202400060

Received
EGLE/AQD

APR 2 9 2024

Maces Maers Maers Manistique

Mark Ozoga, Environmental Manager UP Paper LLC 402 W Elk Street Manistique, MI 49854

April 15, 2024

Michigan Department of Environment, Great Lakes, and Energy Marquette District Office Air Quality Division – Permit Section 1504 West Washington Street Marquette, MI 49855 RE: ROP Renewal MI-ROP-A6475-2019

To Whom it May Concern:

Please find enclosed the Renewable Operating Permit (ROP) Renewal Application for UP Paper LLC (UP Paper), ROP number MI-ROP-A6475-2019. UP Paper manufactures kraft paper from recycled cardboard. This renewal proposes to remove emission limits, material limits, and process and operating restrictions that are obsolete practices at UP Paper.

The ROP Renewal Application package consists of the completed ROP Renewal Application Form, a marked-up copy of the existing ROP with the proposed changes, and the supplemental information as required by the application: Michigan Air Emissions Reporting System (MAERS) data and the Malfunction Abatement Plan for EUBLR004.

If you need additional information, or if you have any questions related to this application, do not hesitate to contact me at (906) 286-4265. Thank you for your consideration.

Sincerely,

Mark Ozoga, Environmental Manager

Enclosure:

Renewable Operating Permit (ROP) Application for UP Paper LLC



# Renewable Operating Permit (ROP) Renewal Application for UP Paper, LLC

#### Submitted to:

Michigan Department of Environment, Great Lakes and Energy Marquette District Office Air Quality Division 1504 West Washington Street Marquette, MI 49855 906-228-4853

#### Submitted by:

UP Paper LLC 402 West Elk Street Manistique, MI 49854 906-286-4265

#### Prepared by:

TriMedia Environmental & Engineering 830 W. Washington Street Marquette, MI 49855 906.228.5125

### **Table of Contents**

| ROP Renewal Application Form                        | 4  |
|-----------------------------------------------------|----|
| M-001 Rule 216 Modification and C-001 Certification | 17 |
| Marked-up Copy of Existing ROP                      | 20 |
| 2023 MAERS report                                   | 52 |
| Malfunction Abatement Plan                          | 67 |
| ROP Required Monitoring/Recordkeeping               | 7: |

# **ROP Renewal Application Form**

#### EGLE

# RENEWAL APPLICATION FORM

This information is required by Article II, Chapter 1, Part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Refer to instructions for additional information to complete the Renewable Operating Permit Renewal Application Form.

#### **GENERAL INSTRUCTIONS**

This application form should be submitted as part of an administratively complete application package for renewal of a Renewable Operating Permit (ROP). This application form consists of nine parts. Parts A – H must be completed for all applications and must also be completed for each section of a sectioned ROP. Answer all questions in all parts of the form unless directed otherwise. Detailed instructions for this application form can be found at <a href="http://michigan.gov/air">http://michigan.gov/air</a> (select the Permits Tab, "Renewable Operating Permits (ROP)/Title V", then "ROP Forms & Templates").

#### PART A: GENERAL INFORMATION

Enter information about the source, owner, contact person and the responsible official.

| SOURCE INFO        | RMATION                            |                |              |        |                   |                        |                  |                                |
|--------------------|------------------------------------|----------------|--------------|--------|-------------------|------------------------|------------------|--------------------------------|
| SRN                | SIC Code                           | NAICS Co       | ode          | Exist  | ting ROP Numbe    | r                      | Section Num      | nber (if applicable)           |
| A6475              | 2621                               | 322121         |              | MI-F   | MI-ROP-A6475-2019 |                        |                  | <u>e</u>                       |
| Source Name        |                                    |                |              |        |                   |                        |                  |                                |
| UP Paper LLC       |                                    |                |              |        |                   |                        |                  |                                |
| Street Address     |                                    |                |              |        |                   |                        |                  |                                |
| 402 West Elk St    | reet                               |                |              |        |                   |                        |                  |                                |
| City               |                                    |                | State        |        | ZIP Code          | County                 |                  |                                |
| Manistique         |                                    |                | MI           |        | 49854             | Schoolcraft            |                  |                                |
| Section/Town/Range | (if address not a                  | vailable)      |              |        | 1                 |                        |                  |                                |
|                    |                                    |                |              |        |                   |                        |                  |                                |
| Source Description |                                    |                |              |        |                   |                        |                  |                                |
| Recycled kraft p   | aper manufact                      | turing         |              |        |                   |                        |                  |                                |
|                    |                                    |                |              |        |                   |                        |                  |                                |
| Chook hone i       | f f H L                            |                |              |        | 1 TWO SAY         |                        |                  | 1021                           |
| on the marke       | f any of the ab<br>ed-up copy of y | ove informa    | ition is dif | iferen | t than what a     | ppears in the existing | g ROP. Ide       | ntify any changes              |
| on the marke       |                                    | Our existing   | NOI.         |        |                   |                        |                  |                                |
| OWNER INFOR        | MATION                             |                |              |        |                   |                        |                  |                                |
| Owner Name         |                                    |                |              |        |                   |                        | Section Num      | nber (if applicable)           |
| ProAmpac Holdi     | ngs Inc.                           |                |              |        |                   |                        |                  | No. 1 Section 100 Section 1880 |
| Mailing address (  | check if same as                   | source address | 3)           |        |                   |                        |                  |                                |
| 12025 Tricon Ro    | ad                                 |                |              |        |                   |                        |                  |                                |
|                    |                                    |                |              |        |                   |                        |                  |                                |
|                    |                                    |                |              |        |                   |                        |                  |                                |
|                    |                                    |                |              |        |                   |                        |                  |                                |
| City               |                                    |                | State        |        | ZIP Code          | County                 |                  | Country                        |
| Cincinnati         |                                    |                | ОН           |        | 45246             | Hamilton               |                  | USA                            |
|                    |                                    |                |              |        |                   |                        |                  |                                |
| - Check here       | e if any inform                    | ation in this  | ROP ren      | ewal   | application is    | confidential. Confid   | ential inforn    | nation should be               |
| ☐ identified o     | n an Ádditiona                     | al Informatio  | n (Al-001    | I) For | m.                | 0011114011114111       | orition in item. | idion should be                |

For Assistance Contact: 800-662-9278

| SRN: A6475 | Section Number (if applicable): |  |
|------------|---------------------------------|--|

PART A: GENERAL INFORMATION (continued)
At least one contact and responsible official must be identified. Additional contacts and responsible officials may be included if necessary.

