions for additional information to complete the Renewable Operating Permit Renewal Application Form.

GENERAL INSTRUCTIONS

This application form should be submitted as part of an administratively complete application package for renewal of a Renewable Operating Permit (ROP). This application form consists of nine parts. Parts A – H must be completed for all applications and must also be completed for each section of a sectioned ROP. Answer all questions in all parts of the form unless directed otherwise. Detailed instructions for this application form can be found at <u>http://michigan.gov/air</u> (select the Permits Tab, "Renewable Operating Permits (ROP)/Title V", then "ROP Forms & Templates").

PART A: GENERAL INFORMATION

Enter information about the source, owner, contact person and the responsible official.

SOURCE INFORMATION

SRN N5831	SIC Code	NAICS Code 211130	Existing ROP Numb MI-ROP-N5831-		Section Number (if applicable) Section 1
Source Name Breitburn Op	erating L.P Wild	erness CO2-Haye	s 29 Central Product	tion Facility	
Street Address 10875 Geror	imo Trail				
City Gaylord		State MI	ZIP Code 49735	County Otsego	
	ange (if address not a N R04W SW1/4	vailable)			
Source Descript The facility is prior to pipeli	a natural gas pro	ocessing facility the	at treats natural gas t	o remove carbon di	oxide and compress the gas
Check he on the ma	are if any of the ab arked-up copy of y	oove information is your existing ROP.	different than what a	appears in the existi	ng ROP. Identify any changes
OWNER INF	ORMATION				
Owner Name					

Owner Name				Section Num	ber (if applicable)
Breitburn Operating L.P.				Section 1	
Mailing address (check if same as source address	ss)				
P.O. Box 1256					
1165 Elkview Drive					
City	State	ZIP Code	County		Country
Gaylord					Country
Caylord	MI	49735	Otsego		USA

Check here if any information in this ROP renewal application is confidential. Confidential information should be identified on an Additional Information (AI-001) Form.

www/michigan.gov/deq

PART A: GENERAL INFORMATION (continued)

At least one contact and responsible official must be identified. Additional contacts and responsible officials may be included if necessary.

CONTACT INFORMATION						
Contact 1 Name			Title			
Carolann Knapp		EH&S Re	ep			
Mailing address (☐ check if same as so 1165 Elkview Drive	urce address)					
City	State	ZIP Code)	County	Country	
Gaylord	MI	49735		Otsego	USA	
Phone number		E-mail ad	Idress			
989-732-0020		Carolar	n.knapp@	mavresources.	com	
Contact 2 Name (optional)			Title			
Steve Niehaus				I EH&S Manage	er	
Mailing address (☐ check if same as so 1165 Elkview drive	urce address)					
City	State	ZIP Cod	le	County	Country	
Gaylord	MI	49735		Otsego	USA	
Phone number			E-mail address			
989-732-0020		Steve.	Steve.niehaus@mavresources.com			
RESPONSIBLE OFFICIAL INFO	RMATION					
Responsible Official 1 Name			Title			
Michael Fairbanks			Operatio	ns Manager		
Mailing address (⊟ check if same as sou PO. Box 1256	Irce address)		6			
City	State	ZIP Cod	e	County	Country	
Gaylord	MI	49735		Otsego	County	
Phone number		E-mail a	E-mail address			
989-732-0020			Michael.Fairbanks@mavresources.com			
Responsible Official 2 Name (optional)			Title			
			The			
Mailing address (check if same as sou	Irce address)					
City	State	ZIP Cod	e	County	Country	
Phone number		E-mail a	ddress			

Check here if an AI-001 Form is attached to provide more information for Part A. Enter AI-001 Form ID:

PART B: APPLICATION SUBMITTAL and CERTIFICATION by Responsible Official

Identify the items that are included as part of your administratively complete application in the checklist below. For your application to be complete, it must include information necessary to evaluate the source and to determine all applicable requirements. Answer the compliance statements as they pertain to all the applicable requirements to which the source is subject. The source's Responsible Official must sign and date this form.

Listi	ng of ROP Application Contents. Check the box	for th	e items included with your application.
	Completed ROP Renewal Application Form (and any AI-001 Forms) (required)		Compliance Plan/Schedule of Compliance
	Mark-up copy of existing ROP using official version from the AQD website (required)		Stack information
	Copies of all Permit(s) to Install that have not been incorporated into existing ROP (required)		Acid Rain Permit Initial/Renewal Application
	HAP/Criteria Pollutant Potential to Emit Calculations		Cross State Air Pollution Rule (CSAPR) Information
	MAERS Forms (to report emissions not previously submitted)		Confidential Information
	Copies of all Consent Order/Consent Judgments that have not been incorporated into existing ROP	\square	Paper copy of all documentation provided (required)
\boxtimes	Compliance Assurance Monitoring (CAM) Plan	\boxtimes	Electronic documents provided (optional)
	Other Plans (e.g. Malfunction Abatement, Fugitive Dust, Operation and Maintenance, etc.)		Other, explain:

Compliance Statement		
This source is in compliance with <u>all</u> of its applicable requirements, including those contained in the existing ROP, Permits to Install that have not yet been incorporated into that ROP, and other applicable requirements not currently contained in the existing ROP.	⊠ Yes	🗌 No
This source will continue to be in compliance with all of its applicable requirements, including those contained in the existing ROP, Permits to Install that have not yet been incorporated into that ROP, and other applicable requirements not currently contained in the existing ROP.	🛛 Yes	🗌 No
This source will meet in a timely manner applicable requirements that become effective during the permit term.	🛛 Yes	🗌 No
The method(s) used to determine compliance for each applicable requirement is/are the method(s) specified existing ROP, Permits to Install that have not yet been incorporated into that ROP, and all other applied not currently contained in the existing ROP.	ecified in t becified in t	he rements
If any of the above are checked No, identify the emission unit(s) or flexible group(s) affected and the s number(s) or applicable requirement for which the source is or will be out of compliance at the time of ROP renewal on an AI-001 Form. Provide a compliance plan and schedule of compliance on an AI-0	issuance of	ndition of the
Name and Title of the Responsible Official (Print or Type)		

Michael Fairbanks, Operations Manager

As a Responsible Official, I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this application are true, accurate, and complete.

Signature of Responsible Official

Date

PART C: SOURCE REQUIREMENT INFORMATION

Answer the questions below for specific requirements or programs to which the source may be subject.

C1.	(including those identified in the existing ROP, Permits to Install and other equipment that have not yet been incorporated into the ROP) are required to be reported in MAERS. Are there any emissions and associated data that have <u>not</u> been reported in MAERS for the most recent emissions reporting year? If Yes, identify the emission unit(s) that was/were not reported in MAERS on an AI-001 Form. Applicable MAERS form(s) for unreported emission units must be included with this application.	☐ Yes	🖾 No
C2.	Is this source subject to the federal regulations on ozone-depleting substances? (40 CFR Part 82)	🗌 Yes	🛛 No
C3.	Is this source subject to the federal Chemical Accident Prevention Provisions? (Section 112(r) of the Clean Air Act Amendments, 40 CFR Part 68)	🗌 Yes	🛛 No
	If Yes, a Risk Management Plan (RMP) and periodic updates must be submitted to the USEPA. Has an updated RMP been submitted to the USEPA?	🗌 Yes	🗌 No
C4.	Does the source belong to one of the source categories that require quantification of fugitive emissions?	🗌 Yes	🛛 No
	If Yes, identify the category on an AI-001 Form and include the fugitive emissions in the PTE calculations for the source. See ROP Renewal Application instructions.		
C5.	Does this stationary source have the potential to emit (PTE) of 100 tons per year or more of any criteria pollutant (PM-10, PM 2.5, VOC, NOx, SO ₂ , CO, lead)?	🛛 Yes	🗌 No
	If Yes, include potential emission calculations for each identified pollutant on an AI-001 Form.		
C6.	Does this stationary source emit any hazardous air pollutants (HAPs) regulated by the federal Clean Air Act, Section 112?	🛛 Yes	🗌 No
	If Yes, include potential and actual emission calculations for HAPs on an AI-001 Form. Fugitive emissions must be included in HAP calculations.		
C7.	Are any emission units subject to the Cross State Air Pollution Rule (CSAPR)? If Yes, identify the specific emission unit(s) subject to CSAPR on an AI-001 Form.	🗌 Yes	🛛 No
C8.	Are any emission units subject to the federal Acid Rain Program? If Yes, identify the specific emission unit(s) subject to the Federal Acid Rain Program on an AI-001 Form.	🗌 Yes	🖂 No
	Is an Acid Rain Permit Renewal Application included with this application?	🗌 Yes	🗌 No
C9.	Are any emission units identified in the existing ROP subject to compliance assurance monitoring (CAM)?		□ No
	If Yes, identify the specific emission unit(s) subject to CAM on an AI-001 Form. If a CAM plan has not been previously submitted to the MDEQ, one must be included with the ROP renewal application on an AI-001 Form.		
	Is a CAM plan included with this application?	🛛 Yes	□ No
C10.	Does the source have any plans such as a malfunction abatement plan, fugitive dust plan, operation/maintenance plan, or any other monitoring plan that is referenced in an existing ROP, Permit to Install requirement, or any other applicable requirement?	🛛 Yes	🗌 No
	If Yes, then a copy must be submitted as part of the ROP renewal application.		
C11.	Are there any specific requirements that the source proposes to be identified in the ROP as non-applicable?	🗌 Yes	🖾 No
	If Yes, then a description of the requirement and justification must be submitted as part of the ROP renewal application on an AI-001 Form.		
	Check here if an AI-001 Form is attached to provide more information for Part C. Enter AI-001 For	m ID: Al-	

PART D: PERMIT TO INSTALL (PTI) EXEMPT EMISSION UNIT INFORMATION

Review all emission units at the source and answer the question below.

D1. Does the source have any emission units that do not appear in the existing ROP but are required to be listed in the ROP application under R 336.1212(4) (Rule 212(4)) of the Michigan Air Pollution Control Rules? If Yes, identify the emission units in the table below.

\square	Yes	No

If No, go to Part E.

Note: Emission units that are subject to process specific emission limitations or standards, even if identified in Rule 212, must be captured in either Part G or H of this application form. Identical emission units may be grouped (e.g. PTI exempt Storage Tanks).

Emission Unit ID	Emission Unit Description	Rule 201 Exemption Rule Citation [e.g. Rule 282(2)(b)(i)]	Rule 212(4) Citation [e.g. Rule 212(4)(c)]
EUHEATERS	Nine Misc. process heaters, each having a max heat input of <50 mmbtu/hr	282(2)(b)(i)	212(4)(b)
EUTANKS	Storage of sweet crude or sweet condensate in 4 vessels each less than 40,000 gallons	284(e)	212(4)(c)
Comments:			
Check here if a	n AI-001 Form is attached to provide more inform	nation for Part D. Enter A	I-001 Form ID: AI-

PART E: EXISTING ROP INFORMATION

Review all emission units and applicable requirements (including any source wide requirements) in the <u>existing</u> ROP and answer the questions below as they pertain to <u>all</u> emission units and <u>all</u> applicable requirements in the existing ROP.

E1. Does the source propose to make any additions, changes or deletions to terms, conditions and underlying applicable requirements as they appear in the existing ROP?	🛛 Yes	□ No
If Yes, identify changes and additions on Part F, Part G and/or Part H.		
E2. For each emission unit(s) identified in the existing ROP, <u>all</u> stacks with applicable requirements are to be reported in MAERS. Are there any stacks with applicable requirements for emission unit(s) identified in the existing ROP that were <u>not</u> reported in the most recent MAERS reporting year? If Yes, identity the stack(s) that was/were not reported on applicable MAERS form(s).	☐ Yes	No No
E3. Have any emission units identified in the existing ROP been modified or reconstructed that required a PTI?	🗌 Yes	🛛 No
If Yes, complete Part F with the appropriate information.		_
E4. Have any emission units identified in the existing ROP been dismantled? If Yes, identify the emission unit(s) and the dismantle date in the comment area below or on an AI-001 Form.	🛛 Yes	🗌 No
Comments: E4: EUENGINE5 dismantled November 2014.		
Check here if an AI-001 Form is attached to provide more information for Part E. Enter AI-001 For	m ID: Al-	

SRN: N5831 Section Number (if applicable): 1

PART F: PERMIT TO INSTALL (PTI) INFORMATION

Review all emission units and applicable requirements at the source and answer the following questions as they pertain to <u>all</u> emission units with PTIs. Any PTI(s) identified below must be attached to the application.

Permit to Install Number Emission Units/Flexible Group ID(s) Description (Include Process Equipment, Control Devices) Date Emission Unit was Installed/ Modified/ Reconstructed Image: State S	F1. Has the source been incorpora If No, go to Pa	ated into the existing	where the applicable requirements from the PTI have not ROP? If Yes, complete the following table.	🗌 Yes 🛛 No
 emission units in the existing ROP? If Yes, identify the emission unit(s) or flexible group(s) affected in the comments area below or on an AI-001 Form and identify all changes, additions, and deletions in a mark-up of the existing ROP. F3. Do any of the PTIs listed above identify new emission units that need to be incorporated into the ROP? If Yes, submit the PTIs as part of the ROP renewal application on an AI-001 Form, and include the new emission unit(s) or flexible group(s) in the mark-up of the existing ROP. F4. Are there any stacks with applicable requirements for emission unit(s) identified in the PTIs listed above that were not reported in MAERS for the most recent emissions reporting year? If Yes No Yes, identity the stack(s) that were not reported on the applicable MAERS form(s). F5. Are there any proposed administrative changes to any of the emission unit names, descriptions or control devices in the PTIs listed above for any emission units not already incorporated into the ROP? If Yes, describe the changes on an AI-001 Form. 		Units/Flexible		Unit was Installed/ Modified/
 emission units in the existing ROP? If Yes, identify the emission unit(s) or flexible group(s) affected in the comments area below or on an AI-001 Form and identify all changes, additions, and deletions in a mark-up of the existing ROP. F3. Do any of the PTIs listed above identify new emission units that need to be incorporated into the ROP? If Yes, submit the PTIs as part of the ROP renewal application on an AI-001 Form, and include the new emission unit(s) or flexible group(s) in the mark-up of the existing ROP. F4. Are there any stacks with applicable requirements for emission unit(s) identified in the PTIs listed above that were not reported in MAERS for the most recent emissions reporting year? If Yes No Yes, identity the stack(s) that were not reported on the applicable MAERS form(s). F5. Are there any proposed administrative changes to any of the emission unit names, descriptions or control devices in the PTIs listed above for any emission units not already incorporated into the ROP? If Yes, describe the changes on an AI-001 Form. 				
 emission units in the existing ROP? If Yes, identify the emission unit(s) or flexible group(s) affected in the comments area below or on an AI-001 Form and identify all changes, additions, and deletions in a mark-up of the existing ROP. F3. Do any of the PTIs listed above identify new emission units that need to be incorporated into the ROP? If Yes, submit the PTIs as part of the ROP renewal application on an AI-001 Form, and include the new emission unit(s) or flexible group(s) in the mark-up of the existing ROP. F4. Are there any stacks with applicable requirements for emission unit(s) identified in the PTIs listed above that were not reported in MAERS for the most recent emissions reporting year? If Yes No Yes, identity the stack(s) that were not reported on the applicable MAERS form(s). F5. Are there any proposed administrative changes to any of the emission unit names, descriptions or control devices in the PTIs listed above for any emission units not already incorporated into the ROP? If Yes, describe the changes on an AI-001 Form. 				
 emission units in the existing ROP? If Yes, identify the emission unit(s) or flexible group(s) affected in the comments area below or on an AI-001 Form and identify all changes, additions, and deletions in a mark-up of the existing ROP. F3. Do any of the PTIs listed above identify new emission units that need to be incorporated into the ROP? If Yes, submit the PTIs as part of the ROP renewal application on an AI-001 Form, and include the new emission unit(s) or flexible group(s) in the mark-up of the existing ROP. F4. Are there any stacks with applicable requirements for emission unit(s) identified in the PTIs listed above that were not reported in MAERS for the most recent emissions reporting year? If Yes No Yes, identity the stack(s) that were not reported on the applicable MAERS form(s). F5. Are there any proposed administrative changes to any of the emission unit names, descriptions or control devices in the PTIs listed above for any emission units not already incorporated into the ROP? If Yes, describe the changes on an AI-001 Form. 				
 emission units in the existing ROP? If Yes, identify the emission unit(s) or flexible group(s) affected in the comments area below or on an AI-001 Form and identify all changes, additions, and deletions in a mark-up of the existing ROP. F3. Do any of the PTIs listed above identify new emission units that need to be incorporated into the ROP? If Yes, submit the PTIs as part of the ROP renewal application on an AI-001 Form, and include the new emission unit(s) or flexible group(s) in the mark-up of the existing ROP. F4. Are there any stacks with applicable requirements for emission unit(s) identified in the PTIs listed above that were not reported in MAERS for the most recent emissions reporting year? If Yes No Yes, identity the stack(s) that were not reported on the applicable MAERS form(s). F5. Are there any proposed administrative changes to any of the emission unit names, descriptions or control devices in the PTIs listed above for any emission units not already incorporated into the ROP? If Yes, describe the changes on an AI-001 Form. 				
 F3. Do any of the PTIs listed above identify new emission units that need to be incorporated into the ROP? If Yes, submit the PTIs as part of the ROP renewal application on an AI-001 Form, and include the new emission unit(s) or flexible group(s) in the mark-up of the existing ROP. F4. Are there any stacks with applicable requirements for emission unit(s) identified in the PTIs listed above that were not reported in MAERS for the most recent emissions reporting year? If Yes No Yes, identity the stack(s) that were not reported on the applicable MAERS form(s). F5. Are there any proposed administrative changes to any of the emission unit names, descriptions or control devices in the PTIs listed above for any emission units not already incorporated into Yes No the ROP? If Yes, describe the changes on an AI-001 Form. 	emission unit affected in the	s in the existing ROI comments area belows area bel	P? If Yes, identify the emission unit(s) or flexible group(s) ow or on an AI-001 Form and identify all changes, additions,	□ Yes □ No
 F4. Are there any stacks with applicable requirements for emission unit(s) identified in the PTIs listed above that were <u>not</u> reported in MAERS for the most recent emissions reporting year? If Yes No Yes, identity the stack(s) that were not reported on the applicable MAERS form(s). F5. Are there any proposed administrative changes to any of the emission unit names, descriptions or control devices in the PTIs listed above for any emission units not already incorporated into Yes No the ROP? If Yes, describe the changes on an AI-001 Form. 	the ROP? If Y	es, submit the PTIs	as part of the ROP renewal application on an AI-001 Form.	Yes No
or control devices in the PTIs listed above for any emission units not already incorporated into Yes No the ROP? If Yes, describe the changes on an AI-001 Form.	F4. Are there any s listed above the	stacks with applicabl at were <u>not</u> reported	e requirements for emission unit(s) identified in the PTIs in MAERS for the most recent emissions reporting year? If	Yes No
Comments:	or control devic	ces in the PTIs listed	above for any emission units not already incorporated into	Yes No
	Comments:			
Check here if an AI-001 Form is attached to provide more information for Part F. Enter AI-001 Form ID: AI-	Check here if	an Al-001 Form is a	ttached to provide more information for Part F. Enter AI-001 F	Form ID: AI-

SRN: N5831 Section Number (if applicable): 1

PART G: EMISSION UNITS MEETING THE CRITERIA OF RULES 281(2)(h), 285(2)(r)(iv), 287(2)(c), OR 290

Review all emission units and applicable requirements at the source and answer the following questions.

	nission units in the table below. If No, go to Part H.	🗌 Yes 🛛 No
Note: If several emis of each and an insta	ssion units were installed under the same rule above, provide a description lation/modification/reconstruction date for each.	on
Origin of Applicable Requirements	Emission Unit Description – Provide Emission Unit ID and a description of Process Equipment, Control Devices and Monitoring Devices	Date Emission Unit was Installed/ Modified/ Reconstructed
Rule 281(2)(h) or 285(2)(r)(iv) cleaning operation		
Rule 287(2)(c) surface coating line		
Rule 290 process with limited emissions		
Comments:		

PART H: REQUIREMENTS FOR ADDITION OR CHANGE

Complete this part of the application form for all proposed additions, changes or deletions to the existing ROP. This includes state or federal regulations that the source is subject to and that must be incorporated into the ROP or other proposed changes to the existing ROP. **Do not include additions or changes that have already been identified in Parts F or G of this application form.** If additional space is needed copy and complete an additional Part H.

Complete a separate Part H for each emission unit with proposed additions and/or changes.

H1.	Are there changes that need to be incorporated into the ROP that have not been identified in Parts F and G? If Yes, answer the questions below.	🛛 Yes	🗌 No
H2.	Are there any proposed administrative changes to any of the existing emission unit names, descriptions or control devices in the ROP? If Yes, describe the changes in questions H8 – H16 below and in the affected Emission Unit Table(s) in the mark-up of the ROP.	Yes	No No
H3.	Does the source propose to add a new emission unit or flexible group to the ROP not previously identified in Parts F or G? If Yes, identify and describe the emission unit name, process description, control device(s), monitoring device(s) and applicable requirements in questions H8 – H16 below and in a new Emission Unit Table in the mark-up of the ROP. See instructions on how to incorporate a new emission unit/flexible group into the ROP.	🗌 Yes	🖾 No
H4.	Does the source propose to add new state or federal regulations to the existing ROP?	Yes	🛛 No
	If Yes, on an AI-001 Form, identify each emission unit/flexible group that the new regulation applies to and identify <u>each</u> state or federal regulation that should be added. Also, describe the new requirements in questions H8 – H16 below and add the specific requirements to existing emission units/flexible groups in the mark-up of the ROP, create a new Emission Unit/Flexible Group Table, or add an AQD template table for the specific state or federal requirement.		
H5.	Has a Consent Order/Consent Judgment (CO/CJ) been issued where the requirements were not incorporated into the existing ROP? If Yes, list the CO/CJ number(s) below and add or change the conditions and underlying applicable requirements in the appropriate Emission Unit/Flexible Group Tables in the mark-up of the ROP.	☐ Yes	No No
H6.	Does the source propose to add, change and/or delete source-wide requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	🛛 Yes	🗌 No
Rec the	quest to change FGWAUKENGINES to FGWAUKENGINE, as we are requesting to omit one of the tw source.	wo engine	es at
H7.	Are you proposing to streamline any requirements? If Yes, identify the streamlined and subsumed requirements and the EU ID, and provide a justification for streamlining the applicable requirement below.	TYes	No No

SRN: N5831 Section Number (if applicable): 1

PART H: REQUIREMENTS FOR ADDITION OR CHANGE – (continued)

H8. Does the source propose to add, change and/or delete emission limit requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	🛛 Yes	No No
Request to delete EUENGINE5 emission limits, as this source has been decommissioned.		
H10. Does the source propose to add, change and/or delete material limit requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	🗌 Yes	No No
H11. Does the source propose to add, change and/or delete process/operational restriction requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	🛛 Yes	🗌 No
Request to change FGWAUKENGINES to FGWAUKENGINE, as we are request one of the two source	s to be on	nitted.
H12. Does the source propose to add, change and/or delete design/equipment parameter requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	No No
H13. Does the source propose to add, change and/or delete testing/sampling requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	No
V (1) Request to delete testing conditions for EUENGINE5, as this source is decommissioned.		
H14. Does the source propose to add, change and/or delete monitoring/recordkeeping requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	X Yes	🗌 No
Request to change the source name from FGWUAKENGINES to FGWAUKENGINE		
H15. Does the source propose to add, change and/or delete reporting requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	X Yes	🗌 No
Request to change the source name from FGWUAKENGINES to FGWAUKENGINE		

SRN: N5831 Section Number (if applicable): 1

PART H: REQUIREMENTS FOR ADDITION OR CHANGE – (continued)

 the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below. Request to delete SVENGINE5, as engine has been dismantled. H17. Does the source propose to add, change and/or delete any other requirements? If Yes, identify ☐ Yes ☑ No the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below. 			
 H17. Does the source propose to add, change and/or delete any other requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below. H18. Does the source propose to add terms and conditions for an alternative operating scenario or intra-facility trading of emissions? If Yes, identify the proposed conditions in a mark-up of the corresponding section below. 	the addition/change/deletion in a mark-up of the corresponding	ent restrictions? If Yes, identify Xes section of the ROP and provide a	🗌 No
the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below. H18. Does the source propose to add terms and conditions for an alternative operating scenario or intra-facility trading of emissions? If Yes, identify the proposed conditions in a mark-up of the corresponding section of the ROP and provide a justification below.	Request to delete SVENGINE5, as engine has been dismantled.		
the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below. H18. Does the source propose to add terms and conditions for an alternative operating scenario or intra-facility trading of emissions? If Yes, identify the proposed conditions in a mark-up of the corresponding section of the ROP and provide a justification below.			
intra-facility trading of emissions? If Yes, identify the proposed conditions in a mark-up of the corresponding section of the ROP and provide a justification below.	the addition/change/deletion in a mark-up of the corresponding	er requirements? If Yes, identify Yes section of the ROP and provide a	No No
Check here if an AI-001 Form is attached to provide more information for Part H. Enter AI-001 Form ID: AI-	intra-facility trading of emissions? If Yes, identify the proposed of	conditions in a mark-up of the	No No
	Check here if an AI-001 Form is attached to provide more inform	nation for Part H. Enter AI-001 Form ID: AI	-

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

EFFECTIVE DATE: August 4, 2014

REVISION DATES: April 21, 2015, June 5, 2017

ISSUED TO:

Breitburn Operating, LP – Wilderness CO2 CPF and

Linn Operating, LLC - Hayes 29 CPF

State Registration Number (SRN): N5831

LOCATED AT:

10875 Geronimo Trail, Gaylord, Otsego County, Michigan 49735

RENEWABLE OPERATING PERMIT

Permit Number: MI-ROP-N5831-2014b

Expiration Date: August 4, 2019

Administratively Complete ROP Renewal Application Due Between: February 4, 2018 and February 4, 2019

This Renewable Operating Permit (ROP) is issued in accordance with and subject to Section 5506(3) of Part 55, Air Pollution Control, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451). Pursuant to Michigan Air Pollution Control Rule 210(1), this ROP constitutes the permittee's authority to operate the stationary source identified above in accordance with the general conditions, special conditions and attachments contained herein. Operation of the stationary source and all emission units listed in the permit are subject to all applicable future or amended rules and regulations pursuant to Act 451 and the federal Clean Air Act.

SOURCE-WIDE PERMIT TO INSTALL

Permit Number: MI-PTI-N5831-2014b

This Permit to Install (PTI) is issued in accordance with and subject to Section 5505(5) of Act 451. Pursuant to Michigan Air Pollution Control Rule 214a, the terms and conditions herein, identified by the underlying applicable requirement citation of Rule 201(1)(a), constitute a federally enforceable PTI. The PTI terms and conditions do not expire and remain in effect unless the criteria of Rule 201(6) are met. Operation of all emission units identified in the PTI is subject to all applicable future or amended rules and regulations pursuant to Act 451 and the federal Clean Air Act.

Michigan Department of Environmental Quality

Shane Nixon, Cadillac District Supervisor

TABLE OF CONTENTS

AUTHORITY AND ENFORCEABILITY	4
SECTION 1 – Breitburn Operating, LP - Wilderness CO2 CPF	5
A. GENERAL CONDITIONS	6
Permit Enforceability General Provisions Equipment & Design Emission Limits	6 7
Testing/Sampling Monitoring/Recordkeeping Certification & Reporting Permit Shield	7 7 8
Revisions Reopenings Renewals Stratospheric Ozone Protection	10 10 10
Risk Management Plan Emission Trading Permit To Install (PTI) B. SOURCE-WIDE CONDITIONS	11 11
C. EMISSION UNIT CONDITIONS	
EMISSION UNIT SUMMARY TABLE	
D. FLEXIBLE GROUP CONDITIONS	
FLEXIBLE GROUP SUMMARY TABLE FGCATENGINES FGWAUKENGINES FGRURALSIRICEMACT	17 18 22
E. NON-APPLICABLE REQUIREMENTS	30
APPENDICES	31
Appendix 1. Abbreviations and Acronyms Appendix 2. Schedule of Compliance Appendix 3. Monitoring Requirements Appendix 4. Recordkeeping	32 32 32
Appendix 5. Testing Procedures Appendix 6. Permits to Install Appendix 7. Emission Calculations Appendix 8. Reporting	32 33
SECTION 2 – LINN Operating, LLC - Hayes 29 CPF	
A. GENERAL CONDITIONS	35
Permit Enforceability General Provisions Equipment & Design	35

Page 2 of 60

Emission Limits	
Testing/Sampling	
Monitoring/Recordkeeping	
Certification & Reporting	
Permit Shield	
Revisions	
Reopenings	
Renewals	
Stratospheric Ozone Protection Risk Management Plan	
Emission Trading	
Permit To Install (PTI)	
B. SOURCE-WIDE CONDITIONS	42
C. EMISSION UNIT CONDITIONS	45
EMISSION UNIT SUMMARY TABLE	45
EUGLYCOLDEHYDRATOR	
EUENGINEH29	49
EUMACTZZZ	53
D. FLEXIBLE GROUP CONDITIONS	56
E. NON-APPLICABLE REQUIREMENTS	57
APPENDICES	58
Appendix 1. Abbreviations and Acronyms	50
Appendix 1. Abbreviations and Actoryms	
Appendix 2. Schedule of Compliance	
Appendix 3. Monitoring Requirements	
Appendix 4. Testing Procedures	
Appendix 6. Permits to Install	
Appendix 7. Emission Calculations	
Appendix 8. Reporting	

Page 3 of 60

AUTHORITY AND ENFORCEABILITY

For the purpose of this permit, the **permittee** is defined as any person who owns or operates an emission unit at a stationary source for which this permit has been issued. The **department** is defined in Rule 104(d) as the Director of the Michigan Department of Environmental Quality (MDEQ) or his or her designee.

The permittee shall comply with all specific details in the permit terms and conditions and the cited underlying applicable requirements. All terms and conditions in this ROP are both federally enforceable and state enforceable unless otherwise footnoted. Certain terms and conditions are applicable to most stationary sources for which an ROP has been issued. These general conditions are included in Part A of this ROP. Other terms and conditions may apply to a specific emission unit, several emission units which are represented as a flexible group, or the entire stationary source which is represented as a Source-Wide group. Special conditions are identified in Parts B, C, D and/or the appendices.

In accordance with Rule 213(2)(a), all underlying applicable requirements are identified for each ROP term or condition. All terms and conditions that are included in a PTI, are streamlined, subsumed and/or are state-only enforceable will be noted as such.

In accordance with Section 5507 of Act 451, the permittee has included in the ROP application a compliance certification, a schedule of compliance, and a compliance plan. For applicable requirements with which the source is in compliance, the source will continue to comply with these requirements. For applicable requirements with which the source is not in compliance, the source will comply with the detailed schedule of compliance requirements that are incorporated as an appendix in this ROP. Furthermore, for any applicable requirements effective after the date of issuance of this ROP, the stationary source will meet the requirements on a timely basis, unless the underlying applicable requirement requires a more detailed schedule of compliance.

Issuance of this permit does not obviate the necessity of obtaining such permits or approvals from other units of government as required by law.

Page 4 of 60

SECTION 1 – Breitburn Operating, LP - Wilderness CO2 CPF

A. GENERAL CONDITIONS

Permit Enforceability

- All conditions in this permit are both federally enforceable and state enforceable unless otherwise noted. (R 336.1213(5))
- Those conditions that are hereby incorporated in a state-only enforceable Source-Wide PTI pursuant to Rule 201(2)(d) are designated by footnote one. (R 336.1213(5)(a), R 336.1214a(5))
- Those conditions that are hereby incorporated in a federally enforceable Source-Wide PTI pursuant to Rule 201(2)(c) are designated by footnote two. (R 336.1213(5)(b), R 336.1214a(3))

General Provisions

- The permittee shall comply with all conditions of this ROP. Any ROP noncompliance constitutes a violation of Act 451, and is grounds for enforcement action, for ROP revocation or revision, or for denial of the renewal of the ROP. All terms and conditions of this ROP that are designated as federally enforceable are enforceable by the Administrator of the United States Environmental Protection Agency (USEPA) and by citizens under the provisions of the federal Clean Air Act (CAA). Any terms and conditions based on applicable requirements which are designated as "state-only" are not enforceable by the USEPA or citizens pursuant to the CAA. (R 336.1213(1)(a))
- It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this ROP. (R 336.1213(1)(b))
- 3. This ROP may be modified, revised, or revoked for cause. The filing of a request by the permittee for a permit modification, revision, or termination, or a notification of planned changes or anticipated noncompliance does not stay any ROP term or condition. This does not supersede or affect the ability of the permittee to make changes, at the permittee's own risk, pursuant to Rule 215 and Rule 216. (R 336.1213(1)(c))
- 4. The permittee shall allow the department, or an authorized representative of the department, upon presentation of credentials and other documents as may be required by law and upon stating the authority for and purpose of the investigation, to perform any of the following activities: (R 336.1213(1)(d))
 - a. Enter, at reasonable times, a stationary source or other premises where emissions-related activity is conducted or where records must be kept under the conditions of the ROP.
 - b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of the ROP.
 - c. Inspect, at reasonable times, any of the following:
 - i. Any stationary source.
 - ii. Any emission unit.
 - iii. Any equipment, including monitoring and air pollution control equipment.
 - iv. Any work practices or operations regulated or required under the ROP.
 - d. As authorized by Section 5526 of Act 451, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the ROP or applicable requirements.
- 5. The permittee shall furnish to the department, within a reasonable time, any information the department may request, in writing, to determine whether cause exists for modifying, revising, or revoking the ROP or to determine compliance with this ROP. Upon request, the permittee shall also furnish to the department copies of any records that are required to be kept as a term or condition of this ROP. For information which is claimed by the permittee to be confidential, consistent with the requirements of the 1976 PA 442, MCL §15.231 et seq., and known as the Freedom of Information Act, the person may also be required to furnish the records directly to the USEPA together with a claim of confidentiality. (R 336.1213(1)(e))

Page 6 of 60

- A challenge by any person, the Administrator of the USEPA, or the department to a particular condition or a part of this ROP shall not set aside, delay, stay, or in any way affect the applicability or enforceability of any other condition or part of this ROP. (R 336.1213(1)(f))
- 7. The permittee shall pay fees consistent with the fee schedule and requirements pursuant to Section 5522 of Act 451. (R 336.1213(1)(g))
- 8. This ROP does not convey any property rights or any exclusive privilege. (R 336.1213(1)(h))

Equipment & Design

- 9. Any collected air contaminants shall be removed as necessary to maintain the equipment at the required operating efficiency. The collection and disposal of air contaminants shall be performed in a manner so as to minimize the introduction of contaminants to the outer air. Transport of collected air contaminants in Priority I and II areas requires the use of material handling methods specified in Rule 370(2). (R 336.1370)
- 10. Any air cleaning device shall be installed, maintained, and operated in a satisfactory manner and in accordance with the Michigan Air Pollution Control rules and existing law. (R 336.1910)

Emission Limits

- 11. Unless otherwise specified in this ROP, the permittee shall comply with Rule 301, which states, in part, "Except as provided in subrules 2, 3, and 4 of this rule, a person shall not cause or permit to be discharged into the outer air from a process or process equipment a visible emission of a density greater than the most stringent of the following: (R 336.1301(1))
 - a. A 6-minute average of 20 percent opacity, except for one 6-minute average per hour of not more than 27 percent opacity.
 - b. A limit specified by an applicable federal new source performance standard.
 - The grading of visible emissions shall be determined in accordance with Rule 303.
- 12. The permittee shall not cause or permit the emission of an air contaminant or water vapor in quantities that cause, alone or in reaction with other air contaminants, either of the following:
 - a. Injurious effects to human health or safety, animal life, plant life of significant economic value, or property.¹ (R 336.1901(a))
 - b. Unreasonable interference with the comfortable enjoyment of life and property.¹ (R 336.1901(b))

Testing/Sampling

- 13. The department may require the owner or operator of any source of an air contaminant to conduct acceptable performance tests, at the owner's or operator's expense, in accordance with Rule 1001 and Rule 1003, under any of the conditions listed in Rule 1001(1). (R 336.2001)
- 14. Any required performance testing shall be conducted in accordance with Rule 1001(2), Rule 1001(3) and Rule 1003. (R 336.2001(2), R 336.2001(3), R 336.2003(1))
- 15. Any required test results shall be submitted to the Air Quality Division (AQD) in the format prescribed by the applicable reference test method within 60 days following the last date of the test. (R 336.2001(5))

Monitoring/Recordkeeping

- 16. Records of any periodic emission or parametric monitoring required in this ROP shall include the following information specified in Rule 213(3)(b)(i), where appropriate: (R 336.1213(3)(b))
 - a. The date, location, time, and method of sampling or measurements.
 - b. The dates the analyses of the samples were performed.
 - c. The company or entity that performed the analyses of the samples.

Page 7 of 60

- d. The analytical techniques or methods used.
- e. The results of the analyses.
- f. The related process operating conditions or parameters that existed at the time of sampling or measurement.
- 17. All required monitoring data, support information and all reports, including reports of all instances of deviation from permit requirements, shall be kept and furnished to the department upon request for a period of not less than 5 years from the date of the monitoring sample, measurement, report or application. Support information includes all calibration and maintenance records and all original strip-chart recordings, or other original data records, for continuous monitoring instrumentation and copies of all reports required by the ROP. (R 336.1213(1)(e), R 336.1213(3)(b)(ii))

Certification & Reporting

- 18. Except for the alternate certification schedule provided in Rule 213(3)(c)(iii)(B), any document required to be submitted to the department as a term or condition of this ROP shall contain an original certification by a Responsible Official which states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. (R 336.1213(3)(c))
- 19. A Responsible Official shall certify to the appropriate AQD District Office and to the USEPA that the stationary source is and has been in compliance with all terms and conditions contained in the ROP except for deviations that have been or are being reported to the appropriate AQD District Office pursuant to Rule 213(3)(c). This certification shall include all the information specified in Rule 213(4)(c)(i) through (v) and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the certification are true, accurate, and complete. The USEPA address is: USEPA, Air Compliance Data Michigan, Air and Radiation Division, 77 West Jackson Boulevard, Chicago, Illinois 60604. (R 336.1213(4)(c))
- 20. The certification of compliance shall be submitted annually for the term of this ROP as detailed in the special conditions, or more frequently if specified in an applicable requirement or in this ROP. (R 336.1213(4)(c))
- 21. The permittee shall promptly report any deviations from ROP requirements and certify the reports. The prompt reporting of deviations from ROP requirements is defined in Rule 213(3)(c)(ii) as follows, unless otherwise described in this ROP. (R 336.1213(3)(c))
 - a. For deviations that exceed the emissions allowed under the ROP, prompt reporting means reporting consistent with the requirements of Rule 912 as detailed in Condition 25. All reports submitted pursuant to this paragraph shall be promptly certified as specified in Rule 213(3)(c)(iii).
 - b. For deviations which exceed the emissions allowed under the ROP and which are not reported pursuant to Rule 912 due to the duration of the deviation, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe reasons for each deviation and the actions taken to minimize or correct each deviation.
 - c. For deviations that do not exceed the emissions allowed under the ROP, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe the reasons for each deviation and the actions taken to minimize or correct each deviation.
- 22. For reports required pursuant to Rule 213(3)(c)(ii), prompt certification of the reports is described in Rule 213(3)(c)(iii) as either of the following: (R 336.1213(3)(c))
 - a. Submitting a certification by a Responsible Official with each report which states that, based on information and belief formed after reasonable inquiry, the statements and information in the report are true, accurate, and complete.
 - b. Submitting, within 30 days following the end of a calendar month during which one or more prompt reports of deviations from the emissions allowed under the ROP were submitted to the department pursuant to Rule 213(3)(c)(ii), a certification by a Responsible Official which states that, "based on information and belief formed after reasonable inquiry, the statements and information contained in each of the reports submitted during the previous month were true, accurate, and complete". The certification shall include a listing of the reports that are being certified. Any report submitted pursuant to Rule 213(3)(c)(ii) that will be

Page 8 of 60

certified on a monthly basis pursuant to this paragraph shall include a statement that certification of the report will be provided within 30 days following the end of the calendar month.

- 23. Semiannually for the term of the ROP as detailed in the special conditions, or more frequently if specified, the permittee shall submit certified reports of any required monitoring to the appropriate AQD District Office. All instances of deviations from ROP requirements during the reporting period shall be clearly identified in the reports. (R 336.1213(3)(c)(i))
- 24. On an annual basis, the permittee shall report the actual emissions, or the information necessary to determine the actual emissions, of each regulated air pollutant as defined in Rule 212(6) for each emission unit utilizing the emissions inventory forms provided by the department. (R 336.1212(6))
- 25. The permittee shall provide notice of an abnormal condition, start-up, shutdown, or malfunction that results in emissions of a hazardous or toxic air pollutant which continue for more than one hour in excess of any applicable standard or limitation, or emissions of any air contaminant continuing for more than two hours in excess of an applicable standard or limitation, as required in Rule 912, to the appropriate AQD District Office. The notice shall be provided not later than two business days after the start-up, shutdown, or discovery of the abnormal conditions or malfunction. Notice shall be by any reasonable means, including electronic, telephonic, or oral communication. Written reports, if required under Rule 912, must be submitted to the appropriate AQD District Supervisor within 10 days after the start-up or shutdown occurred, within 10 days of discovery of the abnormal conditions or malfunction, whichever is first. The written reports shall include all of the information required in Rule 912(5) and shall be certified by a Responsible Official in a manner consistent with the CAA. (R 336.1912)

Permit Shield

- 26. Compliance with the conditions of the ROP shall be considered compliance with any applicable requirements as of the date of ROP issuance, if either of the following provisions is satisfied. (R 336.1213(6)(a)(i), R 336.1213(6)(a)(ii))
 - a. The applicable requirements are included and are specifically identified in the ROP.
 - b. The permit includes a determination or concise summary of the determination by the department that other specifically identified requirements are not applicable to the stationary source.

Any requirements identified in Part E of this ROP have been identified as non-applicable to this ROP and are included in the permit shield.

- 27. Nothing in this ROP shall alter or affect any of the following:
 - The provisions of Section 303 of the CAA, emergency orders, including the authority of the USEPA under Section 303 of the CAA. (R 336.1213(6)(b)(i))
 - b. The liability of the owner or operator of this source for any violation of applicable requirements prior to or at the time of this ROP issuance. (R 336.1213(6)(b)(ii))
 - c. The applicable requirements of the acid rain program, consistent with Section 408(a) of the CAA. (R 336.1213(6)(b)(iii))
 - d. The ability of the USEPA to obtain information from a source pursuant to Section 114 of the CAA. (R 336.1213(6)(b)(iv))
- 28. The permit shield shall not apply to provisions incorporated into this ROP through procedures for any of the following:
 - a. Operational flexibility changes made pursuant to Rule 215. (R 336.1215(5))
 - b. Administrative Amendments made pursuant to Rule 216(1)(a)(i)-(iv). (R 336.1216(1)(b)(iii))
 - c. Administrative Amendments made pursuant to Rule 216(1)(a)(v) until the amendment has been approved by the department. (R 336.1216(1)(c)(iii))
 - d. Minor Permit Modifications made pursuant to Rule 216(2). (R 336.1216(2)(f))
 - e. State-Only Modifications made pursuant to Rule 216(4) until the changes have been approved by the department. (R 336.1216(4)(e))

Page 9 of 60

29. Expiration of this ROP results in the loss of the permit shield. If a timely and administratively complete application for renewal is submitted not more than 18 months, but not less than 6 months, before the expiration date of the ROP, but the department fails to take final action before the end of the ROP term, the existing ROP does not expire until the renewal is issued or denied, and the permit shield shall extend beyond the original ROP term until the department takes final action. (R 336.1217(1)(c), R 336.1217(1)(a))

Revisions

- 30. For changes to any process or process equipment covered by this ROP that do not require a revision of the ROP pursuant to Rule 216, the permittee must comply with Rule 215. (R 336.1215, R 336.1216)
- 31. A change in ownership or operational control of a stationary source covered by this ROP shall be made pursuant to Rule 216(1). (R 336.1219(2))
- 32. For revisions to this ROP, an administratively complete application shall be considered timely if it is received by the department in accordance with the time frames specified in Rule 216. (R 336.1210(10))
- 33. Pursuant to Rule 216(1)(b)(iii), Rule 216(2)(d) and Rule 216(4)(d), after a change has been made, and until the department takes final action, the permittee shall comply with both the applicable requirements governing the change and the ROP terms and conditions proposed in the application for the modification. During this time period, the permittee may choose to not comply with the existing ROP terms and conditions proposed in the application seeks to change. However, if the permittee fails to comply with the ROP are enforceable. (R 336.1216(1)(c)(iii), R 336.1216(2)(d), R 336.1216(4)(d))

Reopenings

- 34. A ROP shall be reopened by the department prior to the expiration date and revised by the department under any of the following circumstances:
 - a. If additional requirements become applicable to this stationary source with three or more years remaining in the term of the ROP, but not if the effective date of the new applicable requirement is later than the ROP expiration date. (R 336.1217(2)(a)(i))
 - b. If additional requirements pursuant to Title IV of the CAA become applicable to this stationary source. (R 336.1217(2)(a)(ii))
 - c. If the department determines that the ROP contains a material mistake, information required by any applicable requirement was omitted, or inaccurate statements were made in establishing emission limits or the terms or conditions of the ROP. (R 336.1217(2)(a)(iii))
 - d. If the department determines that the ROP must be revised to ensure compliance with the applicable requirements. (R 336.1217(2)(a)(iv))

Renewals

35. For renewal of this ROP, an administratively complete application shall be considered timely if it is received by the department not more than 18 months, but not less than 6 months, before the expiration date of the ROP. (R 336.1210(8))

Stratospheric Ozone Protection

36. If the permittee is subject to Title 40 of the Code of Federal Regulations (CFR), Part 82 and services, maintains, or repairs appliances except for motor vehicle air conditioners (MVAC), or disposes of appliances containing refrigerant, including MVAC and small appliances, or if the permittee is a refrigerant reclaimer, appliance owner or a manufacturer of appliances or recycling and recovery equipment, the permittee shall comply with all applicable standards for recycling and emissions reduction pursuant to 40 CFR Part 82, Subpart F.

Page 10 of 60

37. If the permittee is subject to 40 CFR Part 82, and performs a service on motor (fleet) vehicles when this service involves refrigerant in the MVAC, the permittee is subject to all the applicable requirements as specified in 40 CFR Part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners. The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed by the original equipment manufacturer. The term MVAC as used in Subpart B does not include the air-tight sealed refrigeration system used for refrigerated cargo or an air conditioning system on passenger buses using Hydrochlorofluorocarbon-22 refrigerant.

Risk Management Plan

- 38. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall register and submit to the USEPA the required data related to the risk management plan for reducing the probability of accidental releases of any regulated substances listed pursuant to Section 112(r)(3) of the CAA as amended in 40 CFR 68.130. The list of substances, threshold quantities, and accident prevention regulations promulgated under 40 CFR Part 68, do not limit in any way the general duty provisions under Section 112(r)(1).
- 39. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall comply with the requirements of 40 CFR Part 68, no later than the latest of the following dates as provided in 40 CFR Part 68.10(a):
 - a. June 21, 1999,
 - b. Three years after the date on which a regulated substance is first listed under 40 CFR Part 68.130, or
 - c. The date on which a regulated substance is first present above a threshold quantity in a process.
- 40. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall submit any additional relevant information requested by any regulatory agency necessary to ensure compliance with the requirements of 40 CFR Part 68.
- 41. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall annually certify compliance with all applicable requirements of Section 112(r) as detailed in Rule 213(4)(c)). (40 CFR Part 68)

Emission Trading

42. Emission averaging and emission reduction credit trading are allowed pursuant to any applicable interstate or regional emission trading program that has been approved by the Administrator of the USEPA as a part of Michigan's State Implementation Plan. Such activities must comply with Rule 215 and Rule 216. (R 336.1213(12))

Permit To Install (PTI)

- 43. The process or process equipment included in this permit shall not be reconstructed, relocated, or modified unless a PTI authorizing such action is issued by the department, except to the extent such action is exempt from the PTI requirements by any applicable rule. ² (R 336.1201(1))
- 44. The department may, after notice and opportunity for a hearing, revoke PTI terms or conditions if evidence indicates the process or process equipment is not performing in accordance with the terms and conditions of the PTI or is violating the department's rules or the CAA.² (R 336.1201(8), Section 5510 of Act 451)
- 45. The terms and conditions of a PTI shall apply to any person or legal entity that now or hereafter owns or operates the process or process equipment at the location authorized by the PTI. If a new owner or operator submits a written request to the department pursuant to Rule 219 and the department approves the request, this PTI will be amended to reflect the change of ownership or operational control. The request must include all of the information required by Subrules (1)(a), (b) and (c) of Rule 219. The written request shall be sent to the appropriate AQD District Supervisor, MDEQ.² (R 336.1219)
- 46. If the installation, reconstruction, relocation, or modification of the equipment for which PTI terms and conditions have been approved has not commenced within 18 months, or has been interrupted for 18 months,

the applicable terms and conditions from that PTI shall become void unless otherwise authorized by the department. Furthermore, the person to whom that PTI was issued, or the designated authorized agent, shall notify the department via the Supervisor, Permit Section, MDEQ, AQD, P. O. Box 30260, Lansing, Michigan 48909, if it is decided not to pursue the installation, reconstruction, relocation, or modification of the equipment allowed by the terms and conditions from that PTI.² (**R 336.1201(4)**)

 $\frac{\textbf{Footnotes:}}{^{1}\text{This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).}$ $^{2}\text{This condition is federally enforceable and was established pursuant to Rule 201(1)(a).}$

B. SOURCE-WIDE CONDITIONS

Part B outlines the Source-Wide Terms and Conditions that apply to this stationary source. The permittee is subject to these special conditions for the stationary source in addition to the general conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply to this source, NA (not applicable) has been used in the table. If there are no Source-Wide Conditions, this section will be left blank.

Page 13 of 60

SOURCE-WIDE CONDITIONS

POLLUTION CONTROL EQUIPMENT:

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	224 tons ²	12-month rolling time period, as determined at the end of each calendar month		SC VI.2	R 336.1205(3)
2.	со	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
3.	Each Individual HAP	Less than 10 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R336.1213(2)(d)
4.	Total HAPs	Less than 25 tons per year	12-month rolling time period, as determined at the end of each calendar month		SC VI.3	R336.1213(2)(d)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

1. The permittee shall only burn sweet natural gas in all natural gas fired equipment.² (R 336.1205(3))

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years.² (R 336.1213(3)(b)(ii))

1. The permittee shall complete all required calculations in a format acceptable to the AQD District Supervisor and make them available by the last day of the calendar month, for the previous calendar month.² (R336.1205(3), R 336.213(3))

Page 14 of 60

- The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period CO and NOx emission calculation records for the Stationary Source, to demonstrate compliance with Special Conditions (SC) I.1 and I.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R336.1205(3), R 336.213(3))
- The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period HAP emission calculation records for the Stationary Source, as required in SC I.3 and I.4 above. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R336.1213(2)(d))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
NA	NA	NA	NA

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

Page 15 of 60

C. EMISSION UNIT CONDITIONS

Part C outlines terms and conditions that are specific to individual emission units listed in the Emission Unit Summary Table. The permittee is subject to the special conditions for each emission unit in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no conditions specific to individual emission units, this section will be left blank.

EMISSION UNIT SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Emission Unit ID	Emission Unit Description (Including Process Equipment & Control Device(s))	Installation Date/ Modification Date	Flexible Group ID
EUENGINE1	Remote 1,085 hp Caterpillar 3516 LE (low emission) reciprocating internal combustion engine (RICE)	11/01/92	FGCATENGINES
EUENGINE2	Remote 1,085 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
EUENGINE3	Remote 1,085 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
EUENGINE4	Remote 1,150 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
	Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE, with 3-way catalytic converter and air to fuel ratio control (AFRC)		
EUENGINE5	On February 23, 2015, the facility revised minor modification application No. 201500014 to consider the engine "shut-in" and would test the engine within 90 days of bringing it back online. EUENGINE5 was shut down and placed in stand-by mode effective November 10, 2014.	11/01/92	FGWAUKENGINES
EUENGINE6	Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE, with 3-way catalytic converter and AFRC	11/01/92	FGWAUKENGINES

Commented [CK1]: REQUEST THAT EUENGINE5 BE REMOVED FROM ROP.

Page 16 of 60

D. FLEXIBLE GROUP CONDITIONS

Part D outlines the terms and conditions that apply to more than one emission unit. The permittee is subject to the special conditions for each flexible group in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no special conditions that apply to more than one emission unit, this section will be left blank.

FLEXIBLE GROUP SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Flexible Group ID	Flexible Group Description	Associated Emission Unit IDs	
FGCATENGINES	Remote Caterpillar 3516 LE (low emission) reciprocating internal combustion engines (RICE)	EUENGINE1, EUENGINE2, EUENGINE3, and EUENGINE4,	
FGWAUKENGINES	Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE controlled by 3-way catalytic converters, subject to 40 CFR Part 64 Compliance Assurance Monitoring (CAM) requirements	EUENGINE5 and EUENGINE6	Commented [CK2]: REQUEST TO REMOVE EUENGE5
FGRURALSIRICEMACT	Existing non-emergency Spark Ignition (SI) 4 Stroke Lean Burn (4SLB) and existing non-emergency SI 4 Stroke Rich Burn (4SRB) stationary RICE with site ratings greater than 500 HP located at an area source of HAPs, that meet the definition of remote stationary RICE in 40 CFR 63.6675	EUENGINE1, EUENGINE2, EUENGINE3, EUENGINE4, EUENGINE5, and EUENGINE6	Formatted: Strikethrough

Page 17 of 60

FGCATENGINES FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

Four remote Caterpillar 3516 LE (low emission) RICE

Emission Units: EUENGINE1, EUENGINE2, EUENGINE3, and EUENGINE4

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst (EUENGINE2, EUENGINE3, and EUENGINE4)

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE1	SC V.1 and SC VI.7	R 336.1205(3)
1.	СО	20.8 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE1	SC V.1 and SC VI.7	R 336.1205(3)
2.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE2	SC V.1 and SC VI.7	R 336.1205(3)
3.	СО	4.5 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE2	SC V.1 and SC VI.7	R 336.1205(3)
4.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE3	SC V.1 and SC VI.7	R 336.1205(3)
5.	со	4.5 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE3	SC V.1 and SC VI.7	R 336.1205(3)
6.	NOx	24.4 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE4	SC V.1 and SC VI.7	R 336.1205(3)
7.	СО	4.2 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE4	SC V.1 and SC VI.7	R 336.1205(3)

Page 18 of 60

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Fallinment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- 1. The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 2. The permittee shall not operate FGCATENGINES unless the MAP, approved by the AQD District Supervisor, is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:
 - a. Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel responsible for overseeing the inspection, maintenance, and repair.
 - b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.
 - c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.
 - d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.
 - e. A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequaces.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 4. The permittee shall utilize a differential pressure gauge or manometer for any engine with an oxidation catalyst, to monitor the operation of the oxidation catalyst as an indicator of proper operation. The appropriate range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))
- The permittee shall utilize a temperature gauge or thermocouple for any engine with an oxidation catalyst, to monitor the operation of the oxidation catalyst, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple in accordance with the manufacturer's recommendations for any engine with an oxidation catalyst. (R 336.1213(3)(a)(iii))

Page 19 of 60

V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

1. The permittee shall verify NOx and CO emissions from each engine in FGCATENGINES, by testing at owners expense, within nine months of issuance of this permit, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R336.2003, R336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- 1. The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in FGCATENGINES on a monthly basis. (R 336.1205(3), R 336.1213(3))
- 2. The permittee shall monitor and record the differential pressure gauge or monometer on any engine with an oxidation catalyst in FGCATENGINES, on a monthly basis. (R 336.1213(3)(a)(iii))
- 3. The permittee shall monitor and record the inlet temperature and outlet temperature on any engine with an oxidation catalyst in FGCATENGINES, on a daily basis. (R 336.1213(3)(a)(iii))
- 4. The permittee shall maintain a log of all maintenance activities conducted according to the PM/MAP. The permittee shall keep this log on file at a location approved by the district supervisor and make it available upon request.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)
- 5. The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device monthly and 12-month rolling time period records of the hours of each engine included in FGCATENGINES is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- The permittee shall keep, in a satisfactory manner, monthly fuel use records for each engine included in FGCATENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 7. The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for each engine included in FGCATENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- If any engine included in FGCATENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(3))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

Page 20 of 60

- The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit 4. Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 5. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical 6. Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))
- 7. If any engine included in FGCATENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
1. SVENGINE1	16 ¹	37.5 ¹	R 336.1225
2. SVENGINE2	16 ¹	37.5 ¹	R 336.1225
3. SVENGINE3	16 ¹	37.5 ¹	R 336.1225
4. SVENGINE4	16 ¹	37.5 ¹	R 336.1225

IX. OTHER REQUIREMENT(S)

NA

Footnotes: ¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

FGWAUKENGINES FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

1

Two remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE	 Commented [CK3]: Change to (1)One
Emission Unit: EUENGINE5 and EUENGINE6	Formatted: Strikethrough
Emission Unit: EUEINGINES and EUEINGINES	Formatted: Strikethrough

POLLUTION CONTROL EQUIPMENT:

3-way catalytic converters

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1. NOx	24.6 tons ²	12-month rolling time period, as determined at the end of each	EUENGINE5	SC V.1 and SC VI.11	R 336.1205(3)
		calendar month		30 vi. i i	
2. CO	4 1.1 tons²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE5	SC V.1 and SC VI.11	R 336.1205(3)
3. NOx	24.6 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE6	SC V.1 and SC VI.11	R 336.1205(3)
4. CO	41.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE6	SC V.1 and SC VI.11	R 336.1205(3)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

1. The permittee shall only burn sweet natural gas in FGWAUKENGINES.² (R 336.1205(3))

2. The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))

Page 22 of 60

Formatted: Strikethrough

Formatted: Strikethrough

3.	The permittee shall not operate FGWAUKENGINES-unless the MAP, approved by the AQD District Supervisor,
	is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment
	manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:
	a. Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel

- responsible for overseeing the inspection, maintenance, and repair.
- b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.
- c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.
- d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.
 e. A description of the corrective procedures or operational changes that shall be taken in the event of a
- malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequaces.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- 4. The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 5. The permittee shall utilize a differential pressure gauge or manometer for any engine with a catalytic converter, to monitor the operation of the catalytic converter as an indicator of proper operation. The appropriate range defining the proper operation of the catalytic converter is identified in the MAP. (R 336.1213(3)(a)(i))
- The permittee shall utilize a temperature gauge or thermocouple for any engine with a catalytic converter, to monitor the operation of the catalytic converter, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the catalytic converter is identified in the MAP. (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple gauge in accordance with the manufacturer's recommendations. (40 CFR 64.3(b)(2)(a), (R 336.1213(3)(a)(iii))

V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- <u>The permittee shall verify NOx and CO emissions from EUENGINE5, by testing at owner's expense, within 90 days of start-up, and thereafter within every five years, in accordance with Department requirements.</u> (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)
- 2. The permittee shall verify NOx and CO emissions from EUENGINE6, by testing at owner's expense, within nine months of issuance of this permit, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

1. The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in FGWAUKENGINES on a monthly basis. (R 336.1205(3), R 336.1213(3))

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough

Page 23 of 60
- The permittee shall utilize a differential pressure gauge or manometer to monitor the operation of the catalytic converter as an indicator of proper operation. The appropriate range defining the proper operation of the catalytic converter is identified in the MAP. (40 CFR 64.6(c)(1)(i)), 40 CFR 64.6(c)(1)(ii), R 336.1213(3)(a)(i))
- The permittee shall monitor and record the differential pressure gauge or monometer on <u>EUENGINE5 and</u> EUENGINE6, on a monthly basis. (40 CFR 64.6(c)(1)(iii), 40 CFR 64.6(c)(3), 40 CFR 64.7(c), R 336.1213(3)(a)(i))
- 4. An excursion for NOx and CO shall be a differential pressure gauge or manometer reading of 1.5 inches of water over or under the differential pressure under normal operating conditions identified in the MAP, which is determined when the catalytic converter is installed. (40 CFR 64.6(c)(2), R 336.1213(3)(a)(i))
- The permittee shall utilize a temperature gauge or thermocouple to monitor the operation of the catalytic converter, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the catalytic converter is identified in the MAP. (40 CFR 64.6(c)(1)(i)), 40 CFR 64.6(c)(1)(ii), R 336.1213(3)(a)(i))
- The permittee shall monitor and record the inlet temperature and outlet temperature on <u>EUENGINE5 and</u> EUENGINE6, on a daily basis. (40 CFR 64.6(c)(1)(iii), 40 CFR 64.6(c)(3), 40 CFR 64.7(c), R 336.1213(3)(a)(iii))
- 7. An excursion for NOx and CO shall be a temperature gauge or thermocouple reading less than 900°F at the inlet of the catalytic converter, or greater than 1250°F at the outlet of the catalytic converter, or the outlet temperature from the catalytic converter is less than the inlet temperature.² (40 CFR 64.6(c)(2))
- The permittee shall maintain a log of all maintenance activities conducted according to the MAP. The permittee shall keep this log on file at a location approved by the district supervisor and make it available upon request.² (R 336.1205(3), R 336.1213(3), R 336.1225, R 336.1702(a), R 336.1911)
- The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device monthly and 12-month rolling time period records of the hours of each engine included in FGWAUKENGINE<u>S</u> is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 11. The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for each engine included in FGWAUKENGINE<u>S</u>. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 12. If any engine included in FGWAUKENGINE<u>S</u> is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. **(R 336.1213(3))**
- 13. Upon detecting an excursion or exceedance of the differential pressure, the permittee shall check sample lines, check RPM verses differential pressure and compare the reading to previous month's readings, remove the catalyst and replace gaskets, as necessary. Should the differential pressure still indicate an excursion (greater than 1.5 times the normal differential pressure), the catalyst shall be removed and washed or replaced. (40 CFR 64.7(d))
- 14. Upon detecting an excursion or exceedance of the temperature, the permittee shall check loading on the engine, check for a faulty gauge or thermocouple, and check for proper operation of the ignition system.

Page 24 of 60

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough

- Formatted: Strikethrough

Formatted: Strikethrough

Should the above check be performed and the temperatures are still outside the specified ranges, the engine shall be shut down. (40 CFR 64.7(d))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))
- 4. Each semiannual report of monitoring and deviations shall include summary information on the number, duration and cause of excursions and/or exceedances and the corrective actions taken. If there were no excursions or exceedances in the reporting period, then this report shall include a statement that there were no excursions and/or exceedances. (40 CFR 64.9(a)(2)(i))
- 5. The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 6. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- 7. The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))
- If any engine included in FGWAUKENGINE<u>S</u> is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements	
1. SVENGINE5	16 ¹	40 ¹	R 336.1225	
2. SVENGINE6	16 ¹	40 ¹	R 336.1225	

Formatted: Strikethrough

Formatted: Strikethrough

Page 25 of 60

IX. OTHER REQUIREMENT(S)

1. The permittee shall comply with all applicable requirements of 40 CFR Part 64. (40 CFR Part 64)

Footnotes: ¹ This condition is state only enforceable and was established pursuant to Rule 201(1)(b). ² This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

Page 26 of 60

FGRURALSIRICEMACT FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

Existing non-emergency Spark Ignition (SI) 4 Stroke Lean Burn (4SLB) and existing non-emergency SI 4 Stroke Rich Burn (4SRB) stationary RICE with site ratings greater than 500 HP located at an area source of HAPs, that meet the definition of remote stationary RICE in 40 CFR 63.6675.

Compliance date is October 19, 2013

Emission Unit: EUENGINE1, EUENGINE2, EUENGINE3, EUENGINE4, <u>EUENGINE5</u>, EUENGINE6

POLLUTION CONTROL EQUIPMENT:

NA

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements	
NA	NA	NA	NA	NA	NA	

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Fauinment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- The permittee shall be in compliance with the emission limitations, operating limitations and other requirements of Subpart ZZZZ of Part 63 at all times after the promulgated compliance date in Subpart ZZZZ of Part 63. (40 CFR 63.6605(a))
- 2. The permittee shall operate and maintain any affected RICE, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance records, and inspection of the source. (40 CFR 63.6605(b))
- 3. The permittee shall comply with the following requirements, for each 4SLB and 4SRB remote stationary RICE with a site rating greater than 500 brake HP, by the applicable compliance date. **(40 CFR 63.6603(a) and Table 2d)**
 - a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first, except as allowed in SC III.4.

Page 27 of 60

Formatted: Strikethrough

- b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.
- c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.
- 4. The permittee may utilize an oil analysis program in order to extend the specified oil change requirement in 40 CFR 63.6603 and as listed in SC III.3. The oil analysis program must be performed at the same frequency as oil changes are required. The analysis program must analyze the parameters and keep records as required in Part 63.6625(j) for SI engines. (40 CFR 63.6625(j))

IV. DESIGN/EQUIPMENT PARAMETER(S)

- The permittee shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Table 2d of Subpart ZZZZ, apply.
 (40 CFR 63.6625(h))
- The permittee shall operate and maintain the stationary RICE according to the manufacturer's emission-related written instructions or develop you own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air-pollution control practice for minimizing emissions. (40 CFR 63.6640(a), Table 6)

V. TESTING/SAMPLING

1. If using the oil analysis program for SI Engine(s), the permittee shall test for Total Acid Number, viscosity and percent water content. (40 CFR 63.6625(j))

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- By the compliance date, and every 12 months thereafter, the permittee must evaluate the status of their existing stationary SI RICE and document that the SI RICE meets the definition of remote stationary RICE in 40 CFR 63.6675. 40 CFR 63.6675 defines Remote stationary RICE as stationary RICE meeting any of the following criteria:
 - a. Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas and beyond the line marking the seaward limit of inland waters.
 - b. Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (b)(i) and (ii) of this definition.
 - i. A pipeline segment with 10 or fewer buildings intended for human occupancy within 220 yards (200 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.
 - ii. The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, well-defined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12 month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.
 - iii. For purposes of this paragraph (b), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 m) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

Page 28 of 60

- c. Stationary RICE that are not located on gas pipelines and that have or fewer buildings intended for human occupancy within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans. **(40 CFR 63.6603(f), 63.6675)**
- The permittee shall keep records of the initial and annual evaluation of the status of the engine required by SC VI.1. (40 CFR 63.6603(f))
- 3. If the evaluation of the status of the engine required by SC VI.1 indicates that the stationary RICE no longer meets the definition of remote stationary RICE in SC VI.1(a) through (c) and 40 CFR 63.6675, the permittee shall comply with all of the applicable requirements in 40 CFR Part 63, Subpart ZZZZ for existing nonemergency SI 4SLB and/or 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within one year of the evaluation. (40 CFR 63.6603(f))
- The permittee shall keep records as required in SC IV.2 to show continuous compliance with each emission or operating limit that applies. (40 CFR 63.6655(d), 63.6660)
- The permittee shall keep records of the maintenance conducted on the stationary RICE in order to demonstrate that the permittee operated and maintained the stationary RICE and after-treatment control device (if any) according to the permittee's maintenance plan. (40 CFR 63.6655(e), 63.6660)
- 6. The permittee shall maintain, at a minimum, the following records by the compliance date:
 - a. A copy of each notification and report that is submitted to comply with 40 CFR Part 63, Subpart ZZZZ and the documentation supporting each notification and report. (40 CFR 63.6655(a)(1))
 - Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment. (40 CFR 63.6655(a)(2))
 - c. Records of all required maintenance performed on the air pollution control and monitoring equipment. (40 CFR 63.6655(a)(4))
 - Records of actions taken during periods of malfunction to minimize emissions in accordance with 40 CFR §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation. (40 CFR 63.6655(a)(5))

VII. <u>REPORTING</u>

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

VIII. STACK/VENT RESTRICTION(S)

NA

IX. OTHER REQUIREMENT(S)

 The permittee shall comply with all applicable provisions of the National Emission Standards for Hazardous Air Pollutants, as specified in 40 CFR Part 63, Subpart A and Subpart ZZZZ as they apply to FG-RURALSIRICEMACT. The permittee may choose an alternative compliance method not listed in FG-RURALSIRICEMACT by complying with all applicable provisions required by Subpart ZZZZ for the compliance option chosen. (40 CFR 70.6(9), 40 CFR 63.9(j), 40 CFR Part 63, Subparts A and ZZZZ)

Page 29 of 60

E. NON-APPLICABLE REQUIREMENTS

At the time of the ROP issuance, the AQD has determined that no non-applicable requirements have been identified for incorporation into the permit shield provision set forth in the General Conditions in Part A pursuant to Rule 213(6)(a)(ii).

Page 30 of 60

Appendix 1. Abbreviations and Acronyms The following is an alphabetical listing of abbreviations/acronyms that may be used in this permit.