| CONTACT INFORMATION                                       |              |                      |                                            |                       |                       |  |
|-----------------------------------------------------------|--------------|----------------------|--------------------------------------------|-----------------------|-----------------------|--|
| Contact 1 Name                                            |              |                      | Title                                      |                       |                       |  |
| Mark Ozoga                                                |              |                      | Environmental Manager                      |                       |                       |  |
| Company Name & Mailing address (⊠ check i<br>UP Paper LLC | f same as so | urce address         | 3)                                         |                       |                       |  |
| 1 113                                                     | State<br>MI  | ZIP Code<br>49854    |                                            | County<br>Schoolcraft | Country<br>USA        |  |
| Phone number 906-286-4265                                 |              |                      | E-mail address<br>markozoga@uppaperllc.com |                       |                       |  |
| Contact 2 Name (optional)<br>Kellie Heiden                |              |                      | Title<br>EHS Mai                           | nager                 |                       |  |
| Company Name & Mailing address (区 check i<br>UP Paper LLC | f same as so | urce address         | s)                                         |                       |                       |  |
| City<br>Manistique                                        | State<br>MI  | ZIP Code<br>49854    | 8                                          | County<br>Schoolcraft | Country<br>USA        |  |
| Phone number<br>906-286-4265                              |              | E-mail a             |                                            | paperllc.com          |                       |  |
| RESPONSIBLE OFFICIAL INFORMA                              | ATION        |                      |                                            |                       |                       |  |
| Responsible Official 1 Name<br>Brian Gustafson            |              |                      | Title<br>VP of Ma                          | anufacturing          | :                     |  |
| Company Name & Mailing address (図 check i<br>UP Paper LLC | f same as so | urce address         | 5)                                         |                       |                       |  |
| City<br>Manistique                                        | State<br>MI  | ZIP Code<br>49854    | 9                                          | County<br>Schoolcraft | Country<br>USA        |  |
| Phone number<br>906-286-4265                              | .1           | E-mail ad<br>briangu |                                            | uppaperllc.com        | ·                     |  |
| Responsible Official 2 Name (optional)                    |              |                      | Title                                      |                       |                       |  |
| Company Name & Mailing address (☐ check i                 | f same as so | urce address         | 3)                                         |                       |                       |  |
| City                                                      | State        | ZIP Code             | 9                                          | County                | Country               |  |
| Phone number E-m                                          |              |                      | nail address                               |                       |                       |  |
| ☐ Check here if an Al-001 Form is                         | attached t   | o provide i          | more infor                                 | mation for Part A. I  | Enter Al-001 Form ID: |  |

| SRN: A6475 | Section Number (if applicable): |
|------------|---------------------------------|
|------------|---------------------------------|

#### PART B: APPLICATION SUBMITTAL and CERTIFICATION by Responsible Official

Identify the items that are included as part of your administratively complete application in the checklist below. For your application to be complete, it must include information necessary to evaluate the source and to determine all applicable requirements. Answer the compliance statements as they pertain to all the applicable requirements to which the source is subject. The source's Responsible Official must sign and date this form.

| Listing of ROP Application Contents. Check the box for the items included with your application.                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                   |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Completed ROP Renewal Application Form (and any Al-001 Forms) (required)                                                                                                                                                                                                                                                                                  | Compliance Plan/Schedule of Compliance                                                                                                                                                                                                                                                            |  |  |  |
| Mark-up copy of existing ROP using official version from the AQD website (required)                                                                                                                                                                                                                                                                       | Stack information                                                                                                                                                                                                                                                                                 |  |  |  |
| Copies of all Permit(s) to Install (PTIs) that have not been incorporated into existing ROP (required)                                                                                                                                                                                                                                                    | Acid Rain Permit Initial/Renewal Application                                                                                                                                                                                                                                                      |  |  |  |
| Criteria Pollutant/Hazardous Air Pollutant (HAP) Potential to Emit Calculations                                                                                                                                                                                                                                                                           | Cross-State Air Pollution Rule (CSAPR) Information                                                                                                                                                                                                                                                |  |  |  |
| MAERS Forms (to report emissions not previously submitted)                                                                                                                                                                                                                                                                                                | Confidential Information                                                                                                                                                                                                                                                                          |  |  |  |
| Copies of all Consent Order/Consent Judgments that have not been incorporated into existing ROP                                                                                                                                                                                                                                                           | Paper copy of all documentation provided (required)                                                                                                                                                                                                                                               |  |  |  |
| Compliance Assurance Monitoring (CAM) Plan                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                   |  |  |  |
| Other Plans (e.g., Malfunction Abatement, Fugitive Dust, Operation and Maintenance, etc.)                                                                                                                                                                                                                                                                 | Other, explain:                                                                                                                                                                                                                                                                                   |  |  |  |
| Compliance Statement                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |  |  |  |
| This source is in compliance with <u>all</u> of its applicable requesting ROP, Permits to Install that have not yet been incapplicable requirements not currently contained in the exist                                                                                                                                                                  | orporated into that ROP, and other ⊠ Yes ☐ No                                                                                                                                                                                                                                                     |  |  |  |
| contained in the existing ROP, Permits to Install that have                                                                                                                                                                                                                                                                                               | This source will continue to be in compliance with all of its applicable requirements, including those contained in the existing ROP, Permits to Install that have not yet been incorporated into that ROP, Yes No and other applicable requirements not currently contained in the existing ROP. |  |  |  |
| This source will meet in a timely manner applicable requir permit term.                                                                                                                                                                                                                                                                                   | ements that become effective during the   ☐ Yes ☐ No                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                           | The method(s) used to determine compliance for each applicable requirement is/are the method(s) specified in the existing ROP, Permits to Install that have not yet been incorporated into that ROP, and all other applicable requirements not currently contained in the existing ROP.           |  |  |  |
| If any of the above are checked No, identify the emission unit(s) or flexible group(s) affected and the specific condition number(s) or applicable requirement for which the source is or will be out of compliance at the time of issuance of the ROP renewal on an AI-001 Form. Provide a compliance plan and schedule of compliance on an AI-001 Form. |                                                                                                                                                                                                                                                                                                   |  |  |  |
| Name and Title of the Responsible Official (Print or Ty                                                                                                                                                                                                                                                                                                   | pe)                                                                                                                                                                                                                                                                                               |  |  |  |
| Brian Gustafson, VP of Manufacturing                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                   |  |  |  |
| As a Responsible Official, I certify that, based on in<br>the statements and information in this application a                                                                                                                                                                                                                                            | formation and belief formed after reasonable inquiry, are true, accurate, and complete.                                                                                                                                                                                                           |  |  |  |
| Le Man                                                                                                                                                                                                                                                                                                                                                    | 4 12 -2-211                                                                                                                                                                                                                                                                                       |  |  |  |
| Signature of Responsible Official                                                                                                                                                                                                                                                                                                                         | <u>4-23-2024</u><br>Date                                                                                                                                                                                                                                                                          |  |  |  |

| SRN: A6475 | Section Number (if applicable): |
|------------|---------------------------------|
|------------|---------------------------------|