APPENDICES

The followin	ng is an alphabetical listing of abbreviations/acro Air Quality Division	onyms that n MM	nay be used in this permit. Million
acfm	Actual cubic feet per minute	MSDS	Material Safety Data Sheet
BACT	•	MW	•
BAUT	Best Available Control Technology	NA	Megawatts
°C	British Thermal Unit		Not Applicable
-	Degrees Celsius	NAAQS	National Ambient Air Quality Standards
CAA	Federal Clean Air Act	NESHAP	National Emission Standard for Hazardous Air Pollutants
CAM	Compliance Assurance Monitoring	NMOC	Non-methane Organic Compounds
CEM	Continuous Emission Monitoring	NOx	Oxides of Nitrogen
CFR	Code of Federal Regulations	NSPS	New Source Performance Standards
CO	Carbon Monoxide	NSR	New Source Review
COM	Continuous Opacity Monitoring	PM	Particulate Matter
department	Michigan Department of Environmental Quality	PM-10	Particulate Matter less than 10 microns in diameter
dscf	Dry standard cubic foot	pph	Pound per hour
dscm	Dry standard cubic meter	ppm	Parts per million
EPA	United States Environmental Protection Agency	ppmv	Parts per million by volume
EU	Emission Unit	ppmw	Parts per million by weight
°F	Degrees Fahrenheit	PS	Performance Specification
FG	Flexible Group	PSD	Prevention of Significant Deterioration
GACS	Gallon of Applied Coating Solids	psia	Pounds per square inch absolute
GC	General Condition	psig	Pounds per square inch gauge
gr	Grains	PeTE	Permanent Total Enclosure
HAP	Hazardous Air Pollutant	PTI	Permit to Install
Hg	Mercury	RACT	Reasonable Available Control Technology
hr	Hour	ROP	Renewable Operating Permit
HP	Horsepower	SC	Special Condition
H_2S	Hydrogen Sulfide	scf	Standard cubic feet
HVLP	High Volume Low Pressure *	sec	Seconds
ID	Identification (Number)	SCR	Selective Catalytic Reduction
IRSL	Initial Risk Screening Level	SO ₂	Sulfur Dioxide
ITSL	Initial Threshold Screening Level	SRN	State Registration Number
LAER	Lowest Achievable Emission Rate	TAC	Toxic Air Contaminant
lb	Pound	Temp	Temperature
m	Meter	THC	Total Hydrocarbons
MACT	Maximum Achievable Control Technology	tpy	Tons per year
MAERS	Michigan Air Emissions Reporting System	μg	Microgram
MAP	Malfunction Abatement Plan	VE	Visible Emissions
MDEQ	Michigan Department of Environmental Quality	VOC	Volatile Organic Compounds
mg	Milligram	yr	Year
mm	Millimeter		
	Millimeter pplicators, the pressure measured at the gun air cap		

*For HVLP applicators, the pressure measured at the gun air cap shall not exceed 10 pounds per square inch gauge (psig).

Page 31 of 60

Appendix 2. Schedule of Compliance

The permittee certified in the ROP application that this stationary source is in compliance with all applicable requirements and the permittee shall continue to comply with all terms and conditions of this ROP. A Schedule of Compliance is not required. (R 336.1213(4)(a), R 336.1119(a)(ii))

Appendix 3. Monitoring Requirements

This source is subject to the compliance assurance monitoring (CAM) program under 40 CFR 64.4(a). The CAM plan for this source is addressed in the malfunction abatement plan (MAP) required in Section D, SC III.1.

Appendix 4. Recordkeeping

Specific recordkeeping requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 5. Testing Procedures

Specific testing requirement plans, procedures, and averaging times are detailed in the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 6. Permits to Install

The following table lists any PTIs issued or ROP revision applications received since the effective date of the previously issued ROP No. MI-ROP-N5831-2008. Those ROP revision applications that are being issued concurrently with this ROP renewal are identified by an asterisk (*). Those revision applications not listed with an asterisk were processed prior to this renewal.

Source-Wide PTI No MI-PTI-N5831-2008a is being reissued as Source-Wide PTI No. MI-PTI-N5831-2014.

Permit to Install Number	ROP Revision Application Number	Description of Equipment or Change	Corresponding Emission Unit(s) or Flexible Group(s)
NA	200900188	Added oxidation catalyst as control on EUENGINE2, EUENGINE3, and EUEGINE4 (was left out on original ROP)	EUENGINE2, EUENGINE3 and EUENGINE4

The following ROP amendments or modifications were issued after the effective date of ROP No. MI-ROP-N5831-2014.

Permit to Install Number	ROP Revision Application Number/Issuance Date	Description of Change	Corresponding Emission Unit(s) or Flexible Group(s)	
NA	201500014/ April 21, 2015	On February 23, 2015, the facility revised minor modification application No. 201500014 to consider the engine "shut-in" and would test the engine within 90 days of bringing it back online. EUENGINE5 was shut down and placed in stand-by mode effective November 10, 2014.	EUENGINE5	Commented [CK4]: Request to remove from ROP

Page 32 of 60

Appendix 7. Emission Calculations

The permittee shall use the following procedure in conjunction with monitoring, testing or recordkeeping data to determine compliance with the applicable requirements referenced in FGCATENGINES, FGWAUKENGINES, and Source-Wide Conditions.

Procedures for Calculating Facility NOx and CO Emissions

The permittee shall demonstrate compliance with the NOx and CO emission limits by keeping track of all fuel usage for all equipment using such fuel at this facility and multiplying that fuel usage by an equipment-specific emission factor. The emission factors are typically expressed as a mass weight of pollutant per unit of fuel.

Each engine included in FGCATENGINES and FGWAUKENGINES: The permittee shall use emission factors from source specific testing (stack testing) or vendor data, for each engine included in FGCATENGINES and FGWAUKENGINES, including engine(s) from engine change-out(s), and during the hours operated without a catalyst. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

Fuel burning equipment at the facility: The permittee shall use emission factors contained in the most recent AP-42 (Compilation of Air Pollutant Emission Factors) or the most recent FIRE (Factor Information Retrieval) database if vendor or stack data is not available. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

The permittee shall document the source of each emission factor used in the calculations.

Appendix 8. Reporting

A. Annual, Semiannual, and Deviation Certification Reporting

The permittee shall use the MDEQ, AQD, Report Certification form (EQP 5736) and MDEQ, AQD, Deviation Report form (EQP 5737) for the annual, semiannual and deviation certification reporting referenced in the Reporting Section of the Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Alternative formats must meet the provisions of Rule 213(4)(c) and Rule 213(3)(c)(i), respectively, and be approved by the AQD District Supervisor.

B. Other Reporting

Specific reporting requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, Part B of this appendix is not applicable.

Formatted: Strikethrough

Formatted: Strikethrough

Formatted: Strikethrough

Page 33 of 60

Section 2 – LINN Operating, LLC - Hayes 29 CPF

ROP No: MI-ROP-N5831-2014b Expiration Date: August 4, 2019 PTI No: MI-PTI-N5831-2014b

SECTION 2 – LINN Operating, LLC - Hayes 29 CPF

A. GENERAL CONDITIONS

Permit Enforceability

- All conditions in this permit are both federally enforceable and state enforceable unless otherwise noted. (R 336.1213(5))
- Those conditions that are hereby incorporated in a state-only enforceable Source-Wide PTI pursuant to Rule 201(2)(d) are designated by footnote one. (R 336.1213(5)(a), R 336.1214a(5))
- Those conditions that are hereby incorporated in a federally enforceable Source-Wide PTI pursuant to Rule 201(2)(c) are designated by footnote two. (R 336.1213(5)(b), R 336.1214a(3))

General Provisions

- The permittee shall comply with all conditions of this ROP. Any ROP noncompliance constitutes a violation of Act 451, and is grounds for enforcement action, for ROP revocation or revision, or for denial of the renewal of the ROP. All terms and conditions of this ROP that are designated as federally enforceable are enforceable by the Administrator of the United States Environmental Protection Agency (USEPA) and by citizens under the provisions of the federal Clean Air Act (CAA). Any terms and conditions based on applicable requirements which are designated as "state-only" are not enforceable by the USEPA or citizens pursuant to the CAA. (R 336.1213(1)(a))
- It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this ROP. (R 336.1213(1)(b))
- 3. This ROP may be modified, revised, or revoked for cause. The filing of a request by the permittee for a permit modification, revision, or termination, or a notification of planned changes or anticipated noncompliance does not stay any ROP term or condition. This does not supersede or affect the ability of the permittee to make changes, at the permittee's own risk, pursuant to Rule 215 and Rule 216. (R 336.1213(1)(c))
- 4. The permittee shall allow the department, or an authorized representative of the department, upon presentation of credentials and other documents as may be required by law and upon stating the authority for and purpose of the investigation, to perform any of the following activities: (R 336.1213(1)(d))
 - a. Enter, at reasonable times, a stationary source or other premises where emissions-related activity is conducted or where records must be kept under the conditions of the ROP.
 - b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of the ROP.
 - c. Inspect, at reasonable times, any of the following:
 - i. Any stationary source.
 - ii. Any emission unit.
 - iii. Any equipment, including monitoring and air pollution control equipment.
 - iv. Any work practices or operations regulated or required under the ROP.
 - d. As authorized by Section 5526 of Act 451, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the ROP or applicable requirements.

Page 35 of 60

- 5. The permittee shall furnish to the department, within a reasonable time, any information the department may request, in writing, to determine whether cause exists for modifying, revising, or revoking the ROP or to determine compliance with this ROP. Upon request, the permittee shall also furnish to the department copies of any records that are required to be kept as a term or condition of this ROP. For information which is claimed by the permittee to be confidential, consistent with the requirements of the 1976 PA 442, MCL §15.231 et seq., and known as the Freedom of Information Act, the person may also be required to furnish the records directly to the USEPA together with a claim of confidentiality. (R 336.1213(1)(e))
- A challenge by any person, the Administrator of the USEPA, or the department to a particular condition or a part of this ROP shall not set aside, delay, stay, or in any way affect the applicability or enforceability of any other condition or part of this ROP. (R 336.1213(1)(f))
- 7. The permittee shall pay fees consistent with the fee schedule and requirements pursuant to Section 5522 of Act 451. (R 336.1213(1)(g))
- 8. This ROP does not convey any property rights or any exclusive privilege. (R 336.1213(1)(h))

Equipment & Design

- 9. Any collected air contaminants shall be removed as necessary to maintain the equipment at the required operating efficiency. The collection and disposal of air contaminants shall be performed in a manner so as to minimize the introduction of contaminants to the outer air. Transport of collected air contaminants in Priority I and II areas requires the use of material handling methods specified in Rule 370(2). (R 336.1370)
- 10. Any air cleaning device shall be installed, maintained, and operated in a satisfactory manner and in accordance with the Michigan Air Pollution Control rules and existing law. (R 336.1910)

Emission Limits

- 11. Unless otherwise specified in this ROP, the permittee shall comply with Rule 301, which states, in part, "Except as provided in subrules 2, 3, and 4 of this rule, a person shall not cause or permit to be discharged into the outer air from a process or process equipment a visible emission of a density greater than the most stringent of the following: (R 336.1301(1))
 - a. A 6-minute average of 20 percent opacity, except for one 6-minute average per hour of not more than 27 percent opacity.
 - b. A limit specified by an applicable federal new source performance standard.

The grading of visible emissions shall be determined in accordance with Rule 303.

- 12. The permittee shall not cause or permit the emission of an air contaminant or water vapor in quantities that cause, alone or in reaction with other air contaminants, either of the following:
 - a. Injurious effects to human health or safety, animal life, plant life of significant economic value, or property.1 (R 336.1901(a))
 - b. Unreasonable interference with the comfortable enjoyment of life and property.¹ (R 336.1901(b))

Testing/Sampling

- 13. The department may require the owner or operator of any source of an air contaminant to conduct acceptable performance tests, at the owner's or operator's expense, in accordance with Rule 1001 and Rule 1003, under any of the conditions listed in Rule 1001(1). (R 336.2001)
- 14. Any required performance testing shall be conducted in accordance with Rule 1001(2), Rule 1001(3) and Rule 1003. (R 336.2001(2), R 336.2001(3), R 336.2003(1))

Page 36 of 60

15. Any required test results shall be submitted to the Air Quality Division (AQD) in the format prescribed by the applicable reference test method within 60 days following the last date of the test. (R 336.2001(5))

Monitoring/Recordkeeping

- 16. Records of any periodic emission or parametric monitoring required in this ROP shall include the following information specified in Rule 213(3)(b)(i), where appropriate: (R 336.1213(3)(b))
 - a. The date, location, time, and method of sampling or measurements.
 - b. The dates the analyses of the samples were performed.
 - c. The company or entity that performed the analyses of the samples.
 - d. The analytical techniques or methods used.
 - e. The results of the analyses.
 - f. The related process operating conditions or parameters that existed at the time of sampling or measurement.
- 17. All required monitoring data, support information and all reports, including reports of all instances of deviation from permit requirements, shall be kept and furnished to the department upon request for a period of not less than 5 years from the date of the monitoring sample, measurement, report or application. Support information includes all calibration and maintenance records and all original strip-chart recordings, or other original data records, for continuous monitoring instrumentation and copies of all reports required by the ROP. (R 336.1213(1)(e), R 336.1213(3)(b)(ii))

Certification & Reporting

- 18. Except for the alternate certification schedule provided in Rule 213(3)(c)(iii)(B), any document required to be submitted to the department as a term or condition of this ROP shall contain an original certification by a Responsible Official which states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. (R 336.1213(3)(c))
- 19. A Responsible Official shall certify to the appropriate AQD District Office and to the USEPA that the stationary source is and has been in compliance with all terms and conditions contained in the ROP except for deviations that have been or are being reported to the appropriate AQD District Office pursuant to Rule 213(3)(c). This certification shall include all the information specified in Rule 213(4)(c)(i) through (v) and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the certification are true, accurate, and complete. The USEPA address is: USEPA, Air Compliance Data Michigan, Air and Radiation Division, 77 West Jackson Boulevard, Chicago, Illinois 60604. (R 336.1213(4)(c))
- 20. The certification of compliance shall be submitted annually for the term of this ROP as detailed in the special conditions, or more frequently if specified in an applicable requirement or in this ROP. (R 336.1213(4)(c))
- The permittee shall promptly report any deviations from ROP requirements and certify the reports. The prompt reporting of deviations from ROP requirements is defined in Rule 213(3)(c)(ii) as follows, unless otherwise described in this ROP. (R 336.1213(3)(c))
 - a. For deviations that exceed the emissions allowed under the ROP, prompt reporting means reporting consistent with the requirements of Rule 912 as detailed in Condition 25. All reports submitted pursuant to this paragraph shall be promptly certified as specified in Rule 213(3)(c)(iii).
 - b. For deviations which exceed the emissions allowed under the ROP and which are not reported pursuant to Rule 912 due to the duration of the deviation, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe reasons for each deviation and the actions taken to minimize or correct each deviation.
 - c. For deviations that do not exceed the emissions allowed under the ROP, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe the reasons for each deviation and the actions taken to minimize or correct each deviation.
- 22. For reports required pursuant to Rule 213(3)(c)(ii), prompt certification of the reports is described in Rule 213(3)(c)(iii) as either of the following: (R 336.1213(3)(c))

Page 37 of 60

- a. Submitting a certification by a Responsible Official with each report which states that, based on information and belief formed after reasonable inquiry, the statements and information in the report are true, accurate, and complete.
- b. Submitting, within 30 days following the end of a calendar month during which one or more prompt reports of deviations from the emissions allowed under the ROP were submitted to the department pursuant to Rule 213(3)(c)(ii), a certification by a Responsible Official which states that, "based on information and belief formed after reasonable inquiry, the statements and information contained in each of the reports submitted during the previous month were true, accurate, and complete". The certification shall include a listing of the reports that are being certified. Any report submitted pursuant to Rule 213(3)(c)(ii) that will be certified on a monthly basis pursuant to this paragraph shall include a statement that certification of the report will be provided within 30 days following the end of the calendar month.
- 23. Semiannually for the term of the ROP as detailed in the special conditions, or more frequently if specified, the permittee shall submit certified reports of any required monitoring to the appropriate AQD District Office. All instances of deviations from ROP requirements during the reporting period shall be clearly identified in the reports. (R 336.1213(3)(c)(i))
- 24. On an annual basis, the permittee shall report the actual emissions, or the information necessary to determine the actual emissions, of each regulated air pollutant as defined in Rule 212(6) for each emission unit utilizing the emissions inventory forms provided by the department. (R 336.1212(6))
- 25. The permittee shall provide notice of an abnormal condition, start-up, shutdown, or malfunction that results in emissions of a hazardous or toxic air pollutant which continue for more than one hour in excess of any applicable standard or limitation, or emissions of any air contaminant continuing for more than two hours in excess of an applicable standard or limitation, as required in Rule 912, to the appropriate AQD District Office. The notice shall be provided not later than two business days after the start-up, shutdown, or discovery of the abnormal conditions or malfunction. Notice shall be by any reasonable means, including electronic, telephonic, or oral communication. Written reports, if required under Rule 912, must be submitted to the appropriate AQD District Supervisor within 10 days after the start-up or shutdown occurred, within 10 days after the abnormal conditions or malfunction, whichever is first. The written reports shall include all of the information required in Rule 912(5) and shall be certified by a Responsible Official in a manner consistent with the CAA. (R 336.1912)

Permit Shield

- 26. Compliance with the conditions of the ROP shall be considered compliance with any applicable requirements as of the date of ROP issuance, if either of the following provisions is satisfied. (R 336.1213(6)(a)(i), R 336.1213(6)(a)(ii))
 - a. The applicable requirements are included and are specifically identified in the ROP.
 - b. The permit includes a determination or concise summary of the determination by the department that other specifically identified requirements are not applicable to the stationary source.
 - Any requirements identified in Part E of this ROP have been identified as non-applicable to this ROP and are included in the permit shield.
- 27. Nothing in this ROP shall alter or affect any of the following:
 - The provisions of Section 303 of the CAA, emergency orders, including the authority of the USEPA under Section 303 of the CAA. (R 336.1213(6)(b)(i))
 - b. The liability of the owner or operator of this source for any violation of applicable requirements prior to or at the time of this ROP issuance. (R 336.1213(6)(b)(ii))
 - c. The applicable requirements of the acid rain program, consistent with Section 408(a) of the CAA. (R 336.1213(6)(b)(iii))
 - e. The ability of the USEPA to obtain information from a source pursuant to Section 114 of the CAA. (R 336.1213(6)(b)(iv))
- 28. The permit shield shall not apply to provisions incorporated into this ROP through procedures for any of the following:

- a. Operational flexibility changes made pursuant to Rule 215. (R 336.1215(5))
- b. Administrative Amendments made pursuant to Rule 216(1)(a)(i)-(iv). (R 336.1216(1)(b)(iii))
- Administrative Amendments made pursuant to Rule 216(1)(a)(v) until the amendment has been approved C. by the department. (R 336.1216(1)(c)(iii))
- d. Minor Permit Modifications made pursuant to Rule 216(2). (R 336.1216(2)(f))
- State-Only Modifications made pursuant to Rule 216(4) until the changes have been approved by the e. department. (R 336.1216(4)(e))
- 29. Expiration of this ROP results in the loss of the permit shield. If a timely and administratively complete application for renewal is submitted not more than 18 months, but not less than 6 months, before the expiration date of the ROP, but the department fails to take final action before the end of the ROP term, the existing ROP does not expire until the renewal is issued or denied, and the permit shield shall extend beyond the original ROP term until the department takes final action. (R 336.1217(1)(c), R 336.1217(1)(a))

Revisions

- 30. For changes to any process or process equipment covered by this ROP that do not require a revision of the ROP pursuant to Rule 216, the permittee must comply with Rule 215. (R 336.1215, R 336.1216)
- 31. A change in ownership or operational control of a stationary source covered by this ROP shall be made pursuant to Rule 216(1). (R 336.1219(2))
- 32. For revisions to this ROP, an administratively complete application shall be considered timely if it is received by the department in accordance with the time frames specified in Rule 216. (R 336.1210(10))
- 33. Pursuant to Rule 216(1)(b)(iii), Rule 216(2)(d) and Rule 216(4)(d), after a change has been made, and until the department takes final action, the permittee shall comply with both the applicable requirements governing the change and the ROP terms and conditions proposed in the application for the modification. During this time period, the permittee may choose to not comply with the existing ROP terms and conditions that the application seeks to change. However, if the permittee fails to comply with the ROP terms and conditions proposed in the application during this time period, the terms and conditions in the ROP are enforceable. (R 336.1216(1)(c)(iii), R 336.1216(2)(d), R 336.1216(4)(d))

Reopenings

- 34. A ROP shall be reopened by the department prior to the expiration date and revised by the department under any of the following circumstances:
 - a. If additional requirements become applicable to this stationary source with three or more years remaining in the term of the ROP, but not if the effective date of the new applicable requirement is later than the ROP expiration date. (R 336.1217(2)(a)(i))
 - If additional requirements pursuant to Title IV of the CAA become applicable to this stationary source. b. (R 336.1217(2)(a)(ii))
 - If the department determines that the ROP contains a material mistake, information required by any c. applicable requirement was omitted, or inaccurate statements were made in establishing emission limits or the terms or conditions of the ROP. (R 336.1217(2)(a)(iii)) If the department determines that the ROP must be revised to ensure compliance with the applicable
 - d. requirements. (R 336.1217(2)(a)(iv))

Renewals

35. For renewal of this ROP, an administratively complete application shall be considered timely if it is received by the department not more than 18 months, but not less than 6 months, before the expiration date of the ROP. (R 336.1210(8))

Page 39 of 60

Stratospheric Ozone Protection

- 36. If the permittee is subject to Title 40 of the Code of Federal Regulations (CFR), Part 82 and services, maintains, or repairs appliances except for motor vehicle air conditioners (MVAC), or disposes of appliances containing refrigerant, including MVAC and small appliances, or if the permittee is a refrigerant reclaimer, appliance owner or a manufacturer of appliances or recycling and recovery equipment, the permittee shall comply with all applicable standards for recycling and emissions reduction pursuant to 40 CFR Part 82, Subpart F.
- 37. If the permittee is subject to 40 CFR Part 82, and performs a service on motor (fleet) vehicles when this service involves refrigerant in the MVAC, the permittee is subject to all the applicable requirements as specified in 40 CFR Part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners. The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed by the original equipment manufacturer. The term MVAC as used in Subpart B does not include the air-tight sealed refrigeration system used for refrigerated cargo or an air conditioning system on passenger buses using Hydrochlorofluorocarbon-22 refrigerant.

Risk Management Plan

- 38. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall register and submit to the USEPA the required data related to the risk management plan for reducing the probability of accidental releases of any regulated substances listed pursuant to Section 112(r)(3) of the CAA as amended in 40 CFR 68.130. The list of substances, threshold quantities, and accident prevention regulations promulgated under 40 CFR Part 68, do not limit in any way the general duty provisions under Section 112(r)(1).
- 39. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall comply with the requirements of 40 CFR Part 68, no later than the latest of the following dates as provided in 40 CFR 68.10(a): a June 21 1999
 - b. Three years after the date on which a regulated substance is first listed under 40 CFR 68.130, or
 - c. The date on which a regulated substance is first present above a threshold quantity in a process.
- 40. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall submit any additional relevant information requested by any regulatory agency necessary to ensure compliance with the requirements of 40 CFR Part 68.
- 41. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall annually certify compliance with all applicable requirements of Section 112(r) as detailed in Rule 213(4)(c)). (40 CFR Part 68)

Emission Trading

42. Emission averaging and emission reduction credit trading are allowed pursuant to any applicable interstate or regional emission trading program that has been approved by the Administrator of the USEPA as a part of Michigan's State Implementation Plan. Such activities must comply with Rule 215 and Rule 216. (R 336.1213(12))

Permit To Install (PTI)

- 43. The process or process equipment included in this permit shall not be reconstructed, relocated, or modified unless a PTI authorizing such action is issued by the department, except to the extent such action is exempt from the PTI requirements by any applicable rule.² (R 336.1201(1))
- 44. The department may, after notice and opportunity for a hearing, revoke PTI terms or conditions if evidence indicates the process or process equipment is not performing in accordance with the terms and conditions of the PTI or is violating the department's rules or the CAA. ² (R 336.1201(8), Section 5510 of Act 451)

Page 40 of 60

- 45. The terms and conditions of a PTI shall apply to any person or legal entity that now or hereafter owns or operates the process or process equipment at the location authorized by the PTI. If a new owner or operator submits a written request to the department pursuant to Rule 219 and the department approves the request, this PTI will be amended to reflect the change of ownership or operational control. The request must include all of the information required by Subrules (1)(a), (b) and (c) of Rule 219. The written request shall be sent to the appropriate AQD District Supervisor, MDEQ.² (R 336.1219)
- 46. If the installation, reconstruction, relocation, or modification of the equipment for which PTI terms and conditions have been approved has not commenced within 18 months, or has been interrupted for 18 months, the applicable terms and conditions from that PTI shall become void unless otherwise authorized by the department. Furthermore, the person to whom that PTI was issued, or the designated authorized agent, shall notify the department via the Supervisor, Permit Section, MDEQ, AQD, P. O. Box 30260, Lansing, Michigan 48909, if it is decided not to pursue the installation, reconstruction, relocation, or modification of the equipment allowed by the terms and conditions from that PTI.² (R 336.1201(4))

Footnotes: ¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

B. SOURCE-WIDE CONDITIONS

Part B outlines the Source-Wide Terms and Conditions that apply to this stationary source. The permittee is subject to these special conditions for the stationary source in addition to the general conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply to this source, NA (not applicable) has been used in the table. If there are no Source-Wide Conditions, this section will be left blank.

Page 42 of 60

SOURCE-WIDE CONDITIONS

POLLUTION CONTROL EQUIPMENT:

I. EMISSION LIMIT(S)

F	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
2.	СО	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
3.	Each Individual HAP	Less than 10 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R 336.1213(2)(d)
4.	Total HAPs	Less than 25 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R 336.1213(2)(d)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

1. The permittee shall only burn sweet natural gas in all natural gas fired equipment.² (R 336.1205(3))

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years.² (R 336.1213(3)(b)(ii))

1. The permittee shall complete all required calculations in a format acceptable to the AQD District Supervisor and make them available by the last day of the calendar month, for the previous calendar month.² (R 336.1205(3), R 336.213(3))

Page 43 of 60

- The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period CO and NOx emission calculation records for the Stationary Source, to demonstrate compliance with Special Conditions (SC) I.1 and I.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.213(3))
- The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period HAP emission calculation records for the Stationary Source, as required SC I.3 and I.4 above. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(2)(d))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
NA	NA	NA	NA

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

Page 44 of 60

C. EMISSION UNIT CONDITIONS

Part C outlines terms and conditions that are specific to individual emission units listed in the Emission Unit Summary Table. The permittee is subject to the special conditions for each emission unit in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no conditions specific to individual emission units, this section will be left blank.

EMISSION UNIT SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Emission Unit ID	Emission Unit Description (Including Process Equipment & Control Device(s))	Installation Date/ Modification Date	Flexible Group ID
EUENGINEH29	Remote 1,085 hp Caterpillar G3516TALE (lean burn) reciprocating internal combustion engine (RICE) with oxidation catalyst	8/20/13	NA
EUGLYCOLDEHYDRATOR	Glycol dehydrator which removes water along with trace hydrocarbons from the gas stream. The water and hydrocarbons are controlled by a condenser.	11/01/92	NA
EUMACTZZZ	Remote existing non-emergency spark ignition (SI) 4-stroke lean burn (4SLB) RICE (EUENGINEH29) Caterpillar 3516TALE (low emission) rated 1,085 hp located at an area source	08/20/13	NA

Page 45 of 60

EUGLYCOLDEHYDRATOR EMISSION UNIT CONDITIONS

DESCRIPTION:

Glycol dehydrator system which removes water along with trace hydrocarbons from the gas stream.

Flexible Group ID: NA

POLLUTION CONTROL EQUIPMENT:

Condenser

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Fallinment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario		Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

NA

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- If EUGLYCOLDEHYDRATOR meets the exception criteria in 40 CFR 63.764(e)(1)(i) for glycol dehydrators with actual annual average flow rate of natural gas less than 85,000 cubic meters (3,001,746 cubic feet) per day, the actual flow rate of natural gas shall be determined using either of the procedures below:
 - a. The permittee shall install and operate a monitoring instrument that directly measures natural gas flow rate to the glycol dehydration unit with an accuracy of plus or minus 2 percent or better. The permittee shall convert annual natural gas flow rate to a daily average by dividing the annual flow rate by the number of days per year the glycol dehydration unit processed natural gas. (40 CFR 63.772(b)(1)(i))

Page 46 of 60

- b. The permittee shall document, to the AQD District Supervisor's satisfaction, the actual annual average natural gas flow rate to the glycol dehydration unit is less than 85,000 cubic meters per day. (40 CFR 63.772(b)(1)(ii))
- As an alternative, if EUGLYCOLDEHYDRATOR meets the exemption criteria in 40 CFR 63.764(e)(1)(ii) for glycol dehydrators with actual average benzene emissions less than 0.90 megagram (0.99 ton) per year, the emissions shall be determined either uncontrolled, or with federally enforceable controls in place and using either of the procedures below:
 - a. The permittee shall determine actual average benzene emissions using the model GRI-GLYCalc[™], Version 3.0 or higher, and the procedures presented in the associated GRI-GLYCalc[™] Technical Reference Manual. Inputs to the model shall be representative of actual operating conditions of the glycol dehydration unit, and may be determined using the procedures documented in the Gas Research Institute (GRI) report entitled "Atmospheric Rich/Lean Method for Determining Glycol Dehydrator Emissions" (GRI-95/0368.1). (40 CFR 63.772(b)(2)(i))
 - b. The permittee shall determine an average mass rate of benzene emissions in kilograms per hour through direct measurement using the methods in 40 CFR 63.772(a)(1)(i) or (ii), or an alternative method according to 40 CFR 63.7(f). Annual emissions in kilograms per year shall be determined by multiplying the mass rate by the number of hours the unit is operated by year. This result shall be converted to megagrams per year. (40 CFR 63.772(b)(2)(ii))
- 3. If EUGLYCOLDEHYDRATOR complies with the exemption criteria in 40 CFR 63.764(e)(1)(i) for glycol dehydrators with actual annual average flow rate of natural gas less than 85,000 cubic meters (3,001,746 cubic feet) per day, the permittee shall keep records of the actual annual average natural gas throughput (in terms natural gas flow rate to the glycol dehydration unit per day) as determined in accordance with SC VI.1. The permittee shall keep records on file at a location approved by the AQD District Supervisor for a period of at least five years and make it available to the Department upon request. (40 CFR 63.774(d)(1)(i))
- 4. As an alternative to SC VI.1, if EUGLYCOLDEHYDRATOR complies with the exemption criteria in 40CFR 63.764(e)(1)(ii) for glycol dehydrators with the actual average benzene emissions less than 0.90 megagram per year, the permittee shall keep records of the actual average benzene emissions (in terms of benzene emissions per year) as determined in accordance with SC VI.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor for a period of at least five years and make it available to the Department upon request. (40 CFR 63.774(d)(1)(ii))

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements		

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
NA	NA	NA	NA

IX. OTHER REQUIREMENT(S)

1. The permittee shall comply with all provisions of the National Emissions Standards for Hazardous Air Pollutants, 40 CFR Part 63, Subpart HH, as they apply to EUGLYCOLDEHYDRATOR. (40 CFR Part 63, Subpart HH)

Footnotes: ¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

Page 48 of 60

EUENGINEH29 EMISSION UNIT CONDITIONS

DESCRIPTION:

One remote 1,085 hp Caterpillar G3516TALE (lean burn) RICE

Emission Unit: EUENGINEH29

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment Monitoring/ Testing Method		Underlying Applicable Requirements
1.	NOx	24.6 tons ²	24.6 tons ² 12-month rolling time period, as determined at the end of each calendar month		SC V.1 and SC VI.7	R 336.1205(3)
2.	со	41.1 tons ² 41.1		SC V.1 and SC VI.7	R 336.1205(3)	

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario		Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- 1. The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- The permittee shall not operate EUENGINEH29 unless the MAP, approved by the AQD District Supervisor, is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:

 Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel
 - responsible for overseeing the inspection, maintenance, and repair.
 - b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.
 - c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.
 - d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.

Page 49 of 60

e. A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequacies.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 4. The permittee shall utilize a differential pressure gauge or manometer to monitor the operation of the oxidation catalyst as an indicator of proper operation. The appropriate range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))
- 5. The permittee shall utilize a temperature gauge or thermocouple to monitor the operation of the oxidation catalyst, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple gauge in accordance with the manufacturer's recommendations. (R 336.1213(3)(a)(iii))

V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

1. The permittee shall verify NOx and CO emissions from EUENGINEH29, by testing at owner's expense, within nine months of issuance of this permit, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- 1. The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in EUENGINEH29 on a monthly basis. (R 336.1205(3), R 336.1213(3))
- 2. The permittee shall monitor and record the differential pressure gauge or monometer on EUENGINEH29, on a monthly basis. (R 336.1213(3)(a)(iii))
- 3. The permittee shall monitor and record the inlet temperature and outlet temperature on EUENGINEH29, on a daily basis. (R 336.1213(3)(a)(iii))
- 4. The permittee shall maintain a log of all maintenance activities conducted according to the MAP. The permittee shall keep this log on file at a location approved by the district supervisor and make it available upon request.² (R 336.1205(3), R 336.1213(3), R 336.1225, R 336.1702(a), R 336.1911)
- 5. The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device, monthly and 12-month rolling time period records of the hours of EUENGINEH29 is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a))

Page 50 of 60

- 6. The permittee shall keep, in a satisfactory manner, monthly fuel use records for EUENGINEH29. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for EUENGINEH29. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 8. If EUENGINEH29 is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(3))

See Appendix 7

VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))
- 4. The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 5. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))
- If EUENGINEH29 is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

Page 51 of 60

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
SVENGINEH29	16 ¹	40 ¹	R 336.1225

IX. OTHER REQUIREMENT(S)

NA

Footnotes: ¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

Page 52 of 60

EUMACTZZZ EUMACTZZZ CONDITIONS

DESCRIPTION:

An existing remote, non-emergency spark ignition (SI) four stroke lean burn (4SLB), natural gas-fired reciprocating internal combustion compressor engine (RICE) with a site-rating of 1,085 horsepower at an area source

Emission Unit: EUENGINEH29

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

II. MATERIAL LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- 1. The permittee shall operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions. (40 CFR 63.6625 (e), 40 CFR 63.6605 (a)(b))
- The permittee shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in 40 CFR Part 63, Supbart ZZZZ Table 2d apply. (40 CFR 63.6625 (h))

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

Page 53 of 60

VI. MONITORING/RECORDKEEPING

- 1. Except for monitor malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), the Permittee shall monitor continuously at all times that the stationary RICE is operating. (40 CFR 63.6635 (a)(b))
- The Permittee shall not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels; however shall use all the valid data collected during all other periods. (40 CFR 63.663(c))
- 3. The Permittee shall keep maintain the following records, which shall be made available to the Administrator upon request: (40 CFR 63.6655(a)(b)(d)(e))
 - a. A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that was submitted, according to the requirement in 40 CFR 63.10(b)(2)(xiv).
 - b. Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.
 - c. Records of applicable performance tests and performance evaluations as required in §63.10(b)(2)(viii).
 - d. Records of all required maintenance performed on the air pollution control and monitoring equipment.
 - e. Records of actions taken during periods of malfunction to minimize emissions in accordance with 40 CFR 63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
- 4. The permittee shall keep the records required in 40 CFR Part 63, Subpart ZZZZ Table 6 of this subpart to show continuous compliance with each applicable emission or operating limitation that applies.
- 5. The permittee shall keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to the Malfunction Abatement Plan for EUENGINEH29 subject to management practices as shown in 40 CFR Part 63, Subpart ZZZZ, Table 2d to this subpart.

VII. REPORTING

1. The Permittee shall report each instance in which the requirements in 40 CFR Part 63, Subpart ZZZZ Table 8 were not met. (40 CFR 63.6640(e))

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
SVMACTZZZZ	16 ¹	40 ¹	R 336.1225

IX. OTHER REQUIREMENT(S)

- 1. The permittee shall evaluate the status of their stationary RICE every 12 months. (40 CFR 63.6603(a))
- The permittee shall keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in 40 CFR 63.6675, Subpart ZZZZ, the owner or operator must comply with all of the requirements that are not remote stationary RICE within 1 year of the evaluation. (40 CFR 63.6603(f))

Page 54 of 60

- 3. The permittee shall within 1 year of the evaluation comply with 40 CFR 63.6640 if the remote stationary RICE is reconstructed or rebuilt. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a). (40 CFR 63.6640(d))
- The permittee shall comply with all applicable provisions of the National Emission Standards for Hazardous Air Pollutants, as specified in 40 CFR Part 63, Subpart A and Subpart ZZZZ, for Stationary Reciprocating Internal Combustion Engines. (40 CFR Part 63, Subparts A and ZZZZ)

Page 55 of 60

D. FLEXIBLE GROUP CONDITIONS

Part D outlines the terms and conditions that apply to more than one emission unit. The permittee is subject to the special conditions for each flexible group in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no special conditions that apply to more than one emission unit, this section will be left blank.

Page 56 of 60

E. NON-APPLICABLE REQUIREMENTS

At the time of the ROP issuance, the AQD has determined that the requirements identified in the table below are not applicable to the specified emission unit(s) and/or flexible group(s). This determination is incorporated into the permit shield provisions set forth in the General Conditions in Part A pursuant to Rule 213(6)(a)(ii). If the permittee makes a change that affects the basis of the non-applicability determination, the permit shield established as a result of that non-applicability decision is no longer valid for that emission unit or flexible group.

Emission Unit/Flexible Group ID	Non-Applicable Requirement	Justification
EUENGINEH29	40 CFR Part 60, Subpart JJJJ	The Caterpillar 3516TALE RICE was manufactured prior to January 1, 2008, but installed at its current location on August 20, 2013, therefore 40 CFR Part 60, Subpart JJJJ is not applicable.

Page 57 of 60

Appendix 1. Abbreviations and Acronyms

The following is an alphabetical listing of abbreviations/acronyms that may be used in this permit.

APPENDICES

The following	ng is an alphabetical listing of abbreviations/acr	onyms that n	nay be used in this permit.
AQD	Air Quality Division	MM	Million
acfm	Actual cubic feet per minute	MSDS	Material Safety Data Sheet
BACT	Best Available Control Technology	MW	Megawatts
BTU	British Thermal Unit	NA	Not Applicable
°C	Degrees Celsius	NAAQS	National Ambient Air Quality Standards
CAA	Federal Clean Air Act	NESHAP	National Emission Standard for Hazardous Air Pollutants
CAM	Compliance Assurance Monitoring	NMOC	Non-methane Organic Compounds
CEM	Continuous Emission Monitoring	NOx	Oxides of Nitrogen
CFR	Code of Federal Regulations	NSPS	New Source Performance Standards
со	Carbon Monoxide	NSR	New Source Review
COM	Continuous Opacity Monitoring	PM	Particulate Matter
department	Michigan Department of Environmental Quality	PM-10	Particulate Matter less than 10 microns in diameter
dscf	Dry standard cubic foot	pph	Pound per hour
dscm	Dry standard cubic meter	ppm	Parts per million
EPA	United States Environmental Protection Agency	ppmv	Parts per million by volume
EU	Emission Unit	ppmw	Parts per million by weight
°F	Degrees Fahrenheit	PS	Performance Specification
FG	Flexible Group	PSD	Prevention of Significant Deterioration
GACS	Gallon of Applied Coating Solids	psia	Pounds per square inch absolute
GC	General Condition	psig	Pounds per square inch gauge
gr	Grains	PeTE	Permanent Total Enclosure
HAP	Hazardous Air Pollutant	PTI	Permit to Install
Hg	Mercury	RACT	Reasonable Available Control Technology
hr	Hour	ROP	Renewable Operating Permit
HP	Horsepower	SC	Special Condition
H ₂ S	Hydrogen Sulfide	scf	Standard cubic feet
HVLP	High Volume Low Pressure *	sec	Seconds
ID	Identification (Number)	SCR	Selective Catalytic Reduction
IRSL	Initial Risk Screening Level	SO ₂	Sulfur Dioxide
ITSL	Initial Threshold Screening Level	SRN	State Registration Number
LAER	Lowest Achievable Emission Rate	TAC	Toxic Air Contaminant
lb	Pound	Temp	Temperature
m	Meter	THC	Total Hydrocarbons
MACT	Maximum Achievable Control Technology	tpy	Tons per year
MAERS	Michigan Air Emissions Reporting System	μg	Microgram
MAP	Malfunction Abatement Plan	VE	Visible Emissions
MDEQ	Michigan Department of Environmental Quality	VOC	Volatile Organic Compounds
mg	Milligram	yr	Year
mm	Millimeter		
MAP MDEQ mg	Malfunction Abatement Plan Michigan Department of Environmental Quality Milligram	VE VOC	Visible Emissions Volatile Organic Compounds

*For HVLP applicators, the pressure measured at the gun air cap shall not exceed 10 pounds per square inch gauge (psig).

Page 58 of 60

Appendix 2. Schedule of Compliance

The permittee certified in the ROP application that this stationary source is in compliance with all applicable requirements and the permittee shall continue to comply with all terms and conditions of this ROP. A Schedule of Compliance is not required. (R 336.1213(4)(a), R 336.1119(a)(ii))

Appendix 3. Monitoring Requirements

Specific monitoring requirement procedures, methods or specifications are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 4. Recordkeeping

Specific recordkeeping requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 5. Testing Procedures

Specific testing requirement plans, procedures, and averaging times are detailed in the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 6. Permits to Install

The following table lists any PTIs issued or ROP revision applications received since the effective date of the previously issued ROP No. MI-ROP-N5831-2008. Those ROP revision applications that are being issued concurrently with this ROP renewal are identified by an asterisk (*). Those revision applications not listed with an asterisk were processed prior to this renewal.

Source-Wide PTI No MI-PTI-N5831-2008a is being reissued as Source-Wide PTI No. MI-PTI-N5831-2014.

Permit to Install Number	ROP Revision Application Number	Description of Equipment or Change	Corresponding Emission Unit(s) or Flexible Group(s)
NA	NA	NA	NA

Appendix 7. Emission Calculations

The permittee shall use the following procedure in conjunction with monitoring, testing or recordkeeping data to determine compliance with the applicable requirements referenced in EUENGINEH29 and Source-Wide Conditions.

Procedures for Calculating Facility NOx and CO Emissions

The permittee shall demonstrate compliance with the NOx and CO emission limits by keeping track of all fuel usage for all equipment using such fuel at this facility and multiplying that fuel usage by equipment-specific emission factor. The emission factors are typically expressed as a mass weight of pollutant per unit of fuel.

EUENGINEH29: The permittee shall use emission factors from source specific testing (stack testing) or vendor data, for EUENGINEH29, including an engine from an engine change-out. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

Page 59 of 60
ROP No: MI-ROP-N5831-2014b Expiration Date: August 4, 2019 PTI No: MI-PTI-N5831-2014b

Fuel burning equipment at the facility: The permittee shall use emission factors contained in the most recent AP-42 (Compilation of Air Pollutant Emission Factors) or the most recent FIRE (Factor Information Retrieval) database if vendor or stack data is not available. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

The permittee shall document the source of each emission factor used in the calculations.

Appendix 8. Reporting

A. Annual, Semiannual, and Deviation Certification Reporting

The permittee shall use the MDEQ, AQD, Report Certification form (EQP 5736) and MDEQ, AQD, Deviation Report form (EQP 5737) for the annual, semiannual and deviation certification reporting referenced in the Reporting Section of the Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Alternative formats must meet the provisions of Rule 213(4)(c) and Rule 213(3)(c)(i), respectively, and be approved by the AQD District Supervisor.

B. Other Reporting

Specific reporting requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, Part B of this appendix is not applicable.

Page 60 of 60

AI-CAM

RENEWABLE OPERATING PERMIT APPLICATION AI-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

SRN: 5831	Section Number (if applicable): 1
	SRN: 5831

			42				-		42 -	
А	α	aı	U	DI	na	Infe	orr	na	τιο	n

2. Is This Information Confidential?

🗌 Yes 🖾 No

Attached is a Complaince Assurance Monitoring Applicability summary for EUENGINE6.

Page

of

Compliance Assurance Monitoring (CAM) Plan Breitburn Operating Company, L.P. Wilderness/Hayes 29 Facility EUENGINE6

I. BACKGROUND

Emission Units

Description: Waukesha L 7042 GSI compressor engine, rated at 1,478 hp, and equipped with a 3-way catalyst to control emissions of nitrogen oxides (NO_x), carbon monoxide (CO), and volatile organic compounds (VOCs).

Identification: EUENGINE6

Facility: Breitburn Operating Company, L.P. (Breitburn) – Wilderness/Hayes 29 Facility Section 29, T29N, R4W Hayes Township, Otsego County, Michigan

Applicable Regulation, Emission Limit, Monitoring Requirements

MI-ROP-N5831-014b FGWAUKENGINES FLEXIBLE GROUP CONIDITONS. I, lists the applicable regulations as R336.1205(3), R336.1225, R336.1702(a), and R336.1910.

Emission Limits:

EUENGINE6 NO_x: 24.6 tons/year CO: 41.1 tons/year

Control Technology

A 3-way catalyst is used to control NO_x , CO, and VOC emissions from the Waukesha compressor engine. The pre-control device potential emissions of NO_x and CO are greater than 100 tons per year for the Waukesha engine, which makes this unit subject to the CAM requirements. However, the pre-control device potential VOC emissions from the unit are less than 100 tpy.

II. MONITORING APPROACH

Pressure drop across the 3-way catalyst, and inlet and outlet temperatures are all monitored. These parameters represent the most important parameters for proper operation of the catalytic converter. The compliance assurance monitoring approach is summarized in Table 1.

T	a	b	le	1
_		~	~ ~	

Device Description	Operating Variable	Monitoring Method	Frequency	Normal Operating Range	Excursion Indicator	Remedial Action
Catalyst	2" WC Change in ΔP @ normal operating conditions	Gauge or manometer	Monthly	Varies by engine. Recorded in database	2.5 times the ΔP @ normal operating conditions	Check sample lines, check rpm verses △P and compare to previous months readings, remove catalyst and replace gaskets as necessary; if still 1.5 times the normal range then catalyst would be removed and washed. Also see Table 2 of the approved PM/MAP
Catalyst	Inlet and Outlet temperatures	Thermocouple	Daily	Must be below 1350 degrees F. For 3-way catalysts only: Outlet temperature must be equal to or greater than the catalytic inlet temperature.	Temperature less than 800°F Differential temperature greater than 150°F above normal (not to exceed 1350°F)	Check loading on engine, check for faulty gauge or temperature probe, and check for proper operation of the ignition system Automatic engine shutdown Also see Table 2 of the approved PM/MAP

Appendix A, attached to this CAM Plan, describes the inlet and outlet catalyst temperature data that will be recorded on a daily basis.

No in-situ continuous emission monitoring systems are employed to measure actual emissions from this engine.

Quality assurance and quality control will include following the approved preventative maintenance/malfunction abatement plan (PM/MAP) developed for the engine and catalytic converter. The PM/MAP for this facility requires periodic replacement of various components within specified times. Manufacturer recommendations will be followed to ensure proper operation of the engine and control device.

III. JUSTIFICATION

The Monitoring Approach described above was determined during extensive communication between the MDEQ-AQD, the control equipment vendor, and the oil and gas industry regarding proper compliance assurance monitoring of the catalytic converter. It was determined that the pressure drop across the catalyst bed, and the inlet and outlet temperatures are critical parameters necessary to measure catalytic converter performance. The parameter ranges listed in Table 1 are used to determine that the catalytic converter is being operated and maintained to achieve the targeted control efficiencies for NO_x and CO, and therefore provide the compliance assurance required. A high pressure drop may be an indication of plugging of the catalyst, and a very low one may indicate the catalyst bed has leakage around or through it. A high outlet temperature may also be an indication of the need to shut down the unit to prevent burnout of the catalyst. Typical operating temperature ranges for 3-way catalysts are 750 degrees F to 1350 degrees F. The PM/MAP requires certain actions to be taken in the event that there would be a monitored parameter outside of the values indicated in the above table.

Regarding the oxygen sensor for the AFRC, Breitburn has determined that the oxygen sensor is difficult to predict for any range that would define an excursion point. The same sensor can vary considerably depending on the engine's RPM, loading, and other factors, and for this reason it is not practical, nor value added, to identify any range that would identify excursion point(s). The PM/MAP for the facility's engines successfully addresses the requirements for proper operation of the AFRC, and associated oxygen sensor, for this engine. For this reason, it is not practical to identify an excursion level for the AFRC's oxygen sensor. Even if the oxygen sensor experiences difficulties, monitoring the catalytic converter using the pressure differential and temperatures as indicators are more important as monitoring parameters.

Therefore, Breitburn has determined that sufficient monitoring is being performed to satisfy the requirement pursuant to the CAM regulations and requirements, 40 CFR Part 64.

Appendix A

Breitburn Operating Company, L.P. Exhaust Emissions Field Report

prine langue p	must freed freed	ABI	
	-RRI		
		N. N. DA	
· · ·			
		ISSIONS ANALYSIS	
	LIGHT LIN	ISSIGNS ANALISIS	
		5 1 010	
Customer:	BreitBurn	Engine CID:	0
Location:	0	Engine RPM:	0
Unit:	0	BMEP Calc:	#DIV/0!
Serial Number:	0	Amb Temp F:	0
Engine Model:	0	Date of Test:	01/00/00
		Engine Timing:	0
	DAT		
ENGINE		CONVERT	ER
NOx Observed - PPM	0	NOx Observed - PPM	0
CO Observed - PPM	0	CO Observed - PPM	0
O2 Observed - %	0.0		
Engine Horsepower	0		
Fuel Used - cu-ft/hr	0		

	CALCULATED	RESULTS	
	g/BHP-Hr	lbs/hr	TP
ENGINE NOx	#DIV/0!	0.00	0.00
ENGINE CO	#DIV/0!	0.00	0.00
CONVERTER NOx	#DIV/0!	0.00	0.00
CONVERTER CO	#DIV/0!	0.00	0.00
NOx CONVERSION	CO CONVERSION	RATIO: NO /	NO2
#DIV/0!	#DIV/0!	#DIV/0! /	#DIV/0!

Calculated results are derived from a series of emissions readings from the identified engine at the conditions listed. Test instrument reads NO and NO2 separately with NOx based on the combined total and calculated as NO2. Concentrations in PPMv are given at the observed O2 levels with no correction factor made. Engine loading is confirmed using WPI proprietary software and / or driven equipment loading. Test instrument is spanned with known gas concentrations before each series of tests. Printout of the raw data is attached. Test instrument is an electro-chemical cell type. Method of calculation is per EPA Method 19 based on fuel usage and analysis.

			lb/hr g/BHP-Hr
PRE	NOx Lbs/Hr =	0.00	"#DIV/0!
PRE	CO Lbs/Hr =	0.00	#DIV/0!
POST	NOx Lbs/Hr =	0.00	" #DIV/0!
POST	CO Lbs/Hr =	0.00	[*] #DIV/0!
	BMEP =	#DIV/0!	

DATA INP	UT AREA
Customer:	BreitBurn
Location:	
Unit:	
Engine Serial Number:	
Engine Model:	
Engine CID:	
Engine RPM:	
Ambient Temp - deg F:	
Test Date - m/d/yr	
Engine NO Observed - PPM:	
Engine NO2 Observed - PPM:	
Engine CO Observed - PPM:	
Exhaust O2 Observed - %:	
Engine Horsepower:	
Fuel Flow - cu-ft/hr	
Fuel Analysis - BTU/cu-ft	
Converter NO Observed - PPM:	
Converter NO2 Observed - PPM:	and the second second
Converter CO Observed - PPM:	
Engine Timing:	
Permit Lim	its;
NOX: 90%	CO; 80%
Catalyst tem	ips;
ln;	
Out;	
Diff;	0
Catalyst pres	sure;
ln;	
Out;	
Diff;	0
Exhaust Flo	DW .
02 Target	t
Catalyst Moo	del:

RENEWABLE OPERATING PERMIT APPLICATION AI-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

SRN: 5831	
-----------	--

Section Number (if applicable): 1

1. Additional Information ID AI-MAP

Additional Information

2. Is This Information Confidential?

🗌 Yes 🛛 No

Revised PM MAP to reflect the omission of EUENGINE5

Page

of

Preventative Maintenance and Malfunction Abatement Plan

BreitBurn Operating, LP

Facility: Wilderness CO2pf SRN: N5831

Revised to remove EUENGINE5 from ROP 6/27/18 Revised July 31, 2013 Submission date: August 20, 2012 Revised to reflect company names change Effective Date 11/1/2007

	PM/MAP Content Checklist		re included
	Reference Appendices C,D, and E.	Page	Section or Table
1	Contact Person		Cover Letter
	ENGINES		
2	Engine Identification: Include the engine make/model and type of engine (i.e. rich or lean burn). Identify engines with add on control and AFRC. If add on control is present, identify type of control.		Appendix A & Appendix C
3	Engine Operating Variables To Be Monitored. Include a copy of the normal engine maintenance log.	4	Table 1 & Appendix B
4	Corrective procedures or operational changes that will be taken in the event of a malfunction.	2, 6	Table 2, Appendix D & Appendix E
5	Major parts replacement inventory for engines.	2	
	Add On Controls		
6	Catalytic Converter & Oxidation Catalyst operating variables to be monitored. Include the method and frequency of monitoring these variables; provide the normal operating range of these variables.	4-5	Table 1
7	Corrective actions to be taken in event of malfunction of the catalytic converter.	6	Table 2
8	AFRC O ₂ Sensor replacement schedule or operating variables to be monitored	5	Table 1
9	Corrective actions to be taken in event of malfunction of the AFRC	6	Table 2
10	Emission testing utilizing portable analyzer	5	Table 1
11	Scheduled maintenance of control equipment	4-5	Table 1
12	Major parts replacement inventory for add on control.	2	
13	Identify supervisory personnel responsible for overseeing inspection, maintenance and repair of add on controls.	6	Table 2
14	Recordkeeping and retention of records.	2-3	
15	Updates of PM/MAP as necessary.	3	

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	ENGINES AND CATALYTIC CONTROL UNITS	1
3.0	RECORDKEEPING	2
4.0	UPDATES	3

APPENDICES

Appendix A – List of Facility Specific Equipment Covered by this PM/MAP Appendix B – Engine Field Report Form Appendix C – Compressor Specification Sheet Appendix D – Maintenance Record (Revised 11/2008) Appendix E – Portable Analyzer Record

1.0 INTRODUCTION

BreitBurn Operating, LP (BreitBurn) operates numerous natural gas central processing facilities (CPFs) in Michigan. The CPFs receive gas from natural gas wells and dehydrate (if necessary) and compress the gas prior to pipeline transport. All of these CPFs have natural gas fired internal combustion engines. BreitBurn uses both rich burn and lean burn engines. Some of the rich burn engines are equipped with 3-way catalytic control systems. Generally there is no add-on control for BreitBurn lean burn engines. However, a few of BreitBurn's lean burn engines are equipped with oxidation catalytic control systems. The text of this PM/MAP is uniform for all of BreitBurn's facilities. The cover page and the specific engine, catalyst and AFRC information shown in Appendix A will be unique to each facility.

2.0 ENGINES AND CATALYTIC CONTROL UNITS

2.1 Description

Three-way catalytic converters, used on rich-burn engines, provide an overall control efficiency of 90 percent for NO_x, 80 percent for CO and 50 percent for VOCs. Some of BreitBurn's rich burn engines operate with an air to fuel ratio controller (AFRC), others do not. Oxidation catalysts used on lean-burn engines reduce CO, VOC and trace organic toxic air contaminants (TACs), which include hazardous air pollutants (HAPs) and TACs emissions. Appendix A identifies the BreitBurn-operated engine(s) that are equipped with add-on control devices. This information is stored and updated on a BreitBurn database or spreadsheet. Appendix B also lists the operating variables of the engines.

2.2 **Operation of Catalytic Converters**

For both 3-way and oxidation catalysts, the hot exhaust gases from the engine pass through a catalytic reduction bed, where the reduction and oxidation occur. An oxidation catalyst requires higher oxygen levels to allow the converter bed to oxidize the CO, VOC and trace organic TACs/HAPs. The exhaust gases then pass out a stack.

2.3 Critical Criteria

The preventative maintenance of the engines is primarily done to keep the engine operating properly and to extend its useful life. Any major malfunction of the engine will lead to its being taken out of service for repair. Each engine has a control panel that will indicate critical malfunctions, and will initiate an engine shutdown if necessary. In the event of a shutdown, a third party mechanic is called out to repair the engine and a record of the event is made.

The critical criteria for the operation of the catalytic converter are the oxygen content of the incoming gases, the pressure drop across the catalyst bed and the inlet and outlet temperature. If the oxygen content is too high for a 3-way catalytic converter, the NO_x reduction reaction will not yield the desired 90 percent decrease in concentration. Similarly, for oxidation catalysts, if the oxygen level drops too low, the proper oxidation of CO, VOC and trace TACs/HAPs will decrease. For lean burn engines, the oxygen level should be enough to ensure that the oxygen content of the exhaust gases will remain adequate to allow proper oxidation. A high pressure drop may be an indication of plugging of the catalyst, and a very

low one may indicate the catalyst bed has leakage around or through it. A high outlet temperature may also be an indication of the need to shut down the unit to prevent burnout of the catalyst. Typical operating temperature ranges for 3-way catalysts are 750 deg. F to 1350 deg. F.

2.4 Catalyst Inspections and Maintenance

In order to reduce the chance of fouling problems with either 3-way and oxidation catalysts, if an engine is new or major maintenance is performed, the engine may run for up to 100 hours without the catalyst installed. The engine may run without the catalytic converter a maximum of 200 hours per year. Records will be maintained of the engine hours of operation without the catalyst insert installed. All catalysts will be equipped with pre- and post-catalyst temperature sensors. All engines equipped with catalysts will automatically shut down in the event that the sensors indicate that the post-catalyst temperature exceeds 1350 degrees F. If the post-catalyst temperature on a 3-way catalyst is less than the pre-catalyst temperature, a mechanic will be called out to investigate. Temperature rise will not be used as a measure of oxidation catalyst performance. The preventative maintenance schedule for BreitBurn engines and catalysts is included as Table 1. A log of all inspections and maintenance work will be maintained in a BreitBurn database or spreadsheet. A schedule is maintained for each engine and its add-on control devices.

2.5 Spare Parts

Spare washed catalyst elements and engine parts will be maintained in a third party warehouse for use when a catalyst has been removed for maintenance. Each spare insert will be washed in accordance with the Table 2 schedule. Catalyst insert kits, oxygen sensors for air fuel ratio controllers, and extra temperature probes, stepper motor as well as a harness will be supplied by a third party.

2.6 Key Operating Variables and Corrective Procedures in the Event of a Malfunction

See Table 2 for a summary of the key operating variables and corrective actions for each malfunction.

3.0 RECORDKEEPING

Records of engine operating hours and maintenance are maintained and updated on BreitBurn's data server in a database or in spreadsheet form.

BreitBurn will keep all records necessary for demonstrating compliance with this PM/MAP. Records will be made available within two weeks from the date of request by the MDEQ.

4.0 UPDATES

If BreitBurn experiences a malfunction that is not properly addressed in this Preventative Maintenance and Malfunction Abatement Plan, it will be updated and submitted to the AQD District Supervisor for review and approval.

Item	Activity	<u>Equipment</u> Status	Frequency
Engine	Mini Service ✓ Check and adjust valves ✓ Check engine compression ✓ Check timing ✓ Check fuel pressure ✓ Check air filter ✓ Change pre air filter ✓ Check all kill devices ✓ Inspect hoses and belts ✓ Inspect spark plugs	Off line	Every 60-90 days
Engine	Major Service ✓ Perform mini service as listed above, and ✓ Change motor oil and filter, as necessary, by sampling oil every 30 days, and submitting for an oil analysis	Off line	Approximately ever 2,160 hours of engine operation, or if oil analysis indicates need.
Engine	 Swing/overhaul Replace existing engine with new/refurbished engine. When new/rebuilt engine is installed or major maintenance is performed, the unit will be run without the catalyst, if applicable, for up to 100 hours per event. This prevents the catalyst from becoming damaged due to lubricants left in the engine and gives the valves and piston rings time to seat and seal. 	Off line	Approximately ever 75,000 hours of engine operation, or as needed.
Catalyst	Check differential pressure across catalyst. Establish baseline ΔP each time a new or cleaned CC insert is installed at normal operating conditions (rpm's). Check monthly. If greater than baseline ΔP by 2" WC @80- 100percent max rpm, then inspect catalyst and take actions based on findings.	On line	Monthly
Catalyst	 Check inlet and outlet temperatures across catalyst. The pre-catalyst temperature is less than 750°F, or other minimum temperature established through testing, a mechanic will be called out to investigate. The post-catalyst temperature exceeds 1350°F, the engine will be shut down. If the ΔT across CC is negative, mechanic will evaluate cause and determine a resolution, based on history and degree of change. May 	On line	Daily

Item	Activity	Equipment Status	Frequency
	establish engine specific ΔT through testing. Must document conclusions, and actions.	D.	
Catalyst	The catalytic converter shall be removed, inspected and cleaned at least once per 12-18 months. Cleaning will consist of vacuuming or blowing clean the catalyst face and clearing fouling and built-up ash. If the catalyst does not respond to the annual vacuum or blowing treatment, the catalyst will be removed, shipped to the manufacturer, and washed. A "washed swing" catalyst insert shall be used until a new or refurbished catalyst is installed. The used catalyst will not be returned to service unless it can be rejuvenated. Replace the gaskets (typically at the same time the catalyst is washed or serviced).	Off line	Every 12 -18 months of catalyst operating time, or in the event of an engine malfunction where foreign fluids cause engine shutdown.
Catalyst	Remove catalyst insert and wash in chemical solution to remove surface contamination. Replace with clean or fresh "swing" insert during cleaning process.	Off line	Every 18-24 months of operation.
Catalyst	Replace catalyst insert.	Off line	If not functioning properly after vendo cleaning, or in lieu o vendor cleaning.
AFRC	Replace oxygen sensor.	On or off line	After 90-110 days of operation or if AFRO unit or lifetime sense indicates need.
Emission Reduction Testing	For CO and NO_x . BreitBurn will do one of the following: a) inlet and outlet testing and estimate destruction efficiency; b) outlet testing and check for gm/hp-hr compared to levels used for permitting; or c) outlet testing and use the uncontrolled vendor data to establish a destruction efficiency.	On line	Whenever new or refurbished catalyst inserted. Typically every 12-18 months when insert is serviced. Also as needed to identify alternate operating conditions.
Portable Emission Analyzer	Maintenance and calibration.	On or off line	As required by mfg' manuals.

	-	1	1	
Thermocouple	Catalyst	Catalyst	AFRC Oxygen Sensor	Device Description
Temperature	Inlet and Outlet temperatures	2.5" WC Change in ΔP @ normal operating conditions	AFRC Oxygen descent of exhaust gases	Operating Variable
Temperature read- outs. Check with independent thermocouple.	Thermocouple	Gauge or manometer	Gauge or digital reading	Monitoring Method
As needed	Daily	Monthly	Monthly	Frequency
0 to 1400 °F	Must be below 1350 degrees F. For 3-way catalysts only: Outlet temperature must be equal to or greater than the catalytic inlet temperature	Established with installation of new or cleaned CC insert that a 2.5" WC Change in ∆P @ normal operating conditions. Varies by engine. Recorded in database	0-1 percent O2	Normal Operating Range
Inspect thermocouple. Clean, recheck, or replace if not functioning.	Engine will automatically shut down at 1350 degrees F. For 3-way catalysts: If outlet temperature is less than inlet temperature, a mechanic will investigate and make appropriate repairs.	Remove and inspect catalyst insert within 3 days. Clean or replace if necessary.	Re-synchronize the engine and the AFRC. If O ₂ level does not come into line, replace oxygen sensor within 5 days and readjust engine.	Corrective Procedure or Operational Change in the Event of a Malfunction
Third Party Mechanic	Third Party Mechanic	Third Party Mechanic	Third Party Mechanic	Responsible Supervisor

Table 2 – BreitBurn Operating Variables and Remedial Actions

6

_

Appendix A Wilderness CO2 Equipment Information

Facility	PTI	SRN	aqd id	BB Unit Number	Type of Control	AFRC (yes/no)	Baseline DP	Engine	Engine Model	Rich or Lean Burn
WILDERNESS CO2	86-05A	N5831	EUENGINE6	CO2 - 1 CC	cc	YES	2.3	Waukesha	L-7042 GSI	RB
WILDERNESS CO2	- 86-05A	N5831	EUENGINE1	831 NA	NA	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE2	856 OC	00	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE3	885	oc	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE4	907 OC	00	YES	NA	Caterpillar	3516	LB

EUENGINE6 BASELINE DP CHANGE (HISTORICAL)

ALO BASELINE DI CITANUE (TILSTONICAE)	5.7	2.1	2/6/2015 VACCUMMED & INSPECTED	2.5	3.0	3/29/2016 Tested & DP is the same (3.0), no revision sent	2.3	6/27/2018 Remove EUENGINE5 from MAP	
ALO DAGLELINE I	3/3/2014	8/8/2014	2/6/2015	2/9/2015	7/27/2015	3/29/2016	10/30/2017	6/27/2018	

EUENGINE5 SHUT IN 11/10/14

m
×
di
en
d
AL.

BreitBurn Operating L.P. Preventative Maintenance and Malfunction Abatement Plan

reventative maintenance and manufiction Abate Field Report

Month & Year.

Unit #:

Location:

Location:

Equipment:

	Exhaust Temp	\backslash			\backslash																\backslash	
	Mech Initial																					
	Oil Level																					
	Oil Temp																					
	Oil Press																					
	Disch Temp	\backslash		\backslash	\backslash		\backslash					\backslash	\backslash	\backslash			\backslash			\backslash	\backslash	
	#3 int Temp		\backslash	\backslash	\backslash					\backslash	\backslash	\backslash	\backslash				\backslash				\backslash	
	#2 int Temp	\backslash		\backslash	\backslash	\backslash	\backslash			\backslash	\backslash	\backslash	\backslash	\backslash			\backslash			\backslash	\backslash	
s.N.:	#1 int Temp		\backslash		\backslash				\backslash	\backslash	\backslash	\backslash	\backslash	\backslash		\setminus	\backslash			\backslash	\backslash	
Comp. Model & S.N.:	Disch Press	_						fast in success														
Comp.	#3 int Press																					
ssor	#2 int Press																					
Compressor	#1 int Press																					
	Suct Press																					
	Water Level																					
	Water Temp																					
	Oil Level																					
	Oil Temp	-																				
k S.N.: Engine:	Oil Press																					•
Engine Model & S.N.: / Engine	RPM									~												I
Engine N	Date:	-	2	n	4	5	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	i

PM MAP APPX B BreitBurn Compressor Field Report Page 1

Field Report Continued on Other Side

Appendix B

BreitBurn Operating Company, LP/Terra Energy, Ltd. Preventative Maintenance and Malfunction

anurcion	
	ent Plan
VC IVIAILIUCI I	Abatement Plar

Exhaust Temp	\backslash	\backslash									\backslash
Mech Initial	e										
Oil Level		2									
Oil Temp	2									-	
Oil Press											
Disch Temp	\backslash										\backslash
#3 int Temp	\backslash	\backslash	\backslash	\backslash	\backslash	\backslash					
#2 int Temp	\backslash	\backslash	\backslash			\backslash	\backslash			\backslash	\backslash
#1 int Temp	\backslash	\backslash	\backslash			\backslash	\backslash			\backslash	\backslash
Disch Press											
#3 int Press											
#2 int Press											
#1 int Press											
Suct Press											
Water Level						4		3			
Water Temp											
Oil Level											
Oil Temp											
Dil									-		
RPM					-						
Date:	21	22	23	24	25	26	27	28	29	30	31

Down Time

AUNIS DOWN LINE	D	
Date	BB	Reason For Downtime
		A CARAMAN A CARAMAN A CARAMAN A CARAMANAN

PM MAP APPX B BreitBurn Compressor Field Report Page 2

Appendix C

BreitBurn Operating Company, L.P. Preventative Maintenance and Malfunction Abatement Plan COMPRESSOR SPECIFICATION SHEET

Facility/Unit #:					Packager:			Year Built:			
					Engine		all a set of the				
Manufacturer:				Modei:				Serial Numbe	er:		
Horsepower:				RPM:				Spec/Arrange	ement:		
Ignition/Make?:				Starter/Make?	?:			Governor/Ma	ke?:		
Low Emission (LE)?			AFRC/Make-I	Model?			Catalytic Con	verter-Make/M	odel?	
Stack Height:				Exhaust Diam	neter:						
					Compressor						
Manufacturer:				Modei:				Serial Numbe	er:		
Throws:				Stages:				Stroke:	s 9		
RPM:				Horsepower:				Rod Load Ra	ting:		
					Cylinders						
Stage/Cyl#	Bo	ore	Class	MAWP	Serial N	Number	VVP/PI	ug/Plain	VVP	S/N	
	2										
										t:	
-	·										
					Cooler					The states	
Manufacturer:	Manufacturer:			Model:				Serial Number:			
Sect	Section MAWP		NP	Number	of Tubes Number of Rows			Lou	vers?	Year	
EJ/	N						L				
TAY	W										
IC-			0								
IC-											
IC-											
AC											

Appendix C

BreitBurn Operating Company, L.P. Preventative Maintenance and Malfunction Abatement Plan COMPRESSOR SPECIFICATION SHEET

	Pressure	Vessels-Scrubber, Puls	atiion & Fuel Bottles		
		National Board			Year
Stage / Type *	MAWP	Number	Serial Number	Diameter/Length	Built
16					
		4			
*S=Scrubber	SP=Suction Pulsation	DP=Discharg	Pulsation	FB=Fuei Bottle	
S-Scrubber	SF-Suction Fulsation	Panel Board	is i distation	1 D T WOLDOLLIO	TE MAN
Manufacturer:	Model:			er/Part Number:	
Tachometer:	Annuciator:		Division II?		
	· · · · · ·				
		Comments			
20 - ¹⁰					
Printed Name:	Signature:		Date:		

		North A	America Operations Services		Ticket Number:
Archrock.		Gen	eral Service Ticket		
Employee Name:		S. S. S. S. S.	W.O. Number:		
Employee ID:			W.O. Type:		
Unit Number:			Business Unit:		
Date:			Asset Group:		
Customer Name:				Engine	Compressor
Lease Name:		a shi and a set	Make		
Service Billable to Customer? (Y/N)	No		Model		
	24		Serial Number		
			Hour Meter	15 - 1 - 10	

Time Clock				
Activity Start Time		Note: Select Asset Group	Customer Downtime Code	Hrs Down
Activity Finish Time	12:00 AM			
Direct Time		Customer Downtime Code	Exterran Downtime Code	Hrs Down
Work (hours)		and Event		
Travel (hours)		Activity No.	Event - Code Description	Worked Hrs or Blowdown Events
Standby (hours)		1		
Total Miles Traveled		2		
Weather Condition		3		
Total Direct Hours	0.00	4		
Others Operation	ns Activities	Activity No.	Description	Worked Hrs
(MOB, D	EMOB, etc)	1		
		2		

Description/Code	Hours	Explanation of Work Performed	— 🔗 Spelli
Description/code		(Enter your comments here.)	
Total Indirect Hours	0.00		

Des	cription	Hours								
	in the second									
	1		in the second							
	Total Meal Hours	0.00								
Qty	Part Number	Descri	ption	Warehouse	Qty	Part Number		Desci	ription	Warehouse
0					0					
0		Nº CARA			0					
0					0					
0					0					
0					0					
0			1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -		0			1611	1997 (P. 199	1918.22
0	Days at	\$ -	Per Diem =	\$ -	0	Nights at	\$		Per Night =	\$ -
ls Job Co	mplete? (Y/N)		Yes	Customer ackno Exterran's Publis	wledges and agre hed Rate Sheet u	ees all travel and liv unless other terms a	ing expen are agreed	ses shal d to prior	I be invoiced with r to commencem	n labor charges p ent of service
mployee Sig	nature:				Employee Name: (print)					
	a dura				Customer					
Customer Sig	nature.	<i>*</i>			Name: (print)					

BREITBURN OPERATING LP APPENDIX E EMISSIONS TESTING EXAMPLE

Archrock.