#### PART C: SOURCE REQUIREMENT INFORMATION

Answer the questions below for specific requirements or programs to which the source may be subject.

| C1.  | Actual emissions and associated data from <u>all</u> emission units with applicable requirements (including those identified in the existing ROP, Permits to Install and other equipment that have not yet been incorporated into the ROP) are required to be reported in MAERS. Are there any emissions and associated data that have <u>not</u> been reported in MAERS for the most recent emissions reporting year? If <u>Yes</u> , identify the emission unit(s) that was/were not reported in MAERS on an Al-001 Form. Applicable MAERS form(s) for unreported emission units must be included with this application. | ☐ Yes   | ⊠ No |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|
| C2.  | Is this source subject to the federal regulations on ozone-depleting substances? (40 CFR Part 82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ☐ Yes   | ⊠ No |
| C3.  | Is this source subject to the federal Chemical Accident Prevention Provisions? (Section 112(r) of the Clean Air Act Amendments, 40 CFR Part 68)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ☐ Yes   | ⊠ No |
|      | If <u>Yes</u> , a Risk Management Plan (RMP) and periodic updates must be submitted to the USEPA. Has an updated RMP been submitted to the USEPA?                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ☐ Yes   | □No  |
| C4.  | Has this stationary source <u>added or modified</u> equipment since the last ROP renewal that changes the potential to emit (PTE) for criteria pollutant (CO, NOx, PM10, PM2.5, SO <sub>2</sub> , VOC, lead) emissions?  If Yes, include potential emission calculations (or the PTI and/or ROP revision application                                                                                                                                                                                                                                                                                                       | ☐ Yes   | ⊠ No |
|      | numbers, or other references for the PTE demonstration) for the added or modified equipment on an AI-001 Form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |      |
| CE   | If No, criteria pollutant potential emission calculations do not need to be included.  Has this stationary source added or modified equipment since the last ROP renewal that                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·-·     |      |
| C5.  | changes the PTE for hazardous air pollutants (HAPs) regulated by Section 112 of the federal Clean Air Act?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ☐ Yes   | ⊠ No |
|      | If <u>Yes</u> , include potential emission calculations (or the PTI and/or ROP revision application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |      |
|      | numbers or other references for the PTE demonstration) for the added or modified equipment on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |      |
|      | an Al-001 Form. Fugitive emissions <u>must</u> be included in HAP emission calculations.  If <u>No</u> , HAP potential emission calculations do not need to be included.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |      |
| C6.  | Are any emission units subject to the Cross-State Air Pollution Rule (CSAPR)? If <u>Yes</u> , identify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | F-2  |
| 00.  | the specific emission unit(s) subject to CSAPR on an Al-001 Form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes     | ⊠ No |
| C7.  | Are any emission units subject to the federal Acid Rain Program? If Yes, identify the specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ☐ Yes   | ⊠ No |
|      | emission unit(s) subject to the federal Acid Rain Program on an Al-001 Form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |
|      | Is an Acid Rain Permit Renewal Application included with this application?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ☐ Yes   | ⊠ No |
| C8.  | Are any emission units identified in the existing ROP subject to compliance assurance monitoring (CAM)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☐ Yes   | ⊠ No |
|      | If Yes, identify the specific emission unit(s) subject to CAM on an Al-001 Form. If a CAM plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |      |
|      | has not been previously submitted to EGLE, one must be included with the ROP renewal application on an AI-001 Form. If the CAM Plan has been updated, include an updated copy.                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |      |
|      | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | □ Vos   | ⊠ No |
|      | Is a CAM plan included with this application?  If a CAM Plan is included, check the type of proposed monitoring included in the Plan:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | □ res   |      |
|      | Monitoring proposed by the source based on performance of the control device, or     Presumptively Acceptable Monitoring, if eligible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |      |
| C9.  | Does the source have any plans such as a malfunction abatement plan, fugitive dust plan,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |      |
|      | operation/maintenance plan, or any other monitoring plan that is referenced in an existing ROP, Permit to Install requirement, or any other applicable requirement?                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ⊠ Yes   | ☐ No |
|      | If Yes, then a copy must be submitted as part of the ROP renewal application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |      |
| C10. | Are there any specific requirements that the source proposes to be identified in the ROP as non-applicable?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     | ⊠ No |
|      | If <u>Yes</u> , then a description of the requirement and justification must be submitted as part of the ROP renewal application on an Al-001 Form.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |      |
|      | Check here if an Al-001 Form is attached to provide more information for Part C. Enter Al-001 For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m ID: A | -    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |      |

For Assistance Contact: 800-662-9278

| SRN: A6475 | Section Number (if applicable): |
|------------|---------------------------------|
|------------|---------------------------------|

# PART D: PERMIT TO INSTALL (PTI) EXEMPT EMISSION UNIT INFORMATION Review all emission units at the source and answer the question below.

| required to be list                                                  | have any emission units that do not app<br>ted in the ROP application under R 336.<br>ution Control Rules? If <u>Yes</u> , identify the | 1212(4) (Rule 212(4)) of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /. ☐ Yes ☒ No                                                   |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| If <u>No</u> , go to Part I                                          | Ξ.                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
| Note: Emission units<br>must be captured in e<br>exempt Storage Tank | that are subject to process specific emis<br>either Part G or H of this application form<br>(s).                                        | ssion limitations or standards, events in a limitations or standards, events in a limit single but the limit singl | en if identified in Rule 212,<br>e grouped (e.g. PTI            |
| Emission Unit ID                                                     | Emission Unit Description                                                                                                               | Rule 212(4) Citation<br>[e.g. Rule 212(4)(c)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rule 201 Exemption<br>Rule Citation<br>[e.g. Rule 282(2)(b)(i)] |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i i                                                             |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
| Comments:                                                            |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |
| Check here if an                                                     | Al-001 Form is attached to provide mor                                                                                                  | e information for Part D. Enter A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I-001 Form ID: <b>AI-</b>                                       |
|                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |

| SRN: A6475 | Section Number (if applicable): |
|------------|---------------------------------|
| i          |                                 |

#### PART E: EXISTING ROP INFORMATION

Review all emission units and applicable requirements (including any source wide requirements) in the <u>existing</u> ROP and answer the questions below as they pertain to <u>all</u> emission units and <u>all</u> applicable requirements in the existing ROP.