Fuel Used - cu-ft/hr

Fuel Analysis - BTU/cu-ft 0

0

ENGINE EMISSIONS ANALYSIS

Customer:	BreitBurn		Engine CID:	0	
Location:	0		Engine RPM:	0	
Unit:	0		BMEP Calc:	#DIV/0!	
Serial Number:	0		Amb Temp F:	0	
Engine Model:	0		Date of Test:	01/00/00	
			Engine Timing:	0	
	the second se				
		DATA OB	SERVED		1
ENGINE		DATA OB	SERVED CONVERTE	R	
ENGINE NOx Observed - PPM	0	DATA OB		: R 0	
	0	DATA OB	CONVERTE		
NOx Observed - PPM	Ū.	DATA OB	CONVERTE NOx Observed - PPM	0	-

	CALCULATED R	ESULTS	
	g/BHP-Hr	lbs/hr	TPY
ENGINE NOX	#DIV/0!	0.00	0.00
ENGINE CO	#DIV/0!	0.00	0.00
CONVERTER NOX	#DIV/0!	0.00	0.00
CONVERTER CO	#DIV/0!	0.00	0.00

NOx CONVERSION	CO CONVERSION	RATIO: NO /	NO2
#DIV/0!	#DIV/0!	#DIV/0! /	#DIV/0!

Calculated results are derived from a series of emissions readings from the identified engine at the conditions listed. Test instrument reads NO and NO2 separately with NOx based on the combined total and calculated as NO2. Concentrations in PPMv are given at the observed O2 levels with no correction factor made. Engine loading is confirmed using WPI proprietary software and / or driven equipment loading. Test instrument is spanned with known gas concentrations before each series of tests. Printout of the raw data is attached. Test instrument is an electro-chemical cell type. Method of calculation is per EPA Method 19 based on fuel usage and analysis.

Natural Gas Fired RICE Specifications

Engine Parameter	Parameter		Parameter Value			
	Units	EUENGINEI	EUENGINE2	EUENGINE3	EUENGINE4	EUENGINE6
Breitburn ID		831	856	885	907	C02-1
Engine Make		Caterpillar	Caterpillar	Caterpillar	Caterpillar	Waukesha
Engine Model		3516 TALE	3516 TALE	3516 TALE	3516 TALE	L 7042 GSI
Engine Serial No.		3RC00254	4EK01389	4EK01593	4EK00222	362289
Type of Fuel		Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Rated Engine Power at 100% Load	bhp	1,085	1,085	1,085	1,150	1,478
Design Heat Input Rating, LHV	MM Btu/hour	8.08	8.08	8.08	8.53	11.56
Design Heat Input Rating, HHV	MM Btu/hour	8.89	8.89	8.89	9.39	12.72
Fuel Heating Value, LHV	Btu/scf	927	927	927	927	927
Fuel Heating Value, HHV	Btu/scf	1,020	1,020	1,020	1,020	1,020
Fuel Flow	scf/hour	8,717	8,717	8,717	9,202	12,471
Control Technologies	NA	Lean Burn	Lean Burn	Lean Burn	Lean Burn	3-way Catalyst
Exhaust Gas Parameters	Units	Value	Value	Value	Value	Value
Exhuast Gas Flowrate	acfm, wet	5,956	5,956	5,956	6,200	6.567
Exhuast Gas Flowrate	scfm, 68F	2,415	2,415	2,415	2,524	2,188
Exhaust Gas Temperature	F	842	842	842	837	1,125
Stack Inner Diameter	inches	12	12	12	12	12
Stack Area	fi2	0.79	0.79	0.79	0.79	0.79
Stack Discharge Velocity	feet/second	126.39	126.39	126.39	131.57	139.35
Stack Height Above Ground Level	feet	16	16	16	16	24

Natural Gas Fired Heaters Specifications

Heater Specifications Type of Fuel Number of Units Design Heat Input Rating, HHV Fuel Hearino, Value, HHV	Units					
AHH		EULINEHEATERS	EUSTAGEIHEATERS	EUHEATERP1-S2	EUHEATERP2-S2	EUHEATERUOP
HHV	NA	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
AHH	NA	2	3	2	0	2
Fuel Heating Volue HHV	MM Btu/hr	1.50	1.00	0.50	0.50	0.50
I UNI LIVALIIE Y AIUV, IILLY	Btu/scf	1,020	1,020	1,020	1,020	1,020
Fuel Flow	scf/hour	1,471	980	490	490	490
Control Technologies	NA	None	None	None	None	None
Exhaust Gas Parameters	Units	Value	Value	Value	Value	Value
Exhuast Gas Flowrate	acfin	171	392	196	196	196
Exhuast Gas Flowrate	scfm, 68°F	323	215	108	108	108
Exhaust Gas Temperature	٥F	800	500	500	500	500
Stack Inner Diameter	inches	16	12	8	12	8
Stack Area	ft^2	1.40	0.79	0.35	0.79	0.35
Stack Discharge Velocity	feet/second	9.21	8.31	9.35	4.16	9.35
Stack Height Above Ground Level	feet	24	24	24	24	24

¹ The softm flow rates for the boilers/process heaters assume 750 lbs air/MM Btu heat input at zero percent excess air, 20% excess air at actual conditions, and that the fuel flow rate is directly additive to the combustion by-products.

File: Wilderness_C02_ Hayes 29 Emissions Calcs Tab: Specifications

Pollutant	Uncontrolled Emission Factor ¹	Controlled Emission Factor	Emission Factor Units	Emission Factor Basis	Per Unit Emission Rate ³ (h/hr)
NOx	2.00	NA	g/bhp-hr	Vendor Data	4.78
CO	1.80	NA	g/bhp-hr	Vendor Data	4.31
PM ₁₀ Total	9.99E-03	NA	lb/MM Btu	AP-42, T 3.2-2	0.089
SO_2	5.88E-04	NA	lb/MM Btu	AP-42, T 3.2-2	5.23E-03
VOC	0.48	NA	g/bhp-hr	Vendor Data	1.15

Table B-1a. Caterpillar 3516 TALE (1,085 HP) Emission Factors and Short Term Emission Rates

¹ All lb/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

 3 The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,085 bhp or 8.89 MM Btu/hr - HHV basis).

Pollutant	Per Unit Emission Estimates	on Estimates	Total Emission Estimates (3 Units)	stimates (3 Units)
	(lb/hr) ¹	$(tpy)^2$	(lb/hr) ¹	(tpy) ²
NOx	4.78	20.95	14.35	62.86
CO	4.31	18.86	12.92	56.58
PM ₁₀ Total	60.0	0.39	0.27	1.17
SO_2	5.23E-03	2.29E-02	1.57E-02	6.87E-02
VOC	1.15	5.03	3.44	15.09

Table B-1b. Caterpillar 3516 TALE (1,085 HP) Short Term and Long Term Emission Rates

¹ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,085 bhp or 8.89 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

Pollutant	Uncontrolled Emission Factor ¹	Controlled Emission Factor	Emission Factor Units	Emission Factor Basis	Per Unit Emission Rate ³ (lb/hr)
NOx	2.00	NA	g/bhp-hr	Vendor Data	5.07
CO	1.57	NA	g/bhp-hr	Vendor Data	3.98
PM ₁₀ Total	9.99E-03	NA	Ib/MM Btu	АР-42, Т 3.2-2	0.09
SO_2	5.88E-04	NA	Ib/MM Btu	AP-42, T 3.2-2	5.52E-03
VOC	2.94	NA	g/bhp-hr	Vendor Data	7.45

Table B-2a. Caterpillar 3516 TALE (1,150 HP) Emission Factors and Short Term Emission Rates

¹ All Ib/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

³ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,150 bhp or 9.39 MM Btu/hr - HHV basis).

Pollutant	Per Unit Emission Estimates	on Estimates	Total Emission Estimates (1 Unit)	timates (1 Unit)
	(lb/hr) ¹	(tpy) ²	(lb/hr) ¹	(tpy) ²
NOx	5.07	22.21	5.07	22.21
CO	3.98	17.43	3.98	17.43
PM ₁₀ Total	0.09	0.41	0.09	0.41
SO_2	5.52E-03	2.42E-02	5.52E-03	2.42E-02
VOC	7.45	32.65	7.45	32.65

Table B-2b. Cateroillar 3516 TALE (1.150 HP) Short Term and Long Term Emission Rates

¹ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,150 bhp or 9.39 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

	Uncontrolled	Controlled			Per Unit
Pollutant	Emission	Emission	Emission	Emission	Emission Rate ³
	Factor ¹	Factor ^{1, 2}	Factor Units	Factor Basis	(lb/hr)
NOx	13.00	1.30	g/bhp-hr	Vendor Data	4.24
CO	12.00	2.40	g/bhp-hr	Vendor Data	7.82
PM ₁₀ Total	1.94E-02	1.94E-02	Ib/MM Btu	AP-42, T 3.2-3	0.25
SO_2	5.88E-04	5.88E-04	Ib/MM Btu	AP-42, T 3.2-3	7.48E-03
VOC	0.35	0.18	g/bhp-hr	Vendor Data	0.57

Table B-3a. Waukesha L 7042 GSI Emission Factors and Short Term Emission Rates

¹ All lb/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

 2 The controlled emission factors are based upon catalytic converter removal efficiencies (by weight) of 90% for NOx, 80% for CO and 50% for VOCs.

³ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,478 bhp or 12.72 MM Btu/hr - HHV basis).

Pollutant	Per Unit Emission Estimates	on Estimates	Total Emission Estimates (1 Unit)	timates (1 Unit)
	(lb/hr) ¹	$(tpy)^2$	(lb/hr) ¹	$(tpy)^2$
NOx	4.24	18.55	4.24	18.55
CO	7.82	34.25	7.82	34.25
PM ₁₀ Total	0.25	1.08	0.25	1.08
SO_2	7.48E-03	3.28E-02	7.48E-03	3.28E-02
VOC	0.57	2.50	0.57	2.50

Table B-3b. Waukesha L 7042 GSI Short Term and Long Term Emission Rates

The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,478 bhp or 12.72 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

Pollutant	Emission	Emission	Emission	Per Unit Emission Rates ¹ (lb/hr)	Rates ¹ (lb/hr)	
	Factor	Factor Units	Factor Basis	1.5 MM Btu/hr	1.0 MM Btu/hr	0.5 MM Btu/hr
NOx	100.0	lb/MM scf	AP-42, T 1.4-1	0.15	0.10	0.05
CO	84.0	lb/MM scf	AP-42, T 1.4-1	0.12	0.08	0.04
PM ₁₀ Total	7.6	lb/MM scf	AP-42, T 1.4-2	1.12E-02	7.45E-03	3.73E-03
SO_2	0.6	lb/MM scf	AP-42, T 1.4-2	8.82E-04	5.88E-04	2.94E-04
VOC	5.5	lb/MM scf	AP-42, T 1.4-2	8.09E-03	5.39E-03	2.70E-03
Lead	5.00E-04	lb/MM scf	AP-42, T 1.4-2	7.35E-07	4.90E-07	2.45E-07

Table B-6a. Natural Gas Fired Boilers/Process Heaters Emission Factors and Short Term Emission Rates

The per unit emission rates have been determined based upon a natural gas heating value of 1,020 Btu/scf.

Natural Gas Fired Boilers - Short Term and Long Term Emission Rates

Pollutant	Annual Emission Ra	nual Emission Rates Per Unit (tpy) ¹		Totals for All Units (9 Units)	its (9 Units) ²
	1.5 MM Btu/hr	1.0 MM Btu/hr	0.5 MM Btu/hr	(lb/hr)	(tpy)
NOx	0.64	0.43	0.21	0.88	3.86
CO	0.54	0.36	0.18	0.74	3.25
PM ₁₀ Total	0.05	0.03	0.02	0.07	0.29
SO_2	3.86E-03	2.58E-03	1.29E-03	0.01	0.02
VOC	0.04	0.02	0.01	0.05	0.21
Lead	3.22E-06	2.15E-06	1.07E-06	4.41E-06	1.93E-05

¹ Annual emission rates are based upon continuous operation at rated capacity.

² The total emission rates are based upon three (3) 1.5 MM Btu/hr units, three (3) 1.0 MM Btu/hr units, and three (3) 0.5 MM Btu/hr units.

see CO3 Plant Potential Facility Short Term & Annual Emission Rates - Wildern

Pollutant	All RICE Engines		All Process Heaters		Storage Vessel	All Equipment	
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy) See E&P Run	(lb/hr)	(tpy)
NOx	23.66	103.63	0.88	3.86		24.54	107.49
CO	24.72	108.26	0.74	3.25		25.46	111.51
PM ₁₀ Total	0.61	2.66	0.07	0.29		0.67	2.95
SO_2	0.03	0.13	0.01	0.02		0.03	0.15
VOC	11.47	50.23	0.05	0.21	0.53	11.52	50.97
Lead			4.41E-06	1.93E-05		4.41E-06	1.93E-05
Max. Single HAP (Toluene)						0.00	0.00
Aggregate HAPs	0.51	2.23	0.02	0.07		0.52	2.30

File: Wilderness_CO2_ Hayes 29 Emissions Calcs Tab: Detailed_Criteria

Analysis of Engine Controls Needed to Be a Minor Source of HAP **Quicksilver Resources Incorporated**

Uncontrolled HAP Emission Rates for the Wilderness CO₂ Plant RICE Engines

	CAS	CAT 3516	CAT 3516 (1085 HP)	CAT 3516 (1150 HP)	(1150 HP)	Waukesha	Waukesha L7042GSI	Tota	Total Potential
Hazardous Air Pollutant	N I	Emission Rates (3 Units)	Units)	Emission Rates (1 Unit)	Unit)	Emission Rates (1 Units)	Units)	Emission Rates (5 Units)	5 Units)
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Formaldehyde	50-00-0	1.79	7.86	0.63	2.78	0.08	0.36	2.51	10.99
HAP Totals		2.31	10.12	0.82	3.57	0.16	0.69	3.28	14.39

Controlled HAP Emission Rates for the Wilderness CO₂ Plant RICE Engines (1 Controlled 1085 HP Unit)

	CAS	CAT 3516 (1085 HP)	1085 HP)	CAT 3516	CAT 3516 (1150 HP)	Waukesha	Waukesha L7042GSI	Tota	Total Potential
Hazardous Air Pollutant Registry	stry En	Registry Emission Rates (3 Units)	Jnits)	Emission Rates (1 Unit)	Unit)	Emission Rates (1 Units)	Units)	Emission Rates (5 Units)	5 Units)
	ner.	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Formaldehyde 50-00-0	0-0	1.50	6.55	0.63	2.78	0.08	0.36	2.21	9.68
HAP Totals		2.01	8.81	0.82	3.57	0.16	0.69	2.99	13.08

Controlled HAP Emission Rates for the Wilderness CO₂ Plant RICE Engines (2 Controlled 1085 HP Units)

	CAS	CAT 3516	CAT 3516 (1085 HP)	CAT 3516	CAT 3516 (1150 HP)	Waukesha	Waukesha L7042GSI	Tota	Total Potential
Hazardous Air Pollutant	Registry Em	Emission Rates (3 Units)	Units)	Emission Rates (1 Unit)	Unit)	Emission Rates (1 Units)	Units)	Emission Rates (5 Units)	5 Units)
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Formaldehyde	50-00-0	1.20	5.24	0.63	2.78	0.08	0.36	1.91	8.37
HAP Totals		1.71	7.50	0.82	3.57	0.16	0.69	2.69	11.77

Controlled HAP Emission Rates for the Wilderness CO2 Plant RICE Engines (3 Controlled 1085 HP Units)

	CAS	CAT 3516	CAT 3516 (1085 HP)	CAT 3516	CAT 3516 (1150 HP)	Waukesha	Waukesha L7042GSI	Tota	Total Potential
Hazardous Air Pollutant	Registry	Registry Emission Rates (3 Units)	Units)	Emission Rates (1 Unit)	Unit)	Emission Rates (1 Units)	Units)	Emission Rates (5 Units)	5 Units)
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Formaldehyde	50-00-0	06.0	3.93	0.63	2.78	0.08	0.36	1.61	7.06
HAP Totals		1.41	6.19	0.82	3.57	0.16	0.69	2.39	10.46

HAP Emission Factors and Emission Rates for Natural Gas Fired RICE

Hazardous	CAS		ission Factor ¹	
Air Pollutant	Registry	2-Stroke	4-Stroke	4-Stroke
	Number	Lean-Burn	Lean-Burn	Rich-Burn
1,1,2,2-Tetrachloroethane	79-34-5	6.63E-05	4.00E-05	2.53E-05
1,1,2-Trichloroethane	79-00-5	2.57E-05	3.18E-05	1.53E-05
1,1,-Dichloroethane	75-34-3	3.91E-05	2.36E-05	1.13E-05
1.2,3-Trimethylbenzene	526-73-8	3.54E-05	2.30E-05	
1,2,4-Trimethylbenzene	95-36-3	1.11E-04	1.43E-05	
1,2-Dichloroethane	107-06-2	4.22E-05	2.36E-05	1.13E-05
1,2-Dichloropropane	78-87-5	4.46E-05	2.69E-05	1.13E-05
1,3,5-Trimethylbenzene	108-67-8	1.80E-05	3.38E-05	
1,3-Butadiene	106-99-0	8.20E-04	2.67E-04	6.63E-04
1,3-Dichloropropene	542-75-6	4.38E-05	2.64E-05	1.27E-05
2,2,4-Trimethylpentane	540-84-1	8.46E-04	2.50E-04	
2-Methylnaphthalene	91-57-6	2.14E-05	3.32E-05	
Acenaphthene	83-32-9	1.33E-06	1.25E-06	
Acenaphthylene	208-96-8	3.17E-06	5.53E-06	
Acetaldehyde	75-07-0	7.76E-03	8.36E-03	2.79E-03
Acrolein	107-02-8	7.78E-03	5.14E-03	2.63E-03
Anthracene	120-12-7	7.18E-07		
Benz(a)anthracene	56-55-3	3.36E-07		
Benzene	71-43-2	1.94E-03	4.40E-04	1.58E-03
Benzo(a)pyrene	50-32-8	5.68E-09		
Benzo(b)fluoranthene	205-99-2	8.51E-09	1.66E-07	
Benzo(e)pyrene	192-97-2	2.34E-08	4.15E-07	
Benzo(g,h,i)perylene	191-24-2	2.48E-08	4.14E-07	
Benzo(k)fluroanthene	205-82-3	4.26E-09		
Biphenyl	92-52-4	3.95E-06	2.12E-04	
Butane	106-97-8	4.75E-03	5.41E-04	
Butyr/Isobutyraldehyde	23-72-8/78-84-	4.37E-04	1.01E-04	1.77E-05
Carbon Tetrachloride	56-23-5	6.07E-05	3.67E-05	
Chlorobenzene Chloroethane	108-90-7	4.44E-05	3.04E-05 1.87E-06	1.29E-05
Chloroform	75-00-3 67-66-3	4.71E-05	2.85E-05	1.37E-05
Chrysene	218-01-9	6.72E-07	6.93E-07	1.5712-05
Cvclohexane	210-01-5	3.08E-04	0.551-07	
Cyclopentane	287-92-3	9.47E-05	2.27E-04	
Ethane	74-84-0	7.09E-02	1.05E-01	7.04E-02
Ethylbenzene	100-41-4	1.08E-04	3.97E-05	2.48E-05
Ethylene Dibromide	106-93-4	7.34E-05	4.43E-05	2.13E-05
Fluoranthene	206-44-0	3.61E-07	1.11E-06	2000 00
Fluorene	86-73-7	1.69E-06	5.67E-06	
Formaldehyde	50-00-0	5.52E-02	5.28E-02	2.05E-02
ormaldehyde (Wauk 7042 GSI) 3	50-00-0			5.00E-02
Formaldehyde (CAT 3516) ⁴	50-00-0		2.50E-01	
Indeno(1,2,3-c,d)pyrene	193-39-5	9.93E-09		
Isobutane	175-57-5	3.75E-03		
Methanol	67-56-1	2.48E-03	2.50E-03	3.06E-03
Methylcyclohexane	108-87-2	3.38E-04	1.23E-03	01000 00
Methylene Chloride	75-09-2	1.47E-04	2.00E-05	4.12E-05
n-Hexane	110-54-3	4.45E-04	1.11E-03	
n-Nonane	111-84-2	3.08E-05	1.10E-04	
n-Octane	111-65-9	7.44E-05	3.51E-04	
n-Pentane	109-66-0	1.53E-03	2.60E-03	
Naphthalene	91-20-3	9.63E-05	7.44E-05	9.71E-05
PAH	85-01-8	1.34E-04	2.69E-05	1.41E-04
Perylene	198-55-0	4.47E-09		
Phenanthrene	85-01-8	3.53E-06	1.04E-05	
Phenol	108-95-2	4.21E-05	2.40E-05	
Propane	74-98-6	2.87E-02	4.19E-02	
Pyrene	129-00-0	5.84E-07	1.36E-06	
Styrene	100-42-5	5.48E-05	2.36E-05	1.19E-05
Tetrachloroethane	630-20-6		2.48E-06	
Toluene	108-88-3	9.63E-04	4.08E-04	5.58E-04
Vinyl Chloride	75-01-4	2.47E-05	1.49E-05	7.18E-06
Xylene	1330-20-7	2.68E-04	1.84E-04	1.95E-04
HAP Totals (AP-42)		7.95E-02	7.22E-02	3.24E-02

¹ The HAP emission factors are based upon the Trace Organic Compound emissions factors of AP-42 Chapter 3.2. Specifically, the emission factors represent 2-stroke lean-burn, 4-stroke lean-burn, and 4-stroke rich-burn natural gas fired reciprocating engines, and the factors are taken from the AP-42 document (7/00 revision), Tables 3.2-1, 3.2-2, and 3.2-3, respectively.

² The compounds that are italicized represent those that are classified as TACs pursuant to Michigan Rule 336.1120(f), but are not classified as HAPs. All other compounds represent those that are classified as both HAPs and TACs.

³ This is a vendor (Waukesha) supplied emission factor; the unit of the factor is g/bhp-hr.

⁴ This is a vendor (Caterpillar) supplied emission factor for the lean burn 3516 engines; the unit of the factor is g/bhp-hr.

Wilderness CO₂ Plant RICE Engine HAP/TAC Emissions

Engine Make	Caterpillar	Caterpillar	Waukesha	7
Engine Model	3516 TALE	3516 TALE	L 7042 GSI	
Rated Output Per RICE	1085	1150	1478	horsepower
Rated Heat Input Per RICE	8.89	9.39	12.72	MM Btu/hour (HHV basis)
Natural Gas Heating Value	1,020	1,020	1,020	Btu/scf
Number of RICE	3	1	1	unitless
Annual Operation Per RICE	8,760	8,760	8,760	hours/year
Catalytic Converter	No	No	Yes	unitless
Generic HAP Removal Eff.	0%	0%	50%	% by weight
RICE Engine Configuration	2	2	3	1 = 2-stroke lean-burn, 2 =
				4-stroke lean-burn, and 3 =

4-stroke rich-burn

Table B-5. HAP and TAC Emission Rates for the Wilderness CO2 Plant RICE Engines

Hazardous Air Pollutant/	CAS Registry	CAT 3516 (108 Emission Rate		CAT 3516 (11 Emission Rate		Waukesha L70 Emission Rate		Total Pot Emission Rate	
Toxic Air Contaminant ¹	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
1,1,2,2-Tetrachloroethane	79-34-5	1.07E-03	4.67E-03	3.75E-04	1.64E-03	1.61E-04	7.05E-04	1.60E-03	7.02E-0
1,1,2-Trichloroethane	79-00-5	8.48E-04	3.72E-03	2.98E-04	1.31E-03	9.73E-05	4.26E-04	1.24E-03	5.45E-0
1,1,-Dichloroethane	75-34-3	6.30E-04	2.76E-03	2.22E-04	9.70E-04	7.19E-05	3.15E-04	9.23E-04	4.04E-6
1,2,3-Trimethylbenzene	526-73-8	6.14E-04	2.69E-03	2.16E-04	9.46E-04	(.1915-03	J.IJL=04	8.29E-04	3.63E-0
1,2,4-Trimethylbenzene	95-36-3	3.81E-04	1.67E-03	1.34E-04	5.88E-04			5.16E-04	2.26E-6
1,2-Dichloroethane	107-06-2	6.30E-04	2.76E-03	1.34E-04 2.22E-04	9.70E-04	7.19E-05	3.15E-04	9.23E-04	
				2.22E-04 2.52E-04					4.04E-0
1,2-Dichloropropane	78-87-5	7.18E-04	3.14E-03		1.11E-03	7.19E-05	3.15E-04	1.04E-03	4.56E-0
1,3,5-Trimethylbenzene	108-67-8	9.02E-04	3.95E-03	3.17E-04	1.39E-03	1 225 02	1.055.00	1.22E-03	5.34E-0
1,3-Butadiene	106-99-0	7.12E-03	3.12E-02	2.51E-03	1.10E-02	4.22E-03	1.85E-02	1.38E-02	6.06E-0
1,3-Dichloropropene	542-75-6	7.04E-04	3.08E-03	2.48E-04	1.09E-03	8.08E-05	3.54E-04	1.03E-03	4.52E-0
2,2,4-Trimethylpentane	540-84-1	6.67E-03	2.92E-02	2.35E-03	1.03E-02			9.02E-03	3.95E-0
2-Methylnaphthalene	91-57-6	8.86E-04	3.88E-03	3.12E-04	1.36E-03			1.20E-03	5.24E-0
Acenaphthene	83-32-9	3.33E-05	1.46E-04	1.17E-05	5.14E-05			4.51E-05	1.97E-0
Acenaphthylene	208-96-8	1.48E-04	6.46E-04	5.19E-05	2.27E-04	1 777 44		1.99E-04	8.73E-0
Acetaldehyde	75-07-0	2.23E-01	9.77E-01	7.85E-02	3.44E-01	1.77E-02	7.77E-02	3.19E-01	1.40E+0
Acrolein	107-02-8	1.37E-01	6.01E-01	4.82E-02	2.11E-01	1.67E-02	7.33E-02	2.02E-01	8.85E-0
Anthracene	120-12-7			-					
Benz(a)anthracene Benzene	56-55-3 71-43-2	1.17E-02	5.14E-02	4.13E-03	1.81E-02	1.00E-02	4.40E-02	2.59E-02	1 140 0
the second s	50-32-8	1.17E-02	5.14E-02	4.13E-03	1.81E-02	1.00E-02	4.40E-02	2.39E-02	1.14E-0
Benzo(a)pyrene Benzo(b)fluoranthene	205-99-2	4.43E-06	1.94E-05	1.56E-06	6.82E-06			5.99E-06	2.62E-0
Benzo(b)nuorantnene Benzo(e)pyrene	192-97-2	4.43E-00 1.11E-05	4.85E-05	3.90E-06	0.82E-00 1.71E-05			1.50E-05	6.55E-0
Benzo(g.h.i)perylene	192-97-2	1.10E-05	4.83E-03 4.84E-05	3.90E-00 3.89E-06	1.71E-03			1.49E-05	6.54E-0
Benzo(g,n,i)perylene Benzo(k)fluroanthene	205-82-3	1.10E-03	4.04E-03	3.09E-00	1.706-03			1.49E-03	0.34E-0
Biphenyl	92-52-4	5.66E-03	2.48E-02	1.99E-03	8.72E-03	12		7.64E-03	3.35E-0
Butane	106-97-8	1.44E-02	6.32E-02	5.08E-03	2.22E-02			1.95E-02	8.54E-0
Datuat	123-72-8/		U.J.L-U.	5.002-05	***********			1.752-0.5	0.546-0
Butyr/Isobutyraldehyde	78-84-2	2.69E-03	1.18E-02	9.48E-04	4.15E-03			3.64E-03	1.60E-0
Carbon Tetrachloride	56-23-5	9.79E-04	4.29E-03	3.44E-04	1.51E-03	1.13E-04	4.93E-04	1.44E-03	6.29E-0
Chlorobenzene	108-90-7	8.11E-04	3.55E-03	2.85E-04	1.25E-03	8.20E-05	3.59E-04	1.18E-03	5.16E-0
Chloroethane	75-00-3	4.99E-05	2.18E-04	1.76E-05	7.69E-05			6.74E-05	2.95E-0
Chloroform	67-66-3	7.60E-04	3.33E-03	2.68E-04	1.17E-03	8.71E-05	3.82E-04	1.11E-03	4.88E-0
Chrysene	218-01-9	1.85E-05	8.10E-05	6.50E-06	2.85E-05			2.50E-05	1.09E-0
Cyclohexane									
Cyclopentane	287-92-3	6.06E-03	2.65E-02	2.13E-03	9.33E-03			8.19E-03	3.59E-0
Ethane	74-84-0	2.80E+00	1.23E+01	9.86E-01	4.32E+00	4.48E-01	1.96E+00	4.23E+00	1.85E+0
Ethylbenzene	100-41-4	1.06E-03	4.64E-03	3.73E-04	1.63E-03	1.58E-04	6.91E-04	1.59E-03	6.96E-0
Ethylene Dibromide	106-93-4	1.18E-03	5.18E-03	4.16E-04	1.82E-03	1.35E-04	5.93E-04	1.73E-03	7.59E-0
Fluoranthene	206-44-0	2.96E-05	1.30E-04	1.04E-05	4.56E-05			4.00E-05	1.75E-0
Fluorene	86-73-7	1.51E-04	6.62E-04	5.32E-05	2.33E-04			2.04E-04	8.96E-0
Formaldehyde	50-00-0	1.79	7.86	0.63	2.78	0.08	0.36	2.51	10.99
Indeno(1,2,3-c,d)pyrene	193-39-5								
Isobutane									
Methanol	67-56-1	6.67E-02	2.92E-01	2.35E-02	1.03E-01	1.95E-02	8.52E-02	1.10E-01	4.80E-0
Methylcyclohexane	108-87-2	3.28E-02	1.44E-01	1.15E-02	5.06E-02			4.44E-02	1.94E-0
Methylene Chloride	75-09-2	5.33E-04	2.34E-03	1.88E-04	8.22E-04	2.62E-04	1.15E-03	9.83E-04	4.31E-0
n-Hexane	110-54-3	2.96E-02	1.30E-01	1.04E-02	4.56E-02			4.00E-02	1.75E-0
n-Nonane	111-84-2	2.93E-03	1.29E-02	1.03E-03	4.52E-03			3.97E-03	1.74E-0
n-Octane	111-65-9	9.36E-03	4.10E-02	3.29E-03	1.44E-02			1.27E-02	5.54E-0
n-Pentane	109-66-0	6.94E-02	3.04E-01	2.44E-02	1.07E-01			9.38E-02	4.11E-0
Naphthalene	91-20-3	1.98E-03	8.69E-03	6.98E-04	3.06E-03	6.18E-04	2.70E-03	3.30E-03	1.45E-0
PAH	85-01-8	7.18E-04	3.14E-03	2.52E-04	1.11E-03	8.97E-04	3.93E-03	1.87E-03	8.18E-0
Perylene	198-55-0								
Phenanthrene	85-01-8	2.77E-04	1.22E-03	9.76E-05	4.28E-04			3.75E-04	1.64E-0
Phenol	108-95-2	6.40E-04	2.80E-03	2.25E-04	9.87E-04			8.65E-04	3.79E-0
Propane	74-98-6	1.12E+00	4.90E+00	3.93E-01	1.72E+00		a state of the sta	1.51E+00	6.62E+0
Pyrene	129-00-0	3.63E-05	1.59E-04	1.28E-05	5.59E-05			4.90E-05	2.15E-0
Styrene	100-42-5	6.30E-04	2.76E-03	2.22E-04	9.70E-04	7.57E-05	3.32E-04	9.27E-04	4.06E-0
Tetrachloroethane	630-20-6	6.62E-05	2.90E-04	2.33E-05	1.02E-04			8.94E-05	3.92E-0
Toluene	108-88-3	1.09E-02	4.77E-02	3.83E-03	1.68E-02	3.55E-03	1.55E-02	1.83E-02	8.00E-0
Vinyl Chloride	75-01-4	3.97E-04	1.74E-03	1.40E-04	6.13E-04	4.57E-05	2.00E-04	5.83E-04	2.55E-0
Xvlene	1330-20-7	4.91E-03	2.15E-02	1.73E-03	7.56E-03	1.24E-03	5.43E-03	7.88E-03	3.45E-0
		2.31	10.12	0.82	3.57	0.16	0.69	3.28	14.39

¹ The compounds that are italicized represent those that are classified as TACs pursuant to Michigan Rule 336.1120(f), but are not classified as HAPs. All other compounds represent those that are classified as both HAPs and TACs.

² The lb/hr emission rates are for multiple similar units and based upon the maximum rated capacity of the engines, on a higher heating value basis.

³ Annual emission rates are based upon continuous operation at rated capacity.

Wilderness CO₂ - HAP Emission Estimates from Natural Gas Fired Heaters

Rated Heat Input Per Boiler	8.00	MM Btu/hour
Natural Gas Heating Value	1,020	Btu/scf
Annual Operation Per Boiler	8,760	hours/year

Natural Gas Fired Boiler (Heater) HAP Emission Factors¹ and Emission Rates

Hazardous Air Pollutant	CAS Registry Number	Emission Factor ¹ (Ib/MM scf)	Potential Emission Rate (Ib/hour)	Potential Emission Rate (tons/year)
2-Methylnaphthalene	91-57-6	2.40E-05	1.88E-07	8.24E-07
3-Methylchloroanthrene	56-49-5	1.80E-06	1.41E-08	6.18E-08
,12-Dimethylbenz(a)anthracene	57-97-6	1.60E-05	1.25E-07	5.50E-07
Acenaphthene	83-32-9	1.80E-06	1.41E-08	6.18E-08
Acenaphthylene	203-96-8	1.80E-06	1.41E-08	6.18E-08
Anthracene	120-12-7	2.40E-06	1.88E-08	8.24E-08
Benz(a)anthracene	56-55-3	1.80E-06	1.41E-08	6.18E-08
Benzene	71-43-2	2.10E-03	1.65E-05	7.21E-05
Benzo(a)pyrene	50-32-8	1.20E-06	9.41E-09	4.12E-08
Benzo(b)fluoranthene	205-99-2	1.80E-06	1.41E-08	6.18E-08
Benzo(g,h,i)perylene	191-24-2	1.20E-06	9.41E-09	4.12E-08
Benzo(k)fluroanthene	205-82-3	1.80E-06	1.41E-08	6.18E-08
Butane	106-97-8	2.10E+00	1.65E-02	7.21E-02
Chrysene	218-01-9	1.80E-06	1.41E-08	6.18E-08
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	9.41E-09	4.12E-08
Dichlorobenzene	25321-22-6	1.20E-03	9.41E-06	4.12E-05
Ethane	74-84-0	3.10E+00	2.43E-02	1.06E-01
Fluoranthene	206-44-0	3.00E-06	2.35E-08	1.03E-07
Fluorene	86-73-7	2.80E-06	2.20E-08	9.62E-08
Formaldehyde	50-00-0	7.50E-02	5.88E-04	2.58E-03
Hexane	110-54-3	1.80E+00	1.41E-02	6.18E-02
Indeno(1,2,3-c,d)pyrene	193-39-5	1.80E-06	1.41E-08	6.18E-08
Naphthalene	91-20-3	6.10E-04	4.78E-06	2.10E-05
Pentane	109-66-0	2.60E+00	2.04E-02	8.93E-02
Phenanthrene	85-01-8	1.70E-05	1.33E-07	5.84E-07
Propane	74-98-6	1.60E+00	1.25E-02	5.50E-02
Pyrene	129-00-0	5.00E-06	3.92E-08	1.72E-07
Toluene	108-88-3	3.40E-03	2.67E-05	1.17E-04
Arsenic	7440-38-2	2.00E-04	1.57E-06	6.87E-06
Barium	7440-39-3	4.40E-03	3.45E-05	1.51E-04
Beryllium	7440-41-7	1.20E-05	9.41E-08	4.12E-07
Cadmium	7440-43-9	1.10E-03	8.63E-06	3.78E-05
Chromium	16065-83-1	1.40E-03	1.10E-05	4.81E-05
Cobalt	7440-48-4	8.40E-05	6.59E-07	2.89E-06
Copper	7440-50-8	8.50E-04	6.67E-06	2.92E-05
Lead	7439-92-1	5.00E-04	3.92E-06	1.72E-05
Manganese	7439-96-5	3.80E-04	2.98E-06	1.31E-05
Mercury	7439-97-6	2.60E-04	2.04E-06	8.93E-06
Molybdenum	7439-98-7	1.10E-03	8.63E-06	3.78E-05
Nickel	7440-02-0	2.10E-03	1.65E-05	7.21E-05
Selenium	7782-49-2	2.40E-05	1.88E-07	8.24E-07
Vanadium	7440-62-2	2.30E-03	1.80E-05	7.90E-05
Zinc	7440-66-6	2.90E-02	2.27E-04	9.96E-04
Total HAP Emissions		1.888	0.015	0.065

¹ The boiler HAP emission factors are based upon the AP-42 document (7/98 revision). Specifically, the organic emission factors are from Table 1.4-3, while the metallic emission factors are from Table 1.4-4.

E&P Tanks - Partitioning Calculations for Flashing and W&S VOC Emissions Hayes 29 PTE Calculation - Tanks

	MM		Flash UII	Sale UII	Hash Gas	W&S Gas	Total Emissions	Hash Gas	W&S Gas
No. Component	(lomdl/dl)	Mole %	Mole %	Mole %	Mole %	Mole %	Mole %	Weight %	Weight %
1 H2S	34.8	0	0	0	0	0	0		-
2 02	32	0	0	0	0	0	0	1	•
3 CO2	44.01	0.023	0.0068	0	0.5318	0.0001	0.4171	0.5613	0.0001
4 N2	28.01	0.042	0.0016	0	1.3153	0.0001	1.0317	0.8835	0.0000
5 C1	16.04	0.371	0.0521	0	10.4096	0.0001	8.165	4.0041	0.0000
6 C2	30.07	1.853	0.9722	0	29.5803	0.0001	23.2019	21.3304	0.0000
7 C3	44.1	4.981	4.1005	0	32.7002	0	25.649	34.5822	
8 i-C4	58.12	2.598	2.4344	0	7.7475	0	6.0769	10.7982	
9 n-C4	58.12	5.018	4.8506	1.2058	10.2876	26.9759	13.8861	14.3385	21.7002
10 i-C5	72.15	4.61	4.6373	3.4343	3.7504	31.5364	9.742	6.4890	31.4928
11 n-C5	72.15	3.741	3.7884	3.189	2.2484	21.8852	6.4828	3.8902	21.8549
12 C6	84	2.77	2.8419	3.025	0.5071	6.5264	1.8051	1.0215	7.5878
13 Benzene	78.11	0.45	0.4624	0.5055	0.0606	0.7986	0.2197	0.1135	0.8634
14 Toluene	92.14	1.823	1.8788	2.1645	0.0675	0.9727	0.2627	0.1491	1.2405
15 E-Benzene	106.17	0.688	0.7096	0.8288	0.0083	0.1256	0.0336	0.0211	0.1846
16 Xylenes	106.17	2.134	2.2011	2.5735	0.0219	0.3385	0.0901	0.0558	0.4974
17 n-C6	86.18	2.657	2.7264	2.9084	0.4733	6.1972	1.7075	0.9782	7.3920
18 224Trimethylp	114.23	0.021	0.0216	0.0245	0.0014	0.0194	0.0053	0.0038	0.0307
19 Pseudo Comp1	111.19	25.5793	26.3828	30.8224	0.2865	4.582	1.2127	0.7639	7.0515
20 Pseudo Comp2	172.7	16.727	17.2583	20.2975	0.0023	0.0417	0.0108	0.0095	0.0997
21 Pseudo Comp3	252.37	11.2636	11.6214	13.6692	0	0.0001	0	1	0.0003
22 Pseudo Comp4	350.06	7.7914	8.0389	9.4554	0	0	0	1	1
23 Pseudo Comp5	551.71	4.8586	5.013	5.8963	0	0	0	1	ł
Totals:		100.00	100 00	100 00	100.001	100 00	100.00	66 66	100 001

						Total
	LP OII	Flash oil		Sales oil Flash Gas	W&S gas	Emission
MW (lb/lbmol):	162.79	166.64	185.19	41.7	72.25	48.28
Stream Mole Ratio:	1	0.9692	0.9607	0.0308	0.0085	0.0393
Stream Weight Ratio:	162.79	161.51	177.92	1.28	0.61	1.9
Total Emission (ton):				0.729	0.347	1.076
Heating Value (BTU/scf):				2348.9	3960.01	2696.31
Gas Gravity (Gas/Air):				1.44	2.49	1.67
Bubble Pt. @100F (psia):	44.95	21.6	2.36			
RVP @100F (psia):	136.62	98.9	15.52			
Spec. Gravity @100F:	0.85	0.85	0.87			

100.00	66.66	100.00
	Flash Gas	W&S Gas
C Weight % =	73.21	100.00
VOC tpy =	0.53	0.35

П	
%	
Ħ	
-ig	
Š	
C	
0	
>	

	Ś
	anl
F	H
õ	Å P

From E&P Tank Output:

HAYES 29 PTE

****************** **** * Project Setup Information J_{α} **** Project File : S:\MICHIGAN\Air Quality\E&P Tank Runs\HAYES 29.ept3 Flowsheet Selection : Oil Tank with Separator Calculation Method : AP42 Known Separator Stream : Low Pressure Oil Entering Air Composition : No Component Group Component Group : HAYES 29 - WILD CO2 TANK : HAYES 29 TANK Filed Name Well Name Permit Number : N5831 Date : 2018.10.18 de de de de de de Data Input ala. de de de de de de : 30.00 Actual Conditions, 75.0 : 0.89 per operator. Separator Pressure (psia) Separator Temperature (F) C10+ SG C10+ MW(lb/lbmol): 260.00 -- Low Pressure Oil _____ Mole% Wt% Component NO. 0.0000 0.0000 H2S 1 2 0.0000 0.0000 02 3 CO2 0.0230 0.0062 4 0.0420 0.0072 N2 5 0.3710 C1 0.0363 6 C2 1.8530 0.3395 С3 7 4.9810 1.3383 0.9200 8 2.5980 i-c4 n-c4 9 5.01801.7769 10 i-c5 4.6100 2.0265 3.7410 11 n-c5 1.6445 12 2.7700 1.4541 C6 8.0450 13 4.9114 C7 7.7830 5.4168 14 C8 5.2050 45.1870 15 C9 4.0681 71.5815 0.2142 16 C10+ 17 0.4500 Benzene 1.8230 1.0233 18 Toluene 19 0.6880 0.4450 E-Benzene 2.1340 1.3804 20 Xylenes 2.6570 1.3951 21 n-c6 22 224Trimethylp 0.0210 0.0146 -- Sales Oil _____ Production Rate (bbl/day) : 2.00 Days of Annual Operation : 365 Page 1

HAYES 29 PTE API Gravity : 46.00 Reid Vapor Pressure (psia) : 7.70 Bulk Temperature : 80.0 -- Tank and Shell Data _____ Diameter (ft) : 21.00 Shell Height (ft) : 16.00 Cone Roof Slope : 0.06 Average Liquid Height (ft) : 8.00 Vent Pressure Range (psia) : 0.06 Solar Absorbance : 0.54 Page 1----- E&P TANK -- Meteorological Data ------City : Homer, AK Min Ambient Temperature (F) : 29.5 Max Ambient Temperature (F) : 43.6 Total Solar Insolation (F) : 831.00 Ambient Pressure (psia) : 14.70 Ambient Temperature (F) : 70.0 **** Calculation Results ala ala ala ala ala ala -- Emission Summary Uncontrolled ton ton 0.0450 Total HAPs Total HC 1.0660 VOCs, C2+ VOCs, C3+ 1.0370 0.8810 C02 0.0040 0.0290 CH4 Uncontrolled Recovery Information: Vapor(mscfd): 0.0463 HC Vapor(mscfd): 0.0456 CO2(mscfd): 0.0000 CH4(mscfd): 0.0000 GOR(SCF/STB): 23.1450 -- Emission Composition . Uncontrolled NoComponent ton 0.0000 1 H2S 0.0000 2 02 3 CO2 0.0040 4 N2 0.0060 5 C1 0.0290 6 C2 0.1560 7 C3 0.2520 0.0790 8 i-c4 9 n-c4 0.1800

Page 2
10 i-C5 11 n-C5	$0.1570 \\ 0.1040$
12 C6	0.0340
13 Benzene	0.0040
14 Toluene	0.0050
15 E-Benzene	0.0010
16 Xylenes	0.0020
17 n-C6	0.0330
18 224Trimethylp	0.0000
19 Pseudo Comp1	0.0300
20 Pseudo Comp2	0.0000
21 Pseudo Comp3	0.0000
22 Pseudo Comp4	0.0000
23 Pseudo Comp5	0.0000
24 Total	1.0760
24 IULAI	1.0700

-- Stream Data

NoCompone	ent	MW	LP Oil	Flash Oil	Sales Oil	Flash Gas W&S
% mole	a %	lb/lbmol	mole %	mole %	mole %	mole% mole
			0.0000	0.0000	0.0000	0.0000
0.0000 2 02	0.0000	32.00	0.0000	0.0000	0.0000	0.0000
0.0000 3 CO2	0.0000	44.01	0.0230	0.0068	0.0000	0.5318
$ \begin{array}{r} 3 \\ 3 \\ 0.0001 \\ 4 \\ N2 \\ 0.0001 \end{array} $	0.41/1	28.01	0.0420	0.0016	0.0000	1.3153
0.0001 5 C1	1.0317	16.04	0.3710	0.0521	0.0000	10.4096
0.0001 6 C2	8.1650	30.07	1.8530	0.9722	0.0000	29.5803
0.0001 Page 2	23.201	9 				1.3153 10.4096 29.5803 E&P TANK
7 C3		44.10	4.9810	4.1005 2.4344 4.8506	0.0000	32.7002
0.0000 8 i-C4	25.649	0 58.12	2.5980	2.4344	0.0000	7.7475
0.0000 9 n-C4 26.9759	6.0769	58.12	5.0180	4.8506	1.2058	10.2876
26.9759 10 i-C5	13.886	1 72.15	4.6100	4.6373	3.4343	3.7504
10 i-c5 31.5364 11 n-c5 21.8852 12 c6	9.7420	72.15	3.7410	3.7884	3.1890	2.2484
			2.7700	2.8419	3.0250	0.5071
6.5264 13 Benzer	ne	78.11	0.4500	0.4624	0.5055	0.0606
0.7986 14 Toluer	ie	92.14	1.8230	1.8788	2.1645	0.0675
15 E-Benz	0.2627 zene	106.17	0.6880	0.7096	0.8288	0.0083
0.1256 16 Xylene	es	106.17	2.1340	2.2011	2.5735	0.0219
0.3385 17 n-C6 6.1972	0.0901	86.18	2.6570	2.7264	2.9084	0.4733
18 224Tri	imethylp	114.23	0.0210	0.0216	0.0245	0.0014
0.0194 19 Pseudo	Comp1	111.19	25.5793	26.3828	30.8224	0.2865
4.5820	1.2127		Dag	~ ²		

Page 3

20 Reauda Comp2	172 70	HAYES 16.7270	29 PTE 17.2583	20.2975	0.0023	
20 Pseudo Comp2 0.0417 0.0108						
21 Pseudo Comp3 0.0001 0.0000	252.37	11.2636	11.6214	13.6692	0.0000	
22 Pseudo Comp4	350.06	7.7914	8.0389	9.4554	0.0000	
0.0000 0.0000 23 Pseudo Comp5 0.0000 0.0000	551.71	4.8586	5.0130	5.8963	0.0000	
Con Totol Swing		LP Oil	Flash Oil	Sales Oil	Flash Gas	W&S
Gas Total Emiss MW (lb/lbmol): 48.28	100	162.79	166.64	185.19	41.70	72.25
Stream Mole Ratio: 0.0085 0.0393		1.0000	0.9692	0.9607	0.0308	
Stream Weight Ratio	:	162.79	161.51	177.92	1.28	0.61
1.90 Total Emission (ton):				0.729	0.347
1.076 Heating Value (BTU/ 3960.01 2696.31					2348.90	
Gas Gravity (Gas/Ai					1.44	2.49
1.67 Bubble Pt. @100F (p	sia):	44.95	21.60	2.36		
RVP @100F (psia):		136.62	98.90	15.52		
Spec. Gravity @100F	:	0.85	0.85	0.87		

Certificate of Analysis

Number: 1030-15110484-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Dec. 01, 2015

Steve Niehaus BreitBurn Operating P.O. Box 1256 Gaylord, MI 49734-1256

Station Name: Parr 1-30 *WIAGRANGAS* Sample Point: CS 3 A-1-30 Parr Pipe to Storage Tank Cylinder No: 004780 Analyzed: 11/13/2015 11:56:29

Sampled By:GLSample Of:LiquidSpotSample Date:11/05/2015Sample Conditions: 28 psig, @ 65 °FMethod:GPA 2103M

Analytical Data						
Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	0.042	28.013	0.007	0.807	0.007	
Methane	0.371	16.043	0.035	0.300	0.094	
Carbon Dioxide	0.023	44.010	0.006	0.817	0.006	
Ethane	1.853	30.069	0.328	0.356	0.741	
Propane	4.981	44.096	1.293	0.507	2.050	
Iso-Butane	2.598	58.122	0.889	0.563	1.269	
n-Butane	5.018	58.122	1.717	0.584	2.363	
Iso-Pentane	4.610	72.149	1.958	0.625	2.518	
n-Pentane	3.741	72.149	1.589	0.631	2.025	
i-Hexanes	2.770	85.181	1.389	0.667	1.675	
n-Hexane	2.657	86.175	1.348	0.664	1.632	
2,2,4-Trimethylpentane	0.021	114.231	0.014	0.697	0.016	
Benzene	0.450	78.114	0.207	0.885	0.188	
Heptanes	8.045	96.207	4.557	0.709	5.168	
Toluene	1.823	92.141	0.989	0.872	0.911	
Octanes	7.783	110.485	5.062	0.728	5.592	
Ethylbenzene	0.688	106.167	0.430	0.872	0.396	
Xylenes	2.134	106.167	1.334	0.872	1.229	
Nonanes	5.205	127.121	3.895	0.740	4.233	
Decanes Plus	45.187	274.224	72.953	0.864	67.887	
	100.000		100.000		100.000	
Physical Properties			Total	C10+		
Specific Gravity at 60°F			8039	0.8638		
API Gravity at 60°F			.526	32.311		
Molecular Weight			9.858	274.224		
Pounds per Gallon (in Vacu	um)		6.702	7.202		
Pounds per Gallon (in Air)			695	7.194		
Cu. Ft. Vapor per Gallon @	14 73 psia		1.938	9.943		

Chio Salay

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 1030-15110484-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Dec. 01, 2015

Steve Niehaus BreitBurn Operating P.O. Box 1256 Gaylord, Mi 49734-1256

Station Name: Parr 1-30 Sample Point: CS 3 A-1-30 Parr Pipe to Storage Tank Cylinder No: 004780

Sampled By:	GL	
Sample Of:	Liquid	Spot
Sample Date:	11/05/2015	
Sample Conditions:	28 psig. @ 6	5°F

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Shrinkage Factor	Proprietary	0.9848		SM	11/16/2015
Flash Factor	Proprietary	17.6105	Cu.Ft./STBbl.	SM	11/16/2015
Color Visual	Proprietary	Straw		SM	11/16/2015
API Gravity @ 60° F	ASTM D-4052	42.76	o	MM	11/19/2015

Hydrocarbon Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Quality Assurance:

Page 2 of 3

Natural Gas Fired RICE Specifications

Engine Parameter	Parameter		Parameter Value			
	Units	EUENGINEI	EUENGINE2	EUENGINE3	EUENGINE4	EUENGINE6
Breitburn ID		831	856	885	907	C02-1
Engine Make		Caterpillar	Caterpillar	Caterpillar	Caterpillar	Waukesha
Engine Model		3516 TALE	3516 TALE	3516 TALE	3516 TALE	L 7042 GSI
Engine Serial No.		3RC00254	4EK01389	4EK01593	4EK00222	362289
Type of Fuel		Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
Rated Engine Power at 100% Load	bhp	1,085	1,085	1,085	1,150	1,478
Design Heat Input Rating, LHV	MM Btu/hour	8.08	8.08	8.08	8.53	11.56
Design Heat Input Rating, HHV	MM Btu/hour	8.89	8.89	8.89	9.39	12.72
Fuel Heating Value, LHV	Btu/scf	927	927	927	927	927
Fuel Heating Value, HHV	Btu/scf	1,020	1,020	1,020	1,020	1,020
Fuel Flow	scf/hour	8,717	8,717	8,717	9,202	12,471
Control Technologies	NA	Lean Burn	Lean Burn	Lean Burn	Lean Burn	3-way Catalyst
Exhaust Gas Parameters	Units	Value	Value	Value	Value	Value
Exhuast Gas Flowrate	acfm, wet	5,956	5,956	5,956	6,200	6.567
Exhuast Gas Flowrate	scfm, 68F	2,415	2,415	2,415	2,524	2,188
Exhaust Gas Temperature	F	842	842	842	837	1,125
Stack Inner Diameter	inches	12	12	12	12	12
Stack Area	fi2	0.79	0.79	0.79	0.79	0.79
Stack Discharge Velocity	feet/second	126.39	126.39	126.39	131.57	139.35
Stack Height Above Ground Level	feet	16	16	16	16	24

Natural Gas Fired Heaters Specifications

Heater Specifications Type of Fuel Number of Units Design Heat Input Rating, HHV Fuel Hearino, Value, HHV	Units					
AHH		EULINEHEATERS	EUSTAGEIHEATERS	EUHEATERP1-S2	EUHEATERP2-S2	EUHEATERUOP
HHV	NA	Natural Gas	Natural Gas	Natural Gas	Natural Gas	Natural Gas
AHH	NA	2	3	2	0	2
Fuel Heating Volue HHV	MM Btu/hr	1.50	1.00	0.50	0.50	0.50
I UNI LIVALIIE Y AIUV, IILLY	Btu/scf	1,020	1,020	1,020	1,020	1,020
Fuel Flow	scf/hour	1,471	980	490	490	490
Control Technologies	NA	None	None	None	None	None
Exhaust Gas Parameters	Units	Value	Value	Value	Value	Value
Exhuast Gas Flowrate	acfin	171	392	196	196	196
Exhuast Gas Flowrate	scfm, 68°F	323	215	108	108	108
Exhaust Gas Temperature	٥F	800	500	500	500	500
Stack Inner Diameter	inches	16	12	8	12	8
Stack Area	ft^2	1.40	0.79	0.35	0.79	0.35
Stack Discharge Velocity	feet/second	9.21	8.31	9.35	4.16	9.35
Stack Height Above Ground Level	feet	24	24	24	24	24

¹ The softm flow rates for the boilers/process heaters assume 750 lbs air/MM Btu heat input at zero percent excess air, 20% excess air at actual conditions, and that the fuel flow rate is directly additive to the combustion by-products.

File: Wilderness_C02_ Hayes 29 Emissions Calcs Tab: Specifications

Pollutant	Uncontrolled Emission Factor ¹	Controlled Emission Factor	Emission Factor Units	Emission Factor Basis	Per Unit Emission Rate ³ (lb/hr)
NO _x	2.00	NA	g/bhp-hr	Vendor Data	4.78
СО	1.80	NA	g/bhp-hr	Vendor Data	4.31
PM ₁₀ Total	9.99E-03	NA	lb/MM Btu	AP-42, T 3.2-2	0.089
SO_2	5.88E-04	NA	lb/MM Btu	AP-42, T 3.2-2	5.23E-03
VOC	0.48	NA	g/bhp-hr	Vendor Data	1.15

Table B-1a. Caterpillar 3516 TALE (1,085 HP) Emission Factors and Short Term Emission Rates

All lb/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

³ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,085 bhp or 8.89 MM Btu/hr - HHV basis).

Pollutant	Per Unit Emissio	Per Unit Emission Estimates		Total Emission Estimates (3 Units)		
	(lb/hr) ¹	(tpy) ²	(lb/hr) ¹	(tpy) ²		
NO _x	4.78	20.95	14.35	62.86		
СО	4.31	18.86	12.92	56.58		
PM ₁₀ Total	0.09	0.39	0.27	1.17		
SO ₂	5.23E-03	2.29E-02	1.57E-02	6.87E-02		
VOC	1.15	5.03	3.44	15.09		

¹ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,085 bhp or 8.89 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

Pollutant	Uncontrolled Emission Factor ¹	Controlled Emission Factor	Emission Factor Units	Emission Factor Basis	Per Unit Emission Rate ³ (lb/hr)
NO _x	2.00	NA	g/bhp-hr	Vendor Data	5.07
СО	1.57	NA	g/bhp-hr	Vendor Data	3.98
PM ₁₀ Total	9.99E-03	NA	lb/MM Btu	AP-42, T 3.2-2	0.09
SO_2	5.88E-04	NA	lb/MM Btu	AP-42, T 3.2-2	5.52E-03
VOC	2.94	NA	g/bhp-hr	Vendor Data	7.45

Table B-2a. Caterpillar 3516 TALE (1,150 HP) Emission Factors and Short Term Emission Rates

¹ All lb/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

³ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,150 bhp or 9.39 MM Btu/hr - HHV basis).

Table B-2b. Caterpillar 3516 TALE	(1,150 HP	Short Term and Long Term Emission Rates
-----------------------------------	-----------	---

Pollutant	Per Unit Emissio	on Estimates	Total Emission Estimates (1 Unit)		
	(lb/hr) ¹	(tpy) ²	(lb/hr) ¹	(tpy) ²	
NO _x	5.07	22.21	5.07	22.21	
СО	3.98	17.43	3.98	17.43	
PM ₁₀ Total	0.09	0.41	0.09	0.41	
SO ₂	5.52E-03	2.42E-02	5.52E-03	2.42E-02	
VOC	7.45	32.65	7.45	32.65	

¹ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,150 bhp or 9.39 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

Pollutant	Uncontrolled Emission Factor ¹	Controlled Emission Factor ^{1, 2}	Emission Factor Units	Emission Factor Basis	Per Unit Emission Rate ³ (lb/hr)
NO _x	13.00	1.30	g/bhp-hr	Vendor Data	4.24
СО	12.00	2.40	g/bhp-hr	Vendor Data	7.82
PM ₁₀ Total	1.94E-02	1.94E-02	lb/MM Btu	AP-42, T 3.2-3	0.25
SO ₂	5.88E-04	5.88E-04	lb/MM Btu	AP-42, T 3.2-3	7.48E-03
VOC	0.35	0.18	g/bhp-hr	Vendor Data	0.57

 Table B-3a.
 Waukesha L 7042 GSI Emission Factors and Short Term Emission Rates

¹ All lb/MM Btu emission factors are on a HHV basis and are applied to the HHV rated heat input capacity of the engine.

² The controlled emission factors are based upon catalytic converter removal efficiencies (by weight) of 90% for NOx, 80% for CO and 50% for VOCs.

³ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,478 bhp or 12.72 MM Btu/hr - HHV basis).

Table B-3b. Waukesha L 7042 GSI Short Term and Long Term Emission Rates

Pollutant	Per Unit Emissi	on Estimates	Total Emission Estimates (1 Unit)		
	(lb/hr) ¹	(tpy) ²	(lb/hr) ¹	$(tpy)^2$	
NO _x	4.24	18.55	4.24	18.55	
СО	7.82	34.25	7.82	34.25	
PM ₁₀ Total	0.25	1.08	0.25	1.08	
SO ₂	7.48E-03	3.28E-02	7.48E-03	3.28E-02	
VOC	0.57	2.50	0.57	2.50	

¹ The lb/hr emission rates are based upon the maximum rated capacity of the engine (1,478 bhp or 12.72 MM Btu/hr - HHV basis).

² Annual emission rates are based upon continuous operation at rated capacity.

Pollutant	Emission	Emission	Emission	Per Unit Emission	Rates ¹ (lb/hr)	
	Factor	Factor Units	Factor Basis	1.5 MM Btu/hr	1.0 MM Btu/hr	0.5 MM Btu/hr
NO _x	100.0	lb/MM scf	AP-42, T 1.4-1	0.15	0.10	0.05
CO	84.0	lb/MM scf	AP-42, T 1.4-1	0.12	0.08	0.04
PM ₁₀ Total	7.6	lb/MM scf	AP-42, T 1.4-2	1.12E-02	7.45E-03	3.73E-03
SO ₂	0.6	lb/MM scf	AP-42, T 1.4-2	8.82E-04	5.88E-04	2.94E-04
VOC	5.5	lb/MM scf	AP-42, T 1.4-2	8.09E-03	5.39E-03	2.70E-03
Lead	5.00E-04	lb/MM scf	AP-42, T 1.4-2	7.35E-07	4.90E-07	2.45E-07

 Table B-6a. Natural Gas Fired Boilers/Process Heaters Emission Factors and Short Term Emission Rates

The per unit emission rates have been determined based upon a natural gas heating value of 1,020 Btu/scf.

Natural Gas Fired Boilers - Short Term and Long Term Emission Rates

Pollutant	Annual Emission Ra	ates Per Unit (tpy) ¹		Totals for All Units (9 Units) ²		
	1.5 MM Btu/hr	1.0 MM Btu/hr	0.5 MM Btu/hr	(lb/hr)	(tpy)	
NO _x	0.64	0.43	0.21	0.88	3.86	
СО	0.54	0.36	0.18	0.74	3.25	
PM ₁₀ Total	0.05	0.03	0.02	0.07	0.29	
SO ₂	3.86E-03	2.58E-03	1.29E-03	0.01	0.02	
VOC	0.04	0.02	0.01	0.05	0.21	
Lead	3.22E-06	2.15E-06	1.07E-06	4.41E-06	1.93E-05	

Annual emission rates are based upon continuous operation at rated capacity.

 2 The total emission rates are based upon three (3) 1.5 MM Btu/hr units, three (3) 1.0 MM Btu/hr units, and three (3) 0.5 MM Btu/hr units.