| E1. Does the source propose to make any additions, changes or deletions to terms, conditions and underlying applicable requirements as they appear in the existing ROP?                                                                                                                                                                                                                                              | ⊠ Yes     | □No      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------|
| If <u>Yes</u> , identify changes and additions on Part F, Part G and/or Part H.                                                                                                                                                                                                                                                                                                                                      |           |          |
| E2. For each emission unit(s) identified in the existing ROP, <u>all</u> stacks with applicable requirements are to be reported in MAERS. Are there any stacks with applicable requirements for emission unit(s) identified in the existing ROP that were <u>not</u> reported in the most recent MAERS reporting year? If <u>Yes</u> , identity the stack(s) that was/were not reported on applicable MAERS form(s). | ∏Yes      | ⊠ No     |
| E3. Have any emission units identified in the existing ROP been modified or reconstructed that required a PTI?                                                                                                                                                                                                                                                                                                       | ☐ Yes     | ⊠ No     |
| If <u>Yes</u> , complete Part F with the appropriate information.                                                                                                                                                                                                                                                                                                                                                    |           |          |
| E4. Have any emission units identified in the existing ROP been dismantled? If <u>Yes</u> , identify the emission unit(s) and the dismantle date in the comment area below or on an Al-001 Form.                                                                                                                                                                                                                     | Yes       | ⊠ No     |
| Comments:                                                                                                                                                                                                                                                                                                                                                                                                            |           |          |
| ☐ Check here if an Al-001 Form is attached to provide more information for Part E. Enter Al-001 Fo                                                                                                                                                                                                                                                                                                                   | rm ID: Al | <b>=</b> |

PART F: PERMIT TO INSTALL (PTI) INFORMATION
Review all emission units and applicable requirements at the source and answer the following questions as they pertain to <u>all</u> emission units with PTIs. Any PTI(s) identified below must be attached to the application.

| F1. Has the source<br>been incorpora<br>If <u>No</u> , go to Pa | ☐ Ye                                      | s 🛛 No                                                                                                                                                                                                     |                                            |                    |
|-----------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|
| Permit to Install<br>Number                                     | Emission<br>Units/Flexible<br>Group ID(s) | Description (Include Process Equipment, Control Devices and Monitoring Devices)                                                                                                                            | Date Em<br>Unit was<br>Modified<br>Reconst | s Installed/<br>d/ |
|                                                                 |                                           |                                                                                                                                                                                                            |                                            |                    |
|                                                                 | •                                         |                                                                                                                                                                                                            |                                            |                    |
|                                                                 |                                           |                                                                                                                                                                                                            |                                            |                    |
|                                                                 |                                           |                                                                                                                                                                                                            |                                            |                    |
| emission unit<br>affected in the                                | <b>s</b> in the existing ROF              | ange, add, or delete terms/conditions to <b>established</b> ? If <u>Yes</u> , identify the emission unit(s) or flexible group(s) ow or on an Al-001 Form and identify all changes, additions, xisting ROP. | ☐ Yes                                      | □ No               |
| the ROP? If Y                                                   | <u>es</u> , submit the PTIs a             | ntify <b>new emission units</b> that need to be incorporated into as part of the ROP renewal application on an Al-001 Form, s) or flexible group(s) in the mark-up of the existing ROP.                    | ☐ Yes                                      | □No                |
| listed above the                                                | at were <u>not</u> reported               | e requirements for emission unit(s) identified in the PTIs in MAERS for the most recent emissions reporting year? If not reported on the applicable MAERS form(s).                                         | ☐ Yes                                      | □No                |
| or control device                                               | es in the PTIs listed                     | tive changes to any of the emission unit names, descriptions above for any emission units not already incorporated into nges on an AI-001 Form.                                                            | ☐ Yes                                      | □ No               |
| Comments:                                                       |                                           |                                                                                                                                                                                                            |                                            |                    |
| Check here if                                                   | an Al-001 Form is a                       | ttached to provide more information for Part F. Enter Al-001 F                                                                                                                                             | orm ID:                                    | Al-                |

| SRN: A6475 Section Number (if applicable): |  |
|--------------------------------------------|--|
|--------------------------------------------|--|

# PART G: EMISSION UNITS MEETING THE CRITERIA OF RULES 281(2)(h), 285(2)(r)(iv), 287(2)(c), OR 290

Review all emission units and applicable requirements at the source and answer the following questions.

|                                                       | ny new and/or existing emission units which do <u>not</u> already appear in nich meet the criteria of Rules 281(2)(h), 285(2)(r)(iv), 287(2)(c), or 290. |                                                   |            |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------|
| If Yes, identify the emiss                            | sion units in the table below. If <u>No</u> , go to Part H.                                                                                              | ☐ Yes                                             | ⊠ No       |
| Note: If several emission of each and an installation | n units were installed under the same rule above, provide a description on/modification/reconstruction date for each.                                    |                                                   |            |
| Origin of Applicable<br>Requirements                  | Emission Unit Description – Provide Emission Unit ID and a description of Process Equipment, Control Devices and Monitoring Devices                      | Date Emis<br>Unit was I<br>Modified/<br>Reconstri | installed/ |
| Rule 281(2)(h) or 285(2)(r)(iv) cleaning operation    |                                                                                                                                                          |                                                   |            |
| Rule 287(2)(c) surface coating line                   |                                                                                                                                                          | - Annual Control                                  |            |
| Rule 290 process with limited emissions               |                                                                                                                                                          |                                                   |            |
| Comments:                                             |                                                                                                                                                          |                                                   |            |
| ☐ Check here if an Al-00                              | 1 Form is attached to provide more information for Part G. Enter Al-001                                                                                  | Form ID: /                                        | AI-        |

| SRN: A6475 | Section Number (if applicable): |
|------------|---------------------------------|
| t.         | 1                               |

#### PART H: REQUIREMENTS FOR ADDITION OR CHANGE

Complete this part of the application form for all proposed additions, changes or deletions to the existing ROP. This includes state or federal regulations that the source is subject to and that must be incorporated into the ROP or other proposed changes to the existing ROP. **Do not include additions or changes that have already been identified in Parts F or G of this application form.** If additional space is needed copy and complete an additional Part H.