Potential Facility Short Term & Annual Emission Rates - Wilderness CO2 Plant

Pollutant	All RICE Engines		All Process Heaters		Storage Vessel	All Equipment	
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(tpy) See E&P Run	(lb/hr)	(tpy)
NO _x	23.66	103.63	0.88	3.86		24.54	107.49
СО	24.72	108.26	0.74	3.25		25.46	111.51
PM ₁₀ Total	0.61	2.66	0.07	0.29		0.67	2.95
SO_2	0.03	0.13	0.01	0.02		0.03	0.15
VOC	11.47	50.23	0.05	0.21	0.53	11.52	50.97
Lead			4.41E-06	1.93E-05		4.41E-06	1.93E-05
Max. Single HAP (Toluene)						0.00	0.00
Aggregate HAPs	0.51	2.23	0.02	0.07		0.52	2.30

Quicksilver Resources Incorporated Analysis of Engine Controls Needed to Be a Minor Source of HAP

Uncontrolled HAP Emission Rates for the Wilderness CO₂ Plant RICE Engines

	CAS	CAT 3516 (1085 HP) Emission Rates (3 Units)		CAT 3516 (1150 HP) Emission Rates (1 Unit)		Waukesha L7042GSI Emission Rates (1 Units)		Total Potential	
Hazardous Air Pollutant								Emission Rates (5 Units)	
		(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Formaldehyde	50-00-0	1.79	7.86	0.63	2.78	0.08	0.36	2.51	10,99
HAP Totals		2.31	10.12	0.82	3.57	0.16	0.69	3.28	14.39

Controlled HAP Emission Rates for the Wilderness CO2 Plant RICE Engines (1 Controlled 1085 HP Unit)

Hazardous Air Pollutant Regist	CAS			CAT 3510	CAT 3516 (1150 HP) Emission Rates (1 Unit)		Waukesha L7042GSI Emission Rates (1 Units)		Total Potential Emission Rates (5 Units)	
	Registry			Emission Rates (
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
Formaldehyde	50-00-0	1.50	6.55	0.63	2.78	0.08	0.36	2.21	9.68	
HAP Totals		2.01	8.81	0.82	3.57	0.16	0.69	2.99	13.08	

Controlled HAP Emission Rates for the Wilderness CO2 Plant RICE Engines (2 Controlled 1085 HP Units)

Hazardous Air Pollutant Registr Numbe	CAS			CAT 3516	CAT 3516 (1150 HP) Emission Rates (1 Unit)		Waukesha L7042GSI Emission Rates (1 Units)		Total Potential Emission Rates (5 Units)	
	Registry			Emission Rates (1						
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
Formaldehyde	50-00-0	1.20	5.24	0.63	2.78	0.08	0,36	1.91	8.37	
HAP Totals		1.71	7.50	0.82	3.57	0.16	0.69	2.69	11.77	

Controlled HAP Emission Rates for the Wilderness CO2 Plant RICE Engines (3 Controlled 1085 HP Units)

Hazardous Air Pollutant Registr Numbe	CAS			CAT 351	CAT 3516 (1150 HP)		Waukesha L7042GSI		Total Potential	
	Registry			Emission Rates (1 Unit)		Emission Rates (1 Units)		Emission Rates (5 Units)		
	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	
Formaldehyde	50-00-0	0.90	3.93	0.63	2.78	0.08	0.36	1.61	7.06	
HAP Totals		1.41	6.19	0.82	3.57	0.16	0.69	2.39	10.46	

HAP Emission Factors and Emission Rates for Natural Gas Fired RICE

Hazardous	CAS		ission Factor ¹	
Air Pollutant	Registry	2-Stroke	4-Stroke	4-Stroke
	Number	Lean-Burn	Lean-Burn	Rich-Burn
1,1,2,2-Tetrachloroethane	79-34-5	6.63E-05	4.00E-05	2.53E-05
1,1,2-Trichloroethane	79-00-5	2.57E-05	3.18E-05	1.53E-05
1,1,-Dichloroethane	75-34-3	3.91E-05	2.36E-05	1.13E-05
1.2,3-Trimethylbenzene	526-73-8	3.54E-05	2.30E-05	
1,2,4-Trimethylbenzene	95-36-3	1.11E-04	1.43E-05	
1,2-Dichloroethane	107-06-2	4.22E-05	2.36E-05	1.13E-05
1,2-Dichloropropane	78-87-5	4.46E-05	2.69E-05	1.13E-05
1,3,5-Trimethylbenzene	108-67-8	1.80E-05	3.38E-05	
1,3-Butadiene	106-99-0	8.20E-04	2.67E-04	6.63E-04
1,3-Dichloropropene	542-75-6	4.38E-05	2.64E-05	1.27E-05
2,2,4-Trimethylpentane	540-84-1	8.46E-04	2.50E-04	
2-Methylnaphthalene	91-57-6	2.14E-05	3.32E-05	
Acenaphthene	83-32-9	1.33E-06	1.25E-06	
Acenaphthylene	208-96-8	3.17E-06	5.53E-06	
Acetaldehyde	75-07-0	7.76E-03	8.36E-03	2.79E-03
Acrolein	107-02-8	7.78E-03	5.14E-03	2.63E-03
Anthracene	120-12-7	7.18E-07		
Benz(a)anthracene	56-55-3	3.36E-07		
Benzene	71-43-2	1.94E-03	4.40E-04	1.58E-03
Benzo(a)pyrene	50-32-8	5.68E-09		
Benzo(b)fluoranthene	205-99-2	8.51E-09	1.66E-07	
Benzo(e)pyrene	192-97-2	2.34E-08	4.15E-07	
Benzo(g,h,i)perylene	191-24-2	2.48E-08	4.14E-07	
Benzo(k)fluroanthene	205-82-3	4.26E-09		
Biphenyl	92-52-4	3.95E-06	2.12E-04	
Butane	106-97-8	4.75E-03	5.41E-04	
Butyr/Isobutyraldehyde	23-72-8/78-84-	4.37E-04	1.01E-04	1.77E-05
Carbon Tetrachloride	56-23-5	6.07E-05	3.67E-05	
Chlorobenzene Chloroethane	108-90-7	4.44E-05	3.04E-05 1.87E-06	1.29E-05
Chloroform	75-00-3 67-66-3	4.71E-05	2.85E-05	1.37E-05
Chrysene	218-01-9	6.72E-07	6.93E-07	1.5712-05
Cvclohexane	210-01-5	3.08E-04	0.551-07	
Cyclopentane	287-92-3	9.47E-05	2.27E-04	
Ethane	74-84-0	7.09E-02	1.05E-01	7.04E-02
Ethylbenzene	100-41-4	1.08E-04	3.97E-05	2.48E-05
Ethylene Dibromide	106-93-4	7.34E-05	4.43E-05	2.13E-05
Fluoranthene	206-44-0	3.61E-07	1.11E-06	2000 00
Fluorene	86-73-7	1.69E-06	5.67E-06	
Formaldehyde	50-00-0	5.52E-02	5.28E-02	2.05E-02
ormaldehyde (Wauk 7042 GSI) 3	50-00-0			5.00E-02
Formaldehyde (CAT 3516) ⁴	50-00-0		2.50E-01	
Indeno(1,2,3-c,d)pyrene	193-39-5	9.93E-09		
Isobutane	175-57-5	3.75E-03		
Methanol	67-56-1	2.48E-03	2.50E-03	3.06E-03
Methylcyclohexane	108-87-2	3.38E-04	1.23E-03	01000 00
Methylene Chloride	75-09-2	1.47E-04	2.00E-05	4.12E-05
n-Hexane	110-54-3	4.45E-04	1.11E-03	
n-Nonane	111-84-2	3.08E-05	1.10E-04	
n-Octane	111-65-9	7.44E-05	3.51E-04	
n-Pentane	109-66-0	1.53E-03	2.60E-03	
Naphthalene	91-20-3	9.63E-05	7.44E-05	9.71E-05
PAH	85-01-8	1.34E-04	2.69E-05	1.41E-04
Perylene	198-55-0	4.47E-09		
Phenanthrene	85-01-8	3.53E-06	1.04E-05	
Phenol	108-95-2	4.21E-05	2.40E-05	
Propane	74-98-6	2.87E-02	4.19E-02	
Pyrene	129-00-0	5.84E-07	1.36E-06	
Styrene	100-42-5	5.48E-05	2.36E-05	1.19E-05
Tetrachloroethane	630-20-6		2.48E-06	
Toluene	108-88-3	9.63E-04	4.08E-04	5.58E-04
Vinyl Chloride	75-01-4	2.47E-05	1.49E-05	7.18E-06
Xylene	1330-20-7	2.68E-04	1.84E-04	1.95E-04
HAP Totals (AP-42)		7.95E-02	7.22E-02	3.24E-02

¹ The HAP emission factors are based upon the Trace Organic Compound emissions factors of AP-42 Chapter 3.2. Specifically, the emission factors represent 2-stroke lean-burn, 4-stroke lean-burn, and 4-stroke rich-burn natural gas fired reciprocating engines, and the factors are taken from the AP-42 document (7/00 revision), Tables 3.2-1, 3.2-2, and 3.2-3, respectively.

² The compounds that are italicized represent those that are classified as TACs pursuant to Michigan Rule 336.1120(f), but are not classified as HAPs. All other compounds represent those that are classified as both HAPs and TACs.

³ This is a vendor (Waukesha) supplied emission factor; the unit of the factor is g/bhp-hr.

⁴ This is a vendor (Caterpillar) supplied emission factor for the lean burn 3516 engines; the unit of the factor is g/bhp-hr.

Wilderness CO₂ Plant RICE Engine HAP/TAC Emissions

Engine Make	Caterpillar	Caterpillar	Waukesha	7
Engine Model	3516 TALE	3516 TALE	L 7042 GSI	
Rated Output Per RICE	1085	1150	1478	horsepower
Rated Heat Input Per RICE	8.89	9.39	12.72	MM Btu/hour (HHV basis)
Natural Gas Heating Value	1,020	1,020	1,020	Btu/scf
Number of RICE	3	1	1	unitless
Annual Operation Per RICE	8,760	8,760	8,760	hours/year
Catalytic Converter	No	No	Yes	unitless
Generic HAP Removal Eff.	0%	0%	50%	% by weight
RICE Engine Configuration	2	2	3	1 = 2-stroke lean-burn, 2 =
				4-stroke lean-burn, and 3 =

4-stroke rich-burn

Table B-5. HAP and TAC Emission Rates for the Wilderness CO2 Plant RICE Engines

Hazardous Air Pollutant/	CAS Registry	CAT 3516 (108 Emission Rate		CAT 3516 (11 Emission Rate		Waukesha L70 Emission Rate		Total Pot Emission Rate	
Toxic Air Contaminant ¹	Number	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
1,1,2,2-Tetrachloroethane	79-34-5	1.07E-03	4.67E-03	3.75E-04	1.64E-03	1.61E-04	7.05E-04	1.60E-03	7.02E-0
1,1,2-Trichloroethane	79-00-5	8.48E-04	3.72E-03	2.98E-04	1.31E-03	9.73E-05	4.26E-04	1.24E-03	5.45E-0
1,1,-Dichloroethane	75-34-3	6.30E-04	2.76E-03	2.22E-04	9.70E-04	7.19E-05	3.15E-04	9.23E-04	4.04E-6
1,2,3-Trimethylbenzene	526-73-8	6.14E-04	2.69E-03	2.16E-04	9.46E-04	(.1915-03	J.IJL=04	8.29E-04	3.63E-0
1,2,4-Trimethylbenzene	95-36-3	3.81E-04	1.67E-03	1.34E-04	5.88E-04			5.16E-04	2.26E-6
1,2-Dichloroethane	107-06-2	6.30E-04	2.76E-03	2.22E-04	9.70E-04	7.19E-05	3.15E-04	9.23E-04	
				2.22E-04 2.52E-04					4.04E-0
1,2-Dichloropropane	78-87-5	7.18E-04	3.14E-03		1.11E-03	7.19E-05	3.15E-04	1.04E-03	4.56E-0
1,3,5-Trimethylbenzene	108-67-8	9.02E-04	3.95E-03	3.17E-04	1.39E-03	1 225 02	1.055.00	1.22E-03	5.34E-0
1,3-Butadiene	106-99-0	7.12E-03	3.12E-02	2.51E-03	1.10E-02	4.22E-03	1.85E-02	1.38E-02	6.06E-0
1,3-Dichloropropene	542-75-6	7.04E-04	3.08E-03	2.48E-04	1.09E-03	8.08E-05	3.54E-04	1.03E-03	4.52E-0
2,2,4-Trimethylpentane	540-84-1	6.67E-03	2.92E-02	2.35E-03	1.03E-02			9.02E-03	3.95E-0
2-Methylnaphthalene	91-57-6	8.86E-04	3.88E-03	3.12E-04	1.36E-03			1.20E-03	5.24E-0
Acenaphthene	83-32-9	3.33E-05	1.46E-04	1.17E-05	5.14E-05			4.51E-05	1.97E-0
Acenaphthylene	208-96-8	1.48E-04	6.46E-04	5.19E-05	2.27E-04	1 777 44		1.99E-04	8.73E-0
Acetaldehyde	75-07-0	2.23E-01	9.77E-01	7.85E-02	3.44E-01	1.77E-02	7.77E-02	3.19E-01	1.40E+0
Acrolein	107-02-8	1.37E-01	6.01E-01	4.82E-02	2.11E-01	1.67E-02	7.33E-02	2.02E-01	8.85E-0
Anthracene	120-12-7			-					
Benz(a)anthracene Benzene	56-55-3 71-43-2	1.17E-02	5.14E-02	4.13E-03	1.81E-02	1.00E-02	4.40E-02	2.59E-02	1 140 0
the second s	50-32-8	1.17E-02	5.14E-02	4.13E-03	1.81E-02	1.00E-02	4.40E-02	2.39E-02	1.14E-0
Benzo(a)pyrene Benzo(b)fluoranthene	205-99-2	4.43E-06	1.94E-05	1.56E-06	6.82E-06			5.99E-06	2.62E-0
Benzo(b)nuorantnene Benzo(e)pyrene	192-97-2	4.43E-00 1.11E-05	4.85E-05	3.90E-06	0.82E-00 1.71E-05			1.50E-05	6.55E-0
Benzo(g.h.i)perylene	192-97-2	1.10E-05	4.83E-03 4.84E-05	3.90E-00 3.89E-06	1.71E-03			1.49E-05	6.54E-0
Benzo(g,n,i)perylene Benzo(k)fluroanthene	205-82-3	1.10E-03	4.04E-03	3.09E-00	1.706-03			1.49E-03	0.34E-0
Biphenyl	92-52-4	5.66E-03	2.48E-02	1.99E-03	8.72E-03	12		7.64E-03	3.35E-0
Butane	106-97-8	1.44E-02	6.32E-02	5.08E-03	2.22E-02			1.95E-02	8.54E-0
Datuat	123-72-8/		U.J.L-U.	5.002-05	**********			1.752-0.5	0.546-0
Butyr/Isobutyraldehyde	78-84-2	2.69E-03	1.18E-02	9.48E-04	4.15E-03			3.64E-03	1.60E-0
Carbon Tetrachloride	56-23-5	9.79E-04	4.29E-03	3.44E-04	1.51E-03	1.13E-04	4.93E-04	1.44E-03	6.29E-0
Chlorobenzene	108-90-7	8.11E-04	3.55E-03	2.85E-04	1.25E-03	8.20E-05	3.59E-04	1.18E-03	5.16E-0
Chloroethane	75-00-3	4.99E-05	2.18E-04	1.76E-05	7.69E-05			6.74E-05	2.95E-0
Chloroform	67-66-3	7.60E-04	3.33E-03	2.68E-04	1.17E-03	8.71E-05	3.82E-04	1.11E-03	4.88E-0
Chrysene	218-01-9	1.85E-05	8.10E-05	6.50E-06	2.85E-05			2.50E-05	1.09E-0
Cyclohexane									
Cyclopentane	287-92-3	6.06E-03	2.65E-02	2.13E-03	9.33E-03			8.19E-03	3.59E-0
Ethane	74-84-0	2.80E+00	1.23E+01	9.86E-01	4.32E+00	4.48E-01	1.96E+00	4.23E+00	1.85E+0
Ethylbenzene	100-41-4	1.06E-03	4.64E-03	3.73E-04	1.63E-03	1.58E-04	6.91E-04	1.59E-03	6.96E-0
Ethylene Dibromide	106-93-4	1.18E-03	5.18E-03	4.16E-04	1.82E-03	1.35E-04	5.93E-04	1.73E-03	7.59E-0
Fluoranthene	206-44-0	2.96E-05	1.30E-04	1.04E-05	4.56E-05			4.00E-05	1.75E-0
Fluorene	86-73-7	1.51E-04	6.62E-04	5.32E-05	2.33E-04			2.04E-04	8.96E-0
Formaldehyde	50-00-0	1.79	7.86	0.63	2.78	0.08	0.36	2.51	10.99
Indeno(1,2,3-c,d)pyrene	193-39-5								
Isobutane									
Methanol	67-56-1	6.67E-02	2.92E-01	2.35E-02	1.03E-01	1.95E-02	8.52E-02	1.10E-01	4.80E-0
Methylcyclohexane	108-87-2	3.28E-02	1.44E-01	1.15E-02	5.06E-02			4.44E-02	1.94E-0
Methylene Chloride	75-09-2	5.33E-04	2.34E-03	1.88E-04	8.22E-04	2.62E-04	1.15E-03	9.83E-04	4.31E-0
n-Hexane	110-54-3	2.96E-02	1.30E-01	1.04E-02	4.56E-02			4.00E-02	1.75E-0
n-Nonane	111-84-2	2.93E-03	1.29E-02	1.03E-03	4.52E-03			3.97E-03	1.74E-0
n-Octane	111-65-9	9.36E-03	4.10E-02	3.29E-03	1.44E-02			1.27E-02	5.54E-0
n-Pentane	109-66-0	6.94E-02	3.04E-01	2.44E-02	1.07E-01			9.38E-02	4.11E-0
Naphthalene	91-20-3	1.98E-03	8.69E-03	6.98E-04	3.06E-03	6.18E-04	2.70E-03	3.30E-03	1.45E-0
PAH	85-01-8	7.18E-04	3.14E-03	2.52E-04	1.11E-03	8.97E-04	3.93E-03	1.87E-03	8.18E-0
Perylene	198-55-0								
Phenanthrene	85-01-8	2.77E-04	1.22E-03	9.76E-05	4.28E-04			3.75E-04	1.64E-0
Phenol	108-95-2	6.40E-04	2.80E-03	2.25E-04	9.87E-04			8.65E-04	3.79E-0
Propane	74-98-6	1.12E+00	4.90E+00	3.93E-01	1.72E+00		a state of the sta	1.51E+00	6.62E+0
Pyrene	129-00-0	3.63E-05	1.59E-04	1.28E-05	5.59E-05			4.90E-05	2.15E-0
Styrene	100-42-5	6.30E-04	2.76E-03	2.22E-04	9.70E-04	7.57E-05	3.32E-04	9.27E-04	4.06E-0
Tetrachloroethane	630-20-6	6.62E-05	2.90E-04	2.33E-05	1.02E-04			8.94E-05	3.92E-0
Toluene	108-88-3	1.09E-02	4.77E-02	3.83E-03	1.68E-02	3.55E-03	1.55E-02	1.83E-02	8.00E-0
Vinyl Chloride	75-01-4	3.97E-04	1.74E-03	1.40E-04	6.13E-04	4.57E-05	2.00E-04	5.83E-04	2.55E-0
Xvlene	1330-20-7	4.91E-03	2.15E-02	1.73E-03	7.56E-03	1.24E-03	5.43E-03	7.88E-03	3.45E-0
		2.31	10.12	0.82	3.57	0.16	0.69	3.28	14.39

¹ The compounds that are italicized represent those that are classified as TACs pursuant to Michigan Rule 336.1120(f), but are not classified as HAPs. All other compounds represent those that are classified as both HAPs and TACs.

² The lb/hr emission rates are for multiple similar units and based upon the maximum rated capacity of the engines, on a higher heating value basis.

³ Annual emission rates are based upon continuous operation at rated capacity.

Wilderness CO₂ - HAP Emission Estimates from Natural Gas Fired Heaters

Rated Heat Input Per Boiler	8.00	MM Btu/hour
Natural Gas Heating Value	1,020	Btu/scf
Annual Operation Per Boiler	8,760	hours/year

Natural Gas Fired Boiler (Heater) HAP Emission Factors¹ and Emission Rates

Hazardous Air Pollutant	CAS Registry Number	Emission Factor ¹ (Ib/MM scf)	Potential Emission Rate (Ib/hour)	Potential Emission Rate (tons/year)
2-Methylnaphthalene	91-57-6	2.40E-05	1.88E-07	8.24E-07
3-Methylchloroanthrene	56-49-5	1.80E-06	1.41E-08	6.18E-08
,12-Dimethylbenz(a)anthracene	57-97-6	1.60E-05	1.25E-07	5.50E-07
Acenaphthene	83-32-9	1.80E-06	1.41E-08	6.18E-08
Acenaphthylene	203-96-8	1.80E-06	1.41E-08	6.18E-08
Anthracene	120-12-7	2.40E-06	1.88E-08	8.24E-08
Benz(a)anthracene	56-55-3	1.80E-06	1.41E-08	6.18E-08
Benzene	71-43-2	2.10E-03	1.65E-05	7.21E-05
Benzo(a)pyrene	50-32-8	1.20E-06	9.41E-09	4.12E-08
Benzo(b)fluoranthene	205-99-2	1.80E-06	1.41E-08	6.18E-08
Benzo(g,h,i)perylene	191-24-2	1.20E-06	9.41E-09	4.12E-08
Benzo(k)fluroanthene	205-82-3	1.80E-06	1.41E-08	6.18E-08
Butane	106-97-8	2.10E+00	1.65E-02	7.21E-02
Chrysene	218-01-9	1.80E-06	1.41E-08	6.18E-08
Dibenzo(a,h)anthracene	53-70-3	1.20E-06	9.41E-09	4.12E-08
Dichlorobenzene	25321-22-6	1.20E-03	9.41E-06	4.12E-05
Ethane	74-84-0	3.10E+00	2.43E-02	1.06E-01
Fluoranthene	206-44-0	3.00E-06	2.35E-08	1.03E-07
Fluorene	86-73-7	2.80E-06	2.20E-08	9.62E-08
Formaldehyde	50-00-0	7.50E-02	5.88E-04	2.58E-03
Hexane	110-54-3	1.80E+00	1.41E-02	6.18E-02
Indeno(1,2,3-c,d)pyrene	193-39-5	1.80E-06	1.41E-08	6.18E-08
Naphthalene	91-20-3	6.10E-04	4.78E-06	2.10E-05
Pentane	109-66-0	2.60E+00	2.04E-02	8.93E-02
Phenanthrene	85-01-8	1.70E-05	1.33E-07	5.84E-07
Propane	74-98-6	1.60E+00	1.25E-02	5.50E-02
Pyrene	129-00-0	5.00E-06	3.92E-08	1.72E-07
Toluene	108-88-3	3.40E-03	2.67E-05	1.17E-04
Arsenic	7440-38-2	2.00E-04	1.57E-06	6.87E-06
Barium	7440-39-3	4.40E-03	3.45E-05	1.51E-04
Beryllium	7440-41-7	1.20E-05	9.41E-08	4.12E-07
Cadmium	7440-43-9	1.10E-03	8.63E-06	3.78E-05
Chromium	16065-83-1	1.40E-03	1.10E-05	4.81E-05
Cobalt	7440-48-4	8.40E-05	6.59E-07	2.89E-06
Copper	7440-50-8	8.50E-04	6.67E-06	2.92E-05
Lead	7439-92-1	5.00E-04	3.92E-06	1.72E-05
Manganese	7439-96-5	3.80E-04	2.98E-06	1.31E-05
Mercury	7439-97-6	2.60E-04	2.04E-06	8.93E-06
Molybdenum	7439-98-7	1.10E-03	8.63E-06	3.78E-05
Nickel	7440-02-0	2.10E-03	1.65E-05	7.21E-05
Selenium	7782-49-2	2.40E-05	1.88E-07	8.24E-07
Vanadium	7440-62-2	2.30E-03	1.80E-05	7.90E-05
Zinc	7440-66-6	2.90E-02	2.27E-04	9.96E-04
Total HAP Emissions		1.888	0.015	0.065

¹ The boiler HAP emission factors are based upon the AP-42 document (7/98 revision). Specifically, the organic emission factors are from Table 1.4-3, while the metallic emission factors are from Table 1.4-4.

E&P Tanks - Partitioning Calculations for Flashing and W&S VOC Emissions Hayes 29 PTE Calculation - Tanks

	MM		Flash UII	Sale UII	Hash Gas	W&S Gas	Total Emissions	Hash Gas	W&S Gas
No. Component	(lomdl/dl)	Mole %	Mole %	Mole %	Mole %	Mole %	Mole %	Weight %	Weight %
1 H2S	34.8	0	0	0	0	0	0		-
2 02	32	0	0	0	0	0	0	1	•
3 CO2	44.01	0.023	0.0068	0	0.5318	0.0001	0.4171	0.5613	0.0001
4 N2	28.01	0.042	0.0016	0	1.3153	0.0001	1.0317	0.8835	0.0000
5 C1	16.04	0.371	0.0521	0	10.4096	0.0001	8.165	4.0041	0.0000
6 C2	30.07	1.853	0.9722	0	29.5803	0.0001	23.2019	21.3304	0.0000
7 C3	44.1	4.981	4.1005	0	32.7002	0	25.649	34.5822	
8 i-C4	58.12	2.598	2.4344	0	7.7475	0	6.0769	10.7982	
9 n-C4	58.12	5.018	4.8506	1.2058	10.2876	26.9759	13.8861	14.3385	21.7002
10 i-C5	72.15	4.61	4.6373	3.4343	3.7504	31.5364	9.742	6.4890	31.4928
11 n-C5	72.15	3.741	3.7884	3.189	2.2484	21.8852	6.4828	3.8902	21.8549
12 C6	84	2.77	2.8419	3.025	0.5071	6.5264	1.8051	1.0215	7.5878
13 Benzene	78.11	0.45	0.4624	0.5055	0.0606	0.7986	0.2197	0.1135	0.8634
14 Toluene	92.14	1.823	1.8788	2.1645	0.0675	0.9727	0.2627	0.1491	1.2405
15 E-Benzene	106.17	0.688	0.7096	0.8288	0.0083	0.1256	0.0336	0.0211	0.1846
16 Xylenes	106.17	2.134	2.2011	2.5735	0.0219	0.3385	0.0901	0.0558	0.4974
17 n-C6	86.18	2.657	2.7264	2.9084	0.4733	6.1972	1.7075	0.9782	7.3920
18 224Trimethylp	114.23	0.021	0.0216	0.0245	0.0014	0.0194	0.0053	0.0038	0.0307
19 Pseudo Comp1	111.19	25.5793	26.3828	30.8224	0.2865	4.582	1.2127	0.7639	7.0515
20 Pseudo Comp2	172.7	16.727	17.2583	20.2975	0.0023	0.0417	0.0108	0.0095	0.0997
21 Pseudo Comp3	252.37	11.2636	11.6214	13.6692	0	0.0001	0	1	0.0003
22 Pseudo Comp4	350.06	7.7914	8.0389	9.4554	0	0	0	1	1
23 Pseudo Comp5	551.71	4.8586	5.013	5.8963	0	0	0	1	ł
Totals:		100.00	100 00	100 00	100.001	100 00	100.00	66 66	100 001

						Total
	LP OII	Flash oil		Sales oil Flash Gas	W&S gas	Emission
MW (lb/lbmol):	162.79	166.64	185.19	41.7	72.25	48.28
Stream Mole Ratio:	1	0.9692	0.9607	0.0308	0.0085	0.0393
Stream Weight Ratio:	162.79	161.51	177.92	1.28	0.61	1.9
Total Emission (ton):				0.729	0.347	1.076
Heating Value (BTU/scf):				2348.9	3960.01	2696.31
Gas Gravity (Gas/Air):				1.44	2.49	1.67
Bubble Pt. @100F (psia):	44.95	21.6	2.36			
RVP @100F (psia):	136.62	98.9	15.52			
Spec. Gravity @100F:	0.85	0.85	0.87			

100.00	66.66	100.00
	Flash Gas	W&S Gas
C Weight % =	73.21	100.00
VOC tpy =	0.53	0.35

П	
%	
Ħ	
-ig	
Š	
U	
0	
>	

	Ś
	anl
F	H
õ	Å P

From E&P Tank Output:

HAYES 29 PTE

****************** **** * Project Setup Information J_{α} **** Project File : S:\MICHIGAN\Air Quality\E&P Tank Runs\HAYES 29.ept3 Flowsheet Selection : Oil Tank with Separator Calculation Method : AP42 Known Separator Stream : Low Pressure Oil Entering Air Composition : No Component Group Component Group : HAYES 29 - WILD CO2 TANK : HAYES 29 TANK Filed Name Well Name Permit Number : N5831 Date : 2018.10.18 de de de de de de Data Input ala. de de de de de de : 30.00 Actual Conditions, 75.0 : 0.89 per operator. Separator Pressure (psia) Separator Temperature (F) C10+ SG C10+ MW(lb/lbmol): 260.00 -- Low Pressure Oil _____ Mole% Wt% Component NO. 0.0000 0.0000 H2S 1 2 0.0000 0.0000 02 3 CO2 0.0230 0.0062 4 0.0420 0.0072 N2 5 0.3710 C1 0.0363 6 C2 1.8530 0.3395 С3 7 4.9810 1.3383 0.9200 8 2.5980 i-c4 n-c4 9 5.01801.7769 10 i-c5 4.6100 2.0265 3.7410 11 n-c5 1.6445 12 2.7700 1.4541 C6 8.0450 13 4.9114 C7 7.7830 5.4168 14 C8 5.2050 45.1870 15 C9 4.0681 71.5815 0.2142 16 C10+ 17 0.4500 Benzene 1.8230 1.0233 18 Toluene 19 0.6880 0.4450 E-Benzene 2.1340 1.3804 20 Xylenes 2.6570 1.3951 21 n-c6 22 224Trimethylp 0.0210 0.0146 -- Sales Oil _____ Production Rate (bbl/day) : 2.00 Days of Annual Operation : 365 Page 1

HAYES 29 PTE API Gravity : 46.00 Reid Vapor Pressure (psia) : 7.70 Bulk Temperature : 80.0 -- Tank and Shell Data _____ Diameter (ft) : 21.00 Shell Height (ft) : 16.00 Cone Roof Slope : 0.06 Average Liquid Height (ft) : 8.00 Vent Pressure Range (psia) : 0.06 Solar Absorbance : 0.54 Page 1----- E&P TANK -- Meteorological Data ------City : Homer, AK Min Ambient Temperature (F) : 29.5 Max Ambient Temperature (F) : 43.6 Total Solar Insolation (F) : 831.00 Ambient Pressure (psia) : 14.70 Ambient Temperature (F) : 70.0 **** Calculation Results ala ala ala ala ala ala -- Emission Summary Uncontrolled ton ton 0.0450 Total HAPs Total HC 1.0660 VOCs, C2+ VOCs, C3+ 1.0370 0.8810 C02 0.0040 0.0290 CH4 Uncontrolled Recovery Information: Vapor(mscfd): 0.0463 HC Vapor(mscfd): 0.0456 CO2(mscfd): 0.0000 CH4(mscfd): 0.0000 GOR(SCF/STB): 23.1450 -- Emission Composition . Uncontrolled NoComponent ton 0.0000 1 H2S 0.0000 2 02 3 CO2 0.0040 4 N2 0.0060 5 C1 0.0290 6 C2 0.1560 7 C3 0.2520 0.0790 8 i-c4 9 n-c4 0.1800

Page 2

10 i-C5 11 n-C5	$0.1570 \\ 0.1040$
12 C6	0.0340
13 Benzene	0.0040
14 Toluene	0.0050
15 E-Benzene	0.0010
16 Xylenes	0.0020
17 n-C6	0.0330
18 224Trimethylp	0.0000
19 Pseudo Comp1	0.0300
20 Pseudo Comp2	0.0000
21 Pseudo Comp3	0.0000
22 Pseudo Comp4	0.0000
23 Pseudo Comp5	0.0000
24 Total	1.0760
24 IULAI	1.0700

-- Stream Data

NoCompone	ent	MW	LP Oil	Flash Oil	Sales Oil	Flash Gas W&S
% mole	a %	lb/lbmol	mole %	mole %	mole %	mole% mole
			0.0000	0.0000	0.0000	0.0000
0.0000 2 02	0.0000	32.00	0.0000	0.0000	0.0000	0.0000
0.0000 3 CO2	0.0000	44.01	0.0230	0.0068	0.0000	0.5318
$ \begin{array}{r} 3 \\ 3 \\ 0.0001 \\ 4 \\ N2 \\ 0.0001 \end{array} $	0.41/1	28.01	0.0420	0.0016	0.0000	1.3153
0.0001 5 C1	1.0317	16.04	0.3710	0.0521	0.0000	10.4096
0.0001 6 C2	8.1650	30.07	1.8530	0.9722	0.0000	29.5803
0.0001 Page 2	23.201	9 				1.3153 10.4096 29.5803 E&P TANK
7 C3		44.10	4.9810	4.1005 2.4344 4.8506	0.0000	32.7002
0.0000 8 i-C4	25.649	0 58.12	2.5980	2.4344	0.0000	7.7475
0.0000 9 n-C4 26.9759	6.0769	58.12	5.0180	4.8506	1.2058	10.2876
26.9759 10 i-C5	13.886	1 72.15	4.6100	4.6373	3.4343	3.7504
10 i-c5 31.5364 11 n-c5 21.8852 12 c6	9.7420	72.15	3.7410	3.7884	3.1890	2.2484
			2.7700	2.8419	3.0250	0.5071
6.5264 13 Benzer	ne	78.11	0.4500	0.4624	0.5055	0.0606
0.7986 14 Toluer	ie	92.14	1.8230	1.8788	2.1645	0.0675
15 E-Benz	0.2627 zene	106.17	0.6880	0.7096	0.8288	0.0083
0.1256 16 Xylene	es	106.17	2.1340	2.2011	2.5735	0.0219
0.3385 17 n-C6 6.1972	0.0901	86.18	2.6570	2.7264	2.9084	0.4733
18 224Tri	imethylp	114.23	0.0210	0.0216	0.0245	0.0014
0.0194 19 Pseudo	Comp1	111.19	25.5793	26.3828	30.8224	0.2865
4.5820	1.2127		Dag	~ ²		

Page 3

20 Reauda Comp2	172 70	HAYES 16.7270	29 PTE 17.2583	20.2975	0.0023	
20 Pseudo Comp2 0.0417 0.0108						
21 Pseudo Comp3 0.0001 0.0000	252.37	11.2636	11.6214	13.6692	0.0000	
22 Pseudo Comp4	350.06	7.7914	8.0389	9.4554	0.0000	
0.0000 0.0000 23 Pseudo Comp5 5 0.0000 0.0000	551.71	4.8586	5.0130	5.8963	0.0000	
Con Totol Swing		LP Oil	Flash Oil	Sales Oil	Flash Gas	W&S
Gas Total Emiss MW (lb/lbmol): 48.28	100	162.79	166.64	185.19	41.70	72.25
Stream Mole Ratio: 0.0085 0.0393		1.0000	0.9692	0.9607	0.0308	
Stream Weight Ratio	:	162.79	161.51	177.92	1.28	0.61
1.90 Total Emission (ton):				0.729	0.347
1.076 Heating Value (BTU/ 3960.01 2696.31					2348.90	
Gas Gravity (Gas/Ai					1.44	2.49
1.67 Bubble Pt. @100F (p	sia):	44.95	21.60	2.36		
RVP @100F (psia):		136.62	98.90	15.52		
Spec. Gravity @100F	:	0.85	0.85	0.87		

Certificate of Analysis

Number: 1030-15110484-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Dec. 01, 2015

Steve Niehaus BreitBurn Operating P.O. Box 1256 Gaylord, MI 49734-1256

Station Name: Parr 1-30 *WIAGRANGAS* Sample Point: CS 3 A-1-30 Parr Pipe to Storage Tank Cylinder No: 004780 Analyzed: 11/13/2015 11:56:29

Sampled By:GLSample Of:LiquidSpotSample Date:11/05/2015Sample Conditions: 28 psig, @ 65 °FMethod:GPA 2103M

		Ar	nalytical	Data		
Components	Mol. %	MW	Wt. %	Sp. Gravity	L.V. %	
Nitrogen	0.042	28.013	0.007	0.807	0.007	
Methane	0.371	16.043	0.035	0.300	0.094	
Carbon Dioxide	0.023	44.010	0.006	0.817	0.006	
Ethane	1.853	30.069	0.328	0.356	0.741	
Propane	4.981	44.096	1.293	0.507	2.050	
Iso-Butane	2.598	58.122	0.889	0.563	1.269	
n-Butane	5.018	58.122	1.717	0.584	2.363	
Iso-Pentane	4.610	72.149	1.958	0.625	2.518	
n-Pentane	3.741	72.149	1.589	0.631	2.025	
i-Hexanes	2.770	85.181	1.389	0.667	1.675	
n-Hexane	2.657	86.175	1.348	0.664	1.632	
2,2,4-Trimethylpentane	0.021	114.231	0.014	0.697	0.016	
Benzene	0.450	78.114	0.207	0.885	0.188	
Heptanes	8.045	96.207	4.557	0.709	5.168	
Toluene	1.823	92.141	0.989	0.872	0.911	
Octanes	7.783	110.485	5.062	0.728	5.592	
Ethylbenzene	0.688	106.167	0.430	0.872	0.396	
Xylenes	2.134	106.167	1.334	0.872	1.229	
Nonanes	5.205	127.121	3.895	0.740	4.233	
Decanes Plus	45.187	274.224	72.953	0.864	67.887	
	100.000		100.000		100.000	
Physical Properties			Total	C10+		
Specific Gravity at 60°F			8039	0.8638		
API Gravity at 60°F			.526	32.311		
Molecular Weight			9.858	274.224		
Pounds per Gallon (in Vacu	um)		6.702	7.202		
Pounds per Gallon (in Air)			695	7.194		
Cu. Ft. Vapor per Gallon @	14 73 psia		1.938	9.943		

Chio Salay

Hydrocarbon Laboratory Manager

Quality Assurance:

The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Certificate of Analysis

Number: 1030-15110484-001A

Houston Laboratories 8820 Interchange Drive Houston, TX 77054 Phone 713-660-0901

Dec. 01, 2015

Steve Niehaus BreitBurn Operating P.O. Box 1256 Gaylord, Mi 49734-1256

Station Name: Parr 1-30 Sample Point: CS 3 A-1-30 Parr Pipe to Storage Tank Cylinder No: 004780

Sampled By:	GL	
Sample Of:	Liquid	Spot
Sample Date:	11/05/2015	
Sample Conditions:	28 psig. @ 6	5°F

Analytical Data

Test	Method	Result	Units	Detection Lab Limit Tech.	Analysis Date
Shrinkage Factor	Proprietary	0.9848		SM	11/16/2015
Flash Factor	Proprietary	17.6105	Cu.Ft./STBbl.	SM	11/16/2015
Color Visual	Proprietary	Straw		SM	11/16/2015
API Gravity @ 60° F	ASTM D-4052	42.76	o	MM	11/19/2015

Hydrocarbon Laboratory Manager The above analyses are performed in accordance with ASTM, UOP, GPA guidelines for quality assurance, unless otherwise stated.

Quality Assurance:

Page 2 of 3

AI-CAM

RENEWABLE OPERATING PERMIT APPLICATION AI-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

SRN: 5831	Section Number (if applicable): 1
	SRN: 5831

			42				-		42 -	
А	α	aı	U	DI	na	Infe	orr	na	τιο	n

2. Is This Information Confidential?

🗌 Yes 🖾 No

Attached is a Complaince Assurance Monitoring Applicability summary for EUENGINE6.

Page

of

Compliance Assurance Monitoring (CAM) Plan Breitburn Operating Company, L.P. Wilderness/Hayes 29 Facility EUENGINE6

I. BACKGROUND

Emission Units

Description: Waukesha L 7042 GSI compressor engine, rated at 1,478 hp, and equipped with a 3-way catalyst to control emissions of nitrogen oxides (NO_x), carbon monoxide (CO), and volatile organic compounds (VOCs).

Identification: EUENGINE6

Facility: Breitburn Operating Company, L.P. (Breitburn) – Wilderness/Hayes 29 Facility Section 29, T29N, R4W Hayes Township, Otsego County, Michigan

Applicable Regulation, Emission Limit, Monitoring Requirements

MI-ROP-N5831-014b FGWAUKENGINES FLEXIBLE GROUP CONIDITONS. I, lists the applicable regulations as R336.1205(3), R336.1225, R336.1702(a), and R336.1910.

Emission Limits:

EUENGINE6 NO_x: 24.6 tons/year CO: 41.1 tons/year

Control Technology

A 3-way catalyst is used to control NO_x , CO, and VOC emissions from the Waukesha compressor engine. The pre-control device potential emissions of NO_x and CO are greater than 100 tons per year for the Waukesha engine, which makes this unit subject to the CAM requirements. However, the pre-control device potential VOC emissions from the unit are less than 100 tpy.

II. MONITORING APPROACH

Pressure drop across the 3-way catalyst, and inlet and outlet temperatures are all monitored. These parameters represent the most important parameters for proper operation of the catalytic converter. The compliance assurance monitoring approach is summarized in Table 1.

Τ	a	b	le	1
_		~	~ ~	

Device Description	Operating Variable	Monitoring Method	Frequency	Normal Operating Range	Excursion Indicator	Remedial Action
Catalyst	2" WC Change in ΔP @ normal operating conditions	Gauge or manometer	Monthly	Varies by engine. Recorded in database	2.5 times the ΔP @ normal operating conditions	Check sample lines, check rpm verses ΔP and compare to previous months readings, remove catalyst and replace gaskets as necessary; if still 1.5 times the normal range then catalyst would be removed and washed. Also see Table 2 of the approved PM/MAP
Catalyst	Inlet and Outlet temperatures	Thermocouple	Daily	Must be below 1350 degrees F. For 3-way catalysts only: Outlet temperature must be equal to or greater than the catalytic inlet temperature.	Temperature less than 800°F Differential temperature greater than 150°F above normal (not to exceed 1350°F)	Check loading on engine, check for faulty gauge or temperature probe, and check for proper operation of the ignition system Automatic engine shutdown Also see Table 2 of the approved PM/MAP

Appendix A, attached to this CAM Plan, describes the inlet and outlet catalyst temperature data that will be recorded on a daily basis.

No in-situ continuous emission monitoring systems are employed to measure actual emissions from this engine.

Quality assurance and quality control will include following the approved preventative maintenance/malfunction abatement plan (PM/MAP) developed for the engine and catalytic converter. The PM/MAP for this facility requires periodic replacement of various components within specified times. Manufacturer recommendations will be followed to ensure proper operation of the engine and control device.

III. JUSTIFICATION

The Monitoring Approach described above was determined during extensive communication between the MDEQ-AQD, the control equipment vendor, and the oil and gas industry regarding proper compliance assurance monitoring of the catalytic converter. It was determined that the pressure drop across the catalyst bed, and the inlet and outlet temperatures are critical parameters necessary to measure catalytic converter performance. The parameter ranges listed in Table 1 are used to determine that the catalytic converter is being operated and maintained to achieve the targeted control efficiencies for NO_x and CO, and therefore provide the compliance assurance required. A high pressure drop may be an indication of plugging of the catalyst, and a very low one may indicate the catalyst bed has leakage around or through it. A high outlet temperature may also be an indication of the need to shut down the unit to prevent burnout of the catalyst. Typical operating temperature ranges for 3-way catalysts are 750 degrees F to 1350 degrees F. The PM/MAP requires certain actions to be taken in the event that there would be a monitored parameter outside of the values indicated in the above table.

Regarding the oxygen sensor for the AFRC, Breitburn has determined that the oxygen sensor is difficult to predict for any range that would define an excursion point. The same sensor can vary considerably depending on the engine's RPM, loading, and other factors, and for this reason it is not practical, nor value added, to identify any range that would identify excursion point(s). The PM/MAP for the facility's engines successfully addresses the requirements for proper operation of the AFRC, and associated oxygen sensor, for this engine. For this reason, it is not practical to identify an excursion level for the AFRC's oxygen sensor. Even if the oxygen sensor experiences difficulties, monitoring the catalytic converter using the pressure differential and temperatures as indicators are more important as monitoring parameters.

Therefore, Breitburn has determined that sufficient monitoring is being performed to satisfy the requirement pursuant to the CAM regulations and requirements, 40 CFR Part 64.

Appendix A

Breitburn Operating Company, L.P. **Exhaust Emissions Field Report**

FIGNE EMISSIONS ANALYSIS Data metric ENGINE EMISSIONS ANALYSIS Data metric Data metric Englere PME Data metric Data metric Data metric Englere PME Englere PME Data metric Data metric Englere PME Data metric Data metric Data metric Englere PME Data observed - PPMI Englere PME Englere PME Data observed - PPMI Data observed - PPMI Englere NO2 Observed - PPMI Englere NO2 Observed - PPMI Englere PME CODserved - PPMI Englere NO2 Observed - PPMI Englere NO2 Observed - PPMI Englere PME CODserved - PPMI Englere NO2 Observed - PPMI Englere NO2 Observed - PPMI Englere PME CODserved - PPMI Englere NO2 Observed - PPMI Englere NO2 Observed - PPMI Englere PME CODServed - PPMI Englere NO2 Observed - PPMI Englere PPMI Englere PME CODServed - PPMI Englere PPMI Conserved - PPMI Englere PME Englere PMER Englere PPMI Conserved - PPMI Englere PME Englere PMER Englere PMI Conserved - PPMI <th>ENGINE EMISSION BreitBurn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>ANALYSIS gine CID: gine CID: mb Temp F: te of Test: gine Timing: vED CONVERTEF DX Observed - PPM 0 Observed - PPM</th> <th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>mer: on: e Serial Number: e Oldel: e Old:</th> <th></th>	ENGINE EMISSION BreitBurn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ANALYSIS gine CID: gine CID: mb Temp F: te of Test: gine Timing: vED CONVERTEF DX Observed - PPM 0 Observed - PPM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	mer: on: e Serial Number: e Oldel: e Old:	
ENGINE EMISSIONS ANALYSIS Customer: Breitibum Engine CD: 0 0 District Emission 0 0 Colosened - PhM Emission Encirct 0 District Emission 0 0 District Emission 0 0 Colosened - PhM District Emission 0 District Emission District Emission 0 District Emission District Philose <td< th=""><th>ENGINE EMISSION BreitBurn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>ANALYSIS gine CID: gine RPM: AFP Calc: nb Temp F: the of Test: gine Timing: VED CONVERTER DX Observed - PPM O Observed - PPM</th><th>0 0 0 01/00/00 0 0 0</th><th>Customer: Location: Unit: Engine Serial Number: Engine Model: Engine CID:</th><th>r area</th></td<>	ENGINE EMISSION BreitBurn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ANALYSIS gine CID: gine RPM: AFP Calc: nb Temp F: the of Test: gine Timing: VED CONVERTER DX Observed - PPM O Observed - PPM	0 0 0 01/00/00 0 0 0	Customer: Location: Unit: Engine Serial Number: Engine Model: Engine CID:	r area
BrettBurn Freihburn Freih	BreitBurn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e CID: RPM: Calc: emp F: f Test: f Test: f Test: f Test: bserved - PPM served - PPM	0 0 01/00/00 0 0 0 0	Unit: Engine Serial Number: Engine Model: Engine CID: Covins DoM	BreitBurn
Bretibur Fregine Scial Number: 0 Constrained Constrained <thconstrained< th=""> <thconstrained< th=""> <t< td=""><td>BreitBurn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>: cID: : RPM: Calc: emp F: fTest: tTiming: bserved - PPM served - PPM</td><td>0 ##Div/oi 0 01/00/00 0 0 0</td><td>Engine Serial Number: Engine Model: Engine CID:</td><td></td></t<></thconstrained<></thconstrained<>	BreitBurn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	: cID: : RPM: Calc: emp F: fTest: tTiming: bserved - PPM served - PPM	0 ##Div/oi 0 01/00/00 0 0 0	Engine Serial Number: Engine Model: Engine CID:	
0 migne throm input can be and it input can be and and it input can be and it input	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	r NFW: Calc: emp F: f Test: Timing: converter bserved - PPM served - PPM	0 0 0 0 0 0 0 0 0 0 0 0 0	Engine Model: Engine CID: Enviro Dava.	
0 mark runt, Engine Timing; mov of train mov of train <td< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>emp F: emp F: f Test: t Timing: CONVERTE bserved - PPM served - PPM</td><td>0/00/00</td><td>LUBUR CID.</td><td></td></td<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	emp F: emp F: f Test: t Timing: CONVERTE bserved - PPM served - PPM	0/00/00	LUBUR CID.	
0 Date of Test: 0/00/00 Engine Timing: 0 DATA DSERVED CONVERTIER DATA OSSERVED CONVERTIER Animiliant (Finite No Conserved - PPM) CONVERTIER CONVERTIER CONVERSION CONSErved - PPM 0 CONVERSION 0 Converter NO Conserved - PPM: 0 Con	0 M 0 0.0 0 cu-ft 0 cu-ft 0	f Test: Timing bserve served	00/00/00		
Engine Timing: Darta Observed - PM: Darta Observed - PM: Engine NOD Observed - PM: Darta Observed - PM: Engine NOD Observed - PM: Darta Observed - PM: Engine NOD Observed - PM: Darta Observed - PM: Engine NOD Observed - PM: Darta Observed - PM: Engine NOD Observed - PM: Darta Observed - PM: Engine NOD Observed - PM: Conversion Conversion 0 0 0	M 0 0 0.0 0 0.0 0 0.0 0 0.0 0 0 0 0 0 0 0	bserved	0 00	Ambient Temp - deg F:	
DATA OBSERVED Engine NO Observed - PPM: 0 CONVERTIEK 0 <td>M 0 M 0 0.0 0.0 cu-fi0 cu-fi0</td> <td>bserve</td> <td></td> <td>Test Date - m/d/yr</td> <td></td>	M 0 M 0 0.0 0.0 cu-fi0 cu-fi0	bserve		Test Date - m/d/yr	
DATA OBSERVED Engine NO2 Observed - PPM: M 0 NOX Observed - PPM Engine CO Observed - PPM: 0 0 CO Observed - PPM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M 0 M 0 0.0 0 cu-fi0 cu-fi0	bserve served	. 0 0	Engine NO Observed - PPM:	
M CONVERTER Engine CO Observed - PPM 0 0 CONServed - PPM 0 0 CONServed - PPM 0 CONServed - PPM Engine CO Observed - %: 0 CONServed - PPM Engine CO Observed - %: 0 CONServed - PPM Engine CO Observed - PPM: 0 CONServed - PPM Engine CO Observed - %: 0 Conserved - PPM: Engine CO Observed - PPM: 0 CatCULATED RESULTS CatCULATED RESULTS 0 CatCULATED RESULTS Engine Timing: 0 CatCULATED RESULTS Engine Timing: 0 M CONVERTION Engine Timing: 0 0.00 0.00 0.00 0 0.00 0.00 Out 0 #DIV/OI 0.00 Out	M 0 0.0 0.0 cu-ft0	CONVERTER IOx Observed - PPM O Observed - PPM		Engine NO2 Observed - PPM:	
Exhaust O2 Observed - %: Engine Horsepower: Fuel Flow - cu-ft/hr Fuel Analysis - BTU/cu-ft Converter NO Obsenved - PPM: Converter NO2 Obsenved - PPM: Converter CO Obsenved - PPM: Converter CO Obsenved - PPM: Converter CO Obsenved - PPM: Converter NO2 Obsenved - PPM: Co	vi 0 0.0 0 cu-fi0	IOx Observed - PPM O Observed - PPM	0 0	Engine CO Observed - PPM:	
0 CODserved - PPM 0 00 Engine Horsepower: Engine Horsepower: 0 Engine Horsepower: Engine Horsepower: 0 CurrLi Engine Horsepower: 0 Engine Horsepower: Engine Horsepower: 0 CurrLi Engine Horsepower: 0 Engine Horsepower: Engine Horsepower: 0 <td>0 0.0 0 cu-fi 0</td> <td>O Observed - PPM</td> <td>0</td> <td>Exhaust O2 Observed - %:</td> <td></td>	0 0.0 0 cu-fi 0	O Observed - PPM	0	Exhaust O2 Observed - %:	
00 Evel Flow - cu-ft/In 0 0 cu-ft0 0 glaur-ur 0 glaur-ur 0 glaur-ur 0 glaur-ur 0 glaur-ur 0 cu-ft0 0 glaur-ur 0 glaur-ur 0 cu-ft0 0 cu-ft	0.0 0 cu-f10 cu-f10			Engine Horsepower:	
Fuel Analysis - BTU/cu-ft Fuel Analysis - BTU/cu-ft CatCULATED RESULTS Converter NO Observed - PPM: Garet NO Observed - PPM: Converter NO Observed - PPM: Garet NU ATED RESULTS Engine Timing: g/BHP-Hr Ibs/hr Timing: g/BHP-Hr 0.00 0.00 #DV/oi 0.00 0.00 mDV/oi 0.00 0.00 mDV/oi 0.00 0.00 Provint Proversed Provint Provint Provint Provint Provint Provint Provint Pr				Fuel Flow - cu-ft/hr	
CALCULATED RESULTS Converter NO2 Obsensed - PPM: CALCULATED RESULTS Converter NO2 Obsensed - PPM: CALCULATED RESULTS Converter NO2 Obsensed - PPM: GIBHP-Hr Iba/hr Tpy #DIV/01 0.00 0.00 #DIV/01 MOX space on the identified engine at the constrained. weed from a series of emissions readings from the latentified engine at the constrained. 0.01 weed from a series of emissions reading from the latentified engine at the constrained. 0.02 Extra ending from the observed O2 levels with no 0.02 Extra ending from the house constrained. 0.02 Extra ending from the dobserved O2 levels with no<				Fuel Analysis - BTU/cu-ft	
Calculate Results Calculate Results Calculate Results glath-Hr Ibs/hr TPV glath-Hr Ibs/hr TPV glath-Hr Ibs/hr TPV #DIV/0! 0.00 0.00 #DIV/0! #DIV/0! 0.00 #DIV/0! #DIV/0! 0.00 #DIV/0! #DIV/0! 0.00 Concentrations in PDMs are given at the observed 02 levels with no 0.00 Concentrations in PDMs are given at the observed 02 levels with no 0.01 Concentrations in PDMs are given at the observed 02 levels with no 0.01 Concontrations in PDMs are given at the observed 02 levels wi				Converter NO Observed - PPM:	
Converter CO Obsenved - PPM: Engine Timing: Permit Limits; NOX: 90% Catalyst temps; In: Out; Diff; 0 Exhaust Flow 02: Target Catalyst Model:				Converter NO2 Observed - PPM:	
Engine Imnig: Permit Limits; NOX: 90% Catalyst temps; Out; Diff; 0 Exhaust Flow 02 Target Catalyst Model:				Converter CO Observed - PPM:	
Permit Limits; NOX: 90% Catalyst temps; Not: Diff.[0 Exhaust Flow 02. Target Catalyst Model:	CALCULATED NE				
Catalyst temps; Catalyst temps; Out; Diff; Diff; Diff; Diff; Diff; Catalyst Model: Catalyst Model:	g/BHP-Hr		Adl		
		000			
	~	0.0	0000		6
		000	0000	- tro	
				Diff. 0	
		0.00	0.00	Catalyst pressu	re;
		0.00	0.00	<u>:</u>	
	_			Out;	
				Diff; 0	
				Exhaust Flow	
	CO CONVERSION		N02		
Calculated results are derived from a series of emissions readings from the identified engine at the conditions listed. Test instrument reads NO and NO2 separately with NOX based on the combined total and calculated as NO2. Concentrations in PPMv are given at the observed O2 levels with no correction factor made. Engine loading is confirmed using WPI proprietary software and / or driven corrections the reginement is concentrations to a concentrations to correction factor made.		/ i0//\I0#	i0//I0#	02 Target	
isted. Test instrument reads NO and NO2 separately with NUX based on the combined culated as NO2. Concentrations in PPMv are given at the observed O2 levels with no actor made. Engine loading is confirmed using WPI proprietary software and / or driven	ults are derived from a series of emissiv	ions readings from the id	entified engine at the	Catalyst Mode	
actor made. Engine loading is confirmed using WPI proprietary software and / or driven	ed. Test instrument reads NO and NO2 ated as NO2. Concentrations in PPMv a	2 separately with NUX pas are given at the observed	sed on the combined 02 levels with no		
	tor made. Engine loading is confirmed u	using WPI proprietary so	ftware and / or driven		

RENEWABLE OPERATING PERMIT APPLICATION AI-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

SRN: 5831	
-----------	--

Section Number (if applicable): 1

1. Additional Information ID AI-MAP

Additional Information

2. Is This Information Confidential?

🗌 Yes 🛛 No

Revised PM MAP to reflect the omission of EUENGINE5

Page

of

Preventative Maintenance and Malfunction Abatement Plan

BreitBurn Operating, LP

Facility: Wilderness CO2pf SRN: N5831

Revised to remove EUENGINE5 from ROP 6/27/18 Revised July 31, 2013 Submission date: August 20, 2012 Revised to reflect company names change Effective Date 11/1/2007

	PM/MAP Content Checklist	Whe	re included
	Reference Appendices C,D, and E.	Page	Section or Table
1	Contact Person		Cover Letter
	ENGINES		
2	Engine Identification: Include the engine make/model and type of engine (i.e. rich or lean burn). Identify engines with add on control and AFRC. If add on control is present, identify type of control.		Appendix A & Appendix C
3	Engine Operating Variables To Be Monitored. Include a copy of the normal engine maintenance log.	4	Table 1 & Appendix B
4	Corrective procedures or operational changes that will be taken in the event of a malfunction.	2, 6	Table 2, Appendix D & Appendix E
5	Major parts replacement inventory for engines.	2	
	Add On Controls		
6	Catalytic Converter & Oxidation Catalyst operating variables to be monitored. Include the method and frequency of monitoring these variables; provide the normal operating range of these variables.	4-5	Table 1
7	Corrective actions to be taken in event of malfunction of the catalytic converter.	6	Table 2
8	AFRC O ₂ Sensor replacement schedule or operating variables to be monitored	5	Table 1
9	Corrective actions to be taken in event of malfunction of the AFRC	6	Table 2
10	Emission testing utilizing portable analyzer	5	Table 1
11	Scheduled maintenance of control equipment	4-5	Table 1
12	Major parts replacement inventory for add on control.	2	
13	Identify supervisory personnel responsible for overseeing inspection, maintenance and repair of add on controls.	6	Table 2
14	Recordkeeping and retention of records.	2-3	
15	Updates of PM/MAP as necessary.	3	

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	ENGINES AND CATALYTIC CONTROL UNITS	1
3.0	RECORDKEEPING	2
4.0	UPDATES	3

APPENDICES

Appendix A – List of Facility Specific Equipment Covered by this PM/MAP Appendix B – Engine Field Report Form Appendix C – Compressor Specification Sheet Appendix D – Maintenance Record (Revised 11/2008) Appendix E – Portable Analyzer Record

1.0 INTRODUCTION

BreitBurn Operating, LP (BreitBurn) operates numerous natural gas central processing facilities (CPFs) in Michigan. The CPFs receive gas from natural gas wells and dehydrate (if necessary) and compress the gas prior to pipeline transport. All of these CPFs have natural gas fired internal combustion engines. BreitBurn uses both rich burn and lean burn engines. Some of the rich burn engines are equipped with 3-way catalytic control systems. Generally there is no add-on control for BreitBurn lean burn engines. However, a few of BreitBurn's lean burn engines are equipped with oxidation catalytic control systems. The text of this PM/MAP is uniform for all of BreitBurn's facilities. The cover page and the specific engine, catalyst and AFRC information shown in Appendix A will be unique to each facility.

2.0 ENGINES AND CATALYTIC CONTROL UNITS

2.1 Description

Three-way catalytic converters, used on rich-burn engines, provide an overall control efficiency of 90 percent for NO_x, 80 percent for CO and 50 percent for VOCs. Some of BreitBurn's rich burn engines operate with an air to fuel ratio controller (AFRC), others do not. Oxidation catalysts used on lean-burn engines reduce CO, VOC and trace organic toxic air contaminants (TACs), which include hazardous air pollutants (HAPs) and TACs emissions. Appendix A identifies the BreitBurn-operated engine(s) that are equipped with add-on control devices. This information is stored and updated on a BreitBurn database or spreadsheet. Appendix B also lists the operating variables of the engines.

2.2 **Operation of Catalytic Converters**

For both 3-way and oxidation catalysts, the hot exhaust gases from the engine pass through a catalytic reduction bed, where the reduction and oxidation occur. An oxidation catalyst requires higher oxygen levels to allow the converter bed to oxidize the CO, VOC and trace organic TACs/HAPs. The exhaust gases then pass out a stack.

2.3 Critical Criteria

The preventative maintenance of the engines is primarily done to keep the engine operating properly and to extend its useful life. Any major malfunction of the engine will lead to its being taken out of service for repair. Each engine has a control panel that will indicate critical malfunctions, and will initiate an engine shutdown if necessary. In the event of a shutdown, a third party mechanic is called out to repair the engine and a record of the event is made.

The critical criteria for the operation of the catalytic converter are the oxygen content of the incoming gases, the pressure drop across the catalyst bed and the inlet and outlet temperature. If the oxygen content is too high for a 3-way catalytic converter, the NO_x reduction reaction will not yield the desired 90 percent decrease in concentration. Similarly, for oxidation catalysts, if the oxygen level drops too low, the proper oxidation of CO, VOC and trace TACs/HAPs will decrease. For lean burn engines, the oxygen level should be enough to ensure that the oxygen content of the exhaust gases will remain adequate to allow proper oxidation. A high pressure drop may be an indication of plugging of the catalyst, and a very

low one may indicate the catalyst bed has leakage around or through it. A high outlet temperature may also be an indication of the need to shut down the unit to prevent burnout of the catalyst. Typical operating temperature ranges for 3-way catalysts are 750 deg. F to 1350 deg. F.

2.4 Catalyst Inspections and Maintenance

In order to reduce the chance of fouling problems with either 3-way and oxidation catalysts, if an engine is new or major maintenance is performed, the engine may run for up to 100 hours without the catalyst installed. The engine may run without the catalytic converter a maximum of 200 hours per year. Records will be maintained of the engine hours of operation without the catalyst insert installed. All catalysts will be equipped with pre- and post-catalyst temperature sensors. All engines equipped with catalysts will automatically shut down in the event that the sensors indicate that the post-catalyst temperature exceeds 1350 degrees F. If the post-catalyst temperature on a 3-way catalyst is less than the pre-catalyst temperature, a mechanic will be called out to investigate. Temperature rise will not be used as a measure of oxidation catalyst performance. The preventative maintenance schedule for BreitBurn engines and catalysts is included as Table 1. A log of all inspections and maintenance work will be maintained in a BreitBurn database or spreadsheet. A schedule is maintained for each engine and its add-on control devices.

2.5 Spare Parts

Spare washed catalyst elements and engine parts will be maintained in a third party warehouse for use when a catalyst has been removed for maintenance. Each spare insert will be washed in accordance with the Table 2 schedule. Catalyst insert kits, oxygen sensors for air fuel ratio controllers, and extra temperature probes, stepper motor as well as a harness will be supplied by a third party.

2.6 Key Operating Variables and Corrective Procedures in the Event of a Malfunction

See Table 2 for a summary of the key operating variables and corrective actions for each malfunction.

3.0 RECORDKEEPING

Records of engine operating hours and maintenance are maintained and updated on BreitBurn's data server in a database or in spreadsheet form.

BreitBurn will keep all records necessary for demonstrating compliance with this PM/MAP. Records will be made available within two weeks from the date of request by the MDEQ.

4.0 UPDATES

If BreitBurn experiences a malfunction that is not properly addressed in this Preventative Maintenance and Malfunction Abatement Plan, it will be updated and submitted to the AQD District Supervisor for review and approval.

Item	Activity	<u>Equipment</u> Status	Frequency
Engine	Mini Service ✓ Check and adjust valves ✓ Check engine compression ✓ Check timing ✓ Check fuel pressure ✓ Check air filter ✓ Change pre air filter ✓ Check all kill devices ✓ Inspect hoses and belts ✓ Inspect spark plugs	Off line	Every 60-90 days
Engine	Major Service ✓ Perform mini service as listed above, and ✓ Change motor oil and filter, as necessary, by sampling oil every 30 days, and submitting for an oil analysis	Off line	Approximately ever 2,160 hours of engine operation, or if oil analysis indicates need.
Engine	 Swing/overhaul Replace existing engine with new/refurbished engine. When new/rebuilt engine is installed or major maintenance is performed, the unit will be run without the catalyst, if applicable, for up to 100 hours per event. This prevents the catalyst from becoming damaged due to lubricants left in the engine and gives the valves and piston rings time to seat and seal. 	Off line	Approximately ever 75,000 hours of engine operation, or as needed.
Catalyst	Check differential pressure across catalyst. Establish baseline ΔP each time a new or cleaned CC insert is installed at normal operating conditions (rpm's). Check monthly. If greater than baseline ΔP by 2" WC @80- 100percent max rpm, then inspect catalyst and take actions based on findings.	On line	Monthly
Catalyst	 Check inlet and outlet temperatures across catalyst. The pre-catalyst temperature is less than 750°F, or other minimum temperature established through testing, a mechanic will be called out to investigate. The post-catalyst temperature exceeds 1350°F, the engine will be shut down. If the ΔT across CC is negative, mechanic will evaluate cause and determine a resolution, based on history and degree of change. May 	On line	Daily

Item	Activity	Equipment Status	Frequency
	establish engine specific ΔT through testing. Must document conclusions, and actions.	D.	
Catalyst	The catalytic converter shall be removed, inspected and cleaned at least once per 12-18 months. Cleaning will consist of vacuuming or blowing clean the catalyst face and clearing fouling and built-up ash. If the catalyst does not respond to the annual vacuum or blowing treatment, the catalyst will be removed, shipped to the manufacturer, and washed. A "washed swing" catalyst insert shall be used until a new or refurbished catalyst is installed. The used catalyst will not be returned to service unless it can be rejuvenated. Replace the gaskets (typically at the same time the catalyst is washed or serviced).	Off line	Every 12 -18 months of catalyst operating time, or in the event of an engine malfunction where foreign fluids cause engine shutdown.
Catalyst	Remove catalyst insert and wash in chemical solution to remove surface contamination. Replace with clean or fresh "swing" insert during cleaning process.	Off line	Every 18-24 months of operation.
Catalyst	Replace catalyst insert. Off line If not fu properly cleaning		If not functioning properly after vendo cleaning, or in lieu o vendor cleaning.
AFRC	Replace oxygen sensor.	On or off line	After 90-110 days of operation or if AFRO unit or lifetime sense indicates need.
Emission Reduction Testing	For CO and NO_x . BreitBurn will do one of the following: a) inlet and outlet testing and estimate destruction efficiency; b) outlet testing and check for gm/hp-hr compared to levels used for permitting; or c) outlet testing and use the uncontrolled vendor data to establish a destruction efficiency.	On line	Whenever new or refurbished catalyst inserted. Typically every 12-18 months when insert is serviced. Also as needed to identify alternate operating conditions.
Portable Emission Analyzer	Maintenance and calibration.	On or off line	As required by mfg' manuals.

-				
Responsible Supervisor	Third Party Mechanic	Third Party Mechanic	Third Party Mechanic	Third Party Mechanic
Corrective Procedure or Operational Change in the Event of a Malfunction	Re-synchronize the engine and the AFRC. If O ₂ level does not come into line, replace oxygen sensor within 5 days and readjust engine.	Remove and inspect catalyst insert within 3 days. Clean or replace if necessary.	Engine will automatically shut down at 1350 degrees F. For 3-way catalysts: If outlet temperature is less than inlet temperature, a mechanic will investigate and make appropriate repairs.	Inspect thermocouple. Clean, recheck, or replace if not functioning.
Normal Operating Range	0-1 percent O2	Established with installation of new or cleaned CC insert that a 2.5" WC Change in ∆P @ normal operating conditions. Varies by engine. Recorded in database	Must be below 1350 degrees F. For 3-way catalysts only: Outlet temperature must be equal to or greater than the catalytic inlet temperature	0 to 1400 °F
Frequency	Monthly	Monthly	Daily	As needed
Monitoring Method	Gauge or digital reading	Gauge or manometer	Thermocouple	Temperature read- outs. Check with independent thermocouple.
Operating Variable	Oxygen content of exhaust gases	2.5" WC Change in $\Delta P(\widehat{w})$ normal operating conditions	Inlet and Outlet temperatures	Temperature
Device Description	AFRC Oxygen Sensor	Catalyst	Catalyst	Thermocouple

Table 2 - BreitBurn Operating Variables and Remedial Actions

9
Appendix A Wilderness CO2 Equipment Information

Facility	PTI	SRN	aqd id	BB Unit Number	Type of Control	AFRC (yes/no)	Baseline DP	Engine	Engine Model	Rich or Lean Burn
WILDERNESS CO2	86-05A	N5831	EUENGINE6	CO2 - 1 CC	cc	YES	2.3	Waukesha	L-7042 GSI	RB
WILDERNESS CO2	- 86-05A	N5831	EUENGINE1	831 NA	NA	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE2	856 OC	00	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE3	885	oc	YES	NA	Caterpillar	3516	LB
WILDERNESS CO2	86-05A	N5831	EUENGINE4	907 OC	00	YES	NA	Caterpillar	3516	LB

EUENGINE6 BASELINE DP CHANGE (HISTORICAL)

ALO BASELINE DI CITANOLE (TILSTONOAL)	5.7	2.1	2/6/2015 VACCUMMED & INSPECTED	2.5	3.0	3/29/2016 Tested & DP is the same (3.0), no revision sent	2.3	6/27/2018 Remove EUENGINE5 from MAP	
ALO DAGLELINE I	3/3/2014	8/8/2014	2/6/2015	2/9/2015	7/27/2015	3/29/2016	10/30/2017	6/27/2018	

EUENGINE5 SHUT IN 11/10/14

m
×
di
en
d
AL.

BreitBurn Operating L.P. Preventative Maintenance and Malfunction Abatement Plan

reventative maintenance and manufiction Abate Field Report

Month & Year.