Complete a separate Part H for each emission unit with proposed additions and/or changes.

| H1. | Are there changes that need to be incorporated into the ROP that have not been identified in Parts F and G? If <u>Yes</u> , answer the questions below.                                                                                                                                                                                                                                                                                                                                          | ⊠ Yes | ☐ No |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| H2. | Are there any proposed administrative changes to any of the existing emission unit names, descriptions or control devices in the ROP? If <u>Yes</u> , describe the changes in questions H8 – H16 below and in the affected Emission Unit Table(s) in the mark-up of the ROP.                                                                                                                                                                                                                     | ☐ Yes | ⊠ No |
| H3. | Does the source propose to add a new emission unit or flexible group to the ROP not previously identified in Parts F or G? If <u>Yes</u> , identify and describe the emission unit name, process description, control device(s), monitoring device(s) and applicable requirements in questions H8 – H16 below and in a new Emission Unit Table in the mark-up of the ROP. See instructions on how to incorporate a new emission unit/flexible group into the ROP.                                | Yes   | ⊠ No |
| H4. | Does the source propose to add new state or federal regulations to the existing ROP?                                                                                                                                                                                                                                                                                                                                                                                                             | ☐ Yes | ⊠ No |
|     | If <u>Yes</u> , on an Al-001 Form, identify each emission unit/flexible group that the new regulation applies to and identify <u>each</u> state or federal regulation that should be added. Also, describe the new requirements in questions H8 – H16 below and add the specific requirements to existing emission units/flexible groups in the mark-up of the ROP, create a new Emission Unit/Flexible Group Table, or add an AQD template table for the specific state or federal requirement. |       |      |
|     | Has a Consent Order/Consent Judgment (CO/CJ) been issued where the requirements were not incorporated into the existing ROP? If <u>Yes</u> , list the CO/CJ number(s) below and add or change the conditions and underlying applicable requirements in the appropriate Emission Unit/Flexible Group Tables in the mark-up of the ROP.                                                                                                                                                            | Yes   | ⊠ No |
|     | Does the source propose to add, change and/or delete <b>source-wide</b> requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.                                                                                                                                                                                                                                                              | ☐ Yes | ⊠ No |
| H7. | Are you proposing to <b>streamline</b> any requirements? If <u>Yes</u> , identify the streamlined and subsumed requirements and the EU ID, and provide a justification for streamlining the applicable requirement below.                                                                                                                                                                                                                                                                        | ☐ Yes | ⊠ No |

| SRN: A6475 | Section Number (if applicable): |
|------------|---------------------------------|
|            |                                 |

#### PART H: REQUIREMENTS FOR ADDITION OR CHANGE – (continued)

| H8. Does the source propose to add, change and/or delete <b>emission limit</b> requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.                   | ⊠ Yes     | □No    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|
| Removal of Kerosene requirements for EUPROCESS. Kerosene will no longer be used at UP Paper.                                                                                                                                                                 |           |        |
| H9. Does the source propose to add, change and/or delete <b>material limit</b> requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.                   | ⊠ Yes     | ∐ No   |
| EUBLR003 – Eliminate No. 2 Fuel Oil from material limits.                                                                                                                                                                                                    |           |        |
| H10. Does the source propose to add, change and/or delete <b>process/operational restriction</b> requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below. | ⊠ Yes     | □No    |
| EUBLR003 - Change III.2 to remove 'and diesel fuel'                                                                                                                                                                                                          |           |        |
| H11.Does the source propose to add, change and/or delete <b>design/equipment parameter</b> requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.       | ☐ Yes     | ⊠ No   |
| H12.Does the source propose to add, change and/or delete <b>testing/sampling</b> requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.                 | ☐ Yes     | ⊠ No   |
| H13.Does the source propose to add, change and/or delete <b>monitoring/recordkeeping</b> requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.         | ⊠ Yes     | □No    |
| Removal of Kerosene and the associated monitoring/recordkeeping requirements for EUPROCESS. Ke longer be used at UP Paper.  Removal of No.2 Fuel oil requirements for EUBLR003.                                                                              | rosene wi | ill no |
| · ···· · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                       |           |        |
| H14.Does the source propose to add, change and/or delete <b>reporting</b> requirements? If <u>Yes</u> , identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.                        | ☐ Yes     | No     |
|                                                                                                                                                                                                                                                              |           |        |

| i | SRN: A6475  | Section Number (if applicable): |  |
|---|-------------|---------------------------------|--|
| ĺ | SKIV. A0475 | Section Number (if applicable): |  |

### PART H: REQUIREMENTS FOR ADDITION OR CHANGE – (continued)

| H | 15.Does the source propose to add, change and/or delete stack/vent restrictions? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.                                                         | ☐ Yes     | ⊠ No |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|
| T | 16.Does the source propose to add, change and/or delete any other requirements? If Yes, identify the addition/change/deletion in a mark-up of the corresponding section of the ROP and provide a justification below.                                                          | ☐ Yes     | ⊠ No |
| H | 17. Does the source propose to add terms and conditions for an alternative operating scenario or intra-facility trading of emissions? If <u>Yes</u> , identify the proposed conditions in a mark-up of the corresponding section of the ROP and provide a justification below. | Yes       | ⊠ No |
|   | Check here if an Al-001 Form is attached to provide more information for Part H. Enter Al-001 For                                                                                                                                                                              | m ID: Al- | 1    |

#### EGLE

# RENEWABLE OPERATING PERMIT APPLICATION Al-001: ADDITIONAL INFORMATION

This information is required by Article II, Chapter 1, part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment. Please type or print clearly. Refer to instructions for additional information to complete this form.

|                                   | SRN: A6475 | Section Number (if applicable): |  |
|-----------------------------------|------------|---------------------------------|--|
| Additional Information ID     Al- |            |                                 |  |
|                                   |            |                                 |  |
| Additional Information            |            |                                 |  |
| Is This Information Confidential? |            | ☐ Yes ☐ No                      |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            |                                 |  |
|                                   |            | Page of                         |  |

For Assistance Contact: 800-662-9278

# M-001 Rule 216 Modification and C-001 Certification

# RENEWABLE OPERATING PERMIT M-001: RULE 215 CHANGE NOTIFICATION RULE 216 AMENDMENT/MODIFICATION APPLICATION

This information is required by Part 55, Air Pollution Control, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, and the Federal Clean Air Act of 1990. Failure to obtain a permit required by Part 55 may result in penalties and/or imprisonment.

|                                                                                                                                                                                             |                                                                                                                               | •                                                                                                                                              |                                                          |                               |                                              |             |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------|----------------------------------------------|-------------|-------|
| 1. SRN A6475                                                                                                                                                                                | 2. ROP Numbe                                                                                                                  | r MI-ROP-A64                                                                                                                                   | 75-2019                                                  | 3. County                     | Schoolcraft                                  |             |       |
| 4. Stationary Source Name                                                                                                                                                                   | UP Paper LLC                                                                                                                  |                                                                                                                                                |                                                          |                               |                                              |             |       |
| 5. Location Address 402                                                                                                                                                                     | West Elk Street                                                                                                               |                                                                                                                                                |                                                          | 6. City N                     | /lanistique                                  |             |       |
| 7. Submittal Type - The submup of the affected ROP particle Rule 215(1) Notification Rule 215(2) Notification Rule 215(3) Notification Rule 215(5) Notification Rule 216(1)(a)(i)-(iv) Admi | ages for application n of change. Con n of change. Con n of change. Con n of change. Con dministrative Amen nistrative Amendm | ns for Rule 216 cha<br>nplete Items 8 – 10 a<br>nplete Items 8 – 10 a<br>nplete Items 8 – 11 a<br>nplete Items 8 – 10 a<br>ndment. Complete It | anges.<br>nd 14<br>nd 14<br>nd 14<br>nd 14<br>ems 8 – 10 | and 14                        |                                              |             |       |
| be submitted. See deta                                                                                                                                                                      |                                                                                                                               | nplete Items 8 – 12 a                                                                                                                          | nd 14                                                    |                               |                                              |             |       |
| Rule 216(2) Minor Mod                                                                                                                                                                       | t Modification. Com                                                                                                           | •                                                                                                                                              | nd 14, and                                               |                               | ional information                            | needed o    | n ROP |
| Rule 216(4) State-Only                                                                                                                                                                      | Modification. Com                                                                                                             | plete Items 8 – 12 ar                                                                                                                          | nd 14                                                    |                               | 2.4                                          |             |       |
| 8. Effective date of the chan<br>See detailed instructions.                                                                                                                                 | ge. (MM/DD/YYY)                                                                                                               | ()<br><u>4/ 19</u>                                                                                                                             | / 2024                                                   | 9. Change in e                | emissions?                                   | □Yes        | ■ No  |
| Description of Change - pollutants that will occur.  Owner change to ProAmpac                                                                                                               | If additional space                                                                                                           | ce is needed, comp                                                                                                                             | olete an Ad                                              | dditional Informa             | cnanges in emi                               | 001).       | INo   |
| <ol><li>New Source Review Per<br/>If Yes, enter the PTI Nun</li></ol>                                                                                                                       |                                                                                                                               | i i) associated with<br>-                                                                                                                      | шиз арри                                                 | -auon:                        | <u>                                     </u> | -           | 1110  |
| 12. Compliance Status - A n  Al-001 if any of the follow                                                                                                                                    | narrative complian                                                                                                            | ce plan, including a<br>No.                                                                                                                    | schedule                                                 | for compliance                | , must be subn                               | nitted usir | ng an |
| <ol> <li>a. Is the change identified</li> </ol>                                                                                                                                             |                                                                                                                               |                                                                                                                                                |                                                          |                               |                                              | Yes         | ☐ No  |
| <ul><li>b. Will the change identi<br/>requirement(s)?</li></ul>                                                                                                                             | fied above continu                                                                                                            | ie to be in compliai                                                                                                                           | nce with th                                              | ne associated ap              | oplicable                                    | Yes         | □ No  |
| c. If the change includes                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                |                                                          |                               |                                              | Yes         | ☐ No  |
| 13. Operator's Additional Inf<br>Al-001 form used to prov                                                                                                                                   |                                                                                                                               |                                                                                                                                                | nformation                                               | (AI) ID for the a             | ssociated                                    | Al          |       |
| 14. Contact Name<br>Mark Ozoga                                                                                                                                                              | •                                                                                                                             | hone No.<br>86-4265                                                                                                                            |                                                          | E-mail Address<br>markozoga@u |                                              |             |       |
| 15. This submittal also upda<br>(If yes, a mark-up of the                                                                                                                                   | ites the ROP rene                                                                                                             | wal application sub                                                                                                                            | omitted on attached.)                                    | 1 1                           |                                              | □Yes        | ■ N/A |

NOTE: A CERTIFICATION FORM (C-001) SIGNED BY A RESPONSIBLE OFFICIAL MUST ACCOMPANY ALL SUBMITTALS

For Assistance Contact: 800-662-9278 EGLE

Michigan Department of Environment, Great Lakes, and Energy - Air Quality Division

# RENEWABLE OPERATING PERMIT APPLICATION C-001: CERTIFICATION

This information is required by Article II, Chapter 1, part 55 (Air Pollution Control) of P.A. 451 of 1994, as amended, and the Federal Clean Air Act of 1990. Failure to provide this information may result in civil and/or criminal penalties. Please type or print clearly.

This form is completed and included as part of Renewable Operating Permit (ROP) initial and renewal applications, notifications of change, amendments, modifications, and additional information.

| Form Type <b>C-001</b>                                                    |                              |                                 |                  |                                         | SRN A6475                                         |
|---------------------------------------------------------------------------|------------------------------|---------------------------------|------------------|-----------------------------------------|---------------------------------------------------|
| Otaliana Oanna Nama                                                       |                              |                                 |                  |                                         |                                                   |
| Stationary Source Name UP Paper LLC                                       |                              |                                 |                  |                                         |                                                   |
| City                                                                      |                              |                                 |                  | County                                  |                                                   |
| Manistique                                                                |                              |                                 | <del></del>      | Schoolcraf                              | aft                                               |
| AVIOLATICAL OPPORTUNISATION BUT                                           |                              |                                 |                  |                                         |                                                   |
| SUBMITTAL CERTIFICATION INFO  1. Type of Submittal Check only one         |                              |                                 |                  |                                         |                                                   |
| ☐ Initial Application (Rule 21)                                           |                              | ification / Administr           | -ativa A         | /                                       | / Modification (Rules 215/216)                    |
| Renewal (Rule 210)                                                        |                              | er, describe on Al-0            |                  | Nenument,                               | / Wiodification (Rules 2 19/210)                  |
| T Iveriowai (ivuie 210)                                                   | L                            | 3F, describe on Airu            | JU1              |                                         |                                                   |
| 2. If this ROP has more than one Sect                                     | ion, list the Sec            | ction(s) that this Cr           | <br>∍rtificati   | on applies t                            | to                                                |
| 3. Submittal Media E-ma                                                   | i                            | ☐ FTP                           |                  | ☐ Disk                                  | ■ Paper                                           |
| Operator's Additional Information ID on AI-001 regarding a submittal.  AI | - Create an Ac               | ditional Informatio             | ın (AI) II       | D that is use                           | ed to provide supplemental information            |
| Ai                                                                        |                              |                                 |                  |                                         |                                                   |
| CONTACT INFORMATION                                                       |                              |                                 |                  |                                         |                                                   |
| Contact Name                                                              |                              |                                 | Title            |                                         |                                                   |
| Mark Ozoga Environmental Manager                                          |                              |                                 |                  | anager                                  |                                                   |
| Phone number<br>906-286-4265                                              |                              | E-mail address                  | -11_             |                                         |                                                   |
| 900-280-4200                                                              | *****                        | markozoga@uppa                  | aperiic.c        | oom                                     |                                                   |
|                                                                           |                              |                                 |                  | *************************************** |                                                   |
| This form must be signed and                                              | dated by a F                 | Responsible O                   | fficial          | l.                                      |                                                   |
| Responsible Official Name                                                 |                              |                                 | Title            |                                         |                                                   |
| Brian Gustafson                                                           |                              |                                 | VP or            | f Manufacturi                           | ring                                              |
| Mailing address 402 West Elk Street                                       |                              |                                 |                  |                                         |                                                   |
| City                                                                      | State                        | ZIP Code                        | Со               | unty                                    | Country                                           |
| Manistique                                                                | MI                           | 49854                           |                  | hoolcraft                               | USA                                               |
| As a Responsible Official, I coinquiry, the statements and inf            | rtify that, b<br>ormation in | pased on infor<br>this submitta | matio<br>I are t | n and be<br>rue, accu                   | elief formed after reasonable urate and complete. |
|                                                                           |                              |                                 |                  | <i>S</i> ,                              | 1-23-2024                                         |
| Signature of Responsible Official                                         |                              |                                 | Date             |                                         |                                                   |