Unit #:_____

Location:

Location:

Equipment:

	Exhaust Temp	\backslash			\backslash																\backslash	
	Mech Initial																					
	Oil Level																					
	Oil Temp																					
	Oil Press																					
	Disch Temp	\backslash		\backslash	\backslash		\backslash					\backslash	\backslash	\backslash			\backslash			\backslash	\backslash	
	#3 int Temp		\backslash	\backslash	\backslash					\backslash	\backslash	\backslash	\backslash				\backslash				\backslash	
	#2 int Temp	\backslash		\backslash	\backslash	\backslash	\backslash			\backslash	\backslash	\backslash	\backslash	\backslash			\backslash			\backslash	\backslash	
s.N.:	#1 int Temp		\backslash		\backslash				\backslash	\backslash	\backslash	\backslash	\backslash	\backslash		\setminus	\backslash			\backslash	\setminus	
Comp. Model & S.N.:	Disch Press	_						fast in success														
Comp.	#3 int Press																					
ssor	#2 int Press																					
Compressor	#1 int Press																					
	Suct Press																					
	Water Level																					
	Water Temp																					
	Oil Level																					
	Oil Temp	-																				
k S.N.: Engine:	Oil Press																					•
Engine Model & S.N.: / Engine	RPM									~												I
Engine N	Date:	-	2	n	4	5	9	7	œ	6	10	11	12	13	14	15	16	17	18	19	20	i

PM MAP APPX B BreitBurn Compressor Field Report Page 1

Field Report Continued on Other Side

Appendix B

BreitBurn Operating Company, LP/Terra Energy, Ltd. Preventative Maintenance and Malfunction

anurcion	
	ent Plan
VC IVIAILIUCI I	Abatement Plar

Exhaust Temp	\backslash										\backslash
Mech Initial	e										
Oil Level		2									
Oil Temp	2									-	
Oil Press											
Disch Temp	\backslash										\backslash
#3 int Temp	\backslash	\backslash	\backslash	\backslash	\backslash	\backslash					
#2 int Temp	\backslash	\backslash	\backslash			\backslash	\backslash			\backslash	\backslash
#1 int Temp	\backslash	\backslash	\backslash			\backslash	\backslash			\backslash	\backslash
Disch Press											
#3 int Press											
#2 int Press											
#1 int Press											
Suct Press											
Water Level						4		31			
Water Temp											
Oil Level											
Oil Temp											
Dil									-		
RPM					-						
Date:	21	22	23	24	25	26	27	28	29	30	31

Down Time

AUNIS DOWN LINE	D	
Date	BB	Reason For Downtime
		A CARAMAN A CARAMAN A CARAMAN A CARAMANAN

PM MAP APPX B BreitBurn Compressor Field Report Page 2

Appendix C

BreitBurn Operating Company, L.P. Preventative Maintenance and Malfunction Abatement Plan COMPRESSOR SPECIFICATION SHEET

Facility/Unit #:					Packager:			Year Built:		
					Engine		all a set of the			
Manufacturer:				Modei:				Serial Numbe	er:	
Horsepower:				RPM:				Spec/Arrange	ement:	
Ignition/Make?:				Starter/Make?	?:			Governor/Ma	ke?:	
Low Emission (LE)?			AFRC/Make-I	Model?			Catalytic Con	verter-Make/M	odel?
Stack Height:				Exhaust Diam	neter:					
					Compressor					
Manufacturer:				Modei:				Serial Numbe	er:	
Throws:				Stages:				Stroke:	s 9	
RPM:				Horsepower:				Rod Load Ra	ting:	
					Cylinders					
Stage/Cyl#	Bo	ore	Class	MAWP	Serial N	Number	VVP/PI	ug/Plain	VVP	S/N
	2									
										t:
-			1.							
									50 	
					Cooler					The states
Manufacturer:				Model:				Serial Numbe	er:	
Sect	ion	MA	NP	Number	of Tubes	Number	of Rows	Lou	vers?	Year
EJ/	N						L			
TAY	N									
IC-			0							
IC-										
IC-										
AC										

Appendix C

BreitBurn Operating Company, L.P. Preventative Maintenance and Malfunction Abatement Plan COMPRESSOR SPECIFICATION SHEET

	Pressure	Vessels-Scrubber, Puls	atiion & Fuel Bottles		
-		National Board			Year
Stage / Type *	MAWP	Number	Serial Number	Diameter/Length	Built
16					
		4			
*S=Scrubber	SP=Suction Pulsation	DP=Discharg	Pulsation	FB=Fuei Bottle	
S-Scrubber	SF-Suction Fulsation	Panel Board	is i distation	1 D T WOLDOLLIO	TE MAN
Manufacturer:	Model:			er/Part Number:	
Tachometer:	Annuciator:		Division II?		
	· · · · · ·				
		Comments			
20 - ¹⁰					
Printed Name:	Signature:		Date:		

		North A	America Operations Services		Ticket Number:
Archrock.		Gen	eral Service Ticket		
Employee Name:		S. S. S. S. S.	W.O. Number:		
Employee ID:			W.O. Type:		
Unit Number:			Business Unit:		
Date:			Asset Group:		
Customer Name:				Engine	Compressor
Lease Name:		a wind and a set	Make		
Service Billable to Customer? (Y/N)	No		Model		
	24		Serial Number		
			Hour Meter	15 - 1 - 10	

Time Clock				
Activity Start Time		Note: Select Asset Group	Customer Downtime Code	Hrs Down
Activity Finish Time	12:00 AM			
Direct Time		Customer Downtime Code	Exterran Downtime Code	Hrs Down
Work (hours)		and Event		
Travel (hours)		Activity No.	Event - Code Description	Worked Hrs or Blowdown Events
Standby (hours)		1		
Total Miles Traveled		2		
Weather Condition		3		
Total Direct Hours	0.00	4		
Others Operation	ns Activities	Activity No.	Description	Worked Hrs
(MOB, D	EMOB, etc)	1		
		2		

Description/Code	Hours	Explanation of Work Performed	— 🔗 Spelli
Description/code		(Enter your comments here.)	
Total Indirect Hours	0.00		

Des	cription	Hours								
	in the second									
	1		in the second							
	Total Meal Hours	0.00								
Qty	Part Number	Descri	ption	Warehouse	Qty	Part Number		Desci	ription	Warehouse
0					0					
0		Nº CARA			0					
0					0					
0					0					
0					0					
0			1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -		0			1611	1997 (B-199	1918.22
0	Days at	\$ -	Per Diem =	\$ -	0	Nights at	\$		Per Night =	\$ -
ls Job Co	mplete? (Y/N)		Yes	Customer acknow Exterran's Publis	wledges and agre hed Rate Sheet u	ees all travel and liv unless other terms a	ing expen are agreed	ses shal d to prior	I be invoiced with r to commencem	n labor charges p ent of service
mployee Sig	nature:				Employee Name: (print)					
	actura				Customer					
Customer Sig	nature.	<i>*</i>			Name: (print)					

BREITBURN OPERATING LP APPENDIX E EMISSIONS TESTING EXAMPLE

Archrock.

Fuel Used - cu-ft/hr

Fuel Analysis - BTU/cu-ft 0

0

ENGINE EMISSIONS ANALYSIS

Customer:	BreitBurn		Engine CID:	0	
Location:	0		Engine RPM:	0	
Unit:	0		BMEP Calc:	#DIV/0!	
Serial Number:	0		Amb Temp F:	0	
Engine Model:	0		Date of Test:	01/00/00	
			Engine Timing:	0	
	the second se				
		DATA OB	SERVED		1
ENGINE		DATA OB	SERVED CONVERTE	R	
ENGINE NOx Observed - PPM	0	DATA OB		: R 0	
	0	DATA OB	CONVERTE		
NOx Observed - PPM	Ū.	DATA OB	CONVERTE NOx Observed - PPM	0	-

CALCULATED RESULTS						
	g/BHP-Hr	lbs/hr	TPY			
ENGINE NOX	#DIV/0!	0.00	0.00			
ENGINE CO	#DIV/0!	0.00	0.00			
CONVERTER NOX	#DIV/0!	0.00	0.00			
CONVERTER CO	#DIV/0!	0.00	0.00			

NOx CONVERSION	CO CONVERSION	RATIO: NO /	NO2
#DIV/0!	#DIV/0!	#DIV/0! /	#DIV/0!

Calculated results are derived from a series of emissions readings from the identified engine at the conditions listed. Test instrument reads NO and NO2 separately with NOx based on the combined total and calculated as NO2. Concentrations in PPMv are given at the observed O2 levels with no correction factor made. Engine loading is confirmed using WPI proprietary software and / or driven equipment loading. Test instrument is spanned with known gas concentrations before each series of tests. Printout of the raw data is attached. Test instrument is an electro-chemical cell type. Method of calculation is per EPA Method 19 based on fuel usage and analysis.

226A East 16th Street Traverse City, Michigan 49684 Phone: (231) 922-7302 Fax: (231) 922-0892

DEQ/AQD Received Date: 11-19-18 Renewal Application No. 201800149

Shane Nixon Michigan Department of Environmental Quality Air Quality Division 2100 West M-32 Gaylord, Michigan 49735-9282 January 7, 2019

Re: Permit Renewal Application Hayes 29 CPF MI-PTI-N5831-2014 (EUENGINE29)

Dear Shane:

Enclosed with this cover letter is the ROP Permit renewal package for the above referenced facility. The package consists of the ROP application, the permit markup, the PMMAP, and the 2017 MAERS report. Please note the MAERS report was submitted by Breitburn Operating L.P. The emission sources applicable to this permit application are EUENGINE29 and EUDEHY.

Please contact me at (231)941-4772 if you have any questions or need additional information regarding the application.

Sincerel **EHS**Advisor

Enclosures Xc: Bill Rogers – MDEQ, Gaylord Edward Nam - EPA Region 5 Air Quality

www.linnenergy.com

ROP Permit Application

DEQ

Michigan Department of Environmental Quality - Air Quality Division

RENEWABLE OPERATING PERMIT RENEWAL APPLICATION FORM

DEQ/AQD Received Date: 11-19-18 Renewal Application No. 201800149

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Refer to instructions for additional information to complete the Renewable Operating Permit Renewal Application Form.

GENERAL INSTRUCTIONS

This application form should be submitted as part of an administratively complete application package for renewal of a Renewable Operating Permit (ROP). This application form consists of nine parts. Parts A – H must be completed for all applications and must also be completed for each section of a sectioned ROP. Answer all questions in all parts of the form unless directed otherwise. Detailed instructions for this application form can be found at http://michigan.gov/air (select the Permits Tab, "Renewable Operating Permits (ROP)/Title V", then "ROP Forms & Templates").

PART A: GENERAL INFORMATION

Enter information about the source, owner, contact person and the responsible official.

SOURCE INFORMATION

SRN N5831	SIC Code	NAICS Code 211111	Existing ROP Number		Section Number (if applicable)
Source Name LINN Operatin	ng, LLC- Hayes 2	9 CPF			
Street Address 10875 Geronir	mo Trail				
City Gaylord		State MI	ZIP Code 49735	County Otsego	
	nge (if address not a 9N R04W SW1/4				
Check here	ocessing facility	that treats natural ove information is our existing ROP.		ppears in the existing	ROP. Identify any changes
OWNER INFO	RMATION				
Owner Name LINN Operatin	g, LLC- Hayes 2	9 CPF			Section Number (if applicable) 2
Mailing address ([226 E. Sixteen	☐ check if same as s th St.	ource address)			
^{City} Traverse City		State MI	ZIP Code 49686	County Grand Traverse	Country USA

Check here if any information in this ROP renewal application is confidential. Confidential information should be identified on an Additional Information (AI-001) Form.

Section Number (if applicable): 2

PART A: GENERAL INFORMATION (continued) At least one contact and responsible official must be identified. Additional contacts and responsible officials may be included if necessary.

ate	Cource addres	dress n@rvrare Title	visor County Grand Traverse esources.com	Country USA
ate ame as s	ZIP Code 49686 E-mail ad DLundii	dress n@rvrare Title	County Grand Traverse	
ate ame as s	ZIP Code 49686 E-mail ad DLundii	dress n@rvrare Title	Grand Traverse	
ame as so	49686 E-mail ad DLundin	dress n@rvrare Title	Grand Traverse	
	DLundin ource address	Title		
		5)		
State	ZIP Cod	e		
			County	Country
	E-mail a	ddress		
ION				
		Title Product	tion Manager	
ame as so	ource address	;)		
itate X	ZIP Code 77002	e	County	Country USA
			esources.com	
-		Title		
ime as so	ource address)		
tate	ZIP Code	9	County	Country
	E-mail ad	ldress		
	tate X me as so	ION Ime as source address tate ZIP Code X 77002 E-mail au arambu me as source address tate ZIP Code	Title Product ame as source address) tate ZIP Code X 77002 E-mail address arambur@rvrar Title me as source address)	ION Title Production Manager ume as source address) tate ZIP Code County X 77002 E-mail address arambur@rvraresources.com Title me as source address) tate ZIP Code County

Check here if an AI-001 Form is attached to provide more information for Part A. Enter AI-001 Form ID:

SRN: N5831	Section Number (if applicable):	2
------------	---------------------------------	---

PART B: APPLICATION SUBMITTAL and CERTIFICATION by Responsible Official

Identify the items that are included as part of your administratively complete application in the checklist below. For your application to be complete, it must include information necessary to evaluate the source and to determine all applicable requirements. Answer the compliance statements as they pertain to all the applicable requirements to which the source is subject. The source's Responsible Official must sign and date this form.

Listi	ng of ROP Application Contents. Check the box	for th	e items included with your application.
	Completed ROP Renewal Application Form (and any Al-001 Forms) (required)		Compliance Plan/Schedule of Compliance
	Mark-up copy of existing ROP using official version from the AQD website (required)		Stack information
	Copies of all Permit(s) to Install (PTIs) that have not been incorporated into existing ROP (required)		Acid Rain Permit Initial/Renewal Application
	Criteria Pollutant/Hazardous Air Pollutant (HAP) Potential to Emit Calculations		Cross-State Air Pollution Rule (CSAPR) Information
	MAERS Forms (to report emissions not previously submitted)		Confidential Information
	Copies of all Consent Order/Consent Judgments that have not been incorporated into existing ROP	\boxtimes	Paper copy of all documentation provided (required)
	Compliance Assurance Monitoring (CAM) Plan		Electronic documents provided (optional)
	Other Plans (e.g., Malfunction Abatement, Fugitive Dust, Operation and Maintenance, etc.)		Other, explain: AI-001 PMMAP

Compliance Statement

This source is in compliance with <u>all</u> of its applicable requirements, including those contained in the existing ROP, Permits to Install that have not yet been incorporated into that ROP, and other applicable requirements not currently contained in the existing ROP.

This source will continue to be in compliance with all of its applicable requirements, including those contained in the existing ROP, Permits to Install that have not yet been incorporated into that ROP, and other applicable requirements not currently contained in the existing ROP.

This source will meet in a timely manner applicable requirements that become effective during the permit term.

🛛 Yes 🗌 No

Yes No

XYes No

The method(s) used to determine compliance for each applicable requirement is/are the method(s) specified in the existing ROP, Permits to Install that have not yet been incorporated into that ROP, and all other applicable requirements not currently contained in the existing ROP.

If any of the above are checked No, identify the emission unit(s) or flexible group(s) affected and the specific condition number(s) or applicable requirement for which the source is or will be out of compliance at the time of issuance of the ROP renewal on an AI-001 Form. Provide a compliance plan and schedule of compliance on an AI-001 Form.

Name and Title of the Responsible Official (Print or Type)

ALLAN RAMBUR PRODUCTION MANAGER As a Responsible Official, I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this application are true, accurate, and complete.

Al- Jalo

Signature of Responsible Official

For Assistance Contact: 800-662-9278 3 of 12

www/michigan.gov/deq EQP 6000 (revised 7-2018)

12/4/18

Section Number (if applicable): 2

PART C: SOURCE REQUIREMENT INFORMATION

Answer the questions below for specific requirements or programs to which the source may be subject.

-			
C1.	Actual emissions and associated data from <u>all</u> emission units with applicable requirements (including those identified in the existing ROP, Permits to Install and other equipment that have not yet been incorporated into the ROP) are required to be reported in MAERS. Are there any emissions and associated data that have <u>not</u> been reported in MAERS for the most recent emissions reporting year? If <u>Yes</u> , identify the emission unit(s) that was/were not reported in MAERS on an AI-001 Form. Applicable MAERS form(s) for unreported emission units must be included with this application.	☐ Yes	No No
C2.	Is this source subject to the federal regulations on ozone-depleting substances? (40 CFR Part 82)] Yes	🛛 No
C3.	Is this source subject to the federal Chemical Accident Prevention Provisions? (Section 112(r) of the Clean Air Act Amendments, 40 CFR Part 68) If <u>Yes</u> , a Risk Management Plan (RMP) and periodic updates must be submitted to the USEPA. Has an updated RMP been submitted to the USEPA?	□ Yes	
C4.	Has this stationary source <u>added or modified</u> equipment since the last ROP renewal that changes the potential to emit (PTE) for criteria pollutant (CO, NOx, PM10, PM2.5, SO ₂ , VOC, lead) emissions? If <u>Yes</u> , include potential emission calculations (or the PTI and/or ROP revision application numbers, or other references for the PTE demonstration) for the added or modified equipment on an AI-001 Form.	☐ Yes	No No
C5.	If <u>No</u> , criteria pollutant potential emission calculations do not need to be included. Has this stationary source <u>added or modified</u> equipment since the last ROP renewal that changes the PTE for hazardous air pollutants (HAPs) regulated by Section 112 of the federal Clean Air Act? If <u>Yes</u> , include potential emission calculations (or the PTI and/or ROP revision application numbers or other references for the PTE demonstration) for the added or modified equipment on an AI-001 Form. Fugitive emissions <u>must</u> be included in HAP emission calculations. If <u>No</u> , HAP potential emission calculations do not need to be included.	Yes	⊠ No
C6.	Are any emission units subject to the Cross-State Air Pollution Rule (CSAPR)? If <u>Yes</u> , identify the specific emission unit(s) subject to CSAPR on an AI-001 Form.	🗌 Yes	No No
C7.	Are any emission units subject to the federal Acid Rain Program? If <u>Yes</u> , identify the specific emission unit(s) subject to the federal Acid Rain Program on an AI-001 Form.	☐ Yes	No No
	Is an Acid Rain Permit Renewal Application included with this application?	☐ Yes	🛛 No
C8.	Are any emission units identified in the existing ROP subject to compliance assurance monitoring (CAM)? If <u>Yes</u> , identify the specific emission unit(s) subject to CAM on an AI-001 Form. If a CAM plan has not been previously submitted to the MDEQ, one must be included with the ROP renewal application on an AI-001 Form. If the CAM Plan has been updated, include an updated copy.	Yes	No No
	Is a CAM plan included with this application? If a CAM Plan is included, check the type of proposed monitoring included in the Plan: 1. Monitoring proposed by the source based on performance of the control device, or 2. Presumptively Acceptable Monitoring, if eligible	☐ Yes	🗌 No
C9.	Does the source have any plans such as a malfunction abatement plan, fugitive dust plan, operation/maintenance plan, or any other monitoring plan that is referenced in an existing ROP, Permit to Install requirement, or any other applicable requirement?	🛛 Yes	□ No
	If <u>Yes</u> , then a copy must be submitted as part of the ROP renewal application.		
C10.	Are there any specific requirements that the source proposes to be identified in the ROP as non- applicable?	🗌 Yes	🖾 No
	If <u>Yes</u> , then a description of the requirement and justification must be submitted as part of the ROP renewal application on an AI-001 Form.		
	Check here if an AI-001 Form is attached to provide more information for Part C. Enter AI-001 Forr PMMAP	n ID: Al-	
		1000	NAME OF T

EQP 6000 (revised 7-2018)

Section Number (if applicable): 2

PART D: PERMIT TO INSTALL (PTI) EXEMPT EMISSION UNIT INFORMATION Review all emission units at the source and answer the question below.

D1. Does the source have any emission units that do not appear in the existing ROP but are required to be listed in the ROP application under R 336.1212(4) (Rule 212(4)) of the Michigan Air Pollution Control Rules? If <u>Yes</u>, identify the emission units in the table below.

Yes No

If No, go to Part E.

Note: Emission units that are subject to process specific emission limitations or standards, even if identified in Rule 212, must be captured in either Part G or H of this application form. Identical emission units may be grouped (e.g. PTI exempt Storage Tanks).

Emission Unit ID	Emission Unit Description	Rule 212(4) Citation [e.g. Rule 212(4)(c)]	Rule 201 Exemption Rule Citation [e.g. Rule 282(2)(b)(i)]
Comments:			
Check here if an A	AI-001 Form is attached to provide more informa	ation for Part D. Enter Al-	-001 Form ID: AI-

Section Number (if applicable): 2

PART E: EXISTING ROP INFORMATION

Review all emission units and applicable requirements (including any source wide requirements) in the <u>existing</u> ROP and answer the questions below as they pertain to <u>all</u> emission units and <u>all</u> applicable requirements in the existing ROP.

E1. Does the source propose to make any additions, changes or deletions to terms, conditions and underlying applicable requirements as they appear in the existing ROP?	🗌 Yes	
If Yes, identify changes and additions on Part F, Part G and/or Part H.		
E2. For each emission unit(s) identified in the existing ROP, <u>all</u> stacks with applicable requirements are to be reported in MAERS. Are there any stacks with applicable requirements for emission unit(s) identified in the existing ROP that were <u>not</u> reported in the most recent MAERS reporting year? If <u>Yes</u> , identity the stack(s) that was/were not reported on applicable MAERS form(s).	🗌 Yes	⊠ No
E3. Have any emission units identified in the existing ROP been modified or reconstructed that required a PTI?	🗌 Yes	No
If <u>Yes</u> , complete Part F with the appropriate information.		
E4. Have any emission units identified in the existing ROP been dismantled? If <u>Yes</u> , identify the emission unit(s) and the dismantle date in the comment area below or on an AI-001 Form. Comments:	☐ Yes	🛛 No
Check here if an AI-001 Form is attached to provide more information for Part E. Enter AI-001 Fo	rm ID: AI-	

Section Number (if applicable): 2

PART F: PERMIT TO INSTALL (PTI) INFORMATION Review all emission units and applicable requirements at the source and answer the following questions as they pertain to <u>all</u> emission units with PTIs. Any PTI(s) identified below must be attached to the application.

F1. Has the source been incorpora If <u>No</u> , go to Pa	ated into the existing	where the applicable requirements from the PTI have not g ROP? If <u>Yes</u> , complete the following table.	🗌 Yes 🖾 No			
Permit to Install Number	Inite/Eloviblo					
emission unit affected in the	s in the existing RO	ange, add, or delete terms/conditions to established P? If <u>Yes</u> , identify the emission unit(s) or flexible group(s) ow or on an AI-001 Form and identify all changes, additions, existing ROP.	Yes No			
the ROP? If Y	es, submit the PTIs	entify new emission units that need to be incorporated into as part of the ROP renewal application on an AI-001 Form, (s) or flexible group(s) in the mark-up of the existing ROP.	□ Yes □ No			
F4. Are there any s listed above the	stacks with applicab at were <u>not</u> reported	le requirements for emission unit(s) identified in the PTIs I in MAERS for the most recent emissions reporting year? If not reported on the applicable MAERS form(s).	□ Yes □ No			
or control devic	es in the PTIs listed	tive changes to any of the emission unit names, descriptions d above for any emission units not already incorporated into anges on an AI-001 Form.	Yes No			
Comments:						
Check here if	an Al-001 Form is a	ttached to provide more information for Part F. Enter AI-001 F	orm ID: AI-			

Section Number (if applicable): 2

PART G: EMISSION UNITS MEETING THE CRITERIA OF RULES 281(2)(h), 285(2)(r)(iv), 287(2)(c), OR 290

Review all emission units and applicable requirements at the source and answer the following questions.

IT <u>Yes</u> , identify the en	nission units in the table below. If <u>No</u> , go to Part H.	🗌 Yes 🛛 No
of each and an instal	ssion units were installed under the same rule above, provide a descripti lation/modification/reconstruction date for each.	on
Origin of Applicable Requirements	Emission Unit Description – Provide Emission Unit ID and a description of Process Equipment, Control Devices and Monitoring Devices	Date Emission Unit was Installed/ Modified/ Reconstructed
Rule 281(2)(h) or 285(2)(r)(iv) cleaning operation		Reconstructed
Rule 287(2)(c) surface coating line		
Rule 290 process with limited emissions		
Comments:		
		1000

Check here if an AI-001 Form is attached to provide more information for Part G. Enter AI-001 Form ID: AI-

SRN: N5831	Section Number (if applicable): 2
------------	-----------------------------------

PART H: REQUIREMENTS FOR ADDITION OR CHANGE

Complete this part of the application form for all proposed additions, changes or deletions to the existing ROP. This includes state or federal regulations that the source is subject to and that must be incorporated into the ROP or other proposed changes to the existing ROP. Do not include additions or changes that have already been identified in Parts F or G of this application form. If additional space is needed copy and complete an additional Part H.

Complete a separate Part H for each emission unit with proposed additions and/or changes.

H1	Are there changes that need to be incorporated into the ROP that have not been identified in Parts F and G? If <u>Yes</u> , answer the questions below.	☐ Yes	🛛 No
H2	Are there any proposed administrative changes to any of the existing emission unit names, descriptions or control devices in the ROP? If <u>Yes</u> , describe the changes in questions H8 – H16 below and in the affected Emission Unit Table(s) in the mark-up of the ROP.	[] Yes	No No
H3.	Does the source propose to add a new emission unit or flexible group to the ROP not previously identified in Parts F or G? If <u>Yes</u> , identify and describe the emission unit name, process description, control device(s), monitoring device(s) and applicable requirements in questions H8 – H16 below and in a new Emission Unit Table in the mark-up of the ROP. See instructions on how to incorporate a new emission unit/flexible group into the ROP.	Yes	No No
H4.	Does the source propose to add new state or federal regulations to the existing ROP?	2 Yes	No
	If <u>Yes</u> , on an AI-001 Form, identify each emission unit/flexible group that the new regulation applies to and identify <u>each</u> state or federal regulation that should be added. Also, describe the new requirements in questions H8 – H16 below and add the specific requirements to existing emission units/flexible groups in the mark-up of the ROP, create a new Emission Unit/Flexible Group Table, or add an AQD template table for the specific state or federal requirement.		
H5.	Has a Consent Order/Consent Judgment (CO/CJ) been issued where the requirements were not incorporated into the existing ROP? If <u>Yes</u> , list the CO/CJ number(s) below and add or change the conditions and underlying applicable requirements in the appropriate Emission Unit/Flexible Group Tables in the mark-up of the ROP.	Yes	No No
	Does the source propose to add, change and/or delete source-wide requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	No No
H7.	Are you proposing to streamline any requirements? If <u>Yes</u> , identify the streamlined and subsumed requirements and the EU ID, and provide a justification for streamlining the applicable requirement below.	[] Yes	No No

PART H: REQUIREMENTS FOR ADDITION OR CHANGE - (continued)

H8. Does the source propose to add, change and/or delete emission limit requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.] Yes	N
H9. Does the source propose to add, change and/or delete material limit requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	☐ Yes	N
H10. Does the source propose to add, change and/or delete process/operational restriction requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	Ves	No
H11.Does the source propose to add, change and/or delete design/equipment parameter requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	🗌 Yes	No
H12. Does the source propose to add, change and/or delete testing/sampling requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below. /erify NOx and CO emissions via alternative methods.	X Yes	No
H13.Does the source propose to add, change and/or delete monitoring/recordkeeping requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	☐ Yes	No
114.Does the source propose to add, change and/or delete reporting requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	🗌 Yes	No No
SRN: N5831 Section Number (i	f applicable): 2
	ww/michigan	

EQP 6000 (revised 7-2018)

PART H: REQUIREMENTS FOR ADDITION OR CHANGE - (continued)

H15.Does the source propose to add, change and/or delete stack/vent restrictions ? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	☐ Yes	🛛 No
H16.Does the source propose to add, change and/or delete any other requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	No No
H17.Does the source propose to add terms and conditions for an alternative operating scenario or intra-facility trading of emissions? If <u>Yes</u> , identify the proposed conditions in a mark-up of the corresponding section of the ROP and provide a justification below.	Yes	No No
Check here if an AI-001 Form is attached to provide more information for Part H. Enter AI-001 For	m ID: AI-	Testing

Michigan Department of Environmental Quality - Air Quality Division

RENEWABLE OPERATING PERMIT APPLICATION AI-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

	SRN: N5831	Section Number (if applicable): 2				
1. Additional Information ID AI-PMMAP						
Additional Information						
2. Is This Information Confidential?		□ Yes 🛛 No				
Question C9 Please find attached a Preventa LE compressor engine. The engine is an existi	tive Maintenance/ Malfunction ng 1085 horsepower lean burn	Abatement Plan for the Caterpillar 3516 n with an oxidation catalyst.				

ROP Permit Markup

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

EFFECTIVE DATE: August 4, 20142019

REVISION DATES: April 21, 20152020, June 5, 20172022

ISSUED TO:

Breitburn Operating, LP – Wilderness CO2 CPF and Linn Operating, LLC – Hayes 29 CPF

State Registration Number (SRN): N5831

LOCATED AT:

10875 Geronimo Trail, Gaylord, Otsego County, Michigan 49735

RENEWABLE OPERATING PERMIT

Permit Number: MI-ROP-N5831-2014b2019c

Expiration Date: August 4, 20192024

Administratively Complete ROP Renewal Application Due Between: February 4, 2018 and February 4, 2019

This Renewable Operating Permit (ROP) is issued in accordance with and subject to Section 5506(3) of Part 55, Air Pollution Control, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451). Pursuant to Michigan Air Pollution Control Rule 210(1), this ROP constitutes the permittee's authority to operate the stationary source identified above in accordance with the general conditions, special conditions and attachments contained herein. Operation of the stationary source and all emission units listed in the permit are subject to all applicable future or amended rules and regulations pursuant to Act 451 and the federal Clean Air Act.

SOURCE-WIDE PERMIT TO INSTALL

Permit Number: MI-PTI-N5831-2014b2019c

This Permit to Install (PTI) is issued in accordance with and subject to Section 5505(5) of Act 451. Pursuant to Michigan Air Pollution Control Rule 214a, the terms and conditions herein, identified by the underlying applicable requirement citation of Rule 201(1)(a), constitute a federally enforceable PTI. The PTI terms and conditions do not expire and remain in effect unless the criteria of Rule 201(6) are met. Operation of all emission units identified in the PTI is subject to all applicable future or amended rules and regulations pursuant to Act 451 and the federal Clean Air Act.

Michigan Department of Environmental Quality

Shane Nixon, Cadillac District Supervisor

2014b2019c

I

20192024

2014b2019c

ROP No: MI-ROP-N5831-Expiration Date: August 4, PTI No: MI-PTI-N5831-

TABLE OF CONTENTS

AUTHORITY AND ENFORCEABILITY	4
SECTION 1 – Breitburn Operating, LP - Wilderness CO2 CPF	5
A. GENERAL CONDITIONS	6
Permit Enforceability	6
General Provisions	6
Equipment & Design	7
Emission Limits	7
Testing/Sampling	7
Monitoring/Recordkeeping	7
Certification & Reporting	8
Permit Shield	9
Revisions Reopenings	.10
Renewals	. 10
Stratospheric Ozone Protection	10
Risk Management Plan	11
Emission Trading	.11
Permit To Install (PTI)	.11
B. SOURCE-WIDE CONDITIONS	
C. EMISSION UNIT CONDITIONS	
EMISSION UNIT SUMMARY TABLE	
D. FLEXIBLE GROUP CONDITIONS	
FLEXIBLE GROUP SUMMARY TABLE	17
FGCATENGINES	18
FGWAUKENGINES	.22
FGRURALSIRICEMACT	.27
E. NON-APPLICABLE REQUIREMENTS	
APPENDICES	.31
Appendix 1. Abbreviations and Acronyms	31
Appendix 2. Schedule of Compliance	.32
Appendix 3. Monitoring Requirements	.32
Appendix 4. Recordkeeping	.32
Appendix 5. Testing Procedures	.32
Appendix 6. Permits to Install	.32
Appendix 7. Emission Calculations	.33
Appendix 8. Reporting	
SECTION 2 – LINN Operating, LLC - Hayes 29 CPF	
A. GENERAL CONDITIONS	
Permit Enforceability	.35
Page 2 of 61	

2014b2019c

20192024

ROP No: MI-ROP-N5831-Expiration Date: August 4,

2014b2019c

ł

PTI No: MI-PTI-N5831-

General Provisions	35
Equipment & Design	
Emission Limits	
Testing/Sampling	
Monitoring/Recordkeeping	
Certification & Reporting	
Permit Shield	
Revisions	
Reopenings	
Renewals	
Stratospheric Ozone Protection	
Risk Management Plan	
Emission Trading	
Permit To Install (PTI)	
B. SOURCE-WIDE CONDITIONS	
C. EMISSION UNIT CONDITIONS	45
EMISSION UNIT SUMMARY TABLE	45
EUGLYCOLDEHYDRATOR	
EUENGINEH29	
EUMACTZZZZ	<u>54</u> 53
D. FLEXIBLE GROUP CONDITIONS	
E. NON-APPLICABLE REQUIREMENTS	
APPENDICES	5059
	ILTERATION OF SALECT STREET, PARTY
Appendix 1. Abbreviations and Acronyms	<u>59</u> 58
Appendix 2. Schedule of Compliance	<u>60</u> 59
Appendix 3. Monitoring Requirements	<u>60</u> 59
Appendix 4. Recordkeeping	
Appendix 5. Testing Procedures	
Appendix 6. Permits to Install	<u>60</u> 59
Appendix 7. Emission Calculations	<u>60</u> 59
Appendix 8. Reporting	<u>61</u> 60

2014b2019c 20192024

2014b2019c

ROP No: MI-ROP-N5831-Expiration Date: August 4, PTI No: MI-PTI-N5831-

AUTHORITY AND ENFORCEABILITY

For the purpose of this permit, the **permittee** is defined as any person who owns or operates an emission unit at a stationary source for which this permit has been issued. The **department** is defined in Rule 104(d) as the Director of the Michigan Department of Environmental Quality (MDEQ) or his or her designee.

The permittee shall comply with all specific details in the permit terms and conditions and the cited underlying applicable requirements. All terms and conditions in this ROP are both federally enforceable and state enforceable unless otherwise footnoted. Certain terms and conditions are applicable to most stationary sources for which an ROP has been issued. These general conditions are included in Part A of this ROP. Other terms and conditions may apply to a specific emission unit, several emission units which are represented as a flexible group, or the entire stationary source which is represented as a Source-Wide group. Special conditions are identified in Parts B, C, D and/or the appendices.

In accordance with Rule 213(2)(a), all underlying applicable requirements are identified for each ROP term or condition. All terms and conditions that are included in a PTI, are streamlined, subsumed and/or are state-only enforceable will be noted as such.

In accordance with Section 5507 of Act 451, the permittee has included in the ROP application a compliance certification, a schedule of compliance, and a compliance plan. For applicable requirements with which the source is in compliance, the source will continue to comply with these requirements. For applicable requirements with which the source is not in compliance, the source will comply with the detailed schedule of compliance requirements that are incorporated as an appendix in this ROP. Furthermore, for any applicable requirements effective after the date of issuance of this ROP, the stationary source will meet the requirements on a timely basis, unless the underlying applicable requirement requirement requires a more detailed schedule of compliance.

Issuance of this permit does not obviate the necessity of obtaining such permits or approvals from other units of government as required by law.

SECTION 1 – Breitburn Operating, LP - Wilderness CO2 CPF

The version same superprint with with social terms of this RDP. Very ROP Competitivity and developing of the terms of the second second

A station to a defender for the partitives to an after exact several relative to both the formulant of the formulant of the sound in the continuous of the SULT.

And 1939 for the meeting invited streament (or annex Thatling if a manatory) integricaling its a particistreament reaction or temporation of a nonlication of planted and contracted with an antiparticle of the stream star way in Property and the state of a nonlication of the contract of antipy of the plantics mains data way at the provided to be used on the scale of the contracted of the integrit of the plantics of mains.

The second or some alternal where the term and some structure of the deterministic open descripted to off the second in the spectrations of the terministic of the break where the second difference of the second of the second of the second terministic or second considered second considered second considered or version second secon

A reserve a step to and sound of register tensors, any price the longer bit he do make the registration of the state.

private and the state sectors which we are a state of

"Rounds And Mapping Miles

and the second state of th

A statistical providence of the statistical statistical statistical and the statistical statis

As multi-orders as specified at All 45, strages of morely at medicable different at more pression or specific at a provide strategy or plantation of the RGP or depleted at a specific at a specifi

The sumblement of furnity is the department which are encoded to be provided to be provided at distribution of the formed in the second second

A. GENERAL CONDITIONS

Permit Enforceability

- All conditions in this permit are both federally enforceable and state enforceable unless otherwise noted. (R 336.1213(5))
- Those conditions that are hereby incorporated in a state-only enforceable Source-Wide PTI pursuant to Rule 201(2)(d) are designated by footnote one. (R 336.1213(5)(a), R 336.1214a(5))
- Those conditions that are hereby incorporated in a federally enforceable Source-Wide PTI pursuant to Rule 201(2)(c) are designated by footnote two. (R 336.1213(5)(b), R 336.1214a(3))

General Provisions

- The permittee shall comply with all conditions of this ROP. Any ROP noncompliance constitutes a violation of Act 451, and is grounds for enforcement action, for ROP revocation or revision, or for denial of the renewal of the ROP. All terms and conditions of this ROP that are designated as federally enforceable are enforceable by the Administrator of the United States Environmental Protection Agency (USEPA) and by citizens under the provisions of the federal Clean Air Act (CAA). Any terms and conditions based on applicable requirements which are designated as "state-only" are not enforceable by the USEPA or citizens pursuant to the CAA. (R 336.1213(1)(a))
- It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this ROP. (R 336.1213(1)(b))
- 3. This ROP may be modified, revised, or revoked for cause. The filing of a request by the permittee for a permit modification, revision, or termination, or a notification of planned changes or anticipated noncompliance does not stay any ROP term or condition. This does not supersede or affect the ability of the permittee to make changes, at the permittee's own risk, pursuant to Rule 215 and Rule 216. (R 336.1213(1)(c))
- 4. The permittee shall allow the department, or an authorized representative of the department, upon presentation of credentials and other documents as may be required by law and upon stating the authority for and purpose of the investigation, to perform any of the following activities: (R 336.1213(1)(d))
 - a. Enter, at reasonable times, a stationary source or other premises where emissions-related activity is conducted or where records must be kept under the conditions of the ROP.
 - b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of the ROP.
 - c. Inspect, at reasonable times, any of the following:
 - i. Any stationary source.
 - ii. Any emission unit.
 - iii. Any equipment, including monitoring and air pollution control equipment.
 - iv. Any work practices or operations regulated or required under the ROP.
 - d. As authorized by Section 5526 of Act 451, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the ROP or applicable requirements.
- 5. The permittee shall furnish to the department, within a reasonable time, any information the department may request, in writing, to determine whether cause exists for modifying, revising, or revoking the ROP or to determine compliance with this ROP. Upon request, the permittee shall also furnish to the department copies of any records that are required to be kept as a term or condition of this ROP. For information which is claimed by the permittee to be confidential, consistent with the requirements of the 1976 PA 442, MCL §15.231 et seq., and known as the Freedom of Information Act, the person may also be required to furnish the records directly to the USEPA together with a claim of confidentiality. (R 336.1213(1)(e))

- 6. A challenge by any person, the Administrator of the USEPA, or the department to a particular condition or a part of this ROP shall not set aside, delay, stay, or in any way affect the applicability or enforceability of any other condition or part of this ROP. (R 336.1213(1)(f))
- 7. The permittee shall pay fees consistent with the fee schedule and requirements pursuant to Section 5522 of Act 451. (R 336.1213(1)(g))
- 8. This ROP does not convey any property rights or any exclusive privilege. (R 336.1213(1)(h))

Equipment & Design

- 9. Any collected air contaminants shall be removed as necessary to maintain the equipment at the required operating efficiency. The collection and disposal of air contaminants shall be performed in a manner so as to minimize the introduction of contaminants to the outer air. Transport of collected air contaminants in Priority I and II areas requires the use of material handling methods specified in Rule 370(2). (R 336.1370)
- 10. Any air cleaning device shall be installed, maintained, and operated in a satisfactory manner and in accordance with the Michigan Air Pollution Control rules and existing law. (R 336.1910)

Emission Limits

- 11. Unless otherwise specified in this ROP, the permittee shall comply with Rule 301, which states, in part, "Except as provided in subrules 2, 3, and 4 of this rule, a person shall not cause or permit to be discharged into the outer air from a process or process equipment a visible emission of a density greater than the most stringent of the following: (R 336.1301(1))
 - a. A 6-minute average of 20 percent opacity, except for one 6-minute average per hour of not more than 27 percent opacity.
 - b. A limit specified by an applicable federal new source performance standard.

The grading of visible emissions shall be determined in accordance with Rule 303.

- 12. The permittee shall not cause or permit the emission of an air contaminant or water vapor in quantities that cause, alone or in reaction with other air contaminants, either of the following:
 - a. Injurious effects to human health or safety, animal life, plant life of significant economic value, or property.¹ (R 336.1901(a))
 - b. Unreasonable interference with the comfortable enjoyment of life and property.¹ (R 336.1901(b))

Testing/Sampling

- 13. The department may require the owner or operator of any source of an air contaminant to conduct acceptable performance tests, at the owner's or operator's expense, in accordance with Rule 1001 and Rule 1003, under any of the conditions listed in Rule 1001(1). (R 336.2001)
- 14. Any required performance testing shall be conducted in accordance with Rule 1001(2), Rule 1001(3) and Rule 1003. (R 336.2001(2), R 336.2001(3), R 336.2003(1))
- 15. Any required test results shall be submitted to the Air Quality Division (AQD) in the format prescribed by the applicable reference test method within 60 days following the last date of the test. (R 336.2001(5))

Monitoring/Recordkeeping

- 16. Records of any periodic emission or parametric monitoring required in this ROP shall include the following information specified in Rule 213(3)(b)(i), where appropriate: (R 336.1213(3)(b))
 - a. The date, location, time, and method of sampling or measurements.
 - b. The dates the analyses of the samples were performed.
 - c. The company or entity that performed the analyses of the samples.

Page 7 of 61

- d. The analytical techniques or methods used.
- e. The results of the analyses.
- f. The related process operating conditions or parameters that existed at the time of sampling or measurement.
- 17. All required monitoring data, support information and all reports, including reports of all instances of deviation from permit requirements, shall be kept and furnished to the department upon request for a period of not less than 5 years from the date of the monitoring sample, measurement, report or application. Support information includes all calibration and maintenance records and all original strip-chart recordings, or other original data records, for continuous monitoring instrumentation and copies of all reports required by the ROP. (R 336.1213(1)(e), R 336.1213(3)(b)(ii))

Certification & Reporting

- 18. Except for the alternate certification schedule provided in Rule 213(3)(c)(iii)(B), any document required to be submitted to the department as a term or condition of this ROP shall contain an original certification by a Responsible Official which states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. (R 336.1213(3)(c))
- 19. A Responsible Official shall certify to the appropriate AQD District Office and to the USEPA that the stationary source is and has been in compliance with all terms and conditions contained in the ROP except for deviations that have been or are being reported to the appropriate AQD District Office pursuant to Rule 213(3)(c). This certification shall include all the information specified in Rule 213(4)(c)(i) through (v) and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the certification are true, accurate, and complete. The USEPA address is: USEPA, Air Compliance Data Michigan, Air and Radiation Division, 77 West Jackson Boulevard, Chicago, Illinois 60604. (R 336.1213(4)(c))
- 20. The certification of compliance shall be submitted annually for the term of this ROP as detailed in the special conditions, or more frequently if specified in an applicable requirement or in this ROP. (R 336.1213(4)(c))
- 21. The permittee shall promptly report any deviations from ROP requirements and certify the reports. The prompt reporting of deviations from ROP requirements is defined in Rule 213(3)(c)(ii) as follows, unless otherwise described in this ROP. (R 336.1213(3)(c))
 - a. For deviations that exceed the emissions allowed under the ROP, prompt reporting means reporting consistent with the requirements of Rule 912 as detailed in Condition 25. All reports submitted pursuant to this paragraph shall be promptly certified as specified in Rule 213(3)(c)(iii).
 - b. For deviations which exceed the emissions allowed under the ROP and which are not reported pursuant to Rule 912 due to the duration of the deviation, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe reasons for each deviation and the actions taken to minimize or correct each deviation.
 - c. For deviations that do not exceed the emissions allowed under the ROP, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe the reasons for each deviation and the actions taken to minimize or correct each deviation.
- 22. For reports required pursuant to Rule 213(3)(c)(ii), prompt certification of the reports is described in Rule 213(3)(c)(iii) as either of the following: (R 336.1213(3)(c))
 - a. Submitting a certification by a Responsible Official with each report which states that, based on information and belief formed after reasonable inquiry, the statements and information in the report are true, accurate, and complete.
 - b. Submitting, within 30 days following the end of a calendar month during which one or more prompt reports of deviations from the emissions allowed under the ROP were submitted to the department pursuant to Rule 213(3)(c)(ii), a certification by a Responsible Official which states that, "based on information and belief formed after reasonable inquiry, the statements and information contained in each of the reports submitted during the previous month were true, accurate, and complete". The certification shall include a listing of the reports that are being certified. Any report submitted pursuant to Rule 213(3)(c)(ii) that will be

certified on a monthly basis pursuant to this paragraph shall include a statement that certification of the report will be provided within 30 days following the end of the calendar month.

- 23. Semiannually for the term of the ROP as detailed in the special conditions, or more frequently if specified, the permittee shall submit certified reports of any required monitoring to the appropriate AQD District Office. All instances of deviations from ROP requirements during the reporting period shall be clearly identified in the reports. (R 336.1213(3)(c)(i))
- 24. On an annual basis, the permittee shall report the actual emissions, or the information necessary to determine the actual emissions, of each regulated air pollutant as defined in Rule 212(6) for each emission unit utilizing the emissions inventory forms provided by the department. (R 336.1212(6))
- 25. The permittee shall provide notice of an abnormal condition, start-up, shutdown, or malfunction that results in emissions of a hazardous or toxic air pollutant which continue for more than one hour in excess of any applicable standard or limitation, or emissions of any air contaminant continuing for more than two hours in excess of an applicable standard or limitation, as required in Rule 912, to the appropriate AQD District Office. The notice shall be provided not later than two business days after the start-up, shutdown, or discovery of the abnormal conditions or malfunction. Notice shall be by any reasonable means, including electronic, telephonic, or oral communication. Written reports, if required under Rule 912, must be submitted to the appropriate AQD District Supervisor within 10 days after the start-up or shutdown occurred, within 10 days after the abnormal conditions or malfunction has been corrected, or within 30 days of discovery of the abnormal conditions or malfunction, whichever is first. The written reports shall include all of the information required in Rule 912(5) and shall be certified by a Responsible Official in a manner consistent with the CAA. (**R 336.1912**)

Permit Shield

- 26. Compliance with the conditions of the ROP shall be considered compliance with any applicable requirements as of the date of ROP issuance, if either of the following provisions is satisfied. (R 336.1213(6)(a)(i), R 336.1213(6)(a)(ii))
 - a. The applicable requirements are included and are specifically identified in the ROP.
 - b. The permit includes a determination or concise summary of the determination by the department that other specifically identified requirements are not applicable to the stationary source.

Any requirements identified in Part E of this ROP have been identified as non-applicable to this ROP and are included in the permit shield.

- 27. Nothing in this ROP shall alter or affect any of the following:
 - a. The provisions of Section 303 of the CAA, emergency orders, including the authority of the USEPA under Section 303 of the CAA. (R 336.1213(6)(b)(i))
 - b. The liability of the owner or operator of this source for any violation of applicable requirements prior to or at the time of this ROP issuance. (R 336.1213(6)(b)(ii))
 - c. The applicable requirements of the acid rain program, consistent with Section 408(a) of the CAA. (R 336.1213(6)(b)(iii))
 - d. The ability of the USEPA to obtain information from a source pursuant to Section 114 of the CAA. (R 336.1213(6)(b)(iv))
- 28. The permit shield shall not apply to provisions incorporated into this ROP through procedures for any of the following:
 - a. Operational flexibility changes made pursuant to Rule 215. (R 336.1215(5))
 - b. Administrative Amendments made pursuant to Rule 216(1)(a)(i)-(iv). (R 336.1216(1)(b)(iii))
 - c. Administrative Amendments made pursuant to Rule 216(1)(a)(v) until the amendment has been approved by the department. (R 336.1216(1)(c)(iii))
 - d. Minor Permit Modifications made pursuant to Rule 216(2). (R 336.1216(2)(f))
 - e. State-Only Modifications made pursuant to Rule 216(4) until the changes have been approved by the department. (R 336.1216(4)(e))

29. Expiration of this ROP results in the loss of the permit shield. If a timely and administratively complete application for renewal is submitted not more than 18 months, but not less than 6 months, before the expiration date of the ROP, but the department fails to take final action before the end of the ROP term, the existing ROP does not expire until the renewal is issued or denied, and the permit shield shall extend beyond the original ROP term until the department takes final action. (R 336.1217(1)(c), R 336.1217(1)(a))

Revisions

- 30. For changes to any process or process equipment covered by this ROP that do not require a revision of the ROP pursuant to Rule 216, the permittee must comply with Rule 215. (R 336.1215, R 336.1216)
- 31. A change in ownership or operational control of a stationary source covered by this ROP shall be made pursuant to Rule 216(1). (R 336.1219(2))
- 32. For revisions to this ROP, an administratively complete application shall be considered timely if it is received by the department in accordance with the time frames specified in Rule 216. (R 336.1210(10))
- 33. Pursuant to Rule 216(1)(b)(iii), Rule 216(2)(d) and Rule 216(4)(d), after a change has been made, and until the department takes final action, the permittee shall comply with both the applicable requirements governing the change and the ROP terms and conditions proposed in the application for the modification. During this time period, the permittee may choose to not comply with the existing ROP terms and conditions proposed in the application seeks to change. However, if the permittee fails to comply with the ROP terms and conditions proposed in the application during this time period, the terms and conditions in the ROP are enforceable. (R 336.1216(1)(c)(iii), R 336.1216(2)(d), R 336.1216(4)(d))

Reopenings

- 34. A ROP shall be reopened by the department prior to the expiration date and revised by the department under any of the following circumstances:
 - a. If additional requirements become applicable to this stationary source with three or more years remaining in the term of the ROP, but not if the effective date of the new applicable requirement is later than the ROP expiration date. (R 336.1217(2)(a)(i))
 - b. If additional requirements pursuant to Title IV of the CAA become applicable to this stationary source. (R 336.1217(2)(a)(ii))
 - c. If the department determines that the ROP contains a material mistake, information required by any applicable requirement was omitted, or inaccurate statements were made in establishing emission limits or the terms or conditions of the ROP. (R 336.1217(2)(a)(iii))
 - d. If the department determines that the ROP must be revised to ensure compliance with the applicable requirements. (R 336.1217(2)(a)(iv))

Renewals

35. For renewal of this ROP, an administratively complete application shall be considered timely if it is received by the department not more than 18 months, but not less than 6 months, before the expiration date of the ROP. (R 336.1210(8))

Stratospheric Ozone Protection

36. If the permittee is subject to Title 40 of the Code of Federal Regulations (CFR), Part 82 and services, maintains, or repairs appliances except for motor vehicle air conditioners (MVAC), or disposes of appliances containing refrigerant, including MVAC and small appliances, or if the permittee is a refrigerant reclaimer, appliance owner or a manufacturer of appliances or recycling and recovery equipment, the permittee shall comply with all applicable standards for recycling and emissions reduction pursuant to 40 CFR Part 82, Subpart F.

37. If the permittee is subject to 40 CFR Part 82, and performs a service on motor (fleet) vehicles when this service involves refrigerant in the MVAC, the permittee is subject to all the applicable requirements as specified in 40 CFR Part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners. The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed by the original equipment manufacturer. The term MVAC as used in Subpart B does not include the air-tight sealed refrigeration system used for refrigerated cargo or an air conditioning system on passenger buses using Hydrochlorofluorocarbon-22 refrigerant.

Risk Management Plan

- 38. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall register and submit to the USEPA the required data related to the risk management plan for reducing the probability of accidental releases of any regulated substances listed pursuant to Section 112(r)(3) of the CAA as amended in 40 CFR 68.130. The list of substances, threshold quantities, and accident prevention regulations promulgated under 40 CFR Part 68, do not limit in any way the general duty provisions under Section 112(r)(1).
- 39. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall comply with the requirements of 40 CFR Part 68, no later than the latest of the following dates as provided in 40 CFR Part 68.10(a):
 - a. June 21, 1999,
 - b. Three years after the date on which a regulated substance is first listed under 40 CFR Part 68.130, or
 - c. The date on which a regulated substance is first present above a threshold quantity in a process.
- 40. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall submit any additional relevant information requested by any regulatory agency necessary to ensure compliance with the requirements of 40 CFR Part 68.
- 41. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall annually certify compliance with all applicable requirements of Section 112(r) as detailed in Rule 213(4)(c)). (40 CFR Part 68)

Emission Trading

42. Emission averaging and emission reduction credit trading are allowed pursuant to any applicable interstate or regional emission trading program that has been approved by the Administrator of the USEPA as a part of Michigan's State Implementation Plan. Such activities must comply with Rule 215 and Rule 216. (R 336.1213(12))

Permit To Install (PTI)

- 43. The process or process equipment included in this permit shall not be reconstructed, relocated, or modified unless a PTI authorizing such action is issued by the department, except to the extent such action is exempt from the PTI requirements by any applicable rule. ² (R 336.1201(1))
- 44. The department may, after notice and opportunity for a hearing, revoke PTI terms or conditions if evidence indicates the process or process equipment is not performing in accordance with the terms and conditions of the PTI or is violating the department's rules or the CAA. ² (R 336.1201(8), Section 5510 of Act 451)
- 45. The terms and conditions of a PTI shall apply to any person or legal entity that now or hereafter owns or operates the process or process equipment at the location authorized by the PTI. If a new owner or operator submits a written request to the department pursuant to Rule 219 and the department approves the request, this PTI will be amended to reflect the change of ownership or operational control. The request must include all of the information required by Subrules (1)(a), (b) and (c) of Rule 219. The written request shall be sent to the appropriate AQD District Supervisor, MDEQ.² (R 336.1219)
- 46. If the installation, reconstruction, relocation, or modification of the equipment for which PTI terms and conditions have been approved has not commenced within 18 months, or has been interrupted for 18 months,

the applicable terms and conditions from that PTI shall become void unless otherwise authorized by the department. Furthermore, the person to whom that PTI was issued, or the designated authorized agent, shall notify the department via the Supervisor, Permit Section, MDEQ, AQD, P. O. Box 30260, Lansing, Michigan 48909, if it is decided not to pursue the installation, reconstruction, relocation, or modification of the equipment allowed by the terms and conditions from that PTI.² (R 336.1201(4))

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

B. SOURCE-WIDE CONDITIONS

Part B outlines the Source-Wide Terms and Conditions that apply to this stationary source. The permittee is subject to these special conditions for the stationary source in addition to the general conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply to this source, NA (not applicable) has been used in the table. If there are no Source-Wide Conditions, this section will be left blank.

SOURCE-WIDE CONDITIONS

POLLUTION CONTROL EQUIPMENT:

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	224 tons ²	12-month rolling time period, as determined at the end of each calendar month		SC VI.2	R 336.1205(3)
2.	со	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
3.	Each Individual HAP	Less than 10 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R336.1213(2)(d)
4.	Total HAPs	Less than 25 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R336.1213(2)(d)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

1. The permittee shall only burn sweet natural gas in all natural gas fired equipment.² (R 336.1205(3))

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years.² (R 336.1213(3)(b)(ii))

 The permittee shall complete all required calculations in a format acceptable to the AQD District Supervisor and make them available by the last day of the calendar month, for the previous calendar month.² (R336.1205(3), R 336.213(3))
- The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period CO and NOx emission calculation records for the Stationary Source, to demonstrate compliance with Special Conditions (SC) I.1 and I.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R336.1205(3), R 336.213(3))
- The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period HAP emission calculation records for the Stationary Source, as required in SC I.3 and I.4 above. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R336.1213(2)(d))

See Appendix 7

VII. <u>REPORTING</u>

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
NA	NA	NA	NA

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

C. EMISSION UNIT CONDITIONS

Part C outlines terms and conditions that are specific to individual emission units listed in the Emission Unit Summary Table. The permittee is subject to the special conditions for each emission unit in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no conditions specific to individual emission units, this section will be left blank.

EMISSION UNIT SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Emission Unit ID	Emission Unit Description (Including Process Equipment & Control Device(s))	Installation Date/ Modification Date	Flexible Group ID
EUENGINE1	Remote 1,085 hp Caterpillar 3516 LE (low emission) reciprocating internal combustion engine (RICE)	11/01/92	FGCATENGINES
EUENGINE2	Remote 1,085 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
EUENGINE3	Remote 1,085 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
EUENGINE4	Remote 1,150 hp Caterpillar 3516 LE (low emission) RICE with oxidation catalyst	03/20/06	FGCATENGINES
EUENGINE5	Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE, with 3-way catalytic converter and air to fuel ratio control (AFRC) On February 23, 2015, the facility revised minor modification application No. 201500014 to consider the engine "shut-in" and would test the engine within 90 days of bringing it back online. EUENGINE5 was shut down and placed in stand-by mode effective November 10, 2014.	11/01/92	FGWAUKENGINES
EUENGINE6	Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE, with 3-way catalytic converter and AFRC	11/01/92	FGWAUKENGINES

D. FLEXIBLE GROUP CONDITIONS

Part D outlines the terms and conditions that apply to more than one emission unit. The permittee is subject to the special conditions for each flexible group in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no special conditions that apply to more than one emission unit, this section will be left blank.

FLEXIBLE GROUP SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Flexible Group ID	Flexible Group ID Flexible Group Description	
FGCATENGINES	Remote Caterpillar 3516 LE (low emission) reciprocating internal combustion engines (RICE)	EUENGINE1, EUENGINE2, EUENGINE3, and EUENGINE4,
FGWAUKENGINES	Remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE controlled by 3-way catalytic converters, subject to 40 CFR Part 64 Compliance Assurance Monitoring (CAM) requirements	EUENGINE5 and EUENGINE6
FGRURALSIRICEMACT Existing non-emergency Spark Ignition (SI) 4 Stroke Economic Stroke Rich Burn (4SLB) and existing non-emergency SI 4 Stroke Rich Burn (4SRB) stationary RICE with site ratings greater than 500 HP located at an area source of HAPs, that meet the definition of remote stationary RICE in 40 CFR 63.6675		EUENGINE1, EUENGINE2, EUENGINE3, EUENGINE4, EUENGINE5, and EUENGINE6

FGCATENGINES FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

Four remote Caterpillar 3516 LE (low emission) RICE

Emission Units: EUENGINE1, EUENGINE2, EUENGINE3, and EUENGINE4

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst (EUENGINE2, EUENGINE3, and EUENGINE4)

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE1	SC V.1 and SC VI.7	R 336.1205(3)
1.	CO	20.8 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE1	SC V.1 and SC VI.7	R 336.1205(3)
2.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE2	SC V.1 and SC VI.7	R 336.1205(3)
3.	со	4.5 tons ²	12-month-rolling time period, as determined at the end of each calendar month	EUENGINE2	SC V.1 and SC VI.7	R 336.1205(3)
4.	NOx	23.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE3	SC V.1 and SC VI.7	R 336.1205(3)
5.	CO	4.5 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE3	SC V.1 and SC VI.7	R 336.1205(3)
6.	NOx	24.4 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE4	SC V.1 and SC VI.7	R 336.1205(3)
7.	СО	4.2 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE4	SC V.1 and SC VI.7	R 336.1205(3)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 2. The permittee shall not operate FGCATENGINES unless the MAP, approved by the AQD District Supervisor, is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:
 - a. Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel responsible for overseeing the inspection, maintenance, and repair.
 - b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.
 - c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.
 - d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.
 - e. A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequacies.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 4. The permittee shall utilize a differential pressure gauge or manometer for any engine with an oxidation catalyst, to monitor the operation of the oxidation catalyst as an indicator of proper operation. The appropriate range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))
- The permittee shall utilize a temperature gauge or thermocouple for any engine with an oxidation catalyst, to monitor the operation of the oxidation catalyst, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple in accordance with the manufacturer's recommendations for any engine with an oxidation catalyst. (R 336.1213(3)(a)(iii))

V. <u>TESTING/SAMPLING</u>

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

1. The permittee shall verify NOx and CO emissions from each engine in FGCATENGINES, by testing at owners expense, within nine months of issuance of this permit, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R336.2003, R336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- 1. The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in FGCATENGINES on a monthly basis. (R 336.1205(3), R 336.1213(3))
- 2. The permittee shall monitor and record the differential pressure gauge or monometer on any engine with an oxidation catalyst in FGCATENGINES, on a monthly basis. (R 336.1213(3)(a)(iii))
- 3. The permittee shall monitor and record the inlet temperature and outlet temperature on any engine with an oxidation catalyst in FGCATENGINES, on a daily basis. (R 336.1213(3)(a)(iii))
- 4. The permittee shall maintain a log of all maintenance activities conducted according to the PM/MAP. The permittee shall keep this log on file at a location approved by the district supervisor and make it available upon request.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)
- 5. The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device monthly and 12-month rolling time period records of the hours of each engine included in FGCATENGINES is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 6. The permittee shall keep, in a satisfactory manner, monthly fuel use records for each engine included in FGCATENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 7. The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for each engine included in FGCATENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 8. If any engine included in FGCATENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. **(R 336.1213(3))**

See Appendix 7

VII. <u>REPORTING</u>

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

- 4. The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 5. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))
- If any engine included in FGCATENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements	
1. SVENGINE1	16 ¹	37.5 ¹	R 336.1225	
2. SVENGINE2	16 ¹	37.5 ¹	R 336.1225	
3. SVENGINE3	16 ¹	37.5 ¹	R 336.1225	
4. SVENGINE4	16 ¹	37.5 ¹	R 336.1225	

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

FGWAUKENGINES FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

Two remote 1,478 hp Waukesha L-7042 GSI (rich burn) RICE

Emission Unit: EUENGINE5 and EUENGINE6

POLLUTION CONTROL EQUIPMENT:

3-way catalytic converters

I. EMISSION LIMIT(S)

	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	24.6 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE5	SC V.1 and SC VI.11	R 336.1205(3)
2.	со	41.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE5	SC V.1 and SC VI.11	R 336.1205(3)
3.	NOx	24.6 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE6	SC V.1 and SC VI.11	R 336.1205(3)
4.	СО	41.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINE6	SC V.1 and SC VI.11	R 336.1205(3)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

1. The permittee shall only burn sweet natural gas in FGWAUKENGINES.² (R 336.1205(3))

2. The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))

- 3. The permittee shall not operate FGWAUKENGINES unless the MAP, approved by the AQD District Supervisor, is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:
 - a. Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel responsible for overseeing the inspection, maintenance, and repair.
 - b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.
 - c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.
 - d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.
 - e. A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequacies.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- 4. The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 5. The permittee shall utilize a differential pressure gauge or manometer for any engine with a catalytic converter, to monitor the operation of the catalytic converter as an indicator of proper operation. The appropriate range defining the proper operation of the catalytic converter is identified in the MAP. (R 336.1213(3)(a)(i))
- The permittee shall utilize a temperature gauge or thermocouple for any engine with a catalytic converter, to monitor the operation of the catalytic converter, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the catalytic converter is identified in the MAP. (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple gauge in accordance with the manufacturer's recommendations. (40 CFR 64.3(b)(2)(a), (R 336.1213(3)(a)(iii))

V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- 1. The permittee shall verify NOx and CO emissions from EUENGINE5, by testing at owner's expense, within 90 days of start-up, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)
- The permittee shall verify NOx and CO emissions from EUENGINE6, by testing at owner's expense, within nine months of issuance of this permit, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

1. The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in FGWAUKENGINES on a monthly basis. (R 336.1205(3), R 336.1213(3))

- 2. The permittee shall utilize a differential pressure gauge or manometer to monitor the operation of the catalytic converter as an indicator of proper operation. The appropriate range defining the proper operation of the catalytic converter is identified in the MAP. (40 CFR 64.6(c)(1)(i)), 40 CFR 64.6(c)(1)(ii), R 336.1213(3)(a)(i))
- The permittee shall monitor and record the differential pressure gauge or monometer on EUENGINE5 and EUENGINE6, on a monthly basis. (40 CFR 64.6(c)(1)(iii), 40 CFR 64.6(c)(3), 40 CFR 64.7(c), R 336.1213(3)(a)(i))
- An excursion for NOx and CO shall be a differential pressure gauge or manometer reading of 1.5 inches of water over or under the differential pressure under normal operating conditions identified in the MAP, which is determined when the catalytic converter is installed. (40 CFR 64.6(c)(2), R 336.1213(3)(a)(i))
- The permittee shall utilize a temperature gauge or thermocouple to monitor the operation of the catalytic converter, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the catalytic converter is identified in the MAP. (40 CFR 64.6(c)(1)(i)), 40 CFR 64.6(c)(1)(ii), R 336.1213(3)(a)(i))
- The permittee shall monitor and record the inlet temperature and outlet temperature on EUENGINE5 and EUENGINE6, on a daily basis. (40 CFR 64.6(c)(1)(iii), 40 CFR 64.6(c)(3), 40 CFR 64.7(c), R 336.1213(3)(a)(iii))
- 7. An excursion for NOx and CO shall be a temperature gauge or thermocouple reading less than 900°F at the inlet of the catalytic converter, or greater than 1250°F at the outlet of the catalytic converter, or the outlet temperature from the catalytic converter is less than the inlet temperature.² (40 CFR 64.6(c)(2))
- 8. The permittee shall maintain a log of all maintenance activities conducted according to the MAP. The permittee shall keep this log on file at a location approved by the district supervisor and make it available upon request.² (R 336.1205(3), R 336.1213(3), R 336.1225, R 336.1702(a), R 336.1911)
- 9. The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device monthly and 12-month rolling time period records of the hours of each engine included in FGWAUKENGINES is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 10. The permittee shall keep, in a satisfactory manner, monthly fuel use records for each engine included in FGWAUKENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 11. The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for each engine included in FGWAUKENGINES. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 12. If any engine included in FGWAUKENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(3))
- 13. Upon detecting an excursion or exceedance of the differential pressure, the permittee shall check sample lines, check RPM verses differential pressure and compare the reading to previous month's readings, remove the catalyst and replace gaskets, as necessary. Should the differential pressure still indicate an excursion (greater than 1.5 times the normal differential pressure), the catalyst shall be removed and washed or replaced. (40 CFR 64.7(d))
- 14. Upon detecting an excursion or exceedance of the temperature, the permittee shall check loading on the engine, check for a faulty gauge or thermocouple, and check for proper operation of the ignition system.

Should the above check be performed and the temperatures are still outside the specified ranges, the engine shall be shut down. (40 CFR 64.7(d))

See Appendix 7

VII. <u>REPORTING</u>

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))
- 4. Each semiannual report of monitoring and deviations shall include summary information on the number, duration and cause of excursions and/or exceedances and the corrective actions taken. If there were no excursions or exceedances in the reporting period, then this report shall include a statement that there were no excursions and/or exceedances. (40 CFR 64.9(a)(2)(i))
- 5. The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 6. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- 7. The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))
- If any engine included in FGWAUKENGINES is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
1. SVENGINE5	16 ¹	40 ¹	R 336.1225
2. SVENGINE6	16 ¹	40 ¹	R 336.1225

IX. OTHER REQUIREMENT(S)

1. The permittee shall comply with all applicable requirements of 40 CFR Part 64. (40 CFR Part 64)

<u>Footnotes</u>: ¹ This condition is state only enforceable and was established pursuant to Rule 201(1)(b). ² This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

FGRURALSIRICEMACT FLEXIBLE GROUP CONDITIONS

DESCRIPTION:

Existing non-emergency Spark Ignition (SI) 4 Stroke Lean Burn (4SLB) and existing non-emergency SI 4 Stroke Rich Burn (4SRB) stationary RICE with site ratings greater than 500 HP located at an area source of HAPs, that meet the definition of remote stationary RICE in 40 CFR 63.6675.

Compliance date is October 19, 2013

Emission Unit: EUENGINE1, EUENGINE2, EUENGINE3, EUENGINE4, EUENGINE5, EUENGINE6

POLLUTION CONTROL EQUIPMENT:

NA

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- The permittee shall be in compliance with the emission limitations, operating limitations and other requirements of Subpart ZZZZ of Part 63 at all times after the promulgated compliance date in Subpart ZZZZ of Part 63. (40 CFR 63.6605(a))
- 2. The permittee shall operate and maintain any affected RICE, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source. (40 CFR 63.6605(b))
- 3. The permittee shall comply with the following requirements, for each 4SLB and 4SRB remote stationary RICE with a site rating greater than 500 brake HP, by the applicable compliance date. (40 CFR 63.6603(a) and Table 2d)
 - a. Change oil and filter every 2,160 hours of operation or annually, whichever comes first, except as allowed in SC III.4.

- b. Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.
- c. Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary.
- 4. The permittee may utilize an oil analysis program in order to extend the specified oil change requirement in 40 CFR 63.6603 and as listed in SC III.3. The oil analysis program must be performed at the same frequency as oil changes are required. The analysis program must analyze the parameters and keep records as required in Part 63.6625(j) for SI engines. (40 CFR 63.6625(j))

IV. DESIGN/EQUIPMENT PARAMETER(S)

- The permittee shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Table 2d of Subpart ZZZZ, apply. (40 CFR 63.6625(h))
- 2. The permittee shall operate and maintain the stationary RICE according to the manufacturer's emission-related written instructions or develop you own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air-pollution control practice for minimizing emissions. (40 CFR 63.6640(a), Table 6)

V. TESTING/SAMPLING

1. If using the oil analysis program for SI Engine(s), the permittee shall test for Total Acid Number, viscosity and percent water content. (40 CFR 63.6625(j))

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- By the compliance date, and every 12 months thereafter, the permittee must evaluate the status of their existing stationary SI RICE and document that the SI RICE meets the definition of remote stationary RICE in 40 CFR 63.6675. 40 CFR 63.6675 defines Remote stationary RICE as stationary RICE meeting any of the following criteria:
 - a. Stationary RICE located in an offshore area that is beyond the line of ordinary low water along that portion of the coast of the United States that is in direct contact with the open seas and beyond the line marking the seaward limit of inland waters.
 - b. Stationary RICE located on a pipeline segment that meets both of the criteria in paragraphs (b)(i) and (ii) of this definition.
 - i. A pipeline segment with 10 or fewer buildings intended for human occupancy within 220 yards (200 meters) on either side of the centerline of any continuous 1-mile (1.6 kilometers) length of pipeline. Each separate dwelling unit in a multiple dwelling unit building is counted as a separate building intended for human occupancy.
 - ii. The pipeline segment does not lie within 100 yards (91 meters) of either a building or a small, welldefined outside area (such as a playground, recreation area, outdoor theater, or other place of public assembly) that is occupied by 20 or more persons on at least 5 days a week for 10 weeks in any 12 month period. The days and weeks need not be consecutive. The building or area is considered occupied for a full day if it is occupied for any portion of the day.
 - iii. For purposes of this paragraph (b), the term pipeline segment means all parts of those physical facilities through which gas moves in transportation, including but not limited to pipe, valves, and other appurtenance attached to pipe, compressor units, metering stations, regulator stations, delivery stations, holders, and fabricated assemblies. Stationary RICE located within 50 yards (46 m) of the pipeline segment providing power for equipment on a pipeline segment are part of the pipeline segment. Transportation of gas means the gathering, transmission, or distribution of gas by pipeline, or the storage of gas. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans.