### Marked-up Copy of Existing ROP



#### Style Definition: TOC 1

### MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY AIR QUALITY DIVISION

EFFECTIVE DATE: December 3, 2019

ISSUED TO

Zellar MPI Equipment, Inc. UP Paper, LLC

State Registration Number (SRN): A6475

LOCATED AT

402 West Elk Street, Manistique, Schoolcraft County, Michigan 49854

#### RENEWABLE OPERATING PERMIT

Permit Number:

MI-ROP-A6475-2019

**Expiration Date:** 

December 3, 2024

Administratively Complete ROP Renewal Application Due Between June 3, 2023 to June 3, 2024

This Renewable Operating Permit (ROP) is issued in accordance with and subject to Section 5506(3) of Part 55, Air Pollution Control, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended (Act 451). Pursuant to Rule 210(1) of the administrative rules promulgated under Act 451, this ROP constitutes the permittee's authority to operate the stationary source identified above in accordance with the general conditions, special conditions and attachments contained herein. Operation of the stationary source and all emission units listed in the permit are subject to all applicable future or amended rules and regulations pursuant to Act 451 and the federal Clean Air Act.

#### SOURCE-WIDE PERMIT TO INSTALL

Permit Number:

MI-PTI-A6475-2019

This Permit to Install (PTI) is issued in accordance with and subject to Section 5505(1) of Act 451. Pursuant to Rule 214a of the administrative rules promulgated under Act 451, the terms and conditions herein, identified by the underlying applicable requirement citation of Rule 201(1)(a), constitute a federally enforceable PTI. The PTI terms and conditions do not expire and remain in effect unless the criteria of Rule 201(6) are met. Operation of all emission units identified in the PTI is subject to all applicable future or amended rules and regulations pursuant to Act 451 and the federal Clean Air Act.

Michigan Department of Environment, Great Lakes, and Energy

#### **TABLE OF CONTENTS**

| AUTHORITY AND ENFORCEABILITY4          |                                   |
|----------------------------------------|-----------------------------------|
| A. GENERAL CONDITIONS                  |                                   |
| Permit Enforceability                  |                                   |
| General Provisions                     |                                   |
| Equipment & Design                     |                                   |
| Emission Limits 6                      |                                   |
| Testing/Sampling6                      |                                   |
| Monitoring/Recordkeeping               |                                   |
| Certification & Reporting7             |                                   |
| Permit Shield 8                        |                                   |
| Revisions 9                            |                                   |
| Reopenings9                            |                                   |
| Renewals10                             |                                   |
| Stratospheric Ozone Protection         |                                   |
| Risk Management Plan                   |                                   |
| Emission Trading                       |                                   |
| Permit to Install (PTI)11              |                                   |
| B. SOURCE-WIDE CONDITIONS 12           |                                   |
| C. EMISSION UNIT SPECIAL CONDITIONS    |                                   |
|                                        |                                   |
| EMISSION UNIT SUMMARY TABLE            |                                   |
| EUBLR003                               |                                   |
| EUDYE001                               |                                   |
| EUPROCESS                              |                                   |
| EUBLR004                               |                                   |
| D. FLEXIBLE GROUP SPECIAL CONDITIONS   |                                   |
| E. NON-APPLICABLE REQUIREMENTS         |                                   |
| APPENDICES28                           |                                   |
| Appendix 1. Acronyms and Abbreviations |                                   |
| Appendix 2. Schedule of Compliance     |                                   |
| Appendix 3. Monitoring Requirements    |                                   |
| Appendix 4. Testing Procedures         |                                   |
| Appendix 5. Permits to Install         |                                   |
| Appendix 6. Emission Calculations30    |                                   |
| Appendix 7. Reporting30                |                                   |
| AUTHORITY AND ENFORCEABILITY3          | Formatted: Default Paragraph Font |
| A. GENERAL CONDITIONS4                 | Formatted: Default Paragraph Font |
| Permit Enforceability                  | Formatted: Default Paragraph Font |
| General Provisions4                    | Formatted: Default Paragraph Font |
| Equipment & Design                     | Formatted: Default Paragraph Font |
| Emission Limits                        | Formatted: Default Paragraph Font |
| Testing/Sampling                       |                                   |
| Page 2 of 31                           | Formatted: Default Paragraph Font |