- c. Stationary RICE that are not located on gas pipelines and that have or fewer buildings intended for human occupancy within a 0.25 mile radius around the engine. A building is intended for human occupancy if its primary use is for a purpose involving the presence of humans. (40 CFR 63.6603(f), 63.6675)
- 2. The permittee shall keep records of the initial and annual evaluation of the status of the engine required by SC VI.1. (40 CFR 63.6603(f))
- 3. If the evaluation of the status of the engine required by SC VI.1 indicates that the stationary RICE no longer meets the definition of remote stationary RICE in SC VI.1(a) through (c) and 40 CFR 63.6675, the permittee shall comply with all of the applicable requirements in 40 CFR Part 63, Subpart ZZZZ for existing nonemergency SI 4SLB and/or 4SRB stationary RICE with a site rating of more than 500 HP located at area sources of HAP that are not remote stationary RICE within one year of the evaluation. (40 CFR 63.6603(f))
- 4. The permittee shall keep records as required in SC IV.2 to show continuous compliance with each emission or operating limit that applies. (40 CFR 63.6655(d), 63.6660)
- 5. The permittee shall keep records of the maintenance conducted on the stationary RICE in order to demonstrate that the permittee operated and maintained the stationary RICE and after-treatment control device (if any) according to the permittee's maintenance plan. (40 CFR 63.6655(e), 63.6660)
- 6. The permittee shall maintain, at a minimum, the following records by the compliance date:
 - a. A copy of each notification and report that is submitted to comply with 40 CFR Part 63, Subpart ZZZZ and the documentation supporting each notification and report. (40 CFR 63.6655(a)(1))
 - b. Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment. (40 CFR 63.6655(a)(2))
 - c. Records of all required maintenance performed on the air pollution control and monitoring equipment. (40 CFR 63.6655(a)(4))
 - d. Records of actions taken during periods of malfunction to minimize emissions in accordance with 40 CFR §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation. **(40 CFR 63.6655(a)(5))**

VII. <u>REPORTING</u>

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

VIII. STACK/VENT RESTRICTION(S)

NA

IX. OTHER REQUIREMENT(S)

 The permittee shall comply with all applicable provisions of the National Emission Standards for Hazardous Air Pollutants, as specified in 40 CFR Part 63, Subpart A and Subpart ZZZZ as they apply to FG-RURALSIRICEMACT. The permittee may choose an alternative compliance method not listed in FG-RURALSIRICEMACT by complying with all applicable provisions required by Subpart ZZZZ for the compliance option chosen. (40 CFR 70.6(9), 40 CFR 63.9(j), 40 CFR Part 63, Subparts A and ZZZZ)

E. NON-APPLICABLE REQUIREMENTS

At the time of the ROP issuance, the AQD has determined that no non-applicable requirements have been identified for incorporation into the permit shield provision set forth in the General Conditions in Part A pursuant to Rule 213(6)(a)(ii).

APPENDICES

Appendix 1. Abbreviations and Acronyms The following is an alphabetical listing of abbreviations/acronyms that may be used in this permit.

AQD	Air Quality Division	MM	Million
acfm	Actual cubic feet per minute	MSDS	Material Safety Data Sheet
BACT	Best Available Control Technology	MW	Megawatts
BTU	British Thermal Unit	NA	Not Applicable
°C	Degrees Celsius	NAAQS	National Ambient Air Quality Standards
CAA	Federal Clean Air Act	NESHAP	National Emission Standard for Hazardous Air Pollutants
CAM	Compliance Assurance Monitoring	NMOC	Non-methane Organic Compounds
CEM	Continuous Emission Monitoring	NOx	Oxides of Nitrogen
CFR	Code of Federal Regulations	NSPS	New Source Performance Standards
со	Carbon Monoxide	NSR	New Source Review
СОМ	Continuous Opacity Monitoring	PM	Particulate Matter
department	Michigan Department of Environmental Quality	PM-10	Particulate Matter less than 10 microns in diameter
dscf	Dry standard cubic foot	pph	Pound per hour
dscm	Dry standard cubic meter	ppm	Parts per million
EPA	United States Environmental Protection Agency	ppmv	Parts per million by volume
EU	Emission Unit	ppmw	Parts per million by weight
°F	Degrees Fahrenheit	PS	Performance Specification
FG	Flexible Group	PSD	Prevention of Significant Deterioration
GACS	Gallon of Applied Coating Solids	psia	Pounds per square inch absolute
GC	General Condition	psig	Pounds per square inch gauge
gr	Grains	PeTE	Permanent Total Enclosure
HAP	Hazardous Air Pollutant	PTI	Permit to Install
Hg	Mercury	RACT	Reasonable Available Control Technology
hr	Hour	ROP	Renewable Operating Permit
HP	Horsepower	SC	Special Condition
H ₂ S	Hydrogen Sulfide	scf	Standard cubic feet
HVLP	High Volume Low Pressure *	sec	Seconds
ID	Identification (Number)	SCR	Selective Catalytic Reduction
IRSL	Initial Risk Screening Level	SO ₂	Sulfur Dioxide
ITSL	Initial Threshold Screening Level	SRN	State Registration Number
LAER	Lowest Achievable Emission Rate	TAC	Toxic Air Contaminant
lb	Pound	Temp	Temperature
m	Meter	THC	Total Hydrocarbons
MACT	Maximum Achievable Control Technology	tpy	Tons per year
MAERS	Michigan Air Emissions Reporting System	μg	Microgram
MAP	Malfunction Abatement Plan	VE	Visible Emissions
MDEQ	Michigan Department of Environmental Quality	VOC	Volatile Organic Compounds
mg	Milligram	yr	Year
mm	Millimeter	Sector Contract	

*For HVLP applicators, the pressure measured at the gun air cap shall not exceed 10 pounds per square inch gauge (psig).

Appendix 2. Schedule of Compliance

The permittee certified in the ROP application that this stationary source is in compliance with all applicable requirements and the permittee shall continue to comply with all terms and conditions of this ROP. A Schedule of Compliance is not required. (R 336.1213(4)(a), R 336.1119(a)(ii))

Appendix 3. Monitoring Requirements

This source is subject to the compliance assurance monitoring (CAM) program under 40 CFR 64.4(a). The CAM plan for this source is addressed in the malfunction abatement plan (MAP) required in Section D, SC III.1.

Appendix 4. Recordkeeping

Specific recordkeeping requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 5. Testing Procedures

Specific testing requirement plans, procedures, and averaging times are detailed in the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 6. Permits to Install

The following table lists any PTIs issued or ROP revision applications received since the effective date of the previously issued ROP No. MI-ROP-N5831-2008. Those ROP revision applications that are being issued concurrently with this ROP renewal are identified by an asterisk (*). Those revision applications not listed with an asterisk were processed prior to this renewal.

Source-Wide PTI No MI-PTI-N5831-2008a is being reissued as Source-Wide PTI No. MI-PTI-N5831-2014.

Permit to Install Number	ROP Revision Application Number	Description of Equipment or Change	Corresponding Emission Unit(s) or Flexible Group(s)
NA	200900188	Added oxidation catalyst as control on EUENGINE2, EUENGINE3, and EUEGINE4 (was left out on original ROP)	EUENGINE2, EUENGINE3 and EUENGINE4

The following ROP amendments or modifications were issued after the effective date of ROP No. MI-ROP-N5831-2014.

Permit to Install Number	ROP Revision Application Number/Issuance Date	Description of Change	Corresponding Emission Unit(s) or Flexible Group(s)
NA	201500014/ April 21, 2015	On February 23, 2015, the facility revised minor modification application No. 201500014 to consider the engine "shut-in" and would test the engine within 90 days of bringing it back online. EUENGINE5 was shut down and placed in stand-by mode effective November 10, 2014.	EUENGINE5

Appendix 7. Emission Calculations

The permittee shall use the following procedure in conjunction with monitoring, testing or recordkeeping data to determine compliance with the applicable requirements referenced in FGCATENGINES, FGWAUKENGINES, and Source-Wide Conditions.

Procedures for Calculating Facility NOx and CO Emissions

The permittee shall demonstrate compliance with the NOx and CO emission limits by keeping track of all fuel usage for all equipment using such fuel at this facility and multiplying that fuel usage by an equipment-specific emission factor. The emission factors are typically expressed as a mass weight of pollutant per unit of fuel.

Each engine included in FGCATENGINES and FGWAUKENGINES: The permittee shall use emission factors from source specific testing (stack testing) or vendor data, for each engine included in FGCATENGINES and FGWAUKENGINES, including engine(s) from engine change-out(s), and during the hours operated without a catalyst. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

Fuel burning equipment at the facility: The permittee shall use emission factors contained in the most recent AP-42 (Compilation of Air Pollutant Emission Factors) or the most recent FIRE (Factor Information Retrieval) database if vendor or stack data is not available. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

The permittee shall document the source of each emission factor used in the calculations.

Appendix 8. Reporting

A. Annual, Semiannual, and Deviation Certification Reporting

The permittee shall use the MDEQ, AQD, Report Certification form (EQP 5736) and MDEQ, AQD, Deviation Report form (EQP 5737) for the annual, semiannual and deviation certification reporting referenced in the Reporting Section of the Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Alternative formats must meet the provisions of Rule 213(4)(c) and Rule 213(3)(c)(i), respectively, and be approved by the AQD District Supervisor.

B. Other Reporting

Specific reporting requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, Part B of this appendix is not applicable.

2014b2019c Section 2 – LINN Operating, LLC - Hayes 29 CPF 20192024 ROP No: MI-ROP-N5831-Expiration Date: August 4, PTI No: MI-PTI-N5831-

2014b2019c

SECTION 2 – LINN Operating, LLC - Hayes 29 CPF

20192024

2014b2019c

ROP No: MI-ROP-N5831-Expiration Date: August 4, PTI No: MI-PTI-N5831-

A. GENERAL CONDITIONS

Permit Enforceability

- All conditions in this permit are both federally enforceable and state enforceable unless otherwise noted. (R 336.1213(5))
- Those conditions that are hereby incorporated in a state-only enforceable Source-Wide PTI pursuant to Rule 201(2)(d) are designated by footnote one. (R 336.1213(5)(a), R 336.1214a(5))
- Those conditions that are hereby incorporated in a federally enforceable Source-Wide PTI pursuant to Rule 201(2)(c) are designated by footnote two. (R 336.1213(5)(b), R 336.1214a(3))

General Provisions

- The permittee shall comply with all conditions of this ROP. Any ROP noncompliance constitutes a violation of Act 451, and is grounds for enforcement action, for ROP revocation or revision, or for denial of the renewal of the ROP. All terms and conditions of this ROP that are designated as federally enforceable are enforceable by the Administrator of the United States Environmental Protection Agency (USEPA) and by citizens under the provisions of the federal Clean Air Act (CAA). Any terms and conditions based on applicable requirements which are designated as "state-only" are not enforceable by the USEPA or citizens pursuant to the CAA. (R 336.1213(1)(a))
- It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this ROP. (R 336.1213(1)(b))
- 3. This ROP may be modified, revised, or revoked for cause. The filing of a request by the permittee for a permit modification, revision, or termination, or a notification of planned changes or anticipated noncompliance does not stay any ROP term or condition. This does not supersede or affect the ability of the permittee to make changes, at the permittee's own risk, pursuant to Rule 215 and Rule 216. (R 336.1213(1)(c))
- 4. The permittee shall allow the department, or an authorized representative of the department, upon presentation of credentials and other documents as may be required by law and upon stating the authority for and purpose of the investigation, to perform any of the following activities: (R 336.1213(1)(d))
 - a. Enter, at reasonable times, a stationary source or other premises where emissions-related activity is conducted or where records must be kept under the conditions of the ROP.
 - b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of the ROP.
 - c. Inspect, at reasonable times, any of the following:
 - i. Any stationary source.
 - ii. Any emission unit.
 - iii. Any equipment, including monitoring and air pollution control equipment.
 - iv. Any work practices or operations regulated or required under the ROP.
 - d. As authorized by Section 5526 of Act 451, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the ROP or applicable requirements.

2014b<u>2019c</u>

20192024

2014b2019c

ROP No: MI-ROP-N5831-Expiration Date: August 4, PTI No: MI-PTI-N5831-

- 5. The permittee shall furnish to the department, within a reasonable time, any information the department may request, in writing, to determine whether cause exists for modifying, revising, or revoking the ROP or to determine compliance with this ROP. Upon request, the permittee shall also furnish to the department copies of any records that are required to be kept as a term or condition of this ROP. For information which is claimed by the permittee to be confidential, consistent with the requirements of the 1976 PA 442, MCL §15.231 et seq., and known as the Freedom of Information Act, the person may also be required to furnish the records directly to the USEPA together with a claim of confidentiality. (R 336.1213(1)(e))
- 6. A challenge by any person, the Administrator of the USEPA, or the department to a particular condition or a part of this ROP shall not set aside, delay, stay, or in any way affect the applicability or enforceability of any other condition or part of this ROP. (R 336.1213(1)(f))
- 7. The permittee shall pay fees consistent with the fee schedule and requirements pursuant to Section 5522 of Act 451. (R 336.1213(1)(g))
- 8. This ROP does not convey any property rights or any exclusive privilege. (R 336.1213(1)(h))

Equipment & Design

- 9. Any collected air contaminants shall be removed as necessary to maintain the equipment at the required operating efficiency. The collection and disposal of air contaminants shall be performed in a manner so as to minimize the introduction of contaminants to the outer air. Transport of collected air contaminants in Priority I and II areas requires the use of material handling methods specified in Rule 370(2). (R 336.1370)
- 10. Any air cleaning device shall be installed, maintained, and operated in a satisfactory manner and in accordance with the Michigan Air Pollution Control rules and existing law. (R 336.1910)

Emission Limits

- 11. Unless otherwise specified in this ROP, the permittee shall comply with Rule 301, which states, in part, "Except as provided in subrules 2, 3, and 4 of this rule, a person shall not cause or permit to be discharged into the outer air from a process or process equipment a visible emission of a density greater than the most stringent of the following: (R 336.1301(1))
 - a. A 6-minute average of 20 percent opacity, except for one 6-minute average per hour of not more than 27 percent opacity.
 - b. A limit specified by an applicable federal new source performance standard.

The grading of visible emissions shall be determined in accordance with Rule 303.

- 12. The permittee shall not cause or permit the emission of an air contaminant or water vapor in quantities that cause, alone or in reaction with other air contaminants, either of the following:
 - a. Injurious effects to human health or safety, animal life, plant life of significant economic value, or property.¹ (R 336.1901(a))
 - b. Unreasonable interference with the comfortable enjoyment of life and property.¹ (R 336.1901(b))

Testing/Sampling

13. The department may require the owner or operator of any source of an air contaminant to conduct acceptable performance tests, at the owner's or operator's expense, in accordance with Rule 1001 and Rule 1003, under any of the conditions listed in Rule 1001(1). (R 336.2001)

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

- 14. Any required performance testing shall be conducted in accordance with Rule 1001(2), Rule 1001(3) and Rule 1003. (R 336.2001(2), R 336.2001(3), R 336.2003(1))
- 15. Any required test results shall be submitted to the Air Quality Division (AQD) in the format prescribed by the applicable reference test method within 60 days following the last date of the test. (R 336.2001(5))

Monitoring/Recordkeeping

- 16. Records of any periodic emission or parametric monitoring required in this ROP shall include the following information specified in Rule 213(3)(b)(i), where appropriate: (R 336.1213(3)(b))
 - a. The date, location, time, and method of sampling or measurements.
 - b. The dates the analyses of the samples were performed.
 - c. The company or entity that performed the analyses of the samples.
 - d. The analytical techniques or methods used.
 - e. The results of the analyses.
 - f. The related process operating conditions or parameters that existed at the time of sampling or measurement.
- 17. All required monitoring data, support information and all reports, including reports of all instances of deviation from permit requirements, shall be kept and furnished to the department upon request for a period of not less than 5 years from the date of the monitoring sample, measurement, report or application. Support information includes all calibration and maintenance records and all original strip-chart recordings, or other original data records, for continuous monitoring instrumentation and copies of all reports required by the ROP. (R 336.1213(1)(e), R 336.1213(3)(b)(ii))

Certification & Reporting

- 18. Except for the alternate certification schedule provided in Rule 213(3)(c)(iii)(B), any document required to be submitted to the department as a term or condition of this ROP shall contain an original certification by a Responsible Official which states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. (R 336.1213(3)(c))
- 19. A Responsible Official shall certify to the appropriate AQD District Office and to the USEPA that the stationary source is and has been in compliance with all terms and conditions contained in the ROP except for deviations that have been or are being reported to the appropriate AQD District Office pursuant to Rule 213(3)(c). This certification shall include all the information specified in Rule 213(4)(c)(i) through (v) and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the certification are true, accurate, and complete. The USEPA address is: USEPA, Air Compliance Data Michigan, Air and Radiation Division, 77 West Jackson Boulevard, Chicago, Illinois 60604. (R 336.1213(4)(c))
- 20. The certification of compliance shall be submitted annually for the term of this ROP as detailed in the special conditions, or more frequently if specified in an applicable requirement or in this ROP. (R 336.1213(4)(c))
- 21. The permittee shall promptly report any deviations from ROP requirements and certify the reports. The prompt reporting of deviations from ROP requirements is defined in Rule 213(3)(c)(ii) as follows, unless otherwise described in this ROP. (R 336.1213(3)(c))
 - a. For deviations that exceed the emissions allowed under the ROP, prompt reporting means reporting consistent with the requirements of Rule 912 as detailed in Condition 25. All reports submitted pursuant to this paragraph shall be promptly certified as specified in Rule 213(3)(c)(iii).
 - b. For deviations which exceed the emissions allowed under the ROP and which are not reported pursuant to Rule 912 due to the duration of the deviation, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe reasons for each deviation and the actions taken to minimize or correct each deviation.

2014b2019c

20192024

2014b<u>2019c</u>

ROP No: MI-ROP-N5831-Expiration Date: August 4, PTI No: MI-PTI-N5831-

- c. For deviations that do not exceed the emissions allowed under the ROP, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe the reasons for each deviation and the actions taken to minimize or correct each deviation.
- 22. For reports required pursuant to Rule 213(3)(c)(ii), prompt certification of the reports is described in Rule 213(3)(c)(iii) as either of the following: (R 336.1213(3)(c))
 - a. Submitting a certification by a Responsible Official with each report which states that, based on information and belief formed after reasonable inquiry, the statements and information in the report are true, accurate, and complete.
 - b. Submitting, within 30 days following the end of a calendar month during which one or more prompt reports of deviations from the emissions allowed under the ROP were submitted to the department pursuant to Rule 213(3)(c)(ii), a certification by a Responsible Official which states that, "based on information and belief formed after reasonable inquiry, the statements and information contained in each of the reports submitted during the previous month were true, accurate, and complete". The certification shall include a listing of the reports that are being certified. Any report submitted pursuant to Rule 213(3)(c)(ii) that will be certified on a monthly basis pursuant to this paragraph shall include a statement that certification of the report will be provided within 30 days following the end of the calendar month.
- 23. Semiannually for the term of the ROP as detailed in the special conditions, or more frequently if specified, the permittee shall submit certified reports of any required monitoring to the appropriate AQD District Office. All instances of deviations from ROP requirements during the reporting period shall be clearly identified in the reports. (R 336.1213(3)(c)(i))
- 24. On an annual basis, the permittee shall report the actual emissions, or the information necessary to determine the actual emissions, of each regulated air pollutant as defined in Rule 212(6) for each emission unit utilizing the emissions inventory forms provided by the department. **(R 336.1212(6))**
- 25. The permittee shall provide notice of an abnormal condition, start-up, shutdown, or malfunction that results in emissions of a hazardous or toxic air pollutant which continue for more than one hour in excess of any applicable standard or limitation, or emissions of any air contaminant continuing for more than two hours in excess of an applicable standard or limitation, as required in Rule 912, to the appropriate AQD District Office. The notice shall be provided not later than two business days after the start-up, shutdown, or discovery of the abnormal conditions or malfunction. Notice shall be by any reasonable means, including electronic, telephonic, or oral communication. Written reports, if required under Rule 912, must be submitted to the appropriate AQD District Supervisor within 10 days after the start-up or shutdown occurred, within 10 days after the abnormal conditions or malfunction has been corrected, or within 30 days of discovery of the abnormal conditions or malfunction, whichever is first. The written reports shall include all of the information required in Rule 912(5) and shall be certified by a Responsible Official in a manner consistent with the CAA. (R 336.1912)

Permit Shield

- 26. Compliance with the conditions of the ROP shall be considered compliance with any applicable requirements as of the date of ROP issuance, if either of the following provisions is satisfied. (R 336.1213(6)(a)(i), R 336.1213(6)(a)(ii))
 - a. The applicable requirements are included and are specifically identified in the ROP.
 - b. The permit includes a determination or concise summary of the determination by the department that other specifically identified requirements are not applicable to the stationary source.

Any requirements identified in Part E of this ROP have been identified as non-applicable to this ROP and are included in the permit shield.

- 27. Nothing in this ROP shall alter or affect any of the following:
 - a. The provisions of Section 303 of the CAA, emergency orders, including the authority of the USEPA under Section 303 of the CAA. (R 336.1213(6)(b)(i))

20192024

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

2014b2019c

- b. The liability of the owner or operator of this source for any violation of applicable requirements prior to or at the time of this ROP issuance. (R 336.1213(6)(b)(ii))
- c. The applicable requirements of the acid rain program, consistent with Section 408(a) of the CAA. (R 336.1213(6)(b)(iii))
- e. The ability of the USEPA to obtain information from a source pursuant to Section 114 of the CAA. (R 336.1213(6)(b)(iv))
- 28. The permit shield shall not apply to provisions incorporated into this ROP through procedures for any of the following:
 - a. Operational flexibility changes made pursuant to Rule 215. (R 336.1215(5))
 - b. Administrative Amendments made pursuant to Rule 216(1)(a)(i)-(iv). (R 336.1216(1)(b)(iii))
 - c. Administrative Amendments made pursuant to Rule 216(1)(a)(v) until the amendment has been approved by the department. (R 336.1216(1)(c)(iii))
 - d. Minor Permit Modifications made pursuant to Rule 216(2). (R 336.1216(2)(f))
 - e. State-Only Modifications made pursuant to Rule 216(4) until the changes have been approved by the department. (R 336.1216(4)(e))
- 29. Expiration of this ROP results in the loss of the permit shield. If a timely and administratively complete application for renewal is submitted not more than 18 months, but not less than 6 months, before the expiration date of the ROP, but the department fails to take final action before the end of the ROP term, the existing ROP does not expire until the renewal is issued or denied, and the permit shield shall extend beyond the original ROP term until the department takes final action. (R 336.1217(1)(c), R 336.1217(1)(a))

Revisions

- 30. For changes to any process or process equipment covered by this ROP that do not require a revision of the ROP pursuant to Rule 216, the permittee must comply with Rule 215. (R 336.1215, R 336.1216)
- 31. A change in ownership or operational control of a stationary source covered by this ROP shall be made pursuant to Rule 216(1). (R 336.1219(2))
- 32. For revisions to this ROP, an administratively complete application shall be considered timely if it is received by the department in accordance with the time frames specified in Rule 216. (R 336.1210(10))
- 33. Pursuant to Rule 216(1)(b)(iii), Rule 216(2)(d) and Rule 216(4)(d), after a change has been made, and until the department takes final action, the permittee shall comply with both the applicable requirements governing the change and the ROP terms and conditions proposed in the application for the modification. During this time period, the permittee may choose to not comply with the existing ROP terms and conditions that the application seeks to change. However, if the permittee fails to comply with the ROP terms and conditions proposed in the application during this time period, the terms and conditions in the ROP are enforceable. (R 336.1216(1)(c)(iii), R 336.1216(2)(d), R 336.1216(4)(d))

Reopenings

- 34. A ROP shall be reopened by the department prior to the expiration date and revised by the department under any of the following circumstances:
 - a. If additional requirements become applicable to this stationary source with three or more years remaining in the term of the ROP, but not if the effective date of the new applicable requirement is later than the ROP expiration date. (R 336.1217(2)(a)(i))
 - b. If additional requirements pursuant to Title IV of the CAA become applicable to this stationary source. (R 336.1217(2)(a)(ii))

2014b2019c

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

- c. If the department determines that the ROP contains a material mistake, information required by any applicable requirement was omitted, or inaccurate statements were made in establishing emission limits or the terms or conditions of the ROP. (R 336.1217(2)(a)(iii))
- d. If the department determines that the ROP must be revised to ensure compliance with the applicable requirements. (R 336.1217(2)(a)(iv))

Renewals

35. For renewal of this ROP, an administratively complete application shall be considered timely if it is received by the department not more than 18 months, but not less than 6 months, before the expiration date of the ROP. (R 336.1210(8))

Stratospheric Ozone Protection

- 36. If the permittee is subject to Title 40 of the Code of Federal Regulations (CFR), Part 82 and services, maintains, or repairs appliances except for motor vehicle air conditioners (MVAC), or disposes of appliances containing refrigerant, including MVAC and small appliances, or if the permittee is a refrigerant reclaimer, appliance owner or a manufacturer of appliances or recycling and recovery equipment, the permittee shall comply with all applicable standards for recycling and emissions reduction pursuant to 40 CFR Part 82, Subpart F.
- 37. If the permittee is subject to 40 CFR Part 82, and performs a service on motor (fleet) vehicles when this service involves refrigerant in the MVAC, the permittee is subject to all the applicable requirements as specified in 40 CFR Part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners. The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed by the original equipment manufacturer. The term MVAC as used in Subpart B does not include the air-tight sealed refrigeration system used for refrigerated cargo or an air conditioning system on passenger buses using Hydrochlorofluorocarbon-22 refrigerant.

Risk Management Plan

- 38. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall register and submit to the USEPA the required data related to the risk management plan for reducing the probability of accidental releases of any regulated substances listed pursuant to Section 112(r)(3) of the CAA as amended in 40 CFR 68.130. The list of substances, threshold quantities, and accident prevention regulations promulgated under 40 CFR Part 68, do not limit in any way the general duty provisions under Section 112(r)(1).
- If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall comply with the requirements of 40 CFR Part 68, no later than the latest of the following dates as provided in 40 CFR 68.10(a):
 a. June 21, 1999.
 - b. Three years after the date on which a regulated substance is first listed under 40 CFR 68.130, or
 - c. The date on which a regulated substance is first present above a threshold quantity in a process.
- 40. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall submit any additional relevant information requested by any regulatory agency necessary to ensure compliance with the requirements of 40 CFR Part 68.
- 41. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall annually certify compliance with all applicable requirements of Section 112(r) as detailed in Rule 213(4)(c)). (40 CFR Part 68)

20192024

2014b2019c

Emission Trading

ROP No: MI-ROP-N5831-Expiration Date: August 4,

PTI No: MI-PTI-N5831-

42. Emission averaging and emission reduction credit trading are allowed pursuant to any applicable interstate or regional emission trading program that has been approved by the Administrator of the USEPA as a part of Michigan's State Implementation Plan. Such activities must comply with Rule 215 and Rule 216. (R 336.1213(12))

Permit To Install (PTI)

- 43. The process or process equipment included in this permit shall not be reconstructed, relocated, or modified unless a PTI authorizing such action is issued by the department, except to the extent such action is exempt from the PTI requirements by any applicable rule. ² (R 336.1201(1))
- 44. The department may, after notice and opportunity for a hearing, revoke PTI terms or conditions if evidence indicates the process or process equipment is not performing in accordance with the terms and conditions of the PTI or is violating the department's rules or the CAA. ² (R 336.1201(8), Section 5510 of Act 451)
- 45. The terms and conditions of a PTI shall apply to any person or legal entity that now or hereafter owns or operates the process or process equipment at the location authorized by the PTI. If a new owner or operator submits a written request to the department pursuant to Rule 219 and the department approves the request, this PTI will be amended to reflect the change of ownership or operational control. The request must include all of the information required by Subrules (1)(a), (b) and (c) of Rule 219. The written request shall be sent to the appropriate AQD District Supervisor, MDEQ.² (R 336.1219)
- 46. If the installation, reconstruction, relocation, or modification of the equipment for which PTI terms and conditions have been approved has not commenced within 18 months, or has been interrupted for 18 months, the applicable terms and conditions from that PTI shall become void unless otherwise authorized by the department. Furthermore, the person to whom that PTI was issued, or the designated authorized agent, shall notify the department via the Supervisor, Permit Section, MDEQ, AQD, P. O. Box 30260, Lansing, Michigan 48909, if it is decided not to pursue the installation, reconstruction, relocation, or modification of the equipment allowed by the terms and conditions from that PTI.² (R 336.1201(4))

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

B. SOURCE-WIDE CONDITIONS

Part B outlines the Source-Wide Terms and Conditions that apply to this stationary source. The permittee is subject to these special conditions for the stationary source in addition to the general conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply to this source, NA (not applicable) has been used in the table. If there are no Source-Wide Conditions, this section will be left blank.

20192024

2014b2019c

ROP No: MI-ROP-N5831-Expiration Date: August 4, PTI No: MI-PTI-N5831-

SOURCE-WIDE CONDITIONS

POLLUTION CONTROL EQUIPMENT:

I. EMISSION LIMIT(S)

F	Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1.	NOx	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
2.	со	224 tons ²	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.2	R 336.1205(3)
3.	Each Individual HAP	Less than 10 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R 336.1213(2)(d)
4.	Total HAPs	Less than 25 tons per year	12-month rolling time period, as determined at the end of each calendar month	NA	SC VI.3	R 336.1213(2)(d)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

1. The permittee shall only burn sweet natural gas in all natural gas fired equipment.² (R 336.1205(3))

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years.² (R 336.1213(3)(b)(ii))

 The permittee shall complete all required calculations in a format acceptable to the AQD District Supervisor and make them available by the last day of the calendar month, for the previous calendar month.² (R 336.1205(3), R 336.213(3))

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

- The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period CO and NOx emission calculation records for the Stationary Source, to demonstrate compliance with Special Conditions (SC) I.1 and I.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.213(3))
- 3. The permittee shall keep, in a satisfactory manner, monthly and 12-month rolling time period HAP emission calculation records for the Stationary Source, as required SC I.3 and I.4 above. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(2)(d))

See Appendix 7

VII. <u>REPORTING</u>

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- 2. Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
NA	NA	NA	NA

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

C. EMISSION UNIT CONDITIONS

Part C outlines terms and conditions that are specific to individual emission units listed in the Emission Unit Summary Table. The permittee is subject to the special conditions for each emission unit in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no conditions specific to individual emission units, this section will be left blank.

EMISSION UNIT SUMMARY TABLE

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

Emission Unit ID	Emission Unit Description (Including Process Equipment & Control Device(s))	Installation Date/ Modification Date	Flexible Group ID
EUENGINEH29	Remote 1,085 hp Caterpillar G3516TALE (lean burn) reciprocating internal combustion engine (RICE) with oxidation catalyst	8/20/13	NA
EUGLYCOLDEHYDRATOR	Glycol dehydrator which removes water along with trace hydrocarbons from the gas stream. The water and hydrocarbons are controlled by a condenser.	11/01/92	NA
EUMACTZZZZ	Remote existing non-emergency spark ignition (SI) 4-stroke lean burn (4SLB) RICE (EUENGINEH29) Caterpillar 3516TALE (low emission) rated 1,085 hp located at an area source	08/20/13	NA

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

EUGLYCOLDEHYDRATOR EMISSION UNIT CONDITIONS

DESCRIPTION:

Glycol dehydrator system which removes water along with trace hydrocarbons from the gas stream.

Flexible Group ID: NA

POLLUTION CONTROL EQUIPMENT:

Condenser

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

NA

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- 1. If EUGLYCOLDEHYDRATOR meets the exception criteria in 40 CFR 63.764(e)(1)(i) for glycol dehydrators with actual annual average flow rate of natural gas less than 85,000 cubic meters (3,001,746 cubic feet) per day, the actual flow rate of natural gas shall be determined using either of the procedures below:
 - a. The permittee shall install and operate a monitoring instrument that directly measures natural gas flow rate to the glycol dehydration unit with an accuracy of plus or minus 2 percent or better. The permittee shall

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

convert annual natural gas flow rate to a daily average by dividing the annual flow rate by the number of days per year the glycol dehydration unit processed natural gas. (40 CFR 63.772(b)(1)(i))

- b. The permittee shall document, to the AQD District Supervisor's satisfaction, the actual annual average natural gas flow rate to the glycol dehydration unit is less than 85,000 cubic meters per day. (40 CFR 63.772(b)(1)(ii))
- 2. As an alternative, if EUGLYCOLDEHYDRATOR meets the exemption criteria in 40 CFR 63.764(e)(1)(ii) for glycol dehydrators with actual average benzene emissions less than 0.90 megagram (0.99 ton) per year, the emissions shall be determined either uncontrolled, or with federally enforceable controls in place and using either of the procedures below:
 - a. The permittee shall determine actual average benzene emissions using the model GRI-GLYCalc[™], Version 3.0 or higher, and the procedures presented in the associated GRI-GLYCalc[™] Technical Reference Manual. Inputs to the model shall be representative of actual operating conditions of the glycol dehydration unit, and may be determined using the procedures documented in the Gas Research Institute (GRI) report entitled "Atmospheric Rich/Lean Method for Determining Glycol Dehydrator Emissions" (GRI-95/0368.1). (40 CFR 63.772(b)(2)(i))
 - b. The permittee shall determine an average mass rate of benzene emissions in kilograms per hour through direct measurement using the methods in 40 CFR 63.772(a)(1)(i) or (ii), or an alternative method according to 40 CFR 63.7(f). Annual emissions in kilograms per year shall be determined by multiplying the mass rate by the number of hours the unit is operated by year. This result shall be converted to megagrams per year. (40 CFR 63.772(b)(2)(ii))
- 3. If EUGLYCOLDEHYDRATOR complies with the exemption criteria in 40 CFR 63.764(e)(1)(i) for glycol dehydrators with actual annual average flow rate of natural gas less than 85,000 cubic meters (3,001,746 cubic feet) per day, the permittee shall keep records of the actual annual average natural gas throughput (in terms natural gas flow rate to the glycol dehydration unit per day) as determined in accordance with SC VI.1. The permittee shall keep records on file at a location approved by the AQD District Supervisor for a period of at least five years and make it available to the Department upon request. (40 CFR 63.774(d)(1)(i))
- 4. As an alternative to SC VI.1, if EUGLYCOLDEHYDRATOR complies with the exemption criteria in 40CFR 63.764(e)(1)(ii) for glycol dehydrators with the actual average benzene emissions less than 0.90 megagram per year, the permittee shall keep records of the actual average benzene emissions (in terms of benzene emissions per year) as determined in accordance with SC VI.2. The permittee shall keep all records on file at a location approved by the AQD District Supervisor for a period of at least five years and make it available to the Department upon request. (40 CFR 63.774(d)(1)(ii))

VII. <u>REPORTING</u>

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

2014b<u>2019c</u>

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
NA	NA	NA	NA

IX. OTHER REQUIREMENT(S)

1. The permittee shall comply with all provisions of the National Emissions Standards for Hazardous Air Pollutants, 40 CFR Part 63, Subpart HH, as they apply to EUGLYCOLDEHYDRATOR. (40 CFR Part 63, Subpart HH)

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(b).

²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

EUENGINEH29 EMISSION UNIT CONDITIONS

DESCRIPTION:

One remote 1,085 hp Caterpillar G3516TALE (lean burn) RICE

Emission Unit: EUENGINEH29

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
1. NOx	24.6 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINEH29	SC V.1 and SC VI.7	R 336.1205(3)
2. CO	41.1 tons ²	12-month rolling time period, as determined at the end of each calendar month	EUENGINEH29	SC V.1 and SC VI.7	R 336.1205(3)

II. MATERIAL LIMIT(S)

Material	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- The permittee shall not operate any engine equipped with an add-on control device for more than 200 hours per engine per year without that control device consistent with the malfunction abatement plan (MAP), (pursuant to SC III.2). The 200 hours shall include times after an engine change-out occurs and general maintenance performed as allowed by the MAP. The hours per year limit is based on a 12-month rolling time period as determined at the end of each calendar month.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 2. The permittee shall not operate EUENGINEH29 unless the MAP, approved by the AQD District Supervisor, is implemented and maintained. The MAP shall incorporate procedures recommended by the equipment manufacturer as well as incorporating standard industry practices. At a minimum the MAP shall include:
 - a. Identification of the equipment and, if applicable, air-cleaning device; and the supervisory personnel responsible for overseeing the inspection, maintenance, and repair.
 - b. Description of the items or conditions to be inspected and frequency of the inspections or repairs.

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

- c. Description of the equipment and, if applicable, air-cleaning device; operating parameters that shall be monitored to detect a malfunction or failure, the normal operating range of these parameters and a description of the method of monitoring or surveillance procedures.
- d. Identification of the major replacement parts that shall be maintained in inventory for quick replacement.
- e. A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction at the time the plan is initially developed, the owner or operator shall revise the MAP within 45 days after such an event occurs and submit the revised plan for approval to the AQD District Supervisor. Should the AQD determine the MAP to be inadequate, the District Supervisor may request modification of the plan to address those inadequacies.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910, R 336.1911, R 336.1912)

- The permittee shall not operate any engine that contains an add-on control device unless that device is installed, maintained, and operated in a satisfactory manner, except as provided in SC III.1. Satisfactory operation includes performing the manufacturer's recommended maintenance on the control device and operating in conjunction with the MAP specified in SC III.2.² (R 336.1205(3), R 336.1225, R 336.1702(a), R 336.1910)
- 4. The permittee shall utilize a differential pressure gauge or manometer to monitor the operation of the oxidation catalyst as an indicator of proper operation. The appropriate range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))
- 5. The permittee shall utilize a temperature gauge or thermocouple to monitor the operation of the oxidation catalyst, as an indicator of proper operation. The appropriate temperature range defining the proper operation of the oxidation catalyst is identified in the MAP. (R 336.1213(3)(a)(i))

IV. DESIGN/EQUIPMENT PARAMETER(S)

1. The permittee shall install and calibrate a thermocouple gauge in accordance with the manufacturer's recommendations. (R 336.1213(3)(a)(iii))

V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

1. The permittee shall verify NOx and CO emissions from EUENGINEH29, by testing at owner's expense, within nine months of issuance of this permit, and thereafter within every five years, in accordance with Department requirements. (R 336.1205(3), R 336.2001, R 336.2003, R 336.2004)

VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- 1. The permittee shall monitor, in a satisfactory manner, the natural gas usage from each engine included in EUENGINEH29 on a monthly basis. (R 336.1205(3), R 336.1213(3))
- 2. The permittee shall monitor and record the differential pressure gauge or monometer on EUENGINEH29, on a monthly basis. (R 336.1213(3)(a)(iii))
- 3. The permittee shall monitor and record the inlet temperature and outlet temperature on EUENGINEH29, on a daily basis. (R 336.1213(3)(a)(iii))
20192024

2014b2019c

ROP No: MI-ROP-N5831-Expiration Date: August 4, PTI No: MI-PTI-N5831-

- 4. The permittee shall maintain a log of all maintenance activities conducted according to the MAP. The permittee shall keep this log on file at a location approved by the district supervisor and make it available upon request.² (R 336.1205(3), R 336.1213(3), R 336.1225, R 336.1702(a), R 336.1911)
- 5. The permittee shall keep, in satisfactory manner, for any engine equipped with an add-on control device, monthly and 12-month rolling time period records of the hours of EUENGINEH29 is operated without the control device. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1225, R 336.1702(a))
- 6. The permittee shall keep, in a satisfactory manner, monthly fuel use records for EUENGINEH29. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 7. The permittee shall keep, in a satisfactory manner, monthly and 12-monthly rolling time period NOx and CO emission calculation records, using the emission factors from the most recent performance test or vendor data if the vendor data is higher, for EUENGINEH29. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request.² (R 336.1205(3), R 336.1213(3))
- 8. If EUENGINEH29 is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall maintain records of the engine make, model, serial number, horsepower and year manufactured for the replacement engine. The permittee shall keep all records on file at a location approved by the AQD District Supervisor and make them available upon request. (R 336.1213(3))

See Appendix 7

VII. <u>REPORTING</u>

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336.1213(4)(c))
- 4. The permittee shall submit two complete test protocols to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor for approval at least 30 days prior to the anticipated test date. The protocol shall describe the test method(s) and the maximum routine operating conditions, including targets for key operational parameters associated with air pollution control equipment to be monitored and recorded during testing. (R 336.12001(3), R 336.1213(3))
- 5. The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor no less than 7 days prior to the anticipated test date. (R 336.2001(4))
- The permittee shall submit two complete test reports of the test results to the AQD, one to the Technical Programs Unit Supervisor and one to the District Supervisor, within 60 days following the last date of the test. (R 336.2001(5), R 336.1213(3))

20192024

2014b2019c

 If EUENGINEH29 is replaced with an equivalent-emitting or lower-emitting engine, the permittee shall notify the AQD District Supervisor of such change-out and submit acceptable emissions data to show that the alternate engine is equivalent-emitting or lower-emitting.² (R 336.1205(3), R 336.1231(3), R 336.1225, R 336.1702(a), R 336.1911)

See Appendix 8

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

20192024

2014b2019c

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
SVENGINEH29	16 ¹	40 ¹	R 336.1225

IX. OTHER REQUIREMENT(S)

NA

Footnotes:

¹This condition is state-only enforceable and was established pursuant to Rule 201(1)(b). ²This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

210

2014b<u>2019c</u>

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

EUMACTZZZ EUMACTZZZ CONDITIONS

DESCRIPTION:

An existing remote, non-emergency spark ignition (SI) four stroke lean burn (4SLB), natural gas-fired reciprocating internal combustion compressor engine (RICE) with a site-rating of 1,085 horsepower at an area source

Emission Unit: EUENGINEH29

POLLUTION CONTROL EQUIPMENT:

Oxidation Catalyst

I. EMISSION LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

II. MATERIAL LIMIT(S)

Pollutant	Limit	Time Period/ Operating Scenario	Equipment	Monitoring/ Testing Method	Underlying Applicable Requirements
NA	NA	NA	NA	NA	NA

III. PROCESS/OPERATIONAL RESTRICTION(S)

- 1. The permittee shall operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions. (40 CFR 63.6625 (e), 40 CFR 63.6605 (a)(b))
- The permittee shall minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in 40 CFR Part 63, Supbart ZZZZ Table 2d apply. (40 CFR 63.6625 (h))

IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

V. TESTING/SAMPLING

NA

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

VI. MONITORING/RECORDKEEPING

- 1. Except for monitor malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), the Permittee shall monitor continuously at all times that the stationary RICE is operating. **(40 CFR 63.6635 (a)(b))**
- 2. The Permittee shall not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels; however shall use all the valid data collected during all other periods. **(40 CFR 63.663(c))**
- 3. The Permittee shall keep maintain the following records, which shall be made available to the Administrator upon request: (40 CFR 63.6655(a)(b)(d)(e))
 - a. A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that was submitted, according to the requirement in 40 CFR 63.10(b)(2)(xiv).
 - b. Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.
 - c. Records of applicable performance tests and performance evaluations as required in §63.10(b)(2)(viii).
 - d. Records of all required maintenance performed on the air pollution control and monitoring equipment.
 - e. Records of actions taken during periods of malfunction to minimize emissions in accordance with 40 CFR 63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
- 4. The permittee shall keep the records required in 40 CFR Part 63, Subpart ZZZZ Table 6 of this subpart to show continuous compliance with each applicable emission or operating limitation that applies.
- 5. The permittee shall keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to the Malfunction Abatement Plan for EUENGINEH29 subject to management practices as shown in 40 CFR Part 63, Subpart ZZZZ, Table 2d to this subpart.

VII. <u>REPORTING</u>

1. The Permittee shall report each instance in which the requirements in 40 CFR Part 63, Subpart ZZZZ Table 8 were not met. (40 CFR 63.6640(e))

VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

Stack & Vent ID	Maximum Exhaust Dimensions (inches)	Minimum Height Above Ground (feet)	Underlying Applicable Requirements
SVMACTZZZZ	16 ¹	40 ¹	R 336.1225

IX. OTHER REQUIREMENT(S)

- 1. The permittee shall evaluate the status of their stationary RICE every 12 months. (40 CFR 63.6603(a))
- 2. The permittee shall keep records of the initial and annual evaluation of the status of the engine. If the evaluation indicates that the stationary RICE no longer meets the definition of remote stationary RICE in

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

40 CFR 63.6675, Subpart ZZZZ, the owner or operator must comply with all of the requirements that are not remote stationary RICE within 1 year of the evaluation. (40 CFR 63.6603(f))

- 3. The permittee shall within 1 year of the evaluation comply with 40 CFR 63.6640 if the remote stationary RICE is reconstructed or rebuilt. Rebuilt stationary RICE means a stationary RICE that has been rebuilt as that term is defined in 40 CFR 94.11(a). (40 CFR 63.6640(d))
- 4. The permittee shall comply with all applicable provisions of the National Emission Standards for Hazardous Air Pollutants, as specified in 40 CFR Part 63, Subpart A and Subpart ZZZZ, for Stationary Reciprocating Internal Combustion Engines. (40 CFR Part 63, Subparts A and ZZZZ)

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

D. FLEXIBLE GROUP CONDITIONS

Part D outlines the terms and conditions that apply to more than one emission unit. The permittee is subject to the special conditions for each flexible group in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no special conditions that apply to more than one emission unit, this section will be left blank.

2014b20190	2

20192024

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

2014b2019c

E. NON-APPLICABLE REQUIREMENTS

At the time of the ROP issuance, the AQD has determined that the requirements identified in the table below are not applicable to the specified emission unit(s) and/or flexible group(s). This determination is incorporated into the permit shield provisions set forth in the General Conditions in Part A pursuant to Rule 213(6)(a)(ii). If the permittee makes a change that affects the basis of the non-applicability determination, the permit shield established as a result of that non-applicability decision is no longer valid for that emission unit or flexible group.

Emission Unit/Flexible Group ID	Non-Applicable Requirement	Justification
EUENGINEH29	40 CFR Part 60, Subpart JJJJ	The Caterpillar 3516TALE RICE was manufactured prior to January 1, 2008, but installed at its current location on August 20, 2013, therefore 40 CFR Part 60, Subpart JJJJ is not applicable.

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

APPENDICES

Appendix 1. Abbreviations and Acronyms

AQD	Air Quality Division	MM	Million
acfm	Actual cubic feet per minute	MSDS	Material Safety Data Sheet
BACT	Best Available Control Technology	MW	Megawatts
BTU	British Thermal Unit	NA	Not Applicable
°C	Degrees Celsius	NAAQS	National Ambient Air Quality Standards
CAA	Federal Clean Air Act	NESHAP	National Emission Standard for Hazardous Air Pollutants
CAM	Compliance Assurance Monitoring	NMOC	Non-methane Organic Compounds
CEM	Continuous Emission Monitoring	NOx	Oxides of Nitrogen
CFR	Code of Federal Regulations	NSPS	New Source Performance Standards
со	Carbon Monoxide	NSR	New Source Review
СОМ	Continuous Opacity Monitoring	PM	Particulate Matter
department	Michigan Department of Environmental Quality	PM-10	Particulate Matter less than 10 microns in diameter
dscf	Dry standard cubic foot	pph	Pound per hour
dscm	Dry standard cubic meter	ppm	Parts per million
EPA	United States Environmental Protection Agency	ppmv	Parts per million by volume
EU	Emission Unit	ppmw	Parts per million by weight
°F	Degrees Fahrenheit	PS	Performance Specification
FG	Flexible Group	PSD	Prevention of Significant Deterioration
GACS	Gallon of Applied Coating Solids	psia	Pounds per square inch absolute
GC	General Condition	psig	Pounds per square inch gauge
gr	Grains	PeTE	Permanent Total Enclosure
HAP	Hazardous Air Pollutant	PTI	Permit to Install
Hg	Mercury	RACT	Reasonable Available Control Technology
hr	Hour	ROP	Renewable Operating Permit
HP	Horsepower	SC	Special Condition
H ₂ S	Hydrogen Sulfide	scf	Standard cubic feet
HVLP	High Volume Low Pressure *	sec	Seconds
ID	Identification (Number)	SCR	Selective Catalytic Reduction
IRSL	Initial Risk Screening Level	SO ₂	Sulfur Dioxide
ITSL	Initial Threshold Screening Level	SRN	State Registration Number
LAER	Lowest Achievable Emission Rate	TAC	Toxic Air Contaminant
lb	Pound	Temp	Temperature
m	Meter	THC	Total Hydrocarbons
MACT	Maximum Achievable Control Technology	tpy	Tons per year
MAERS	Michigan Air Emissions Reporting System	μg	Microgram
MAP	Malfunction Abatement Plan	VE	Visible Emissions
MDEQ	Michigan Department of Environmental Quality	VOC	Volatile Organic Compounds
mg	Milligram	yr	Year
mm	Millimeter		

Page 59 of 61

20192024

2014b2019c

ROP No: MI-ROP-N5831-

Expiration Date: August 4,

PTI No: MI-PTI-N5831-

*For HVLP applicators, the pressure measured at the gun air cap shall not exceed 10 pounds per square inch gauge (psig).

Appendix 2. Schedule of Compliance

The permittee certified in the ROP application that this stationary source is in compliance with all applicable requirements and the permittee shall continue to comply with all terms and conditions of this ROP. A Schedule of Compliance is not required. (R 336.1213(4)(a), R 336.1119(a)(ii))

Appendix 3. Monitoring Requirements

Specific monitoring requirement procedures, methods or specifications are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 4. Recordkeeping

Specific recordkeeping requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 5. Testing Procedures

Specific testing requirement plans, procedures, and averaging times are detailed in the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

Appendix 6. Permits to Install

The following table lists any PTIs issued or ROP revision applications received since the effective date of the previously issued ROP No. MI-ROP-N5831-2008. Those ROP revision applications that are being issued concurrently with this ROP renewal are identified by an asterisk (*). Those revision applications not listed with an asterisk were processed prior to this renewal.

Source-Wide PTI No MI-PTI-N5831-2008a is being reissued as Source-Wide PTI No. MI-PTI-N5831-2014.

Permit to Install Number	ROP Revision Application Number	Description of Equipment or Change	Corresponding Emission Unit(s) or Flexible Group(s)
NA	NA	NA	NA

Appendix 7. Emission Calculations

The permittee shall use the following procedure in conjunction with monitoring, testing or recordkeeping data to determine compliance with the applicable requirements referenced in EUENGINEH29 and Source-Wide Conditions.

Procedures for Calculating Facility NOx and CO Emissions

The permittee shall demonstrate compliance with the NOx and CO emission limits by keeping track of all fuel usage for all equipment using such fuel at this facility and multiplying that fuel usage by equipment-specific emission factor. The emission factors are typically expressed as a mass weight of pollutant per unit of fuel.

20192024

2014b2019c

ROP No: MI-ROP-N5831-Expiration Date: August 4, PTI No: MI-PTI-N5831-

2011020100

EUENGINEH29: The permittee shall use emission factors from source specific testing (stack testing) or vendor data, for EUENGINEH29, including an engine from an engine change-out. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

Fuel burning equipment at the facility: The permittee shall use emission factors contained in the most recent AP-42 (Compilation of Air Pollutant Emission Factors) or the most recent FIRE (Factor Information Retrieval) database if vendor or stack data is not available. If other emission source values are used, the permittee shall obtain the approval of the AQD District Supervisor before using the emission factors to calculate emissions.

The permittee shall document the source of each emission factor used in the calculations.

Appendix 8. Reporting

A. Annual, Semiannual, and Deviation Certification Reporting

The permittee shall use the MDEQ, AQD, Report Certification form (EQP 5736) and MDEQ, AQD, Deviation Report form (EQP 5737) for the annual, semiannual and deviation certification reporting referenced in the Reporting Section of the Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Alternative formats must meet the provisions of Rule 213(4)(c) and Rule 213(3)(c)(i), respectively, and be approved by the AQD District Supervisor.

B. Other Reporting

Specific reporting requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, Part B of this appendix is not applicable.

PMMAP

LINN OPERATING, LLC

PREVENTATIVE MAINTENANCE/ MALFUNCTION ABATEMENT PLAN AND EPA 40 CFR, Part 63 Subpart ZZZZ MAINTENANCE PLAN

For

HAYES 29 CENTRAL PRODUCTION FACILITY HAYES TOWNSHIP, OTSEGO COUNTY, MI SRN 5831

January 7, 2019

Compressor Engine Identification

Engines (make/model):	Caterpillar 3516 LE
Unit No.	3956
	Low Emission/
	Lean Burn
Horsepower:	1085
Control	Oxidation Catalyst and AFRC

Purpose of Oxidation Catalyst

Oxidation catalysts used on lean burn engines reduce carbon monoxide (CO), volatile organic compounds (VOCs) and trace toxic air contaminants, which include hazardous air pollutants (HAPs) emissions.

Engine Operating Variables To Be Monitored

A copy of the normal field maintenance report and the compressor monthly operating reports are identified as Attachment 1a and 1b, respectively.

Malfunction Corrective Procedures

The engine will be shut down immediately if a malfunction event occurs. Repair work will be completed, the amount of time the engine is down, and the repairs performed will be recorded on the Field Maintenance Report. The catalyst (if impacted) will be inspected prior to engine start up. Note that new engines, or engines that have been recently overhauled or major repairs performed, should be run at the maximum available load for a period of at least 100 hours, before the catalyst element is installed. This allows the new engine components to break in and most major problems associated with engine start up to be resolved, protecting the catalyst element. If major engine work occurs, LINN should document the amount of time the engine is operated without the catalyst on the attached log in Attachment 2.

Major Parts Replacement Inventory

Major replacement parts (including a spare catalyst element) are kept in inventory for quick replacement in the event it is required. Parts inventory is maintained by a subcontractor.

Page 1 of 5

Oxidation Catalyst Operating Variables to Be Monitored

Unit 3956

Operating Variable	Normal Range*	Method of inspections	Frequency
Catalyst Inlet Temperature	>750° F	Visual inspection (thermocouple reading)	Daily
Catalyst Outlet Temperature	>750° F <1,350° F	Visual inspection (thermocouple reading)	Daily
Pressure Differential across Catalyst	5.4" of water column#	Visual inspection (gauge reading)	Monthly

*Catalyst inlet and outlet temperature and calibrated pressure differential ranges have been substantiated by utilizing a portable analyzer on three separate occasions. Maintenance and analyzer data is available in Attachment 3. The analyzer will be utilized to verify (when applicable) the CO reduction is at least 80%.

#Currently, a new baseline is being established based upon observed readings. The current actionable pressure differential is 7.4" w.c., or 2" w.c. above the substantiated range.

Corrective Procedures in the Event of a Malfunction

If an operating variable listed above is out of the specified range the following steps will be taken:

- Within 5 days check emissions reduction efficiencies for CO and NOx with a
 portable emissions analyzer. If efficiencies are within manufacturer's
 specifications (80% for CO 0% for NOx) nothing more will be done. LINN may
 submit the Change in Oxidation Catalyst Operating Variable Notification Form
 (Attachment 4) to the MDEQ District Supervisor to revise the catalyst operating
 variable range, if applicable. If efficiencies are not within manufacturer's
 specifications, proceed to step 2.
- 2. Within 5 days after step 1 above is completed, the catalyst will be removed and cleaned by vacuuming the catalyst face or using clean compressed air over the catalyst face. The catalyst gasket will also be replaced. The catalyst will be returned to service and emissions re-checked. If the catalyst still does not meet efficiency goals, remove the catalyst and send to vendor for cleaning. Install a replacement catalyst during vendor cleaning process.

AFRC O2 Sensor Replacement Schedule

 O_2 sensors for the AFRC will be replaced quarterly. Records shall be kept of the O_2 sensor replacements.

Emission Checks- Use of a Portable Emissions Analyzer

- a. The analyzer will be calibrated as required by the manufacturer. Records of calibration will be kept on file and made available to the Air Quality District Supervisor upon request.
- b. The analyzer will be used only for CO and NOx.
- c. The analyzer will be used monthly, and, to either (1) check the performance of a catalyst if a monitored parameter is out of range (as discussed above); or (2) when a cleaned catalyst is installed, typically every 12 to 18 months.
- d. LINN will conduct catalyst inlet and outlet checks to estimate destruction efficiency.
- e. Records shall be kept of destruction efficiency analysis.

Scheduled Maintenance

- a. The catalyst will be inspected and cleaned by vacuuming the catalyst face or blowing with clean compressed air every 12-18 months unless the operating variables specified above are out of their respective ranges.
- b. After inspection and cleaning, the catalyst shall be returned to service and emission reduction testing shall be performed. If the catalyst does not respond to the field cleaning, it will be sent to the manufacturer for a chemical cleaning. A replacement catalyst media will be used during the cleaning process in the interim.
- c. The oxidation catalyst gasket will be replaced when the catalyst is serviced (typically every 12-18 months).
- d. The catalyst will be replaced if it is demonstrated that it is not functioning properly after the vendor cleaning, or in lieu of vendor cleaning.

8. Non-Emergency, non- black start 4SLB remote	a.	Change oil and filter every 2,160 hours of
stationary RICE >500 HP		operation or annually, whichever comes first; ¹
tion with off in Louisia	b.	Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary;
ne – Santa Saint Ingelo Marine Marine Ingelo Marine Ingelo Marine Ingelo Marine Ingelo Marine Ingelo Marine	C.	Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary;

§63.6625(i) If you own or operate a stationary engine that is subject to the work, operation or management practices in items 1, 2, or 4 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. §63.6625(j) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil before continuing to use the engine. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

¹ Sources have the option to utilize an oil analysis program as described in section 63.6625 (i) and (j) in order to extend the specified oil change requirement in Table 2d of this Subpart ZZZZ.

Supervisory Personnel Responsible for Maintenance of the Control Equipment

Christopher Zimmerman Production Foreman 4890 Airport Road Lewiston, MI 49756 Office Phone: 989.786.7592 Cell Phone: 989.370.7654

Retention of Records

Records shall be kept on file and retained as described in the permit.

Updates of PM/MAP

Updates of the plan will be submitted to the AQD District Supervisor for written approval. If an operating variable range is modified using the Change in Oxidation Catalyst Operating Variable Notification Form, the PM/MAP will be updated to reflect the new range, as necessary. See Attachment 4.

										OF	PERAT	OR	-			_			N	IONTH	I/YEAF	1	_				_				
ENGINE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RPM																															
Eng JW temp							1		1						- 1																
Eng oil pres																		1				-	523			121					
Eng oil temp									1										1.10												
Eng hours																															
Manifold pres							1.1		1	1.1															1						
Turbo temp	-			1					d= -																-	-					
Pre-catalyst temp				-			_		1		-	-								1				-						-	
Post-catalyst temp	-	1.1			T			1	1.5																		1.00				
Compressor		T																													
Suction pres				1											- 1																
1ST int pres			-								1												- 7								
2ND int pres				-				-			-				-																
3RD int pres				1					-		1																				
Disch pres																	-		1												
Suction temp	10																- 1										••		_		
1st disch temp																											-				
2ND Suc temp										-	-															-	-				
2ND dis temp		1									-		-												-		-				-
3RD Suc temp											1			_								-	1.5	-							-
3RD dis temp																	-														
4TH Suc temp																	- 1					-							-		
Disch temp																			1				-								
Comp oil pres	4															-															
Comp oil temp			-				1	-					_		-	_			12-1-1-				-				-				
Fluid levels																						E = 1									
Down time hrs							1.1	-											1.12												
														-																	

Attachment 1B

CATALYST MONTHLY OPERATING REPORT

Unit Number	Location	Date of Service	Pre Temp (min 750°F)	Post Temp (max 1350°F)	Differential Pressure Baseline	Differential Pressure In W.C	Suction	Discharge Pressure	RPM	AFRC Sensor Output L.	AFRC Sensor Output R.	Last O2 Sensor Change
		_										

Attachment 2

Hayes 29 Unit #3956

Year:

Record of Time Engine Operated Without the Catalytic Converter

Total allowable per unit is 200 hours in 12 month period (not calendar year).

Time/Date of Engine Malfunction	Time/Date of Engine Repair	Reason	Total Hours Down	Total Hours 12 Month Time Period
				1 1 1
				2.2 7.83

Only record time engine operated without catalytic converter, not amount of time engine was shut down

Operator Signature

Submit to Chris Zimmerman monthly.

							DIFFERENTIAL				
UNIT# L	OCATION	CUSTOMER	DATE OF SERVICE	PRE TEMP	POST TEMP	TEMP DIFF		SUCTION	DISCHARGE PRESSURE	RPM	COMMENTS
3956 H	ayes 29	LINN									
ESTABLISH	HED BASELI	NE 8/20/13					ESTABLISHED BASI	LINE 1/14/	13		
TEMP DIF	F BASELINE	48	0				W/C DIFF	4.6			
			9/20/2013	837	814	-23	1.5	-1.4	990	1027	
			9/25/2013	881	855	-26	6.5	2.8	980	1177	
			9/30/2013	886	864	-22	6	-1.4	990	1167	·
			10/2/2013	882	860	-22	6.5	-1.8	980	1170	
			10/8/2013	867	845	-22	6.4	-1.5	1000	1120	
			10/10/2013	870	848	-22	6.5	-1.3	985	1120	
			10/12/2013	870	848	-22	6.5	-1.3	985	1120	
			10/14/2013	880	856	-24	6.5	-1.9	985	1163	
			10/18/2013	870	848	32	11	-1.7	990	1165	
			10/22/2013	872	850	-22	6	-1.9	985	1167	
			10/24/2013	874	852	-22	6	-2	990	1158	
			10/28/2013	860	838	-22	6	-2.2	995	1168	
			10/29/2013	859	837	-22	6	-2.5	990	1170	
			10/31/2013	852	830	-22	6	2.5	1010	1163	
ESTABLISH	ED BASELIN	NE 11/1/13					ESTABLISHED BASE	LINE 1/14/2	13		
TEMP DIFF	BASELINE	-24	0				W/C DIFF	5.5			
			11/5/2013	851	831	-20	6	-2.5	995	1166	
			11/7/2013	858	839	-19	6	-0.1	990	1200	
			11/15/2013	834	813	-21	4.5	-2.2	995	1133	
			11/19/2013	819	796	-23	2.5	-3.9	990	1019	
			11/21/2013	829	810	-19	4.5	-2.5	985	1118	
			11/26/2013	821	800	-21	4	-2.3	995	1089	

Attachment 4

LINN Operating, LLC CHANGE IN CATALYTIC CONVERTER OPERATING VARIABLE NOTIFICATION FORM

FACILITY NAME	
SRN No.	
PERMIT No.	
UNIT No.	

DATE	CATALYST OPERATING VARIABLE	OLD RANGE	NEW RANGE

Description of why/how range was modified. Include testing data to document range modifications.

If a range is changed the PM/MAP will be updated and submitted to DEQ District Supervisor.

2017 MAERS Report

Michigan Air Emissions Reporting System (MAERS)

Source Summary Report - AQD Source ID (SRN) N5831

Reporting Year : 2017

	-	caree cannuity respect .			nopening teat the
S-101 SOURCE INF	ORMATION				
Source Na	me Breitburn_Linn Operating, LL	C - Hayes 29 CPF	NAICS Code	211130	Portable No
Addre	ess 10875 Geronimo Trail, SW4 7	129N R4W SEC 29			
Cou	nty OTSEGO	City GAYLORD	Zip Code	49735	District Gaylord
.atitude	Longitude	Horizontal Collection Method	Source Map Scale	Horizontal Accuracy Measure	Horizontal Reference Datum
4.87298486	-84.8273659	001	50000	25 Meter(s)	03
Reference Point Code	Principal Product	Number of Employees	Employer Federal ID Number		
102	NATURAL GAS	2	113785529		
and a state of the					
OWNER INFORMAT	TION				
Owner Na	me Breitburn Operating LP				
Mailing Addre	ess 1165 Elkview dr		Address Continued P.O. Bo	ox 1256	
C	City Gaylord		State/Province MI	Country USA	Zip/Postal Code 49735
S-102 CONTACT IN	FORMATION				
	Emission Inventory Contact Ir (Primary)	nformation_	more to a first coally		
Contact Name	e CAROLANN KNAPP	Mailing Ad	Idress BREITBURN OPERATIN	IG LP	
Contact Title	e EH&S REP	Address Cont	tinued 1165 ELKVIEW DR		
			City GAYLORD		
E-Mail Address	s carolann.knapp@breitburn.com	State/Pro	ovince MI		
Telephone Number	r (989)7320020	Co	ountry USA		
Fax Number	r	Zip or Postal	Code 49734		

	Emission Inventory Contact Information (Secondary)		
Contact Name		Mailing Address	
Contact Title		Address Continued	
		City	
E-Mail Address		State/Province	МІ
Telephone Number		Country	USA
Fax Number		Zip or Postal Code	
	Fee Invoice Contact Information		
Contact Name	CAROLANN KNAPP	Mailing Address	BREITBURN OPERATING LP
Contact Title	EH&S REP	Address Continued	P.O. BOX 1256
		City	GAYLORD
E-Mail Address	carolann.knapp@breitburn.com	State/Province	MI
Telephone Number	(989)7320020	Country	USA
Fax Number		Zip or Postal Code	49734

P-101 PREPARER'S INFORMATION

Preparer's First Name Carolann	Preparer's Last Name Knapp		Preparer's Title Regional EH&S Rep
	Mailing Address 1165 Elkview Drive	•	Address Continued P.O. Box 1256
City Gaylord	State/Province MI	Country USA	Zip/Postal Code 49734
Email Address carolann.knapp@breitburn.cor	Telephone Number (989)7320020 Ext.	369	Fax Number
V-101 STACK INFORMATION			
Stack ID SVENGINE6	AQD Stack ID SV0007		Dismantle Date
Stack Description Stack for engine #6 with cataly	tic converter		
ctual Stk Height Above 40 FT Ground	Inside Stack Diameter 12 IN		Stack Orientation Vertical
Exit Gas Temperature 1125 F	Actual Exit Gas Flow Rate 6567 FT3/MIN		Exit Velocity of Gas 139.356 FT/SEC
Latitude 44.87298486	Longitude -84.8273659	Ho	prizontal Collection Method 001

Source Map Scale	50000	Horizontal Accuracy 25 Meter(s)	Horizontal Reference Datum 03
Reference Point Code	102	Bypass Stack Only N	If Yes, Main Stack ID
Stack ID	SVENGINEH29	AQD Stack ID SV0008	Dismantle Date
Stack Description	Stack for engine #H29 with	ith oxidation catalyst	
Actual Stk Height Above Ground	40 FT	Inside Stack Diameter 12 IN	Stack Orientation Vertical
Exit Gas Temperature	1125 F	Actual Exit Gas Flow Rate 6567 FT3/MIN	Exit Velocity of Gas 139.356 FT/SEC
Latitude	44.87298486	Longitude -84.8273659	Horizontal Collection Method 001
Source Map Scale	50000	Horizontal Accuracy 25 Meter(s)	Horizontal Reference Datum 03
Reference Point Code	102	Bypass Stack Only N	If Yes, Main Stack ID
Stack ID	SVENGINE5	AQD Stack ID SV0009	Dismantle Date
Stack Description	Stack for engine #5 with	catalytic converter	
Actual Stk Height Above Ground	40 FT	Inside Stack Diameter 12 IN	Stack Orientation Vertical
Exit Gas Temperature	1125 F	Actual Exit Gas Flow Rate 6567 FT3/MIN	Exit Velocity of Gas 139.356 FT/SEC
Latitude	44.87298486	Longitude -84.8273659	Horizontal Collection Method 001
Source Map Scale	50000	Horizontal Accuracy 25 Meter(s)	Horizontal Reference Datum 03
Reference Point Code	102	Bypass Stack Only N	If Yes, Main Stack ID
Stack ID	SVENGINE1	AQD Stack ID SV0010	Dismantle Date
Stack Description	Stack for engine #1		
Actual Stk Height Above Ground	37.5	Inside Stack Diameter 16	Stack Orientation Vertical
Exit Gas Temperature	852	Actual Exit Gas Flow Rate 7516	Exit Velocity of Gas 89.7156 FT/SEC
Latitude	44.87298486	Longitude -84.8273659	Horizontal Collection Method 001
Source Map Scale	50000	Horizontal Accuracy 25 Meter(s)	Horizontal Reference Datum 03
Reference Point Code	102	Bypass Stack Only N	If Yes, Main Stack ID
Stack ID	SVENGINE2	AQD Stack ID SV0011	Dismantle Date

Stack Des	scription Stack for engine	#2 with oxidation catalyst	
Actual Stk Height	Above 37.5 Ground	Inside Stack Diameter 16	Stack Orientation Vertical
Exit Gas Tem	perature 852	Actual Exit Gas Flow Rate 7416	Exit Velocity of Gas 88.522 FT/SEC
	Latitude 44.87298486	Longitude -84.8273659	Horizontal Collection Method 001
Source Ma	ap Scale 50000	Horizontal Accuracy 25 Meter(s)	Horizontal Reference Datum 03
Reference Poi	int Code 102	Bypass Stack Only N	If Yes, Main Stack ID
:	Stack ID SVENGINE3	AQD Stack ID SV0012	Dismantle Date
Stack Des	cription Stack for engine	#3 with oxidation catalyst	
Actual Stk Height	Above 37.5 Ground	Inside Stack Diameter 16	Stack Orientation Vertical
Exit Gas Tem	perature 852	Actual Exit Gas Flow Rate 7416	Exit Velocity of Gas 88.522 FT/SEC
1	Latitude 44.87298486	Longitude -84.8273659	Horizontal Collection Method 001
Source Ma	ap Scale 50000	Horizontal Accuracy 25 Meter(s)	Horizontal Reference Datum 03
Reference Poi	nt Code 102	Bypass Stack Only N	If Yes, Main Stack ID
	Stack ID SVENGINE4	AQD Stack ID SV0013	Dismantle Date
Stack Des	cription Stack for engine	#4 with oxidation catalyst	
Actual Stk Height	Above 37.5 Ground	Inside Stack Diameter 16	Stack Orientation Vertical
Exit Gas Temp	perature 852	Actual Exit Gas Flow Rate 7416	Exit Velocity of Gas 88.522 FT/SEC
	Latitude 44.87298486	Longitude -84.8273659	Horizontal Collection Method 001
Source Ma	p Scale 50000	Horizontal Accuracy 25 Meter(s)	Horizontal Reference Datum 03
Reference Poi	nt Code 102	Bypass Stack Only N	If Yes, Main Stack ID

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantie Date
EU0002	EUENGINE2	211130	Ν	11/01/1992	
Preparer's Description	ENGINE WITH OXIDAT	ION CATALYST - 1085 HP			

Design Capacity	Design Cap Unit Nun	pacity nerator	Design Capacit Unit Denominat	ty Maxim tor Capac	ium Namplate ity	Rule 201 Grandf	athered?	Rule 201 Exemp	ted?
1085	HP		HR			N		N	
lf Rule 201 exempt, Rul Number	throughput	exempt, is t below Fhresholds?	Permit?	lf Pern Numb	nitted, Permit er	Is this Emission MAERS for this r	Unit required t eporting year?	to report emissions ?	; to
			Y	86-054	4	Y			
CONTROL DEVICE(S)									
Control Device Code	1.11								
CATALYTIC OXIDR									
EMISSION UNIT STACK	((S)								
Stack ID									
SVENGINE2									

	NFORMATION	EU/RG I	EUENGINE	2						
Source Classification 2-02-002-54	Code (SCC)	Prepa LB EN	er's SCC Comm GINE	nent						
	SEASONAL M	ATERIAL USA	SE SCHEDULE							
IF THROUGHP	UT IS >0, THEN S			JST TOTAL 100%	OPERATING SCHEDULE					
Vinter (Dec,Jan,Feb)	inter (Dec,Jan,Feb) Spring (Mar-May)		er (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	/ Days per W	eek Days j	oer Year	Hours/Year	
25	25	25		25	24	7	365		8760	
MATERIAL INFORMAT	TION									
Aaterial Code	NATURAL GAS	Materi	Material Throughput 72.67		Unit Code	MILLION CU	JBIC FEET			
Preparer's material de	scription	NATU	AL GAS							
OC Content	Density	BTUs	fuel)	Sulfur Content (fue	i) Ash Content (fuel)				
	0.04 POUNDS P CUBIC FOOT		RITISH IAL UNITS PER FOOT	0.01 weight percent	0 weight perce	nt				
E-101 EMISSION I	NFORMATION	EU/RG	ID EUENG	INE2 SCC	Code 2-02-002	2-54				
Pollutant Code	Annual Emissions	Unit code	Emission Ba	sis List Emissio Factor	n Exponent	Emission Factor Unit Code	Control Efficiency %	Comment		
0	7180	POUNDS	Other	98.8		MILLION CUBIC FEET	80			
IOX	39891	POUNDS	Other	548.9		MILLION CUBIC FEET				
M10,PRIMARY	5.74	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET				
M2.5,PRIMRY	5.74	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET				
		POUNDS	MAERS EF	5.998	-1	MILLION CUBIC				
02	43.59	1 00100				FEET				

ATTACHMENT FOR EU/RG ID EUENGINE2 SCC Code 2-02-002-54

The state of the s

Document Name: 3516 Cat 1085hp

File Name: 3516 CAT 1085hp (Foster 28).pdf

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0003	EUFUGITIVES	211130	Ν	11/01/1992	
Preparer's Description	Fugitive emissions from val	lves etc.			
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?
				N	Ν
lf Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	lf Permitted, Permit Number	Is this Emission Unit require MAERS for this reporting yea	
		Y	86-05A	Υ	

A-101 ACTIVITY INFORMATION EU/RG ID EUFUGITIVES

Source Classification	Code (SCC)	Preparer's SCC Comm	nent				
3-10-888-01		FUGITIVES					
	SEASONAL MATE	RIAL USAGE SCHEDULE					
IF THROUGHP	UT IS >0, THEN SEAS	ONAL PERCENTAGES MU	JST TOTAL 100%		OPERAT	ING SCHEDULE	
Winter (Dec, Jan, Feb)	Spring (Mar-May)	Summer (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	Days per Week	Days per Year	Hours/Year
25	25	25	25	24	7	365	8760
MATERIAL INFORMAT	TION						
Material Code	VALVE	Material Throughput	640	Unit Code	EACH YEAR ACTIV	ΤY	
Preparer's material de	scription	FUGITIVES					
VOC Content	Density	BTUs (fuel)	Sulfur Content (fuel)	Ash Content (fuel)			

E-101 EMISSION INFORMATION EU/RG ID EUFUGITIVES SCC Code 3-10-888-01 Pollutant Code Annual Unit code Emission Basis List Emission Exponent Emission Factor Control

	Emissions			Factor		Unit Code	Efficiency %	
VOC	9216	POUNDS	MAERS EF	3.6	0	EACH YEAR ACTIVITY		

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0005	EUENGINE3	211130	Ν	11/01/1992	
Preparer's Description	ENGINE WITH OXIDATION	I CATALYST - 1085 HP			
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?
1085	HP	HR		Ν	Ν
lf Rule 201 exempt, Rule Number	lf Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	lf Permitted, Permit Number	Is this Emission Unit required t MAERS for this reporting year?	o report emissions to
		Υ	86-05A	Y	

CONTROL DEVICE(S)

Control Device Code CATALYTIC OXIDR

EMISSION UNIT STACK(S)

Stack ID SVENGINE3

la dia 4500 km2 k

A-101 ACTIVITY I	NFORMATION	EU/RG I	EUENGINE	3					
Source Classification	Code (SCC)	Prepa	er's SCC Comn	nent					
2-02-002-54		LB EN	GINE						
	SEASONAL M	ATERIAL USA	GE SCHEDULE						
IF THROUGHF	PUT IS >0, THEN S	EASONAL PER	RCENTAGES MI	UST TOTAL 100%		(OPERATING SCH	EDULE	
Winter (Dec, Jan, Feb)	Spring (Mar-Ma	y) Summ	er (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	/ Days per W	eek Days	per Year	Hours/Year
25	25	25		25	24	7	365		8760
MATERIAL INFORMA	TION								
Material Code	NATURAL GAS	Materi	al Throughput	76.47	Unit Code	MILLION CU	JBIC FEET		
Preparer's material de	escription	NATU	RAL GAS						
VOC Content	Density	BTUs	(fuel)	Sulfur Content (fuel)	Ash Content (fuel)			
	0.04 POUNDS F CUBIC FOOT		RITISH MAL UNITS PER FOOT	0.01 weight percent	0 weight perce	nt			
E-101 EMISSION	CUBIC FOOT	THERI	MAL UNITS PER	2	0 weight percent				
	CUBIC FOOT	THERI	MAL UNITS PER FOOT	INE3 SCC Co			Control Efficiency %	Comment	
E-101 EMISSION Pollutant Code CO	CUBIC FOOT	THERI CUBIC	FOOT	INE3 SCC Co asis List Emission	ode 2-02-002	2-54 Emission Factor		Comment	
Pollutant Code	CUBIC FOOT INFORMATION Annual Emissions	THERI CUBIC	MAL UNITS PER FOOT DEUENG Emission Ba	INE3 SCC Co asis List Emission Factor	ode 2-02-002	2-54 Emission Factor Unit Code MILLION CUBIC	Efficiency %	Comment	
Pollutant Code	CUBIC FOOT INFORMATION Annual Emissions 7556	THERI CUBIC N EU/RG Unit code POUNDS	MAL UNITS PER FOOT ID EUENG Emission Ba Other	INE3 SCC Co asis List Emission Factor 98.8	ode 2-02-002	2-54 Emission Factor Unit Code MILLION CUBIC FEET MILLION CUBIC	Efficiency %	Comment	
Pollutant Code CO NOX	CUBIC FOOT INFORMATION Annual Emissions 7556 41976	THERI CUBIC N EU/RG Unit code POUNDS POUNDS	MAL UNITS PER FOOT ID EUENG Emission Ba Other Other	INE3 SCC Co asis List Emission Factor 98.8 548.9	ode 2-02-002 Exponent	2-54 Emission Factor Unit Code MILLION CUBIC FEET MILLION CUBIC FEET MILLION CUBIC	Efficiency %	Comment	
Pollutant Code CO NOX PM10,PRIMARY	CUBIC FOOT INFORMATION Annual Emissions 7556 41976 6.04	THERI CUBIC N EU/RG Unit code POUNDS POUNDS POUNDS	MAL UNITS PER FOOT ID EUENG Emission Ba Other Other MAERS EF	SiNE3 SCC Co asis List Emission Factor 98.8 548.9 7.9	ode 2-02-002 Exponent	2-54 Emission Factor Unit Code MILLION CUBIC FEET MILLION CUBIC FEET MILLION CUBIC FEET MILLION CUBIC	Efficiency %	Comment	

ATTACHMENT FOR EU/RG ID EUENGINE3 SCC Code 2-02-002-54

Document Name: Cat 3516 1085hp

File Name: 3516 CAT 1085hp (Foster 28).pdf

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0010	EUENGINE1	211130	Ν	01/01/1992	
Preparer's Description	ENGINE WITH NO CONTRO	OL - 1085 HP			
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?
1085	HP	HR		Ν	N
lf Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	lf Permitted, Permit Number	Is this Emission Unit required t MAERS for this reporting year?	
		Y	86-05A	Y	

CONTROL DEVICE(S)

Control Device Code

EMISSION UNIT STACK(S)

Stack ID SVENGINE1

A-101 ACTIVITY INFORMATION EU/RG ID EUENGINE1

Source Classification Code (SCC)

2-02-002-54

25

Preparer's SCC Comment

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHP	UT IS >0, THEN SEAS	ONAL PERCENTAGES M	UST TOTAL 100%	
Winter (Dec, Jan, Feb)	Spring (Mar-May)	Summer (Jun-Aug)	Fall (Sep-Nov)	Но

an,Feb)	Spring (Mar-May)	Summer (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	Days per Week	Days per Year
	25	25	25	24	7	365

MATERIAL INFORMATION

Material Code	NATURAL GAS	Material Throughput	71.71	Unit Code	MILLION CUBIC FEET
Preparer's material	description	NATURAL GAS			
VOC Content	Density	BTUs (fuel)	Sulfur Content (fuel)	Ash Content (fuel)	
	0.04 POUNDS PER CUBIC FOOT	1020 BRITISH THERMAL UNITS PER CUBIC FOOT	0.01 weight percent	0 weight percent	

SCC Code 2-02-002-54

E-101 EMISSION INFORMATION EU/RG ID EUENGINE1

Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment	
со	35427	POUNDS	Other	494.01		MILLION CUBIC			
NOX	39363	POUNDS	Other	548.9		MILLION CUBIC FEET			
PM10,PRIMARY	5.67	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET			
PM2.5,PRIMRY	5.67	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET			
SO2	43.01	POUNDS	MAERS EF	5.998	-1	MILLION CUBIC FEET			
VOC	9447	POUNDS	Other	131.74		MILLION CUBIC			

ATTACHMENT FOR EU/RG ID EUENGINE1 SCC Code 2-02-002-54

Document Name: 3516 Cat 3516 1085hp

File Name: 3516 CAT 1085hp (Foster 28).pdf

OPERATING SCHEDULE

Hours/Year

8760

AQD Emission Unit ID	Emission Unit ID	NAICS Code	e Remov	e from MAERS	Installation Date	Dismantle Da	te
EU0011	EUGLYCOLDEH	Y 211130	N		01/01/1980		
Preparer's Description	GLYCOL DEHYD	RATOR - ANTRIM (HAYE	ES 29 DEHY)				
Design Capacity	Design Capacity Unit Numerato			um Namplate ity	Rule 201 Grandfathered	? Rule 201 Exe	mpted?
200000	BTU	HR			N	Y	
lf Rule 201 exempt, Ru Number			Is this Emission Unit red MAERS for this reportin		ons to		
Rule 282(b)(i)	N	Y	86-05A		Y		
A-101 ACTIVITY IN		U/RG ID EUGLYCOI					
Source Classification	Code (SCC)	Preparer's SCC Comm	nent				
3-10-003-23		GLYCOL DEHYDRATO	DR - ANTRIM				
	SEASONAL MATER	IAL USAGE SCHEDULE					
IF THROUGHPI	JT IS >0, THEN SEASO	NAL PERCENTAGES MI	UST TOTAL 100%		OPERAT	ING SCHEDULE	
Winter (Dec,Jan,Feb)	Spring (Mar-May)	Summer (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	Days per Week	Days per Year	Hours/Year
25	25	25	25	24	7	365	8760
MATERIAL INFORMAT	ION						
Material Code	GLYCOL	Material Throughput	0.11	Unit Code	YEAR-GALLON/MIN	UTE	
Preparer's material des	scription	GLYCOL DEHYDRATO	DRS-ANTRIM				
VOC Content	Density	BTUs (fuel)	Sulfur Content (fuel)	Ash Content (fue	1)		
			0 weight percent				

	Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment
,	VOC	10.12	POUNDS	MAERS EF	9.2	1	YEAR- GALLON/MINUTE		
Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date					
--	---	--	--	--					
EUTANKS	211130	Ν	01/01/1980						
OIL STORAGE TANKS									
Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?					
			N	Υ					
f Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	lf Permitted, Permit Number	Is this Emission Unit required to MAERS for this reporting year?						
N	Y	86-05A	Y						
	DIL STORAGE TANKS Design Capacity Unit Numerator f Rule 201 exempt, is hroughput below reporting Thresholds?	DIL STORAGE TANKS Design Capacity Unit Numerator f Rule 201 exempt, is hroughput below eporting Thresholds?	DIL STORAGE TANKS Design Capacity Unit Numerator f Rule 201 exempt, is hroughput below eporting Thresholds?	DIL STORAGE TANKS Design Capacity Unit Denominator f Rule 201 exempt, is hroughput below eporting Thresholds? Litter and the second s					

A-101 ACTIVITY	INFORMATION	EU/RG ID EUTANKS

Source Classification Code (SCC)Preparer's SCC Comment4-04-003-01FIXED ROOF TANK-BREATHING LOSS

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%					OPERATIN	NG SCHEDULE	
Winter (Dec, Jan, Feb)	Spring (Mar-May)	Summer (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	Days per Week	Days per Year	Hours/Year
25	25	25	25	24	7	365	8760

MATERIAL INFORMATION

Material Code	CRUDE OIL	Material Throughput	20.16	Unit Code	1000 GALLON YEARS
Preparer's material	description	CRUDE OIL			
VOC Content	Density	BTUs (fuel)	Sulfur Content (fuel)	Ash Content (fuel)	
			0 weight percent		

E-101 EMISSION INFORMATION EU/RG ID EUTANKS SCC Code 4-04-003-01

Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment	
VOC	725.76	POUNDS	MAERS EF	3.6	1	1000 GALLON YEARS			

A-101 ACTIVITY INFORMATION EU/RG ID EUTANKS

Source Classification Code (SCC) **Preparer's SCC Comment** 4-04-003-02 FIXED ROOF TANK-WORKING LOSS SEASONAL MATERIAL USAGE SCHEDULE IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100% **OPERATING SCHEDULE** Winter (Dec, Jan, Feb) Spring (Mar-May) Summer (Jun-Aug) Fall (Sep-Nov) Hours per Day Days per Week Days per Year Hours/Year 25 25 25 25 24 7 365 8760 MATERIAL INFORMATION **Material Code** CRUDE OIL Material Throughput 10.64 **Unit Code** 1000 GALLONS **Preparer's material description** CRUDE OIL

VOC Content Density BTUs (fuel) Sulfur Conter

C Content Density BTUs (fuel) Sulfur Content (fuel) Ash Content (fuel)

0 weight percent

E-101 EMISSIO	ON EU/RO	GID EUTANKS	SCC Code 4-04-003-02					
Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment
VOC	11.7	POUNDS	MAERS EF	1.1	0	1000 GALLONS		

OPERATING SCHEDULE

A-101 ACTIVITY INFORMATION EU/RG ID EUTANKS

 Source Classification Code (SCC)
 Preparer's SCC Comment

 4-06-001-32
 TRUCKLOADING

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHPUT IS >0, THEN SEASONAL PERCENTAGES MUST TOTAL 100%

Winter (Dec,Jan,Feb)	Spring (Mar-May)	Summer (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	Days per Week	Days per Year	Hours/Year
25	25	25	25	24	7	365	8760
MATERIAL INFORMA	ΓΙΟΝ						
Material Code	CRUDE OIL	Material Throughput	10.64	Unit Code	1000 GALLONS		
Preparer's material de	scription	CRUDE OIL TRUCKLO	ADING				
VOC Content	Density	BTUs (fuel)	Sulfur Content (fuel)	Ash Content (fuel)			

E-101 EMISSIO		ON EU/RO	GID EUTANKS	SCC Cod	e 4-06-001	-32	Second State		
Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment	
VOC	21.28	POUNDS	MAERS EF	2	0	1000 GALLONS			

EU-101 EMISSION UNIT INFORMATION

AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date	
EU0015	EUENGINE6	211130	Ν	11/01/1992		
Preparer's Description	ENGINE WITH CATALYTI	C CONVERTER - 1478 HP				
Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted?	
1478	HP	HR		Ν	Ν	
lf Rule 201 exempt, Rule Number	If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	If Permitted, Permit Number	Is this Emission Unit require MAERS for this reporting yea		
		Y	86-05A	Y		

CONTROL DEVICE(S)

Control Device Code AFTER,CAT CONV

EMISSION UNIT STACK(S)

Stack ID SVENGINE6

	NFORMATION	EU/RG	ID EUENGINE	6					
Source Classification	Code (SCC)	Prep	arer's SCC Com	ment					
2-02-002-53		RB E	ENGINE						
	SEASONAL N	ATERIAL US	AGE SCHEDULE						
IF THROUGHP	UT IS >0, THEN S	SEASONAL P	ERCENTAGES M	UST TOTAL 100%		(OPERATING SCI	IEDULE	
Winter (Dec,Jan,Feb)	Spring (Mar-Ma	iy) Sum	mer (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	Days per W	/eek Day	s per Year	Hours/Year
25	25	25		25	24	7	365		8760
	FION								
Material Code	NATURAL GAS	Mate	erial Throughput	85.64	Unit Code	Unit Code MILLION CUBIC FEET			
Preparer's material de	scription	NAT	URAL GAS						
VOC Content	Density	BTU	s (fuel)	Sulfur Content (fuel)	Ash Content (fuel)			
	0.04 POUNDS F CUBIC FOOT	THE	BRITISH RMAL UNITS PEF IC FOOT	0.01 weight percent	0 weight percer	nt			
E-101 EMISSION I	NFORMATION	N EU/R	GID EUENG	INE6 SCC C	ode 2-02-002	-53			
Pollutant Code	Annuai Emissions	Unit code	Emission Ba	asis List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment	
со	59086	POUNDS	Other	689.79		MILLION CUBIC FEET	80		
NOX	32014	POUNDS	Other	373.64		MILLION CUBIC FEET	90		
PM10,PRIMARY	829.85	POUNDS	MAERS EF	9.69	0	MILLION CUBIC FEET			
PM2.5,PRIMRY	829.85	POUNDS	MAERS EF	9.69	0	MILLION CUBIC			
SO2	51.37	POUNDS	MAERS EF	5.998	-1	MILLION CUBIC FEET			
502									

ATTACHMENT FOR	EU/RG ID	EUENGINE6	SCC Code	2-02-002

02-53

Document Name: Waukesha 7042 1478hp

File Name: F7042 Emissions levels.pdf

EU-101 EMISSION UNIT INFORMATION

AQD Emission Unit ID	Emission Unit ID	NAICS Cod	e Re	move from MAERS	Installation Date	Dismantle Date
EU0013	EUENGINE4	211130	N		11/01/1992	
Preparer's Description	ENGINE WITH OX	IDATION CATALYST -	1150 HP			
Design Capacity	Design Capacity Unit Numerator	Design Cap Unit Denon		aximum Namplate apacity	Rule 201 Grandfathered?	Rule 201 Exempted?
1150	HP	HR			N	Ν
lf Rule 201 exempt, Rule Number	If Rule 201 exemp throughput below reporting Thresho			Permitted, Permit umber	Is this Emission Unit requ MAERS for this reporting	uired to report emissions to year?
		Y	86	-05A	Y	
CONTROL DEVICE(S)						
Control Device Code CATALYTIC OXIDR	5040					
EMISSION UNIT STACK(S))					
Stack ID						
SVENGINE4						

A-101 ACTIVITY II		EU/KG	ID EUENGINE4	•					
Source Classification	Code (SCC)	Prep	arer's SCC Comm	lent					
2-02-002-54		LB E	NGINE						
	SEASONAL MA	ATERIAL US	AGE SCHEDULE						
IF THROUGHP	UT IS >0, THEN SE	EASONAL PI	ERCENTAGES MU	IST TOTAL 100%		c	PERATING SCH	EDULE	
Winter (Dec,Jan,Feb)	Spring (Mar-May	r) Sum	mer (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	Days per W	eek Days	s per Year	Hours/Year
25	25	25		25	24	7	365		8760
MATERIAL INFORMAT	TION								
Material Code	NATURAL GAS	Mate	erial Throughput	71.77	Unit Code	MILLION CU	BIC FEET		
Preparer's material de	scription	NATU	URAL GAS						
VOC Content	Density	BTU	s (fuel)	Sulfur Content (fuel)	Ash Content (f	uel)			
	0.04 POUNDS PE CUBIC FOOT	THEF	British Rmal Units Per IC Foot	0.01 weight percent	0 weight percen	t			
E-101 EMISSION I	NFORMATION	EU/R	G ID EUENGI	NE4 SCC Co	de 2-02-002	-54			and the second second
Pollutant Code	Annual Emissions	Unit code	Emission Bas	sis List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment	
со	7844	POUNDS	Other	109.18		MILLION CUBIC FEET	80		
NOX	32655	POUNDS	Other	454.9		MILLION CUBIC			
PM10,PRIMARY	5.67	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC			
PM2.5,PRIMRY	5.67	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET			
SO2	43.05	POUNDS	MAERS EF	5.998	-1	MILLION CUBIC			

ATTACHMENT FOR EU/RG ID EUENGINE4 SCC Code 2-02-002-54

POUNDS

Other

2-54

75.82

Document Name: Cat 3516 11150hp

5444

VOC

File Name: G3500 Engine Performance 1150hp.pdf

FEET

MILLION CUBIC

50

EU-101 EMISSION UNIT INFORMATION

	EUENGINE5	211130				
Preparer's Description E	ENGINE WITH CATALYTIC			N	11/01/1992	
		CONVERTER - 1478	HP			
Design Capacity D	Design Capacity Unit Numerator	Design Capacity Unit Denominator		Maximum Namplate Capacity	Rule 201 Grandfathered?	Rule 201 Exempted
1478 H	ΗP	HR			N	N
Number ti	f Rule 201 exempt, is hroughput below eporting Thresholds?	Permit?		lf Permitted, Permit Number	Is this Emission Unit requir MAERS for this reporting ye	ed to report emissions to ear?
		Y		86-05A	Y	
CONTROL DEVICE(S)						
Control Device Code AFTER,CAT CONV						
EMISSION UNIT STACK(S)	La La Managara					
Stack ID SVENGINE5	eonate u					

NIN TRUCK MEDICAL MODE STREAMENTS

A-101 ACTIVITY II	NFURMATION	EU/RG IL	EUENGINE	. D						
Source Classification	Code (SCC)	Prepar	er's SCC Comr	nent						
2-02-002-53		RB EN	GINE							
	SEASONAL M	ATERIAL USA	GE SCHEDULE							
IF THROUGHP	UT IS >0, THEN S	EASONAL PER		UST TO	TAL 100%			OPERATING SC	CHEDULE	
Winter (Dec,Jan,Feb)	Spring (Mar-Ma	y) Summ	er (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	/ Days per W	Veek Da	ays per Year	Hours/Year
25	25	25		25		24	7	36	5	8760
MATERIAL INFORMAT	TION									
Material Code	NATURAL GAS	Materia	al Throughput	0		Unit Code	MILLION C	UBIC FEET		
Preparer's material de	scription	NATUF	RAL GAS							
VOC Content	Density	BTUs (fuel)	Sulfu	r Content (fuel)	Ash Content (fuel)			
	0.04 POUNDS P CUBIC FOOT		AL UNITS PER		veight percent	0 weight perce	nt			
E-101 EMISSION I	NFORMATION	EU/RG	ID EUENG	INE5	SCC Co	de 2-02-002	-53			
Pollutant Code	Annual Emissions	Unit code	Emission Ba	sis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment	
со	0	POUNDS	MAERS EF		3.794	3	MILLION CUBIC			
NOX	0	POUNDS	MAERS EF		2.254	3	MILLION CUBIC			

NOA	0	FOUNDS	MAERS EF	2.204	3	FEET
PM10,PRIMARY	0	POUNDS	MAERS EF	9.69	0	MILLION CUBIC FEET
PM2.5,PRIMRY	0	POUNDS	MAERS EF	9.69	0	MILLION CUBIC FEET
SO2	0	POUNDS	MAERS EF	5.998	-1	MILLION CUBIC FEET
VOC	0	POUNDS	MAERS EF	3.019	1	MILLION CUBIC FEET

EU-101 EMISSION U	NIT INFORMATION		Part of the second s		
AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0016	EUENGINEH29	211130	Ν	11/01/1992	09/17/2013

Preparer's Description ENGINE WITH

ENGINE WITH CATALYTIC CONVERTER - 1478 HP

LOCATED AT HAYES 29 FACILITY, PTI 86-05A COVERS THIS ENGINE

Design Capacity	Design Capacity Unit Numerator	Design Capacity Unit Denominator	Maxim Capaci	um Namplate ity	Rule 201 Grandfathered	? Rule 201 Exempted?
1478	HP	HR			Ν	Ν
If Rule 201 exempt, Rule Number	e If Rule 201 exempt, is throughput below reporting Thresholds?	Permit?	lf Perm Numbe	itted, Permit er	Is this Emission Unit rec MAERS for this reporting	quired to report emissions to g year?
		Y	86-05A		Y	
CONTROL DEVICE(S)	in the factor					
Control Device Code AFTER,CAT CONV	Call Stores					
EMISSION UNIT STACK	(S)					
Stack ID SVENGINEH29	4-1010					

A-101 ACTIVITY I	NFORMATION	N EU/RG	ID EUENGINE	H29					A CONTRACTOR OF A CONTRACTOR A
Source Classification	Code (SCC)		arer's SCC Comn						
2-02-002-53		•	NGINE						
	SEASONAL M	ATERIAL US	AGE SCHEDULE						
IF THROUGHP	UT IS >0, THEN S	SEASONAL PI	ERCENTAGES MU	JST TOTAL 100%			OPERATING SCH	IEDULE	
Winter (Dec,Jan,Feb)	Spring (Mar-Ma	ay) Sum	mer (Jun-Aug)	Fall (Sep-Nov)	Hours per Day	Days per W	/eek Day	s per Year	Hours/Year
25	25	25		25	24	7	365		8760
MATERIAL INFORMAT	TION								
Material Code	NATURAL GAS	Mate	rial Throughput	0	Unit Code	MILLION CL	JBIC FEET		
Preparer's material de	scription	NAT	JRAL GAS						
VOC Content	Density	BTU	s (fuel)	Sulfur Content (fuel)	Ash Content (fuel)			
	0.04 POUNDS I CUBIC FOOT	THE	BRITISH RMAL UNITS PER IC FOOT	0.01 weight percent	0 weight perce	nt			
E-101 EMISSION I	NFORMATIO	N EU/R	GID EUENG	INEH29 SCC	Code 2-02-00	2-53			
Pollutant Code	Annual Emissions	Unit code	Emission Ba	sis List Emission Factor	n Exponent	Emission Factor Unit Code	Control Efficiency %	Comment	
со	0	POUNDS	MAERS EF	3.794	3	MILLION CUBIC			
NOX	0	POUNDS	MAERS EF	2.254	3	MILLION CUBIC			

						FEET
PM10,PRIMARY	0	POUNDS	MAERS EF	9.69	0	MILLION CUBIC FEET
PM2.5,PRIMRY	0	POUNDS	MAERS EF	9.69	0	MILLION CUBIC FEET
SO2	0	POUNDS	MAERS EF	5.998	-1	MILLION CUBIC FEET
VOC	0	POUNDS	MAERS EF	3.019	1	MILLION CUBIC FEET

EU-101 EMISSION U	NIT INFORMATION				
AQD Emission Unit ID	Emission Unit ID	NAICS Code	Remove from MAERS	Installation Date	Dismantle Date
EU0017	EUENGINEH29 NEW	211130	Ν	09/18/2013	

Preparer's Description

LB ENGINE WITH OXIDATION CATALYST-1085hp (REPLACES EUENGINEH29)

Design Capacity	Design Capacity Unit Numerato			ım Namplate Y	Rule 201 Grandfathered?	Rule 201 Exempted?
1085	HP	HR			Ν	Ν
lf Rule 201 exempt, Rule Number	If Rule 201 exem throughput below reporting Thresh	N	lf Permi Number	itted, Permit r	Is this Emission Unit require MAERS for this reporting ye	
		Y	86-05A		Υ	
CONTROL DEVICE(S)	entre entre					
Control Device Code	1					
CATALYTIC OXIDR						

A-101 ACTIVITY INFORMATION EU/RG ID EUENGINEH29 NEW

Source Classification Code (SCC) 2-02-002-54

Preparer's SCC Comment

LB ENGINE

SEASONAL MATERIAL USAGE SCHEDULE

IF THROUGHP	PUT IS >0, THEN SEASC	NAL PERCENTAGES M	UST TOTAL	100%	OPER/	ATING SCHEDULE	
Winter (Dec,Jan,Feb)	Spring (Mar-May)	Summer (Jun-Aug)	Fall (Sep-	Nov) Hours per Da	ay Days per Week	Days per Year	Hours/Year
25	25	25	25	24	7	365	8760

MATERIAL INFORMATION

Material Code	NATURAL GAS	Material Throughput	69.9	Unit Code	MILLION CUBIC FEET
Preparer's material o	lescription	NATURAL GAS			
VOC Content	Density	BTUs (fuel)	Sulfur Content (fuel)	Ash Content (fuel)	
	0.04 POUNDS PER CUBIC FOOT	916 BRITISH THERMAL UNITS PER CUBIC FOOT	0.01 weight percent		

E-101 EMISSION INFORMATION EU/RG ID EUENGINEH29 NEW SCC Code 2-02-002-54

Pollutant Code	Annual Emissions	Unit code	Emission Basis	List Emission Factor	Exponent	Emission Factor Unit Code	Control Efficiency %	Comment
со	6820	POUNDS	Other	512.52		MILLION CUBIC	80	
NOX	35880	POUNDS	Other	542.35		MILLION CUBIC FEET		
PM10,PRIMARY	5.52	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET		
PM2.5,PRIMRY	5.52	POUNDS	MAERS EF	7.9	-2	MILLION CUBIC FEET		
SO2	41.93	POUNDS	MAERS EF	5.998	-1	MILLION CUBIC FEET		
VOC	3860	POUNDS	Other	116.605		MILLION CUBIC FEET	50	

ATTACHMENT FOR EU/RG ID EUENGINEH29 NEW SCC Code 2-02-002-54

Document Name: Linn's Engine Spec Sample

File Name: LINN Sample Eng. Spec. Emis. Calcs. -.pdf

SOURCE EMISSION FACTOR SUBSET REPORT

SCC Code	Pollutant Code	Pollutant Unit Code	Factor Type	Factor	Exponent	Material Code	Material Unit Code	Control Device C	Code Control Device Code 2
-02-200-53	1223	68	1992	30400		Instance of the			
	ACETALDEHYDE	LB	Generic	2.846	0	NATURAL GAS	MMCF		
	ACROLEIN	LB	Generic	2.683	0	NATURAL GAS	MMCF		
	AMMONIA	LB	Generic	1.8	1	NATURAL GAS	MMCF	INJCTN,CARBON	
	AMMONIA	LB	Generic	9.1	0	NATURAL GAS	MMCF	SCR	
	BENZENE	LB	Generic	1.612	0	NATURAL GAS	MMCF		
	BUTADIENE,13	LB	Generic	6.763	-1	NATURAL GAS	MMCF		
	CARBON TETRA	LB	Generic	1.805	-2	NATURAL GAS	MMCF		
	CHLOROBENZ	LB	Generic	1.316	-2	NATURAL GAS	MMCF		
	CHLOROFORM	LB	Generic	1.397	-2	NATURAL GAS	MMCF		
	со	LB	Generic	3.794	3	NATURAL GAS	MMCF		
	CO2	LB	Generic	1.122	5	NATURAL GAS	MMCF		
	DIBROMOET,12	LB	Generic	2.173	-2	NATURAL GAS	MMCF		
	DICHLORETH12	LB	Generic	1.153	-2	NATURAL GAS	MMCF		
	DICLETH,11-	LB	Generic	1.153	-2	NATURAL GAS	MMCF		
	DICLPROPE,13	LB	Generic	1.295	-2	NATURAL GAS	MMCF		
	ETHYLBENZENE	LB	Generic	2.53	-2	NATURAL GAS	MMCF		
	FORMALDEHYDE	LB	Generic	2.091	1	NATURAL GAS	MMCF		
	METHANE	LB	Generic	2.346	2	NATURAL GAS	MMCF		
	METHANOL	LB	Generic	3.121	0	NATURAL GAS	MMCF		
	METHYLENE CL	LB	Generic	4.202	-2	NATURAL GAS	MMCF		
	NAPHTHALENE	LB	Generic	9.904	-2	NATURAL GAS	MMCF		
	NOX	LB	Generic	2.254	3	NATURAL GAS	MMCF		
	PAH	LB	Generic	1.438	-1	NATURAL GAS	MMCF		
	PM10,PRIMARY	LB	Generic	9.69	0	NATURAL GAS	MMCF		
	PM2.5,PRIMRY	LB	Generic	9.69	0	NATURAL GAS	MMCF		
	PRPLENE DICH	LB	Generic	1.326	-2	NATURAL GAS	MMCF		
	SO2	LB	Generic	5.998	-1	NATURAL GAS	MMCF		

	STYRENE	LB	Generic	1.214	-2	NATURAL GAS	MMCF	
	TETCLET,1122	LB	Generic	2.581	-2	NATURAL GAS	MMCF	
	TOLUENE	LB	Generic	5.692	-1	NATURAL GAS	MMCF	
	TRICLETH,112	LB	Generic	1.561	-2	NATURAL GAS	MMCF	
	VINYL CHLOR	LB	Generic	7.324	-3	NATURAL GAS	MMCF	
	VOC	LB	Generic	3.019	1	NATURAL GAS	MMCF	
	XYLENES ISO	LB	Generic	1.989	-1	NATURAL GAS	MMCF	
2-02-20	0-54							
		LB	Generic	4.274	1	NATURAL GAS	MMCF	
		LB	Generic	5.518	-1	NATURAL GAS	MMCF	
	ACENAPHTHEN	LB	Generic	1.275	-3	NATURAL GAS	MMCF	
	ACENAPHTHYL	LB	Generic	5.641	-3	NATURAL GAS	MMCF	
	ACETALDEHYDE	LB	Generic	8.527	0	NATURAL GAS	MMCF	
	ACROLEIN	LB	Generic	5.243	0	NATURAL GAS	MMCF	
	AMMONIA	LB	Generic	1.8	1	NATURAL GAS	MMCF	INJCTN,CARBON
	AMMONIA	LB	Generic	9.1	0	NATURAL GAS	MMCF	SCR
	BENZ(GHI)PE	LB	Generic	4.223	-4	NATURAL GAS	MMCF	
	BENZENE	LB	Generic	4.488	-1	NATURAL GAS	MMCF	
	BENZO(B)FLUO	LB	Generic	1.693	-4	NATURAL GAS	MMCF	
	BENZO(E)PYRE	LB	Generic	4.233	-4	NATURAL GAS	MMCF	
	BIPHENYL	LB	Generic	2.162	-1	NATURAL GAS	MMCF	
	BUTADIENE,13	LB	Generic	2.723	-1	NATURAL GAS	MMCF	
	CARBON TETRA	LB	Generic	3.743	-2	NATURAL GAS	MMCF	
	CHLOROBENZ	LB	Generic	3.101	-2	NATURAL GAS	MMCF	
	CHLOROETHANE	LB	Generic	1.907	-3	NATURAL GAS	MMCF	
	CHLOROFORM	LB	Generic	2.907	-2	NATURAL GAS	MMCF	
	CHRYSENE	LB	Generic	7.069	-4	NATURAL GAS	MMCF	
	СО	LB	Generic	5.68	2	NATURAL GAS	MMCF	
	CO2	LB	Generic	1.122	5	NATURAL GAS	MMCF	
	DIBROMOET,12	LB	Generic	4.519	-2	NATURAL GAS	MMCF	

DICHLORETH12	LB	Generic	2.407	-2	NATURAL GAS	MMCF
DICLETH,11-	LB	Generic	2.407	-2	NATURAL GAS	MMCF
DICLPROPE,13	LB	Generic	2.693	-2	NATURAL GAS	MMCF
ETHYLBENZENE	LB	Generic	4.049	-2	NATURAL GAS	MMCF
FLUORANTHENE	LB	Generic	1.132	-3	NATURAL GAS	MMCF
FLUORENE	LB	Generic	5.783	-3	NATURAL GAS	MMCF
FORMALDEHYDE	LB	Generic	5.386	1	NATURAL GAS	MMCF
HEXANE	LB	Generic	1.132	0	NATURAL GAS	MMCF
METHANE	LB	Generic	1.275	3	NATURAL GAS	MMCF
METHANOL	LB	Generic	2.55	0	NATURAL GAS	MMCF
METHYLENE CL	LB	Generic	2.04	-2	NATURAL GAS	MMCF
METHYLNAPHT2	LB	Generic	3.386	-2	NATURAL GAS	MMCF
NAPHTHALENE	LB	Generic	7.589	-2	NATURAL GAS	MMCF
NOX	LB	Generic	4.162	3	NATURAL GAS	MMCF
PAH	LB	Generic	2.744	-2	NATURAL GAS	MMCF
PERC	LB	Generic	2.53	-3	NATURAL GAS	MMCF
PHENANTHRENE	LB	Generic	1.061	-2	NATURAL GAS	MMCF
PHENOL	LB	Generic	2.448	-2	NATURAL GAS	MMCF
PM10,PRIMARY	LB	Generic	7.9	-2	NATURAL GAS	MMCF
PM2.5,PRIMRY	LB	Generic	7.9	-2	NATURAL GAS	MMCF
PRPLENE DICH	LB	Generic	2.744	-2	NATURAL GAS	MMCF
PYRENE	LB	Generic	1.387	-3	NATURAL GAS	MMCF
SO2	LB	Generic	5.998	-1	NATURAL GAS	MMCF
STYRENE	LB	Generic	2.407	-2	NATURAL GAS	MMCF
TETCLET,1122	LB	Generic	4.08	-2	NATURAL GAS	MMCF
TOLUENE	LB	Generic	4.162	-1	NATURAL GAS	MMCF
TRICLETH,112	LB	Generic	3.244	-2	NATURAL GAS	MMCF
TRIME-PENTAN	LB	Generic	2.55	-1	NATURAL GAS	MMCF
VINYL CHLOR	LB	Generic	1.52	-2	NATURAL GAS	MMCF
VOC	LB	Generic	1.204	2	NATURAL GAS	MMCF

3-10-000-23	XYLENES ISO	LB	Generic	1.877	-1	NATURAL GAS	MMCF
3-10-000-23	VOC	LB	State Specific Factors	9.2	1	GLYCOL	YR-GPM
4-04-400-01	VOC	LB	State Specific Factors	1.44	1	VALVE	EACH-YR
4-04-400-02	VOC	LB	Generic	3.6	1	CRUDE OIL	KGAL-YR
4-06-600-32	VOC	LB	Generic	1.1	0	CRUDE OIL	E3 GAL
	VOC	LB	Generic	2	0	CRUDE OIL	E3 GAL

Michigan Air Emissions Reporting System (MAERS)

2017 Source Form

ORM REFER	RENCE	Alter and the second			anteso estada a
Form Type	Source		AQD Source	ID (SRN)	N5831
1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
SOURCE IDEI	NTIFICATION	Carlo United States		SARAD'''	
Source Name	Breitbu	rn_Linn Operating	, LLC - Hayes 29 (CPF	MESSEAR STREET
NAICS Code	211130	C RO Gali Conte	Portable		No
Physical Addre	ess (Street Address 1)	and and and	and the second second	10875 Gero	onimo Trail
Physical Addre	ess (Street Address 2)	SW4 T29N R4	W SEC 29		anticologia (attached
County	OTSEGO	City	GAYLORD	Zip Code	49735-
Latitude	44.87298486 Dec	imal Degrees	Longitude		-84.8273659 Decimal Degrees
Horizontal Colle	ection Method	001			
Source Map So	cale Number	50000	Horizontal Ac	curacy Measur	e 25 Meters
Horizontal Refe	erence Datum Code	03	Reference P	oint Code	102
Principal Produ	uct NATUR	AL GAS		Number of E	Employees 2
Employer Fed	eral Identification Numbe	r 11378	5529	-	
	DHATION				
OWNER INFO		urn Operating LP			
			AAGE Elleview		S. S. M. M. S. M. S. M.
walling Addres	ss (Street Address 1)		1165 Elkviev	v ur	
Mailing Addres	ss (Street Address 2)		P.O. Box 12	56	
City	Gaylord		State/Pro vinc	ce	MI
Country	USA		Zip or Postal	Code	49735-

Michigan Air Emissions Reporting System (MAERS)

2017 Contact Form

FORM REFERENCE						<u> </u>
Form Type	Contact	AQD So	urce ID (SRN)	N5831		
						100 CP
EMISSION INVENTORY C	CONTACT (PRIMARY) INFORM	ATION			
Contact First Name, Middle	Initial	CAROL	ANN	Contact	Last Name KN	IAPP
Contact Title	EH&S REP					
Mailing Address (Street Add	ress 1)	1	BREITBUR	N OPERAT	ING LP	
Mailing Address (Street Add	ress 2)		1165 ELKV	IEW DR	2	
City GAYLORD	State/Province	MI	Country	USA	Zip Code	49734
E-Mail Address (if available)	caro	lann.knapp	 @breitburn.co	m		
Telephone Number	(989) 7320020		Telephone	Extension		
Fax Number	()					
EMISSION INVENTORY O	ONTACT (SECOND	ARY) INFO	RMATION			
Contact First Name, Middle I				Contact	Last Name	
Contact Title						
Mailing Address (Street Add	ress 1)					
Mailing Address (Street Addr	ress 2)				·	
City	State/Province	МІ	Country	USA	Zip Code	
E-Mail Address (if available)						
Telephone Number	()		Telephone	Extension	<u>,</u>	
Fax Number	0					

Michigan Air Emissions Reporting System (MAERS)

2017 Contact Form

FORM REFERENCE						and the second second
Form Type	Contact	AQD Source	ce ID (SRN)	N5831		
FEE INVOICE CONTACT IN	IFORMATION (Fee	Subject Fac	ilities Only)			and a subset of the second sec
Contact First Name, Middle In	itial	CAROLAN	NN	Contact I	ast Name	KNAPP
Contact Title	EH&S REP					Concluded of the
Mailing Address (Street Addre	ess 1)	Burning &	BREITBUR	N OPERAT	ING LP	and the second second
Mailing Address (Street Addre	ess 2)	151401972	P.O. BOX 1	256	100	as monthly of here a
City GAYLORD	State/Province	MI	Country	USA	Zip Code	49734
E-Mail Address (if available)	carol	ann.knapp@) breitburn.co	m	uging L	waters.
Telephone Number	(989) 7320020		Telephone	Extension		1000 NOC 10 1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-
Fax Number	()	in bankt	2.001	inden Santhalia		13) brindfrangeleit at a

Michigan Air Emissions Reporting System (MAERS)

2017 Stack Form

FORM REFERENC	E				a seguration
Form Type	Stack	AQD Source ID (SRN)	N5831	EC.MAD	
STACK IDENTIFIC	ATION		and a set of the set	STARS STR	

AQD Stack ID	SV0007		Stack ID		SVENGINE	6		
Dismantle Date (MM/DD/YY	ΥY)							
Stack Description		Stack fo	or engine #	6 with cataly	ic converter			lan an a
Actual Stack Height Above Ground	40	feet		Inside Stack	Diameter	12	inches	
Exit Gas Temperature	1125	degrees F	ahrenheit	enheit Actual Exit Gas Flow Rate 6567			cubic feet per minute	
Stack Orientation		Vertical						1.1.1.1.1.1.1
Latitude 44.8729	8486	Decimal [Degrees	Longitude		-84.8273659	Decima	l Degrees
Horizontal Collection Method	d 001	Source I Number	Map Scale	50000	Horizontal A	ccuracy Measure	25	Meters
Horizontal Reference Datur	1 Code	03	_	Reference Po	pint Code	102		
Bypass Stack Only		N		If yes, Stack	D of main stac	k		

Michigan Air Emissions Reporting System (MAERS)

2017 Stack Form

FORM REFERENCE						and the second		
Form Type	Stack	AQD So	urce ID (SRN)	N5831				
STACK IDENTIFICATION								
AQD Stack ID	SV0008	Stack ID)	SVENGINEH29	500973			
Dismantle Date (MM/DD/YY	YY)					Saluti Victoria mag		
Stack Description		Stack for engine	e #H29 with oxid	ation catalyst				
Actual Stack Height Above Ground	40	feet	Inside Stack	Diameter 12	1.0	inches		
Exit Gas Temperature	1125	degrees Fahrenhe	it Actual Exit G	as Flow Rate 6567	1.0	cubic feet per minute		
Stack Orientation		Vertical		-fairly-str	100	A STATE OF SHEET		
Latitude 44.8729	8486	Decimal Degrees	Longitude	-84.827	'3659	Decimal Degrees		
Horizontal Collection Metho	d 001	Source Map Scal Number	e 50000	Horizontal Accuracy	Measure	25 Meters		
Horizontal Reference Datum	n Code	03	Reference Po	int Code	102			
Bypass Stack Only N			If yes, Stack	If yes, Stack ID of main stack				

Michigan Air Emissions Reporting System (MAERS)

2017 Stack Form

FORM REFERENCE					
Form Type	Stack	AQD Sourc	e ID (SRN) N5831		
STACK IDENTIFICATION					
AQD Stack ID	SV0009	Stack ID	SVENGIN	E5	
Dismantle Date (MM/DD/YY	YY)				
Stack Description		Stack for engine #	5 with catalytic converte	r	
Actual Stack Height Above Ground	40	feet	Inside Stack Diameter	12	inches
Exit Gas Temperature	1125	degrees Fahrenheit	Actual Exit Gas Flow Rate	6567	cubic feet per minute
Stack Orientation		Vertical		S-01	
Latitude 44.8729	8486	Decimal Degrees	Longitude	-84.8273659	Decimal Degrees
Horizontal Collection Method	001	Source Map Scale	50000 Horizontal	Accuracy Measure	25 Meters

Horizontal Collection Method 001	Source Map Scale Number	50000	Horizontal Accuracy Measure	25	Meters
Horizontal Reference Datum Code	03	Reference Po	int Code 102		
Bypass Stack Only	N	If yes, Stack I	D of main stack		

Michigan Air Emissions Reporting System (MAERS)

2017 Stack Form

FORM REFERENCE				118,000		COLOR STATES
Form Type	Stack	AQD Sou	rce ID (SRN)	N5831		
STACK IDENTIFICATION	1					
AQD Stack ID	SV0010	Stack ID		SVENGINE	1	in the
Dismantle Date (MM/DD/YY	YY)				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	CONTRACTOR OF THE OWNER
Stack Description		Stack for engine	e #1	a whight to I	Tante -	and a second
Actual Stack Height Above Ground	37.5	feet	Inside Stack	Diameter	16	inches
Exit Gas Temperature	852	degrees Fahrenheit	t Actual Exit C	Gas Flow Rate	7516	cubic feet per minute
Stack Orientation		Vertical		13. A	Service States	
Latitude 44.8729	8486	Decimal Degrees	Longitude	a strength	-84.8273659	Decimal Degrees
Horizontal Collection Method	d 001	Source Map Scale Number	e 50000	Horizontal	Accuracy Measure	25 Meters
Horizontal Reference Datum	n Code	03	Reference P	oint Code	102	Conditioned and
Bypass Stack Only		N	If yes, Stack	ID of main star	ck	and share a

Michigan Air Emissions Reporting System (MAERS)

2017 Stack Form

FORM REFERENC	E			
Form Type	Stack	AQD Source ID (SRN)	N5831	
STACK IDENTIFIC	ATION			
AQD Stack ID	SV0011	Stack ID	SVENGINE2	

Dismantle Date (MM/DD/YYYY)					
Stack Description	Stack for engine #	2 with oxida	tion catalyst		
Actual Stack Height Above 37.5 Ground	feet	Inside Stack	Diameter 16	inches	
Exit Gas Temperature 852	degrees Fahrenheit	Actual Exit C	Gas Flow Rate 7416	cubic f	eet per minute
Stack Orientation	Vertical				
Latitude 44.87298486	Decimal Degrees	Longitude	-84.8273659	Decim	al Degrees
Horizontal Collection Method 001	Source Map Scale Number	50000	Horizontal Accuracy Measure	25	Meters
Horizontal Reference Datum Code	03	Reference P	Point Code 102		
Bypass Stack Only	N	If yes, Stack	ID of main stack		

Michigan Air Emissions Reporting System (MAERS)

2017 Stack Form

FORM REFERENCE					
Form Type	Stack	AQD Source	ce ID (SRN)	N5831	
STACK IDENTIFICATION	1				
AQD Stack ID	SV0012	Stack ID		SVENGINE3	
Dismantle Date (MM/DD/YY	YY)				
Stack Description		Stack for engine #	#3 with oxidati	on catalyst	an a
Actual Stack Height Above Ground	37.5	feet	Inside Stack I	Diameter 16	inches
Exit Gas Temperature	852	degrees Fahrenheit	Actual Exit Ga	as Flow Rate 7416	cubic feet per minute
Stack Orientation		Vertical		logini - C	n Bernhalt
Latitude 44.8729	8486	Decimal Degrees	Longitude	-84.8273659	Decimal Degrees
Horizontal Collection Method	d 001	Source Map Scale Number	50000	Horizontal Accuracy Measure	25 Meters
Horizontal Reference Datum	n Code	03	Reference Po	int Code 102	
Bypass Stack Only	10 C	N	If yes, Stack I	D of main stack	

Michigan Air Emissions Reporting System (MAERS)

2017 Stack Form

Form Type Stack AQD Source ID (SRN) N5831	FORM REFERENCE				 	
	Form Type	Stack	AQD Source ID (SRN)	N5831		

STACK IDENTIFICATION								
AQD Stack ID	SV0013		Stack ID		SVENGIN	E4	_	
Dismantle Date (MM/DD/YY	YY)							
Stack Description		Stack f	or engine #	4 with oxidati	on catalyst			;
Actual Stack Height Above Ground	37.5	feet		Inside Stack	Diameter	16	inches	
Exit Gas Temperature	852	degrees	Fahrenheit	Actual Exit G	as Flow Rate	7416	cubic fe	eet per minute
Stack Orientation		Vertica	1	<u> </u>		l.		
Latitude 44.8729	8486	Decimal	Degrees	Longitude		-84.8273659	Decima	al Degrees
Horizontal Collection Method	001	Source Number	Map Scale	50000	Horizontal	Accuracy Measure	25	Meters
Horizontal Reference Datum	Code	03		Reference Po	oint Code	102		
Bypass Stack Only		N		If yes, Stack I	D of main sta	nck		

Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

Form Type Emission Unit	AQD Sour	ce ID (SRN) N5831	in the second second	
		(11)		_
EMISSION UNIT IDENTIFICATION				
AQD Emission Unit ID EU000	2 EU ID	EUENG	INE2	1.1.080
NAICS Code (if different from Source F	orm) 211130			
Installation Date MM/DD/YYYY	11/01/1992	Dismantle Date MM/DD/	YYYY	ng Pi
Emission Unit Description - (Include Pre Control Devices)	ocess Equipment and	ENGINE WITH OXIDA	TION CATALYST - 1085 HP	
Design Capacity 1085	Design Capacity N	umerator HP	Design Capacity Denominator	HR
Maximum Nameplate Capacity			Megawatts	11
RULE 201 APPLICABILITY				
Grandfathered? N				
Exempt from Rule 201? N	If Yes, Ru	ile Number		
If Rule 201 Exempt, Is Throughput Belo	w Reporting Thresholds?			1
Permit? Y	If Yes, En	ter the Permit Number	86-05A	
Is This Emission Unit Required To Rep	ort Emissions To MAERS	For This Reporting Year?	Y	
	CONTR	ROL DEVICE(S)		
21. Control Device Code CA	TALYTIC OXIDR			2
	EMISSIO	N UNIT STACK(S)		

Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

ORM REFERENCE				
orm Type Emission Unit	AQD Source	e ID (SRN)	N5831	
MISSION UNIT IDENTIFICATION				
AQD Emission Unit ID EU0003	EU ID		EUFUGITI	VES
NAICS Code (if different from Source Form)	211130			
Installation Date MM/DD/YYYY 11/	01/1992	Dismantle D	ate MM/DD/YY	YY
Emission Unit Description - (Include Process Equ Control Devices)	uipment and	Fugitive en	issions from	valves etc.
Design Capacity De	esign Capacity Nur	nerator Design Capacity		Design Capacity Denominator
Maximum Nameplate Capacity		<u> </u>	- <u></u>	Megawatts
RULE 201 APPLICABILITY		_		
Grandfathered? N				
Exempt from Rule 201? N	If Yes, Rule	Number		
If Rule 201 Exempt, Is Throughput Below Report	ing Thresholds?			
Permit? Y If Yes, Enter the Permit Number				86-05A
Is This Emission Unit Required To Report Emissi	ions To MAERS Fo	or This Reportin	ig Year?	Y
	CONTRO	DL DEVICE	S)	
	FMOOLON	UNIT STAC		

Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

FORM REFERENCE					510
Form Type Emission Uni	t	AQD Source ID (SRN)	N5831		
EMISSION UNIT IDENTIFICATION				AND ADDA THE AND	
AQD Emission Unit ID EU	0005	EUID	EUENGIN	E3	
NAICS Code (if different from Source	ce Form) 2	11130	C.Britters	a of the set would be a marking of the	
Installation Date MM/DD/YYYY	11/01/19	92 Dismantle	Date MM/DD/Y	YY	
Emission Unit Description - (Include Control Devices)	e Process Equipmen	t and ENGINE W		ON CATALYST - 1085 HP	
Design Capacity 1085	Design C	Capacity Numerator	HP	Design Capacity Denominator HR	3
Maximum Nameplate Capacity	The second second			Megawatts	
RULE 201 APPLICABILITY				THE PROPERTY OF A DESCRIPTION OF A DESCR	97.9
Grandfathered? N				2	102
Exempt from Rule 201? N		If Yes, Rule Number	c li calverel -	WW RUN CONTRACTOR	eling
If Rule 201 Exempt, Is Throughput	Below Reporting Th	resholds?	A shatered a	nductors) interaction of Englands (Sectors)	1
Permit? Y	200-04	If Yes, Enter the Permit N	lumber	86-05A	100
Is This Emission Unit Required To	Report Emissions To	MAERS For This Report	ing Year?	Y see a	
		CONTROL DEVICE	(S)		
21. Control Device Code				100 miles	0.07
	E	MISSION UNIT STA	CK(S)		
22. Stack ID	SVENGINE3			rainia/sava	

Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

FORM REFERENCE	· · · · · ·		
Form Type Emission Unit	AQD Source	ID (SRN) N5831	
EMISSION UNIT IDENTIFICATION			
AQD Emission Unit ID EU0010	EU ID	EUENGINE	1
NAICS Code (if different from Source Form)	211130		
Installation Date MM/DD/YYYY	01/01/1992	Dismantle Date MM/DD/YYY	Y
Emission Unit Description - (Include Process Control Devices)	Equipment and	ENGINE WITH NO CONTR	ROL - 1085 HP
Design Capacity 1085	Design Capacity Num	erator HP	Design Capacity Denominator HR
Maximum Nameplate Capacity			Megawatts
RULE 201 APPLICABILITY			
Grandfathered? N			
Exempt from Rule 201? N	If Yes, Rule	Number	
If Rule 201 Exempt, Is Throughput Below Re	porting Thresholds?		
Permit? Y	If Yes, Enter	the Permit Number	86-05A
Is This Emission Unit Required To Report Em	nissions To MAERS For	This Reporting Year?	Y
	CONTRO	L DEVICE(S)	
21. Control Device Code			
	EMISSION U	JNIT STACK(S)	
22. Stack ID SVENG			

Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

Form Type Emission Unit	AOD So	urce ID (SRN) N5831	In the second
EMISSION UNIT IDENTIFICATION			
AQD Emission Unit ID EU	0011 EU ID	EUGLY	COLDEHY
NAICS Code (if different from Source	ce Form) 211130	ALL	The second second second second second
Installation Date MM/DD/YYYY	01/01/1980	Dismantle Date MM/DD/	γγγγ
Emission Unit Description - (Include Control Devices)	Process Equipment and	GLYCOL DEHYDRAT	OR - ANTRIM (HAYES 29 DEHY)
Design Capacity 200000	Design Capacity	Numerator BTU	Design Capacity Denominator HR
Maximum Nameplate Capacity	ster unde		Megawatts
RULE 201 APPLICABILITY			
Grandfathered? N			R and Reality
Exempt from Rule 201? Y	If Yes, F	Rule Number Rule 28	2(i)
If Rule 201 Exempt, Is Throughput	Below Reporting Thresholds	? N	Forstational waters information of CLI games and
Permit? Y	Enter the Permit Number	86-05A	
Is This Emission Unit Required To I	Report Emissions To MAERS	S For This Reporting Year?	Y
	CONT	ROL DEVICE(S)	
		ON UNIT STACK(S)	

Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

FORM REFERENCE						
Form Type Emission Unit		AQD Source ID (SRN) N5831				
MISSION UNIT IDENTIFICATION						
AQD Emission Unit ID EU0012	E	UID	EUTANK	(S		
NAICS Code (if different from Source Fo	rm) 21	1130				
Installation Date MM/DD/YYYY	01/01/1980	980 Dismantle Date MM/DD/YYYY				
Emission Unit Description - (Include Proc control Devices)	cess Equipment a	and OIL STO	RAGE TANKS			
Design Capacity	Design Ca	Design Capacity Numerator		Design Capacity Denominator		
Maximum Nameplate Capacity	2 g			Megawatts		
ULE 201 APPLICABILITY						
Grandfathered? N						
Exempt from Rule 201? Y	Rule 201? Y If Yes, Ru			(e)		
If Rule 201 Exempt, Is Throughput Below	Reporting Three	sholds?	N			
Permit? Y	Yes, Enter the Permit	Number	86-05A			
Is This Emission Unit Required To Repor	t Emissions To N	AERS For This Repo	rting Year?	Y		
	C	CONTROL DEVIC	E(S)			
	EM	ISSION UNIT STA				

Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

Form Type Emission Unit		LAODS	ource ID (SRN) N58	831	-		
	Linissi	on onic	7100 0			140	
						20	
EMISSION UNIT	IDENTIFIC	ATION			and several total of		
AQD Emission U	Jnit ID	EU0015	EU ID	EU ID EUENGINE6			
NAICS Code (if	different fro	m Source Form	211130		And the second second second second	1	
Installation Date	Installation Date MM/DD/YYYY 11/01/1992			Dismantle Date M	M/DD/YYYY	100	
						_	
Emission Unit D Control Devices)	escription -	(Include Proces	s Equipment and	ENGINE WITH C	ATALYTIC CONVERTER - 1478 HP		
Design Capacity	/ 1478	All provide the	Design Capacity	Numerator HP	Design Capacity Denominator	HR	
Maximum Name	eplate Capa	city	alt in the		Megawatts	i ini	
RULE 201 AP	PLICABI	LITY			The second s	4.11	
Grandfathered?	1212.9	N		The second s		é	
Exempt from Ru	le 201?	N	If Yes,	Rule Number	AND CONTRACTOR	5.6	
If Rule 201 Exer	mpt, Is Thro	ughput Below R	eporting Threshold	s?	the first state of the state of the state of the state	33	
Permit?	Y		lf Yes,	Enter the Permit Number	86-05A		
Is This Emission	n Unit Requ	ired To Report E	missions To MAER	RS For This Reporting Yea	r? Y		
			CON	TROL DEVICE(S)			
21. Control Devic	ce Code	AFTER	CAT CONV		SIGLAG OFFICIATASY STORES		
	1.17		EMISSI	ON UNIT STACK(S)	nive		
22. Stack ID		SVEN		()		-	

Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

FORM REFERENCE								
Form Type Emission Unit	AQD Source ID (SRN) N5831							
EMISSION UNIT IDENTIFICATION								
AQD Emission Unit ID EU0013	EU ID	EUENGI	NE4					
NAICS Code (if different from Source Form)	211130							
Installation Date MM/DD/YYYY	11/01/1992	Dismantle Date MM/DD/YYYY						
Emission Unit Description - (Include Process Equipment and Control Devices) ENGINE WITH OXIDATION CATALYST - 1150 HP								
Design Capacity 1150	Design Capacity Nun	nerator HP	Design Capacity Denominator HR					
Maximum Nameplate Capacity	Maximum Nameplate Capacity Megawatts							
RULE 201 APPLICABILITY								
Grandfathered? N	·	<u> </u>	, <u></u>					
Exempt from Rule 201? N	If Yes, Rule	Number						
If Rule 201 Exempt, Is Throughput Below Re	eporting Thresholds?							
Permit? Y If Yes, Enter the Permit Number			86-05A					
Is This Emission Unit Required To Report Emissions To MAERS For This Reporting Year? Y								
CONTROL DEVICE(S)								
21. Control Device Code CATALYTIC OXIDR								
EMISSION UNIT STACK(S)								
22. Stack ID SVENC	SINE4							

Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

FORM REFEREN		14.14			15 (8811)	118004	
Form Type	Emissio			AQD Soul	rce ID (SRN)	N5831	- Thursday and a second
EMISSION UNIT ID	ENTIFICA	TION				1.11	Contraction of the second s
AQD Emission Uni	t ID	EU0014	1.20	EU ID		EUENGIN	NE5
NAICS Code (if diff	ferent from	Source Form)		211130		41.51%	the strategiest management
Installation Date MM/DD/YYYY 11/01/1992			992	Dismantle Da	ate MM/DD/Y	γγγ	
Emission Unit Desc Control Devices)	cription - (I	nclude Proces	s Equipme	ent and		TH CATALY	TIC CONVERTER - 1478 HP
Design Capacity	1478	Design Capacity Nur			lumerator	HP	Design Capacity Denominator HF
Maximum Namepla	ate Capaci	ty	pp.Ki				Megawatts
RULE 201 APPI	ICABIL	ITY					YUBBADBRAD
Grandfathered?		N					
Exempt from Rule	201?	N If Yes, Ru			ule Number		N Strate
If Rule 201 Exempt	t, Is Throug	ghput Below R	eporting T	hresholds?		Silling with	provide it with the state of the second second
Permit?	Permit? Y If Yes, En				nter the Permit Nu	mber	86-05A
Is This Emission Unit Required To Report Emissions To MAERS For This Reporting Year?					g Year?	Y second from Y	
				CONTR		S)	
21. Control Device	Code	AFTER	CAT CC	DNV		1. 1910	A PARTIE AND A PARTIES OF A
				EMISSIO	N UNIT STAC	K(S)	
22. Stack ID		SVENO				. ,	PENNIN IVI

Permit?

22. Stack ID

21. Control Device Code

Y

Is This Emission Unit Required To Report Emissions To MAERS For This Reporting Year?

AFTER, CAT CONV

SVENGINEH29

Michigan Department of Environmental Quality - Air Quality Division

Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFERENCE				
Form Type Emission Unit	AQD Sour	D Source ID (SRN) N5831		
EMISSION UNIT IDENTIFICATION				
AQD Emission Unit ID EU001	6 EU ID	EUEN	IGINEH29	
NAICS Code (if different from Source F	Form) 211130			
Installation Date MM/DD/YYYY	11/01/1992	Dismantle Date MM/D	D/YYYY 09/17/2013	
Emission Unit Description - (Include Pr Control Devices)	ocess Equipment and		ALYTIC CONVERTER - 1478 HP ES 29 FACILITY, PTI 86-05A COVE	ERS THIS
Design Capacity 1478	Design Capacity N	merator HP	Design Capacity Denominator	HR
Maximum Nameplate Capacity			Megawatts	
RULE 201 APPLICABILITY				
Grandfathered? N				
Exempt from Rule 201? N	If Yes, Ru	e Number		
If Rule 201 Exempt, Is Throughput Belo	w Reporting Thresholds?			

If Yes, Enter the Permit Number

CONTROL DEVICE(S)

EMISSION UNIT STACK(S)

86-05A

Y

Michigan Air Emissions Reporting System (MAERS)

2017 Emission Unit Form

Form Type Emission Unit	AQD Sour	ce ID (SRN) N5831		
	RA			
EMISSION UNIT IDENTIFICATION				
AQD Emission Unit ID EU0017	EU ID	EUENGI	NEH29 NEW	
NAICS Code (if different from Source Form)	211130			
Installation Date MM/DD/YYYY 0	9/18/2013	Dismantle Date MM/DD/	(1)11	
Emission Unit Description - (Include Process E Control Devices)	quipment and	LB ENGINE WITH OXII (REPLACES EUENGIN	DATION CATALYST-1085hp IEH29)	
Design Capacity 1085	Design Capacity N	umerator HP	Design Capacity Denominator	HR
Maximum Nameplate Capacity			Megawatts	
RULE 201 APPLICABILITY				
Grandfathered? N				
Exempt from Rule 201? N	If Yes, Ru	le Number		
If Rule 201 Exempt, Is Throughput Below Repo	orting Thresholds?			
Permit? Y	If Yes, En	ter the Permit Number	86-05A	
Is This Emission Unit Required To Report Emis	sions To MAERS	For This Reporting Year?	Y	
		ROL DEVICE(S)		
21. Control Device Code CATALYT				
		N UNIT STACK(S)		

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFER	ENCE				The second second second second	(EF)
Form Type	Activity	AQD Source ID (SRN)	N5831	EU ID	EUENGINE2	
ACTIVITY INFO	DMATION					
Source Classif	ication Code	(SCC) 20200254		1.	周辺の 一下で、「大学会員の自己のない」	
SCC Comment		LB ENGINE				
SEASONAL MAT	ERIAL USAG	E SCHEDULE, IF THROUG	HPUT IS > 0, THEN	SEASONAL P	ERCENTAGES MUST TOTAL 100%	107
Ninter (Jan,Feb, Dec) Spring (Mar-May)		Summer (J	Jun-Aug)	Fall (Sep-Nov)	-Tonky	
25		25	25		25	
OPERATING SCI	HEDULE					104
Hours per Day		Days per We	ek		Days per Year	1.5.26
24		7			365	
MATERIAL INFO	RMATION					1.4.16
Material Code		Material Thro	ughput	Sales and the	Unit Code	
NATURAL GAS	5	72.67			MMCF	
Material Descrip	tion	NATURAL G	AS	234		1001
VOC Content (co	patings or solv	vent) % by Weigh	it	Density	0.04 LB/FT3	
BTUs (fuel)	1020 BTU	J/FT3				Thiu
Sulfur Content (f	uel)	0.01 % by Weight	Ash Conte	nt (fuel)	0 % by Weight	

ATTACHMENT:

Document Name:

3516 Cat 1085hp

File Name: 3516 CAT 1085hp (Foster 28).pdf

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

FORM REFERE	NCE					
Form Type	Activity	AQD Sou	rce ID (SRN)	N5831	EU ID	EUFUGITIVES
ACTIVITY INFOR	RMATION					
Source Classific	ation Code	(SCC)	31088801			
SCC Comment	Comment		FUGITIVES			
				PUT IS > 0, THEN	SEASONAL I	PERCENTAGES MUST TOTAL 100%
Winter (Jan, Feb, E	Dec)	Spring (Mar-May)		Summer (J	un-Aug)	Fail (Sep-Nov)
25		25	5			25
OPERATING SCHE	EDULE					
Hours per Day			Days per Week			Days per Year
24			7			365
MATERIAL INFOR	MATION					
Material Code			Material Throug	hput		Unit Code
VALVE			640			EACH-YR
Material Descriptio	n –		FUGITIVES			
VOC Content (coa	tings or solv	ent)	% by Weight	<u> </u>	Density	
BTUs (fuel)						
Sulfur Content (fue	el)	% by We	ight	Ash Conter	it (fuel)	% by Weight

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFER	ENCE			1010 - 111		and the second	
Form Type	Activity	AQD Source ID (SRN)	N5831	EU ID	(Chaing)	EUENGINE3	
4.070/171/ 1015/							
ACTIVITY INFO	JRMATION						
Source Classi	fication Code	e(SCC) 20200254		No.	2012292	NEWSBERGENERAL PLANE	
SCC Comment		LB ENGINE		and the second	W. L.		
SEASONAL MA		GE SCHEDULE, IF THROUG	SHPUT IS > 0, THEN	SEASONAL P	PERCENTA	GES MUST TOTAL 100%	
Winter (Jan, Feb	, Dec)	Spring (Mar-May)	Summer (Summer (Jun-Aug)		Fall (Sep-Nov)	
25		25	25	25		25	
OPERATING SC	HEDULE					0.00000	
Hours per Day		Days per We	eek	Days		ys per Year	
24		7		365			
MATERIAL INFO	RMATION					ANTE SA STORE	
Material Code		Material Thr	oughput	ing the state of	Unit Co	it Code	
NATURAL GAS	S	76.47			MMCF	F	
Material Descrip	otion	NATURAL	GAS	END IN	AUTAN .	- 11.151D	
VOC Content (c	oatings or sol	vent) % by Weig	ht	Density	Nachar	0.04 LB/FT3	
BTUs (fuel)	1020 BT	U/FT3			1.87	CONDUCT OF OF	
Sulfur Content (fuel)	0.01 % by Weight	Ash Conte	nt (fuel)	0 % by	Weight	

ATTACHMENT:

Document Name:

Cat 3516 1085hp

File Name: 3516 CAT 1085hp (Foster 28).pdf

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFEREN	NCE						
Form Type	Activity	AQD Source	e ID (SRN)	N5831	EU ID	EUENGINE1	
ACTIVITY INFOR	MATION						
Source Classific		(SCC)	20200254				
SCC Comment	·		LB ENGINE			6	
SEASONAL MATE	RIAL USAG	E SCHEDUL	E, IF THROUGHP	UT IS > 0, THEN	SEASONAL PI	ERCENTAGES MUST TOTAL	100%
Winter (Jan,Feb, Dec) Spring (Mar-May)		Summer (J		Fall (Sep-Nov)			
25		25		25		25	
OPERATING SCHE	DULE						
Hours per Day			Days per Week			Days per Year	
24			7			365	
MATERIAL INFORM	MATION						
Material Code			Material Throug	nput		Unit Code	
NATURAL GAS			71.71			MMCF	
Material Description	n		NATURAL GAS	; ;			
VOC Content (coatings or solvent) % by Weight				Density	0.04 LB/FT3		
BTUs (fuel)	1020 BTU	/FT3					
Sulfur Content (fue	I)	0.01 % by \	Veight	Ash Conten	t (fuel)	0 % by Weight	

ATTACHMENT:

Document Name:

3516 Cat 3516 1085hp

File Name: 3516 CAT 1085hp (Foster 28).pdf

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

FORM REFEREN	CE						States Same	
Form Type	Activity	AQD Sou	rce ID (SRN)	N5831	EU ID	Million of	EUGLYCOLDEHY	
ACTIVITY INFORM	NATION							
Source Classifica	tion Code	(SCC)	31000323			india co		
SCC Comment			GLYCOL DEH	YDRATOR - AN	TRIM	0305		
SEASONAL MATER	IAL USAG	E SCHEDI	JLE. IF THROUGH	PUT IS > 0. THEN	SEASONAL PE	ERCENTA	GES MUST TOTAL 100%	
Winter (Jan,Feb, Dec) Spring (Mar-May)			Summer (J			Fall (Sep-Nov)		
25		25		25			25	
OPERATING SCHE	DULE						S.J.M. TK	
Hours per Day	1.00	. Sector	Days per Week	(The Arrest of	Days p	Days per Year	
24			7					
MATERIAL INFORM	IATION					televi i e	ADD DATE OF	
Material Code		1.00	Material Throug	ghput	The state of the	Unit Code		
GLYCOL			0.11			YR-GP	M	
Material Description	1		GLYCOL DEH	YDRATORS-AN	TRIM	iousia"	1.1	
VOC Content (coati	ngs or solv	/ent)	% by Weight	41	Density	Lyo MT	proving the methodol	
BTUs (fuel)								
Sulfur Content (fuel)	0 % by W	/eight	Ash Conte	nt (fuel)	% by V	Weight	

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

FORM REFER	ENCE					
Form Type	Activity	AQD Source	e ID (SRN)	N5831	EU ID	EUTANKS
ACTIVITY INFO	ORMATION					Aug 10 Second and
Source Classi	fication Code	(SCC)	40400301			
SCC Comment			FIXED ROOF T	ANK-BREATH	ING LOSS	
		SE SCHEDUL	E, IF THROUGHF	PUT IS > 0, THEN	SEASONAL	PERCENTAGES MUST TOTAL 100%
Winter (Jan,Feb	, Dec)	Spring (Ma	Spring (Mar-May)		Jun-Aug)	Fall (Sep-Nov)
25		25		25		25
OPERATING SC	HEDULE			- I <u>-</u>		the second
Hours per Day			Days per Week			Days per Year
24			7			365
MATERIAL INFO	RMATION		·			
Material Code			Material Throug	hput		Unit Code
			20.16			KGAL-YR
Material Descrip	tion	·	CRUDE OIL			
VOC Content (coatings or solvent) % by Weight				Density		
BTUs (fuel)					l	
Sulfur Content (f	uel)	0 % by Wei	ght	Ash Conte	nt (fuel)	% by Weight

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

FORM REFEREN	VCE				1000	a	350 17.	
Form Type	Activity	AQD Source	e ID (SRN)	N5831	EU ID		EUTANKS	
ACTIVITY INFOR	MATION							
Source Classifica	ation Code	(SCC)	40400302			251 I.U.I.	A Maria Charles	
SCC Comment			FIXED ROOF	TANK-WORKING	LOSS	dill all		
SEASONAL MATE	RIAL USAG	SE SCHEDUL	.E, IF THROUGHI	PUT IS > 0, THEN	SEASONAL P	ERCENTA	GES MUST TOTAL 100%	
Winter (Jan, Feb, D	lec)	Spring (Mar-May)		Summer (J	Summer (Jun-Aug)		Fall (Sep-Nov)	
25		25		25			25	
OPERATING SCHE	DULE						a produce	
Hours per Day		10 100	Days per Week		They a	Days p	er Year	
24			7			365		
MATERIAL INFOR	MATION						Continues of	
Material Code		100	Material Throug	hput	design of the	Unit Co	it Code	
CRUDE OIL			10.64			E3 GA	GAL	
Material Descriptio	n		CRUDE OIL	T Remains		solution (44	
VOC Content (coa	tings or solv	vent)	% by Weight		Density	Star .	File In a Install	
BTUs (fuel)								
Sulfur Content (fue	el)	0 % by We	ight	Ash Conte	nt (fuel)	% by \	Veight	

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

FORM REFER	ENCE					
Form Type	Activity	AQD Source ID (SRN)	N5831	EU ID	EUTANKS	
ACTIVITY INFO						

Source Classification Co	de(SCC)	40600132						
SCC Comment	SCC Comment		TRUCKLOADING					
SEASONAL MATERIAL US	AGE SCHED	JLE, IF THROUGHPUT	IS > 0, THEN SE	ASONAL PE	RCENTA	GES MUST TOTAL 100%		
Vinter (Jan,Feb, Dec) Spring (Ma			Summer (Jun			Fall (Sep-Nov)		
25	25	252				25		
OPERATING SCHEDULE								
Hours per Day		Days per Week			Days per Year			
24		7			365			
MATERIAL INFORMATION								
Material Code		Material Throughput			Unit Co	ode		
CRUDE OIL		10.64	.64			L		
Material Description		CRUDE OIL TRUC	KLOADING					
VOC Content (coatings or so	olvent)	% by Weight		Density				
BTUs (fuel)				I				
Sulfur Content (fuel)	% by We	ight	Ash Content (fuel)	% by V	Weight		

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFEREN	ICE				STATISTICS STATISTICS
Form Type	Activity	AQD Source ID (SRN)	N5831	EU ID	EUENGINE6
ACTIVITY INFOR	MATION				North ANDRA IN
Source Classifica		(SCC) 20200253		1. 18.1	NUMBER OF TRANSPORT
SCC Comment	1.00	RB ENGINE		the ray	182
SEASONAL MATE	RIAL USAG	SE SCHEDULE, IF THROUGHPU	T IS > 0, THEN	SEASONAL PE	RCENTAGES MUST TOTAL 100%
Winter (Jan,Feb, D 25	ec)	Spring (Mar-May) 25	Summer (J 25	lun-Aug)	Fall (Sep-Nov) 25
OPERATING SCHE	DULE				1.00000000
Hours per Day		Days per Week		in With	Days per Year
24		7			365
MATERIAL INFOR	MATION				A PROVIDENCES
Material Code	100	Material Throughp	out	De agait o	Unit Code
NATURAL GAS		85.64			MMCF
Material Description	n	NATURAL GAS		340,045	The second s
VOC Content (coa	tings or solv	vent) % by Weight		Density	0.04 LB/FT3
BTUs (fuel)	1020 BTU	J/FT3			
Sulfur Content (fue	l)	0.01 % by Weight	Ash Conte	nt (fuel)	0 % by Weight

ATTACHMENT:

Document Name:

Waukesha 7042 1478hp

File Name: F7042 Emissions levels.pdf

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFER	ENCE						
Form Type	Activity	AQD Source	e ID (SRN)	N5831	EU ID	EUENGINE4	
1078/ITV/0/0	D 111						
ACTIVITY INFO							
Source Classif	cation Code	(SCC)	20200254				
SCC Comment			LB ENGINE				
SEASONAL MAT							
				PUT IS > 0, THE	N SEASONAL P	ERCENTAGES MUST TOTAL 1009	6
Winter (Jan,Feb,	Dec)	Spring (Ma	r-May)	Summer	(Jun-Aug)	Fall (Sep-Nov)	
25		25		25		25	
OPERATING SCI	IEDULE						
Hours per Day			Days per Weel	(Days per Year	
24			7			365	
MATERIAL INFO	RMATION						
Material Code			Material Throug	ghput		Unit Code	
NATURAL GAS			71.77			MMCF	
Material Descript	ion		NATURAL GA	S			
VOC Content (co	atings or solv	ent)	% by Weight		Density	0.04 LB/FT3	
BTUs (fuel)	1020 BTU	/FT3					
Sulfur Content (fu	uel)	0.01 % by \	Veight	Ash Conte	ent (fuel)	0 % by Weight	

ATTACHMENT:

Document Name:

Cat 3516 11150hp

File Name: G3500 Engine Performance 1150hp.pdf

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

FORM REFERE	NCE						
Form Type	Activity	AQD Source	e ID (SRN)	N5831	EU ID	e galer	EUENGINE5
ACTIVITY INFOR	RMATION	12.1					
Source Classific	ation Code	(SCC)	20200253				
SCC Comment			RB ENGINE		i de si	NAL SR	
SEASONAL MATE	RIAL USAC	SE SCHEDUL	E, IF THROUGH	PUT IS > 0, THEN	SEASONAL P	PERCENTA	GES MUST TOTAL 100%
Winter (Jan, Feb, D	Dec)	Spring (Mar	-May)	Summer (J	un-Aug)		Fall (Sep-Nov)
25		25		25			25
OPERATING SCH	EDULE						L.H.L.
Hours per Day			Days per Week		The New	Days p	er Year
24			7			365	
MATERIAL INFOR	MATION						185-E.137-30
Material Code		100	Material Throug	jhput	Sign to	Unit Co	ode
NATURAL GAS			0			MMCF	
Material Description	on		NATURAL GA	S	AL SINGLA	ri rang	
VOC Content (coa	tings or solv	vent)	% by Weight		Density		0.04 LB/FT3
BTUs (fuel)	1020 BTU	J/FT3					BY THE OKOL
Sulfur Content (fue	el)	0.01 % by \	Veight	Ash Conter	t (fuel)	0 % by	Weight

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

FORM REFEREN			-					
Form Type	Activity	AQD Source	e ID (SRN)	N5831		EU ID		EUENGINEH29
ACTIVITY INFOR	MATION							
Source Classifica	ation Code	(SCC)	20200253					
SCC Comment			RB ENGINE					
		SE SCHEDUL	E, IF THROUGH	PUT IS > 0, THI	EN SE	ASONAL PE	RCENTA	GES MUST TOTAL 100%
Winter (Jan,Feb, D	ec)	Spring (Ma	r-May)	Summe	r (Jun-	Aug)		Fall (Sep-Nov)
25		25		25				25
OPERATING SCHE	DULE			A			-	
Hours per Day			Days per Week	ζ			Days p	per Year
24			7				365	
MATERIAL INFORM	ATION				_			
Material Code		;	Material Throug			<u> </u>	Unit Co	
NATURAL GAS			0				MMCF	
Material Description			NATURAL GA	<u> </u>				
			_					
VOC Content (coat	ings or solv	ent)	% by Weight			Density		0.04 LB/FT3
BTUs (fuel)	1020 BTU	/FT3						
Sulfur Content (fue	l)	0.01 % by \	Neight	Ash Cor	ntent (fi	uel)	0 % by	Weight

Michigan Air Emissions Reporting System (MAERS)

2017 Activity Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFER	ENCE		12000		1000		A STRATE	
Form Type	Activity	AQD Source	e ID (SRN)	N5831	EŲ ID	it is not	EUENGINEH29 NEW	
	PMATION		Red an U.S.		and second a		- MERCINCUS	
		(000)	20200254					
Source Classi	lication Code		20200254					
SCC Comment			LB ENGINE					
SEASONAL MA	TERIAL USAG	SE SCHEDUL	E, IF THROUGH	PUT IS > 0, THEN	SEASONAL P	ERCENTA	GES MUST TOTAL 100%	
Winter (Jan,Feb, Dec) Spring (Mar-May)		Summer (J	un-Aug)		Fall (Sep-Nov)			
25		25		25	Continue in the Restance of		25	
OPERATING SC	HEDULE	Sec. 1				-		
Hours per Day		in the second	Days per Weel	k		Days p	er Year	
24			7					
MATERIAL INFO	RMATION					1		
Material Code	1000		Material Throug	ghput		Unit Co	ode	
NATURAL GA	S	1.1.1	69.9		M		MMCF	
Material Descrip	otion	and the second	NATURAL GA	S	1. A. A.	100	and the second second	
VOC Content (c	oatings or solv	vent)	% by Weight		Density		0.04 LB/FT3	
BTUs (fuel)	916 BTU/	/FT3	Section Section		and showing the			
Sulfur Content (fuel)	0.01 % by V	Neight	Ash Conter	it (fuel)	% by V	Weight	

ATTACHMENT:

Document Name:

Linn's Engine Spec Sample

File Name: LINN Sample Eng. Spec. Emis. Calcs. -.pdf

Michigan Air Emissions Reporting System (MAERS)

2017 Emissions Form

FORM REFERE	NCE						
Form Type	Emissions	AQD Source ID ((SRN)	N5831	EU ID	EUENGINE2	-
SCC	20200254		Material Co	de	NATURAL GAS		-

EMISSION INFORMATION				
Pollutant Code	со	Annual Emissions	7180 LB	
Emission Basis	Other			
List Emission Factor	98.80	Exponent		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	80 %	
Comment				

EMISSION INFORMATION				
Pollutant Code	NOX	Annual Emissions	39891 LB	1
Emission Basis	Other	J		
List Emission Factor	548.90	Exponent		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

				EMISSION INFORMATION
	5.74 LB	Annual Emissions	PM10,PRIMARY	Pollutant Code
			MAERS EF	Emission Basis
	-2	Exponent	7.90	List Emission Factor
	%	Control Efficiency	LB / MMCF	Emission Factor Unit Code
-				Emission Factor Unit Code

EMISSION INFORMATION				
Pollutant Code	PM2.5,PRIMRY	Annual Emissions	5.74 LB	
Emission Basis	MAERS EF			
List Emission Factor	7.90	Exponent	-2	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

2017 Emissions Form

FORM REFER	RENCE			0.446.84		30131	
Form Type	Emissions	AQD Source ID ((SRN)	N5831	EU ID	EUENGINE2	642.45346
SCC	20200254		Material (Code	NATURAL G	AS	5,74-5-

EMISSION INFORMATION			FIGH STUDE NEWSRE
Pollutant Code	S02	Annual Emissions	43.59 LB
Emission Basis	MAERS EF		A STATE AND A STATE AND A STATE
List Emission Factor	6.00	Exponent	-1
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%
Comment			

EMISSION INFORMATION				
Pollutant Code	VOC	Annual Emissions	4787 LB	
Emission Basis	Other			
List Emission Factor	65.87	Exponent		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	50 %	
Comment				

Michigan Air Emissions Reporting System (MAERS)

2017 Emissions Form

FORM REFE	RENCE					
Form Type	Emissions	AQD Source ID (SRN	N) N5831	EU ID	EUFUGITIVES	
SCC	31088801	Ма	terial Code	VALVE		

EMISSION INFORMATION					
Pollutant Code	VOC		Annual Emissions	9216 LB	
Emission Basis		MAERS EF			·
List Emission Factor	3.60		Exponent	0	<u> </u>
Emission Factor Unit Code		LB / EACH-YR	Control Efficiency	%	
Comment					·

2017 Emissions Form

FORM REFERENCE								
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUGLYCOLDEHY		
SCC	31000323		Material Co	ode	GLYCOL	Hactio-pa-		

FORM REFE	RENCE	101120000				Contract of the second s	100
Form Type	Emissions	AQD Source ID	(SRN) N	15831	EU ID	EUGLYCOLDEHY	
SCC	31000323		Material Code		GLYCOL	inclusion in the	
	1298035		10.00				
EMISSION INI	FORMATION						
Pollutant Code		VOC		Annual Emis	sions	10.12 LB	
Emission Basis	6	MAERS	EF		1997		12
List Emission F	Factor	9.20		Exponent		1	aler.
Emission Facto	or Unit Code	LB / YR	R-GPM	Control Effic	iency	%	10.

Michigan Air Emissions Reporting System (MAERS)

2017 Emissions Form

FORM REFE	RENCE					
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUTANKS	
SCC	40400301	Materia	I Code	CRUDE OIL		

EMISSION INFORMATION					
Pollutant Code	VOC		Annual Emissions	725.76 LB	
Emission Basis		MAERS EF			
List Emission Factor	3.60	······	Exponent	1	
Emission Factor Unit Code		LB / KGAL-YR	Control Efficiency	%	
Comment					

2017 Emissions Form

FORM REFERENCE							
Form Type	Emissions	AQD Source ID (SI	RN) N5831	EU ID	EUENGINE1		
SCC	20200254	N	Material Code	NATURAL G	AS		

EMISSION INFORMATION							
Pollutant Code	CO	Annual Emissions	35427 LB				
Emission Basis	Other		- West Contraction of the State				
List Emission Factor	494.01	Exponent	and a second				
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%				
Comment							

EMISSION INFORMATION						
Pollutant Code	NOX	Annual Emissions	39363 LB			
Emission Basis	Other		Contraction of the second s			
List Emission Factor	548.90	Exponent	EP MP			
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%			
Comment						

EMISSION INFORMATION							
Pollutant Code	PM10,PRIMARY	Annual Emissions	5.67 LB				
Emission Basis	MAERS EF						
List Emission Factor	7.90	Exponent	-2				
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%				
Comment	1						

Pollutant Code	PM2.5, PRIMRY	Annual Emissions	5.67 LB	
Emission Basis	MAERS EF			
List Emission Factor	7.90	Exponent	-2	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

Michigan Air Emissions Reporting System (MAERS)

2017 Emissions Form

FORM REFE	RENCE				
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUENGINE1
SCC	20200254	Materia	l Code	NATURAL GA	S

EMISSION INFORMATION						
Pollutant Code	SO2	Annual Emissions	43.01 LB			
Emission Basis	MAERS EF					
List Emission Factor	6.00	Exponent	-1			
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%			
Comment		l	<u> </u>			

EMISSION INFORMATION				
Pollutant Code	VOC	Annual Emissions	9447 LB	
Emission Basis	Other			
List Emission Factor	131.74	Exponent		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment			_	

2017 Emissions Form

FORM REFER	ENCE						(BBR T
Form Type	Emissions	AQD Source ID (S	SRN) N	5831	EU ID	EUTANKS	C. misel
SCC	40400302		Material Code		CRUDE OIL	SK(uB)a	

EMISSION INFORMATION				ALL
Pollutant Code	VOC		Annual Emissions	11.7 LB
Emission Basis	1916	MAERS EF		a state of the second second
List Emission Factor	1.10		Exponent	0
Emission Factor Unit Code		LB / E3 GAL	Control Efficiency	%
Comment				

Michigan Air Emissions Reporting System (MAERS)

2017 Emissions Form

FORM REFE	RENCE					
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUTANKS	
SCC	40600132	Materia	Code	CRUDE OIL	10 ⁴ Mar	

EMISSION INFORMATION							
Pollutant Code	VOC	Annual Emissions	21.28 LB				
Emission Basis	MAERS EF						
List Emission Factor	2.00	Exponent	0				
Emission Factor Unit Code	LB / E3 GAL	Control Efficiency	%				
Comment		- <u>-</u>		<u> </u>			

2017 Emissions Form

FORM REFERE	NCE					
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUENGINE3
SCC	20200254	The second	Material C	Code	NATURAL G	AS

EMISSION INFORMATION							
Pollutant Code	CO	Annual Emissions	7556 LB	4-10 F			
Emission Basis	Other		S STEAR				
List Emission Factor	98.80	Exponent					
Emission Factor Unit Code	LB / MMCF	Control Efficiency	80 %				
Comment							

EMISSION INFORMATION							
Pollutant Code	NOX	Annual Emissions	41976 LB				
Emission Basis	Other		10.00	Sent and			
List Emission Factor	548.90	Exponent	Series -				
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%				
Comment							

EMISSION INFORMATION				
Pollutant Code	PM10,PRIMARY	Annual Emissions	6.04 LB	
Emission Basis	MAERS EF			
List Emission Factor	7.90	Exponent	-2	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

Pollutant Code	PM2.5,PRIMRY	Annual Emissions	6.04 LB	
Emission Basis	MAERS EF			
List Emission Factor	7.90	Exponent	-2	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

Michigan Air Emissions Reporting System (MAERS)

2017 Emissions Form

FORM REFE	RENCE						
Form Type	Emissions	AQD Source ID ((SRN)	N5831	EU ID	EUENGINE3	
SCC	20200254		Material	Code	NATURAL G	AS	

EMISSION INFORMATION						
Pollutant Code	S02	Annual Emissions	45.87 LB			
Emission Basis	MAERS EF	•				
List Emission Factor	6.00	Exponent	-1			
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%			
Comment		•				

EMISSION INFORMATION					
Pollutant Code	VOC	Annual Emissions	5037 LB		
Emission Basis	Other				
List Emission Factor	65.87	Exponent			
Emission Factor Unit Code	LB / MMCF	Control Efficiency	50 %		
Comment					

2017 Emissions Form

FORM REFER	ENCE				S. C. Harris	B.X.O.E	STADION.
Form Type	Emissions	AQD Source ID ((SRN)	N5831	EU ID	EUENGINE4	
SCC	20200254		Material	Code	NATURAL G	AS	

EMISSION INFORMATION				PERSONAL AND A DESCRIPTION OF A DESCRIPT
Pollutant Code	CO	Annual Emissions	7844 LB	TO ET LONG ON
Emission Basis	Other		A SPERM	A STATE OF THE PARTY
List Emission Factor	109.18	Exponent	100.3	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	80 %	
Comment			a service and a service of the servi	the states

EMISSION INFORMATION				AGE ANTICAST DATA
Pollutant Code	NOX	Annual Emissions	32655 LB	
Emission Basis	Other		12/00	and the contract
List Emission Factor	454.90	Exponent	36.85	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	ber hitleynt i'n d
Comment				

EMISSION INFORMATION					
Pollutant Code	PM10,PRIMARY	Annual Emissions	5.67 LB		
Emission Basis	MAERS EF				
List Emission Factor	7.90	Exponent	-2		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%		
Comment					

Pollutant Code	PM2.5,PRIMRY	Annual Emissions	5.67 LB	
Emission Basis	MAERS EF			100
List Emission Factor	7.90	Exponent	-2	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

Michigan Air Emissions Reporting System (MAERS)

2017 Emissions Form

FORM REFE	RENCE	· · · · · · · · · · · · · · · · · · ·				2.2	
Form Type	Emissions	AQD Source ID ((SRN)	N5831	EU ID	EUENGINE4	
SCC	20200254		Material	Code	NATURAL G	AS	

EMISSION INFORMATION					
Pollutant Code	SO2	Annual Emissions	43.05 LB		
Emission Basis	MAERS EF				
List Emission Factor	6.00	Exponent	-1		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%		
Comment					

EMISSION INFORMATION				
Pollutant Code	VOC	Annual Emissions	5444 LB	
Emission Basis	Other		<u></u>	
List Emission Factor	75.82	Exponent		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	50 %	
Comment			·	

2017 Emissions Form

FORM REFERENCE							
Form Type	Emissions	AQD Source ID (SRN) N5831	EU ID	EUENGINE5	100	
SCC	20200253	Mat	erial Code	NATURAL G	AS		

EMISSION INFORMATION			
Pollutant Code	CO	Annual Emissions	0 LB
Emission Basis	MAERS EF		Lange Contraction
List Emission Factor	3.79	Exponent	3
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%
Comment			Sector Se

EMISSION INFORMATION					
Pollutant Code	NOX	Annual Emissions	0 LB	Sec. 2 mil	
Emission Basis	MAERS EF		ALL		
List Emission Factor	2.25	Exponent	3		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%		
Comment					

EMISSION INFORMATION				
Pollutant Code	PM10,PRIMARY	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	9.69	Exponent	0	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

Pollutant Code	PM2.5,PRIMRY	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	9.69	Exponent	0	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

Michigan Air Emissions Reporting System (MAERS)

2017 Emissions Form

FORM REFE	RENCE					
Form Type	Emissions	AQD Source ID (SRI	N) N5831	EU ID	EUENGINE5	
SCC	20200253	Ma	aterial Code	NATURAL GA	\S	

EMISSION INFORMATION				
Pollutant Code	SO2	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	6.00	Exponent	-1	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

Pollutant Code	VOC	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	3.02	Exponent	1	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

2017 Emissions Form

FORM REFERENCE						
Form Type	Emissions	AQD Source ID (SI	RN) N5831	EU ID	EUENGINE6	S PAGE
SCC	20200253	N	Material Code	NATURAL GAS	30,200,000	

EMISSION INFORMATION				
Pollutant Code	CO	Annual Emissions	59086 LB	
Emission Basis	Other		P BEERING	
List Emission Factor	689.79	Exponent	Carlos Carlos Carlos Carlos	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	80 %	
Comment				

EMISSION INFORMATION				
Pollutant Code	NOX	Annual Emissions	32014 LB	
Emission Basis	Other		Other Control Control	
List Emission Factor	373.64	Exponent	and the second	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	90 %	
Comment				

EMISSION INFORMATION				
Pollutant Code	PM10,PRIMARY	Annual Emissions	829.85 LB	
Emission Basis	MAERS EF	1	A State State	
List Emission Factor	9.69	Exponent	0	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment				

Pollutant Code	PM2.5, PRIMRY	Annual Emissions	829.85 LB
Emission Basis	MAERS EF		
List Emission Factor	9.69	Exponent	0
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%

Michigan Air Emissions Reporting System (MAERS)

2017 Emissions Form

FORM REFE	RENCE			그는 태어는 지지?
Form Type	Emissions	AQD Source ID (SRN) N5831	EU ID	EUENGINE6
SCC	20200253	Material Code	NATURAL GAS	1000

EMISSION INFORMATION				
Pollutant Code	SO2	Annual Emissions	51.37 LB	
Emission Basis	MAERS EF	I	-17	
List Emission Factor	6.00	Exponent	-1	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	-4
Comment		L,,,,,,,,,,		

EMISSION INFORMATION	Course States in 1999			
Pollutant Code	VOC	Annual Emissions	4308 LB	
Emission Basis	Other			
List Emission Factor	50.30	Exponent		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	50 %	
Comment				

2017 Emissions Form

FORM REFERENCE							
Form Type	Emissions	AQD Source ID	(SRN)	N5831	EU ID	EUENGINEH29	
SCC	20200253	02665	Material	Code	NATURAL G	AS	

EMISSION INFORMATION						
Pollutant Code	СО	1. T 1.	Annual Emissions	0 LB		
Emission Basis		MAERS EF		AL BRANCH	a standarder	
List Emission Factor	3.79		Exponent	3	- Agreen provided	
Emission Factor Unit Code		LB / MMCF	Control Efficiency	%	And Street and Street	
Comment				and the second second		

EMISSION INFORMATION					
Pollutant Code	NOX	Annual Emissions	0 LB		
Emission Basis	MAERS EF		a sector		
List Emission Factor	2.25	Exponent	3	in the house of	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	NY THE COURT PURCH	
Comment				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

EMISSION INFORMATION					
Pollutant Code	PM10,PRIMARY	Annual Emissions	0 LB		
Emission Basis	MAERS EF				
List Emission Factor	9.69	Exponent	0		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	4.34	
Comment					

Pollutant Code	PM2.5,PRIMRY	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	9.69	Exponent	0	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

Michigan Air Emissions Reporting System (MAERS)

2017 Emissions Form

FORM REFE	RENCE					
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUENGINEH29
SCC	20200253		Material (Code	NATURAL G	AS

EMISSION INFORMATION							
Pollutant Code	SO2		Annual Emissions	0 LB			
Emission Basis		MAERS EF					
List Emission Factor	6.00		Exponent	-1		-	
Emission Factor Unit Code		LB/MMCF	Control Efficiency	%			
Comment							

EMISSION INFORMATION				
Pollutant Code	VOC	Annual Emissions	0 LB	
Emission Basis	MAERS EF			
List Emission Factor	3.02	Exponent	1	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	

2017 Emissions Form

FORM REFERENCE							
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUENGINEH29 NEW		
SCC	20200254	Mate	rial Code	NATURAL GAS			

EMISSION INFORMATION						
Pollutant Code	CO	Annual Emissions	6820 LB			
Emission Basis	Other		INTERS CONTRACTOR			
List Emission Factor	512.52	Exponent		a strategy		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	80 %	and the state		
Comment				220		

EMISSION INFORMATION					
Pollutant Code	NOX	Annual Emissions	35880 LB	post vice	
Emission Basis	Other		NUMBER OF THE	The sector	
List Emission Factor	542.35	Exponent	TT Paulet	Auto and in the	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	100 100 COLL-0	
Comment				1.1.1.2.2	

EMISSION INFORMATION				
Pollutant Code	PM10,PRIMARY	Annual Emissions	5.52 LB	
Emission Basis	MAERS EF			
List Emission Factor	7.90	Exponent	-2	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment	I Hereiter auf Phra			

Pollutant Code	PM2.5, PRIMRY	Annual Emissions	5.52 LB
Emission Basis	MAERS EF		
List Emission Factor	7.90	Exponent	-2
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%

Michigan Air Emissions Reporting System (MAERS)

2017 Emissions Form

FORM REFE	RENCE			· · · · · · · · ·	
Form Type	Emissions	AQD Source ID (SRN)	N5831	EU ID	EUENGINEH29 NEW
SCC	20200254	Materia	l Code	NATURAL G	AS

EMISSION INFORMATION				1 5 C C C C C
Pollutant Code	SO2	Annual Emissions	41.93 LB	
Emission Basis	MAERS EF	l		
List Emission Factor	6.00	Exponent	-1	
Emission Factor Unit Code	LB / MMCF	Control Efficiency	%	
Comment	2	<u> </u>		

EMISSION INFORMATION				
Pollutant Code	VOC	Annual Emissions	3860 LB	
Emission Basis	Other			
List Emission Factor	116.61	Exponent		
Emission Factor Unit Code	LB / MMCF	Control Efficiency	50 %	
Comment				

Michigan Air Emissions Reporting System (MAERS)

2017 Preparer Form

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

		AQD Source ID (S	DNI)	NE024		
Form Type Pre	parer			N5831		11. 1
		A PARTY		वियो के प्रावस्थि ये हैंदि		- In Chardine
PREPARER'S INFOR	MATION				7.11	
Preparer's First Name,	Middle Initial	Carolanr	1	Preparer's Last N	ame	Knapp
Preparer's Title	Region	al EH&S Rep	Ditt. miter-1	a la gara serie am		
Mailing Address (Street	Address 1)	TT comtained with	1165 Elkvi	ew Drive		
Mailing Address (Street	Address 2)	P.O. Box 1256	2000	all and the		
City Gay	ylord	State/Province	MI	the second second	10.00	and the second
Country US	A	Zip Code	49734	1		10
E-Mail Address (if avail	able)	carolann.knapp@	@breitburn.co	m	-	
Telephone Number (989) 7320020		Telephone	Extension	369		
Fax Number	0		1. A	1		and the second second second

PREPARER'S ID (only complete this area if you have more than one preparer)

Michigan Department of Environmental Quality - Air Quality Division

Michigan Air Emissions Reporting System (MAERS)

2017 Submittal Form

(Required Form)

Authorized under 1994 P.A. 451, as amended. Completion of information is required. Civil and/or criminal penalties possible for providing false information.

FORM REFER	RENCE			
Form Type	Submittal	AQD Source ID (SRN)	N5831	

SOURCE IDEN	NTIFICATION			
Source Name	Breitbu	rn_Linn Operat	ing, LLC - Hayes 29 CPF	
Mailing Address	s (Street Address 1)		1087	5 Geronimo Trail
Mailing Address	s (Street Address 2)	SW	4 T29N R4W SEC 29	
County	OTSEGO	City	GAYLORD	Zip Code 49735-
Submittal Metho	od Electron	nic		Amended Submittal

PRIMARY PREPARER'S AUTHORIZATION										
Based on information and beli	ef formed after reasonable inquiry, t	he statements and information in this submitta	al are true, accurate, and complete.							
Primary Preparer	Carolann	Кпарр								
Telephone Number	(989)7320020	Telephone Extension	(989)7320020							
E-Mail Address (if availab	le) carolann.k	napp@breitburn.com								
Signature		Date								

LINN OPERATING, LLC

PREVENTATIVE MAINTENANCE/ MALFUNCTION ABATEMENT PLAN AND EPA 40 CFR, Part 63 Subpart ZZZZ MAINTENANCE PLAN

For

HAYES 29 CENTRAL PRODUCTION FACILITY HAYES TOWNSHIP, OTSEGO COUNTY, MI SRN 5831

January 7, 2019

Compressor Engine Identification

Engines (make/model):	Caterpillar 3516 LE
Unit No.	3956
	Low Emission/
	Lean Burn
Horsepower:	1085
Control	Oxidation Catalyst and AFRC

Purpose of Oxidation Catalyst

Oxidation catalysts used on lean burn engines reduce carbon monoxide (CO), volatile organic compounds (VOCs) and trace toxic air contaminants, which include hazardous air pollutants (HAPs) emissions.

Engine Operating Variables To Be Monitored

A copy of the normal field maintenance report and the compressor monthly operating reports are identified as Attachment 1a and 1b, respectively.

Malfunction Corrective Procedures

The engine will be shut down immediately if a malfunction event occurs. Repair work will be completed, the amount of time the engine is down, and the repairs performed will be recorded on the Field Maintenance Report. The catalyst (if impacted) will be inspected prior to engine start up. Note that new engines, or engines that have been recently overhauled or major repairs performed, should be run at the maximum available load for a period of at least 100 hours, before the catalyst element is installed. This allows the new engine components to break in and most major problems associated with engine start up to be resolved, protecting the catalyst element. If major engine work occurs, LINN should document the amount of time the engine is operated without the catalyst on the attached log in Attachment 2.

Major Parts Replacement Inventory

Major replacement parts (including a spare catalyst element) are kept in inventory for quick replacement in the event it is required. Parts inventory is maintained by a subcontractor.

TT 14 2054

Unit 3956			
Operating	Normal Range*	Method of	Frequency
Variable		inspections	
Catalyst Inlet	>750° F	Visual inspection	Daily
Temperature		(thermocouple	
		reading)	
Catalyst Outlet	>750° F	Visual inspection	Daily
Temperature	<1,350° F	(thermocouple	
		reading)	
Pressure	5.4" of water	Visual inspection	Monthly
Differential across	column#	(gauge reading)	
Catalyst			

Oxidation Catalyst Operating Variables to Be Monitored

*Catalyst inlet and outlet temperature and calibrated pressure differential ranges have been substantiated by utilizing a portable analyzer on three separate occasions. Maintenance and analyzer data is available in Attachment 3. The analyzer will be utilized to verify (when applicable) the CO reduction is at least 80%.

#Currently, a new baseline is being established based upon observed readings. The current actionable pressure differential is 7.4" w.c., or 2" w.c. above the substantiated range.

Corrective Procedures in the Event of a Malfunction

If an operating variable listed above is out of the specified range the following steps will be taken:

- Within 5 days check emissions reduction efficiencies for CO and NOx with a
 portable emissions analyzer. If efficiencies are within manufacturer's
 specifications (80% for CO 0% for NOx) nothing more will be done. LINN may
 submit the Change in Oxidation Catalyst Operating Variable Notification Form
 (Attachment 4) to the MDEQ District Supervisor to revise the catalyst operating
 variable range, if applicable. If efficiencies are not within manufacturer's
 specifications, proceed to step 2.
- 2. Within 5 days after step 1 above is completed, the catalyst will be removed and cleaned by vacuuming the catalyst face or using clean compressed air over the catalyst face. The catalyst gasket will also be replaced. The catalyst will be returned to service and emissions re-checked. If the catalyst still does not meet efficiency goals, remove the catalyst and send to vendor for cleaning. Install a replacement catalyst during vendor cleaning process.

AFRC O2 Sensor Replacement Schedule

 O_2 sensors for the AFRC will be replaced quarterly. Records shall be kept of the O_2 sensor replacements.

Emission Checks- Use of a Portable Emissions Analyzer

- a. The analyzer will be calibrated as required by the manufacturer. Records of calibration will be kept on file and made available to the Air Quality District Supervisor upon request.
- b. The analyzer will be used only for CO and NOx.
- c. The analyzer will be used monthly, and, to either (1) check the performance of a catalyst if a monitored parameter is out of range (as discussed above); or (2) when a cleaned catalyst is installed, typically every 12 to 18 months.
- d. LINN will conduct catalyst inlet and outlet checks to estimate destruction efficiency.
- e. Records shall be kept of destruction efficiency analysis.

Scheduled Maintenance

- a. The catalyst will be inspected and cleaned by vacuuming the catalyst face or blowing with clean compressed air every 12-18 months unless the operating variables specified above are out of their respective ranges.
- b. After inspection and cleaning, the catalyst shall be returned to service and emission reduction testing shall be performed. If the catalyst does not respond to the field cleaning, it will be sent to the manufacturer for a chemical cleaning. A replacement catalyst media will be used during the cleaning process in the interim.
- c. The oxidation catalyst gasket will be replaced when the catalyst is serviced (typically every 12-18 months).
- d. The catalyst will be replaced if it is demonstrated that it is not functioning properly after the vendor cleaning, or in lieu of vendor cleaning.

Scheduled Maintenance as indicated in Table 2d to Subpart ZZZZ:

8. Non-Emergency, non- black start 4SLB remote stationary RICE >500 HP	a.	Change oil and filter every 2,160 hours of operation or annually, whichever comes first; ¹
	b.	Inspect spark plugs every 2,160 hours of operation or annually, whichever comes first, and replace as necessary;
	c.	Inspect all hoses and belts every 2,160 hours of operation or annually, whichever comes first, and replace as necessary;

§63.6625(i) If you own or operate a stationary engine that is subject to the work, operation or management practices in items 1, 2, or 4 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. §63.6625(i) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil before continuing to use the engine. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

¹ Sources have the option to utilize an oil analysis program as described in section 63.6625 (i) and (j) in order to extend the specified oil change requirement in Table 2d of this Subpart ZZZZ.

Supervisory Personnel Responsible for Maintenance of the Control Equipment

Christopher Zimmerman Production Foreman 4890 Airport Road Lewiston, MI 49756 Office Phone: 989.786.7592 Cell Phone: 989.370.7654

Retention of Records

Records shall be kept on file and retained as described in the permit.

Updates of PM/MAP

Updates of the plan will be submitted to the AQD District Supervisor for written approval. If an operating variable range is modified using the Change in Oxidation Catalyst Operating Variable Notification Form, the PM/MAP will be updated to reflect the new range, as necessary. See Attachment 4.

Attachment 1a	Comp	oress	or N	/lonth	nly (Эре	ratir	ng R	ерс	ort				OF	UN PERAT	iit# 'Or		-)							TION H/YEAI	R						
ENGINE	-	1 2	3	4	5	6	3	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	3
RPM																																
Eng JW temp																																
Eng oil pres																																
Eng oil temp																	8															
Eng hours														2																		
Manifold pres															:																	
Turbo temp								-																								
Pre-catalyst temp																										-						
Post-catalyst temp							5																									
Compressor																																
Suction pres		· ·																														
1ST int pres			· · · · · · · · · · · · · · · · · · ·	ţ																												
2ND int pres																																
3RD int pres						1	-									<u> </u>																
Disch pres			ľ																							1						
Suction temp		· ·				-																						т. н				
1st disch temp											· ·																					
2ND Suc temp																											m					
2ND dis temp																																
3RD Suc temp																																
3RD dis temp	-																															
4TH Suc temp																										1						
Disch temp																																
Comp oil pres	4																															
Comp oil temp																																
Fluid levels																																
Down time hrs																																
REASON FOR DO	WNTIME																													18		
																										·						
<u> </u>																																

Attachment 1B

CATALYST MONTHLY OPERATING REPORT

Unit Number	Location	Date of Service	Pre Temp (min 750°F)	Post Temp (max 1350°F)	Differential Pressure Baseline	Differential Pressure In W.C	Suction	Discharge Pressure	RPM	AFRC Sensor Output L.	AFRC Sensor Output R.	Last O2 Sensor Change

Attachment 2

Hayes 29 Unit #3956

Year:

Record of Time Engine Operated Without the Catalytic Converter

Total allowable per unit is 200 hours in 12 month period (not calendar year).

Time/Date of Engine Malfunction	Time/Date of Engine Repair	Reason	Total Hours Down	Total Hours 12 Month Time Period

Only record time engine operated without catalytic converter, not amount of time engine was shut down

Operator Signature _____

Submit to Chris Zimmerman monthly.

				CA	TALYST MO	ONTHLY	OPERATING REPC	ORT			
UNIT#	LOCATION	CUSTOMER	DATE OF SERVICE	PRE TEMP	POST TEMP	TEMP DIFF	DIFFERENTIAL PRESSURE IN W.C	SUCTION	DISCHARGE PRESSURE	RPM	COMMENTS
3956	Hayes 29	LINN									
ESTABLI	SHED BASELI	NE 8/20/13					ESTABLISHED BASE	ELINE 1/14/	13		
TEMP D	IFF BASELINE	48	0				W/C DIFF	4.6			
			9/20/2013	837	814	-23	1.5	-1.4	990	1027	
			9/25/2013	881	855	-26	6.5	2.8	980	1177	
			9/30/2013	886	864	-22	6	-1.4	990	1167	
			10/2/2013	882	860	-22	6.5	-1.8	980	1170	
			10/8/2013	867	845	-22	6.4	-1.5	1000	1120	
			10/10/2013	870	848	-22	6.5	-1.3	985	1120	
			10/12/2013	870	848	-22	6.5	-1.3	985	1120	
			10/14/2013	880	856	-24	6.5	-1.9	985	1163	
			10/18/2013	870	848	32	11	-1.7	990	1165	
			10/22/2013	872	850	-22	6	-1.9	985	1167	
			10/24/2013	874	852	-22	6	-2	990	1158	
			10/28/2013	860	838	-22	6	-2.2	995	1168	
			10/29/2013	859	837	-22	6	-2.5	990	1170	
			10/31/2013	852	830	-22	6	2.5	1010	1163	
ESTABLI	SHED BASELI	NE 11/1/13					ESTABLISHED BASE	ELINE 1/14/	13		
TEMP D	IFF BASELINE	-24	0				W/C DIFF	5.5			
			11/5/2013	851	831	-20	6	-2.5	995	1166	
			11/7/2013	858	839	-19	6	-0.1	990	1200	
			11/15/2013	834	813	-21	4.5	-2.2	995	1133	
			11/19/2013	819	796	-23	2.5	-3.9	990	1019	
			11/21/2013	829	810	-19	4.5	-2.5	985	1118	
			11/26/2013	821	800	-21	4	-2.3	995	1089	

Attachment 4

LINN Operating, LLC CHANGE IN CATALYTIC CONVERTER OPERATING VARIABLE NOTIFICATION FORM

FACILITY NAME	
SRN No.	
PERMIT No.	
UNIT No.	

DATE	CATALYST OPERATING VARIABLE	OLD RANGE	NEW RANGE

Description of why/how range was modified. Include testing data to document range modifications.

If a range is changed the PM/MAP will be updated and submitted to DEQ District Supervisor.

Michigan Department of Environment, Great Lakes, and Energy Air Quality Division

RENEWABLE OPERATING PERMIT M-001: RULE 215 CHANGE NOTIFICATION RULE 216 AMENDMENT/MODIFICATION APPLICATION

This information is required by Part 55, Air Pollution Control, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment.

1. SRN N5831	2. ROP Number	MI-ROP-N5831-2014b	3. County	Ótsego			
4. Stationary Source Name	Riverside Energy M	lichigan-Hayes 29 Cpf, S	ection 2				
5. Location Address	10875 Geronimo Ti	ail	6. City	Gaylord			
up of the affected ROP pa	. Submittal Type - The submittal must meet the criteria for the box checked below. Check only one box. Attach a mark- up of the affected ROP pages for applications for Rule 216 changes.						
Rule 215(1) Notification							
Rule 215(2) Notification	5 .	te Items 8 – 10 and 14					
Rule 215(3) Notification	•	te Items 8 – 11 and 14					
Rule 215(5) Notification		te Items 8 – 10 and 14					
		ent. Complete Items 8 – 1					
Rule 216(1)(a)(v) Admi be submitted. See deta		. Complete Items 8 – 14. I	Results of testing, mor	hitoring & rec	ordkeepi	ng must	
🔲 Rule 216(2) Minor Mod		te Items 8 – 12 and 14					
🔲 Rule 216(3) Significant		te Items 8 – 12 and 14, and tion forms. See detailed in		l information	needed	on ROP	
🔲 Rule 216(4) State-Only	Modification. Complet	e Items 8 – 12 and 14					
8. Effective date of the chan See detailed instructions.	ge. (MM/DD/YYYY)	<u>08/01/2019</u>	9. Change in emis	sions?] Yes	🛛 No	
10. Description of Change - pollutants that will occur.	Describe any change If additional space is	s or additions to the ROI s needed, complete an A	P, including any cha dditional Informatior	nges in emi n form (Al-0	issions e 01).	and/or	
Request to change Haye request that James Schr	s 29 ownership name amski be our Respon	e from Riveria Resources sible Official.	to Riverside Energ	y Michigan.	And al	so to	
11. New Source Review Pe	mit(s) to Install (PTI)	associated with this appl	ication?		es 🛛	No	
If Yes, enter the PTI Nur					_		
12. Compliance Status - A r AI-001 if any of the follow	arrative compliance p ving are checked No.	plan, including a schedul	e for compliance, m	ust be subr	nitted us	ing an	
a. Is the change identified	ed above in compliance	ce with the associated ap	plicable requiremen	nt(s)?] Yes	🗌 No	
b. Will the change identi requirement(s)?				cable] Yes	🗌 No	
c. If the change includes	a future applicable r	equirement(s), will timely	compliance be ach	ieved?] Yes	🗌 No	
13. Operator's Additional In AI-001 form used to prov			(AI) ID for the asso	ociated A	1		
14. Contact Name	Telephon	e No.	E-mail Address				
Carolann Knapp	231-631-2	2995	Cknapp@riverside	em.com			
15. This submittal also upda (If yes, a mark-up of the		application submitted or e ROP must be attached		C] Yes	⊠ N/A	

NOTE: A CERTIFICATION FORM (C-001) SIGNED BY A RESPONSIBLE OFFICIAL MUST ACCOMPANY ALL SUBMITTALS For Assistance Contact: 800-662-9278

EQP 5775 (Rev.04-2019)

egle

Michigan Department of Environment, Great Lakes, and Energy - Air Quality Division

RENEWABLE OPERATING PERMIT APPLICATION C-001: CERTIFICATION

This information is required by Article II, Chapter 1, part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to provide this information may result in civil and/or criminal penalties. Please type or print clearly.

This form is completed and included as part of Renewable Operating Permit (ROP) initial and renewal applications, notifications of change, amendments, modifications, and additional information.

Form Type C-001				SRN	N5831
Stationary Source Name Riverside Energy Michigan-Hayes	20 Cof Section	0			
City	29 Opt, Section	ia 		County	<u> </u>
Gaylord, MI				Dtsego	
SUBMITTAL CERTIFICATION		N			
1. Type of Submittal Check on	·		Anntire Anne	under ant / Mardi	Section (Dutos 015/016)
□ Initial Application (Rule 210)	_			indment / Moun	fication (Rules 215/216)
Renewal (Rule 210)		Other, describe on A	I-001		
2. If this ROP has more than on	e Section, list the	Section(s) that this	Certification	n applies to 2) -
3. Submittal Media	E-mail		[Disk	Paper
		n Additional Informa	tion (AI) ID	that is used to	provide supplemental informatio
on Al-001 regarding a submit	al.				
AI					
CONTACT INFORMATION		<u></u>			
Contact Name	an ann an ann an an Airline ann an Airline		Title		
Carolann Knapp			Complia	nce Coordinato	r
Phone number		E-mail address			
231-631-2995		cknapp@rivers	ideem.com		
Manage Manage					
This form must be signed	and dated by	a Responsible	official.		
Responsible Official Name		<u>,</u>	Title		
James Schramski			VP Ope	erations	
Mailing address 10691 E. Carter Rd					
City	State	ZIP Code	Cour	•	Country
Traverse City	MI	49684		d Traverse	USA
As a Responsible Officia inquiry, the statements ar					

Signature of Besponsible Official

EQP	5773	(updated	4-2019)

8/13/19

Date

RECEIVED

Michigan Department of Environment, Great Lakes, and Energy - Air Quality Division

RENEWABLE OPERATING PERMIT APPLICATION NOV 1 2 2019 C-001: CERTIFICATION

This information is required by Article II, Chapter 1, part 55 (Air Pollution Control) of P.A. 451 of 1994, a standard the Federal Clean Air Act of 1990. Failure to provide this information may result in civil and/or criminal penalties. Please type or print clearly.

This form is completed and included as part of Renewable Operating Permit (ROP) initial and renewal applications, notifications of change, amendments, modifications, and additional information.

Form Type C-001			SRN N5831
Stationary Source Name			
Riverside Energy Michigan-Hayes 29 CPF			
City		County	
Gaylord		Otsego	
SUBMITTAL CERTIFICATION INFORMATION	and the second second second		
1. Type of Submittal Check only one box.			
Initial Application (Rule 210) Notif	ication / Administra	ative Amendment /	Modification (Rules 215/216)
Renewal (Rule 210) Othe	r, describe on Al-0	01	
2. If this ROP has more than one Section, list the Sec	ction(s) that this Ce	ertification applies	to <u>2</u>
3. Submittal Media 🔲 E-mail	FTP	🗌 Disk	🛛 Paper
 Operator's Additional Information ID - Create an Ac on Al-001 regarding a submittal. 	ditional Informatio	n (AI) ID that is us	ed to provide supplemental information
ΑΙ ΡΜΜΑΡ			
CONTACT INFORMATION			
Contact Name		Title	
Carolann Knapp		Compliance Coord	dinator
Phone number	E-mail address		
231-995-4130	cknapp@riverside	em.com	

This form must be signed and dated by a Responsible Official.							
Responsible Official Name James Schramski	Title VP Operations						
Mailing address 10691 E. Carter Rd., Ste 201							
City	State	ZIP Code	County	Country			
Traverse City	МІ	49684	Grand Traverse	USA			
As a Responsible Official, I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this submittal are true, accurate and complete.							
Signature of Responsible Official Date							
			Dale				

EQP 5773 (updated 4-2019)

Michigan Department of Environment, Great Lakes, and Energy - Air Quality Division

RENEWABLE OPERATING PERMIT APPLICATION AI-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

0.001	N5831
SHN:	N5831

Section Number (if applicable): 2

1. Additional Information ID **AI-**PMMAP

Additional Information

2. Is This Information Confidential?

🗌 Yes 🛛 No

Submitting a revised Preventative Maintenance & Malfunction Abatement Plan for Riverside Energy Michigan

Page 1 of 1

www.michigan.gov/egle

EQP5774 (Rev.4-22-2019)

10691 East Carter Road Suite 201 Traverse City, MI 49684 T: +1 231 995 4000 F: +1 231 943 2129 www.RiversideEM.com

RECEIVED

NOV 12 2019

November 7, 2019

MACES_____ MAERS_____ FILE_____

Department of Environmental Quality Air Quality Division 120 W. Chapin St. Cadillac, MI 49601-2158

Attn: Jodi Lindgren

Re: Preventative Maintenance/Malfunction Abatement Plan for the Hayes 29 CPF Permit #MI-ROP-N5831 Section 2

Dear Jodi,

Attached please find the Preventative Maintenance & Malfunction Abatement Plan for Riverside's Section 2 of the Hayes 29 CPF, referenced above. And per your direction, you will also find enclosed a signed and completed C-001 Certification Form as well as an A-001 form that are required documents for the application renewal process.

If you have any questions regarding this PM/MAP, please call (231) 995-4130 or reach me at cknapp@riversideem.com.

Sincerely, Nolam wapp

Carolann Knapp Compliance Coordinator

Enclosures

10691 East Carter Road Suite 201 Traverse City, MI 49684 T: +1 231 995 4000 F: +1 231 943 2129 www.RiversideEM.com

November 7, 2019

Department of Environmental Quality Air Quality Division 120 W. Chapin St. Cadillac, MI 49601-2158

Attn: Jodi Lindgren

Re: Preventative Maintenance/Malfunction Abatement Plan for the Hayes 29 CPF Permit #MI-ROP-N5831 Section 2

Dear Jodi,

Attached please find the Preventative Maintenance & Malfunction Abatement Plan for Riverside's Section 2 of the Hayes 29 CPF, referenced above. And per your direction, you will also find enclosed a signed and completed C-001 Certification Form as well as an A-001 form that are required documents for the application renewal process.

If you have any questions regarding this PM/MAP, please call (231) 995-4130 or reach me at ckapp@riversideem.com.

Sincerely, volann Krapp

Carolann Knapp Compliance Coordinator

Enclosures

PREVENTATIVE MAINTENANCE & MALFUNCTION ABATEMENT PLAN

RIVERSIDE ENERGY MICHIGAN, LLC

HAYES 29 CPF MI-ROP-N5831

10875 GERONIMO TRAIL GAYLORD, MI 49735 OTSEGO COUNTY

November 7, 2019

TABLE OF CONTENTS

Page N	Io .
--------	-------------

1.0	INTRODUCTION	3
2.0	ENGINES AND CATALYTIC CONTROL UNITS	3
3.0	RECORDKEEPING	4
4.0	UPDATES	5

APPENDIXES:

Appendix A – List of Facility Specific Equipment Covered by this PM/MAP

Appendix B – Monthly Operating Report

Appendix C – Catalyst Monthly Operating Report

1.0 INTRODUCTION

Central Production Facility (CPF) receives gas from natural gas wells in the area. Gas is dehydrated and compressed prior to flowing to sales points. Riverside Energy Michigan, LLC (Riverside) uses both rich burn and lean burn engines at its facilities. Generally, there are no addon control devices for lean burn engines. However, a few of Riverside's lean burn engines are equipped with oxidation catalytic control systems. The text of this PM/MAP is uniform for all of Riverside's facilities.

The text of this PM/MAP is uniform for all of Riverside's facilities. The cover page and the specific engine and catalyst information (if applicable) shown in Appendix A will be unique to each facility.

1.1 CONTACT PERSON

Any questions regarding this PM/MAP should be directed to Mr. Chris Matts, Operations Supervisor – Special Projects, at 989-732-4146, ext. 4112, or Ms. Natalie Schrader, Compliance Coordinator, at 231-995-4076.

2.0 ENGINES AND CATALYTIC CONTROL UNITS

2.1 Description

Hayes 29 CPF has (1) natural gas fired combustion engine which is identified in Appendix A. It is equipped with a Oxidation Catalyst. Oxidation Catalysts used on lean-burn engines reduce CO, VOC and trace organic toxic air contaminants (TACs), which include hazardous air pollutants (HAPS). Information on all on-site engines is stored and updated in a compressor database and/or spreadsheet.

2.2 **Operation of Catalytic Converters**

For both 3-way catalysts and oxidation catalysts, the hot exhaust gases from the engine pass through a catalytic reduction bed where the reduction and oxidation occur. An oxidation catalyst requires higher oxygen levels to allow the converter bed to oxidize the CO, VOC and trace organic TACs/HAPs. The exhaust gases then pass out a stack.

2.3 Critical Criteria

Preventive maintenance of the engines is done to keep the engines operating properly and to extend their life span. Any major malfunction of the engine will cause it to automatically shut down and activate the alarm, leading to its being taken out of service for repair. Each engine has a control panel that will indicate critical malfunctions and will initiate an engine shutdown if necessary. In the event of a shutdown, the contract mechanic is called out to repair the engine and a record of the event is made. Records are kept in Riverside's database.

The critical criteria for the operation of the catalytic converter are the oxygen content of the incoming gases, the pressure drop across the catalyst bed and the inlet and outlet temperatures. If the oxygen content is too high for a 3-way catalytic converter, the NOx reduction reaction will not yield the desired 90% decrease in concentration. Similarly, for oxidation catalysts, if the oxygen level frops to low, the proper oxidation of CO, VOC and trace TACs/HAPs will decrease. For lean burn engines, the oxygen level should be enough to ensure that the oxygen content of the exhaust gases will remain adequate to allow proper oxidation.

A high-pressure drop may be an indication of plugging of the catalyst, and a very low one may indicate the catalyst bed has leakage around or through it. A high outlet temperature may also be an indication of the need to shut down the unit to prevent burnout of the catalyst. Typical operating temperature ranges for a 3-way catalyst is 750° F to 1350° F. But is not uncommon for an oxidation catalyst to perform as inverted temperatures, with the proper reduction still performing.

2.4 Catalyst Inspections and Maintenance

To reduce the chance of fouling problems with a 3-way catalyst and oxidation catalysts, if an engine is new or major maintenance is performed, the engine could run for up to 100 hours without the catalyst installed. The engine may run without the catalytic converter for a maximum of 200 hours per year (per permit conditions). Records will be maintained of the engine hours of operation without the catalyst. All catalysts will be equipped with pre-and post-catalyst temperature sensors. If the post-catalyst temperature on a 3-way catalyst is less than the pre-catalyst temperature, a service person will be called out to investigate. Temperature rise will not be used as a measure of oxidation catalyst performance.

Preventative maintenance schedule for Riverside engines and catalysts is included in Table 1. A log of all inspections and maintenance work will be maintained in a database or spreadsheet. A schedule is maintained for each engine and its add-on control devices (see Table 2 "Operating Variables and Remedial Actions").

Third party compressor maintenance personnel are responsible for overseeing inspection, maintenance and repair of all add-on control devices.

2.5 Spare / Replacement Parts

All engine replacement parts, catalyst insert kits and extra temperature probes will be maintained by the contracted maintenance service company. No spare or major replacement parts will be kept on site.

2.6 Key Operating Variables and Corrective Procedures in the Event of a Malfunction

See Table 2 for a summary of the key operating variables and corrective actions for each malfunction.

3.0 RECORDKEEPING

Records of engine operating hours and maintenance are kept and updated on Riverside's date server in a database or in a spreadsheet form. Appendix B is an example of data recorded each month by a contract service company; hard copy records of these reports are sent to the Riverside office at the end of each month. Appendix C is an example catalyst maintenance log. This data is recorded in a database or spreadsheet. All required records will be retained for a period of 5 years per permit conditions.

Riverside will keep all records necessary for demonstrating compliance with this PM/MAP. Records will be made available within two weeks from the date of request by the EGLE.

4.0 UPDATES

If Riverside engines experience a malfunction that is not properly addressed in this Preventative Maintenance and Malfunction Abatement Plan, it will be updated and submitted to the EGLE District Supervisor for review and approval.

 Table 1

 Engine & Catalytic Converter Preventative Maintenance Schedule

Item	Activity	Equipment Status	Frequency
Engine	Service * Check and adjust valves * Check engine compression * Check timing * Check fuel pressure * Check air filter * Change pre-air filter * Check all kill devices	Off line	Every 60-90 days
Engine	Major Service * Perform service as listed above * Change motor oil and filter	Off line	Approximately every 3,000 hours of engine operation.
Engine	Swing/Overhaul * Replace existing engine with rebuilt engine * When new/rebuilt engine is installed, or major maintenance is performed, the unit will be run without the catalyst, if applicable, for up to 100 hours per event. This prevents the catalyst from becoming damaged.	Off line	Approximately every 85,000 hours of engine operation, or as needed.
Catalyst	 * Check Differential pressure across catalyst * Establish baseline ΔP each time a new CC or cleaned CC insert is installed at normal operating conditions (rpm's). Check monthly. If greater than baseline ΔP by 4" WC @ 80-100% max rpm, then inspect catalyst and take actions based on findings. * Check inlet and outlet temperatures across the catalyst * If the pre-catalyst temp. is less than 750°F, or another min. temp established through testing, a service person will be called out to investigate. * If the post-catalytic temp. exceeds 1350°F, the engine will be shut down. * If the ΔT across CC is negative, a service person will evaluate cause and determine a resolution, based on history and degree of change and 	Online	Monthly

establish engine specific ∆T through testing.	

Table 1 Continued Engine and Catalytic Converter Preventative Maintenance Schedule

Item	Item Activity		em Activity E		Frequency
Catalyst	 * The catalytic converter shall be removed, inspected and cleaned at least once per 12-18 months. Cleaning will consist of vacuuming the catalyst face and washing the fouling and built up ash. * If the catalyst does not respond to the annual vacuum blowing treatment or washing, the catalyst will be shipped to the manufacturer and washed. A replacement catalyst insert shall be used. * Replace the gaskets (typically done when the catalyst is removed for any servicing). * Establish baseline. 	Offline	Every 12-18 months of catalyst operating time, or in the event of an engine malfunction where foreign fluids cause engine shutdown		
Catalyst	 * Remove catalyst insert and wash in chemical solution to remove surface contamination * Replace with clean or fresh insert * Establish baseline. 	Offline	Every 18-24 months of operation		
Portable Emission Analyzer	* Maintenance and calibration	On or offline	Testing will be done by Riverside or contract company on a 5-year schedule		

Appendix A Equipment Information

Facility	AQD	Unit #	Туре	AFRC (Yes/No)	Model	Lean Burn or Standard
HAYES 29	EUENGINEH 29	3956	OXIDATION	Yes	CATERPILLAR 3516, 1085 HP	Lean Burn

Device Description	Operating Variable	Monitoring Method	Frequency	Normal Operating Range	Corrective Procedure or operational Change in the Event of a Malfunction	Responsible Supervisor
Catalyst	0-4" WC Change in △P @ normal operating conditions	Gauge or manometer	Monthly	Varies by engine. Recorded in database.	Remove and inspect catalyst insert within 3 days. Clean or replace if necessary, within 5 days.	Operations Manager, Contract Service Vendor
Catalyst	Inlet and Outlet temperatures	Thermocouple	Monthly or as Needed	Must be below 1350 degrees F. For 3-way catalysts only: Outlet temp. must be equal or greater than the catalytic inlet temp.	Engine will be shut down at 1200° F or greater. For 3- way catalysts: if outlet temperature is less than the inlet temperature, a mechanic will investigate within 3 days and make appropriate repairs within 5 days.	Operations Manager, Contract Service Vendor
Engine			As needed		Engine will be shut down	Operations Manager, Contract Service Vendor

Table 2 – Operating Variables and Remedial Actions

APPENDIX B				SERIAL #	#								Ľ	LOCATION	NO	HA	HAYES 29								
MONTHLY OPERATING REPORT			-	MAKE	C C	AT 3516							บ	CUSTOMER	IER	RIV	RIVERSIDE ENERGY MICHIGAN, LLC	E ENE	RGY N	IICHIC	GAN, L	TC			
				# LIND	3956	56							W	HINOM											
DATE 1 2 3	4	5	6	7 8	6	10	11	12	13	14	15	16 1	17 1	18 19	0 20	21	22	23	24	25	26	27	28	29	30 31
SUCTION	_				_																				\neg
1 st INTERSTAGE					_						_	_			_		_								
2 nd INTERSTAGE					_	_							_												
3 rd INTERSTAGE																									
DISCHARGE												_	_												
RPM																									
FUEL PRESSURE																							_		
S. 1 INLET TEMP																								_	
S. 1 DISCH.TEMP																									
S. 2 INLET TEMP					-																			_	_
S. 2 DISCH.TEMP					_																				
S. 3 INLET TEMP																								_	
S. 3 DISCH. TEMP												_	-	_	_										_
S. 4 INLET TEMP				_	_								_		_										
S. 4 DISCH. TEMP											_													_	-
D.H.TOWERTEMP				_	_							_		-	_	_									
COM. OIL PRES.	_				-							_	_	-	_										
COM. OIL TEMP.																									
ENGINE HRS.					_						-														
ENGINE HRS W/O CC	_				-	_							_	_											
CC TEMP. IN													_	_		_									
CC TEMP. OUT					_								_												
MANIFOLD PRES.	_				-																				
OIL PRESSURE	_			_	-						-			_											
OIL TEMP				_	_	_					_		_												
J.W.TEMP. IN	_																								
J.W.TEMP. OUT					_	_							-				_								
J.C. H20 TEMP. IN	_												_				_								
J.C. H20 TEMP. OUT						_																			
DOWNTIME HRS.	_					_							_												
D.T. = CUSTOMER					_	_							_	_		_									
FLOW RATE (MMCFD)	_			_	-			_					-	-			_	_	_						
INITIALS						_													_						

, c *

Ap	pendix	С

AYES 29	CPF						
Date of Service	Pre Temp	Post Temp	Differential Pressure	Suction	Disscharge Pressure	RPM	% Loa

PE OF I			ORMED				
Date		1		nments			
Date							

Puite, Tammie (EGLE)

From: Sent: To: Subject: Attachments: Lindgren, Jodi (EGLE) Wednesday, November 20, 2019 4:28 PM Puite, Tammie (EGLE) FW: ROP Renewal Update doc00046320191031153712.pdf

I keep forgetting to ask you about this. Remember when we were talking about the Riviera to Riverside name change for the Hayes section of the Wilderness/Hayes ROP? You had not seen the request yet. I did email Carolann concerning the need for the update. She responded saying she did submit the C-001 and M-001 forms requesting the change. The forms are attached. Is this what she needed to do? Are the original forms MIA or have they found their way to your desk since we spoke? Let me know if I need to request anything else from Riverside/Carolann.

Thank you!!

Jodi Lindgren Environmental Quality Analyst Air Quality Division / Cadillac District Office Michigan Department of Environment, Great Lakes, and Energy 231-942-2863 | <u>LindgrenJ2@michigan.gov</u> Follow Us | <u>Michigan.gov/EGLE</u>

From: Carolann Knapp <cknapp@riversideem.com> Sent: Thursday, October 31, 2019 4:42 PM To: Lindgren, Jodi (EGLE) <LindgrenJ2@michigan.gov> Subject: FW: ROP Renewal Update

I had sent an M-001 & C-001 (attached) to Shane already, was that not the right form?

From: Lindgren, Jodi (EGLE) <LindgrenJ2@michigan.gov>
Sent: Thursday, October 31, 2019 4:25 PM
To: Carolann Knapp <<u>cknapp@riversideem.com</u>>
Subject: ROP Renewal Update

Afternoon Carolann!

We need paperwork to reflect the correct ownership name in the renewal permit. We did get a notification letter stating that Riverside has taken ownership of Riviera holdings. However, we need the ROP renewal application updated as well. You can do this by resubmitting pages 1-3 (or others I may have missed with "Riviera") of the renewal application or you can submit forms C-001 and M-001 for an administrative modification. Please let me know if you have any questions.

Thank you!

Jodi Lindgren Environmental Quality Analyst Air Quality Division / Cadillac District Office Michigan Department of Environment, Great Lakes, and Energy 231-942-2863 | <u>LindgrenJ2@michigan.gov</u> Follow Us | Michigan.gov/EGLE

.