| Monitoring/Recordkeeping               | Formatted: Default Paragraph Font |
|----------------------------------------|-----------------------------------|
| Certification & Reporting              | Formatted: Default Paragraph Font |
| Permit Shield 7                        | Formatted: Default Paragraph Font |
| Revisions 8 Reopenings 8               | Formatted: Default Paragraph Font |
| Renewals 9                             | Formatted: Default Paragraph Font |
| Stratospheric Ozone Protection 9       | Formatted: Default Paragraph Font |
| Risk Management Plan                   | Formatted: Default Paragraph Font |
| Emission Trading                       | Formatted: Default Paragraph Font |
| Permit to Install (PTI)                | Formatted: Default Paragraph Font |
| B. SOURCE-WIDE CONDITIONS              | Formatted: Default Paragraph Font |
|                                        | Formatted: Default Paragraph Font |
| C. EMISSION UNIT SPECIAL CONDITIONS    |                                   |
| EMISSION UNIT SUMMARY TABLE            | Formatted: Default Paragraph Font |
| EUBLR003                               | Formatted: Default Paragraph Font |
| EUDYE001                               | Formatted: Default Paragraph Font |
| EUPROCESS                              | Formatted: Default Paragraph Font |
| EUBLR004                               | Formatted: Default Paragraph Font |
| D. FLEXIBLE GROUP SPECIAL CONDITIONS25 | Formatted: Default Paragraph Font |
| E NON APPLICABLE DECLIDENCE            | Formatted: Default Paragraph Font |
| E. NON-APPLICABLE REQUIREMENTS         | Formatted: Default Paragraph Font |
| APPENDICES                             | Formatted: Default Paragraph Font |
| Appendix 1. Acronyms and Abbreviations | Formatted: Default Paragraph Font |
| Appendix 2. Schedule of Compliance 28  | Formatted: Default Paragraph Font |
| Appendix 3. Monitoring Requirements    | Formatted: Default Paragraph Font |
| Appendix 4. Recordkeeping              | Formatted: Default Paragraph Font |
| Appendix 5. Testing Procedures         | Formatted: Default Paragraph Font |
| Appendix 7. Emission Calculations      | Formatted: Default Paragraph Font |
| Appendix 8. Reporting                  |                                   |
|                                        | Formatted: Default Paragraph Font |
|                                        | Formatted: Default Paragraph Font |

#### **AUTHORITY AND ENFORCEABILITY**

For the purpose of this permit, the **permittee** is defined as any person who owns or operates an emission unit at a stationary source for which this permit has been issued. The **department** is defined in Rule 104(d) as the Director of the Michigan Department of Environment, Great Lakes, and Energy (EGLE) or his or her designee.

The permittee shall comply with all specific details in the permit terms and conditions and the cited underlying applicable requirements. All terms and conditions in this ROP are both federally enforceable and state enforceable unless otherwise footnoted. Certain terms and conditions are applicable to most stationary sources for which an ROP has been issued. These general conditions are included in Part A of this ROP. Other terms and conditions may apply to a specific emission unit, several emission units which are represented as a flexible group, or the entire stationary source which is represented as a Source-Wide group. Special conditions are identified in Parts B, C, D and/or the appendices.

In accordance with Rule 213(2)(a), all underlying applicable requirements are identified for each ROP term or condition. All terms and conditions that are included in a PTI are streamlined, subsumed and/or is state-only enforceable will be noted as such.

In accordance with Section 5507 of Act 451, the permittee has included in the ROP application a compliance certification, a schedule of compliance, and a compliance plan. For applicable requirements with which the source is in compliance, the source will continue to comply with these requirements. For applicable requirements with which the source is not in compliance, the source will comply with the detailed schedule of compliance requirements that are incorporated as an appendix in this ROP. Furthermore, for any applicable requirements effective after the date of issuance of this ROP, the stationary source will meet the requirements on a timely basis, unless the underlying applicable requirement requires a more detailed schedule of compliance.

Issuance of this permit does not obviate the necessity of obtaining such permits or approvals from other units of government as required by law.

#### A. GENERAL CONDITIONS

#### **Permit Enforceability**

- All conditions in this permit are both federally enforceable and state enforceable unless otherwise noted. (R 336,1213(5))
- Those conditions that are hereby incorporated in a state-only enforceable Source-Wide PTI pursuant to Rule 201(2)(d) are designated by footnote one. (R 336.1213(5)(a), R 336.1214a(5))
- Those conditions that are hereby incorporated in a federally enforceable Source-Wide PTI pursuant to Rule 201(2)(c) are designated by footnote two. (R 336.1213(5)(b), R 336.1214a(3))

#### **General Provisions**

- 1. The permittee shall comply with all conditions of this ROP. Any ROP noncompliance constitutes a violation of Act 451, and is grounds for enforcement action, for ROP revocation or revision, or for denial of the renewal of the ROP. All terms and conditions of this ROP that are designated as federally enforceable are enforceable by the Administrator of the United States Environmental Protection Agency (USEPA) and by citizens under the provisions of the federal Clean Air Act (CAA). Any terms and conditions based on applicable requirements which are designated as "state-only" are not enforceable by the USEPA or citizens pursuant to the CAA. (R 336.1213(1)(a))
- 2. It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this ROP. (R 336,1213(1)(b))
- 3. This ROP may be modified, revised, or revoked for cause. The filing of a request by the permittee for a permit modification, revision, or termination, or a notification of planned changes or anticipated noncompliance does not stay any ROP term or condition. This does not supersede or affect the ability of the permittee to make changes, at the permittee's own risk, pursuant to Rule 215 and Rule 216. (R 336,1213(1)(c))
- 4. The permittee shall allow the department, or an authorized representative of the department, upon presentation of credentials and other documents as may be required by law and upon stating the authority for and purpose of the investigation, to perform any of the following activities: (R 336.1213(1)(d))
  - a. Enter, at reasonable times, a stationary source or other premises where emissions-related activity is conducted or where records must be kept under the conditions of the ROP.
  - b. Have access to and copy, at reasonable times, any records that must be kept under the conditions of the ROP.
  - c. Inspect, at reasonable times, any of the following:
    - i. Any stationary source.
    - ii. Any emission unit.
    - ili. Any equipment, including monitoring and air pollution control equipment.
    - iv. Any work practices or operations regulated or required under the ROP.
  - d. As authorized by Section 5526 of Act 451, sample or monitor at reasonable times substances or parameters for the purpose of assuring compliance with the ROP or applicable requirements.
- 5. The permittee shall furnish to the department, within a reasonable time, any information the department may request, in writing, to determine whether cause exists for modifying, revising, or revoking the ROP or to determine compliance with this ROP. Upon request, the permittee shall also furnish to the department copies of any records that are required to be kept as a term or condition of this ROP. For information which is claimed by the permittee to be confidential, consistent with the requirements of the 1976 PA 442, MCL §15.231 et seq., and known as the Freedom of Information Act, the person may also be required to furnish the records directly to the USEPA together with a claim of confidentiality. (R 336.1213(1)(e))

- 6. A challenge by any person, the Administrator of the USEPA, or the department to a particular condition or a part of this ROP shall not set aside, delay, stay, or in any way affect the applicability or enforceability of any other condition or part of this ROP. (R 336.1213(1)(f))
- 7. The permittee shall pay fees consistent with the fee schedule and requirements pursuant to Section 5522 of Act 451. (R 336.1213(1)(g))
- 8. This ROP does not convey any property rights or any exclusive privilege. (R 336.1213(1)(h))

#### **Equipment & Design**

- 9. Any collected air contaminants shall be removed as necessary to maintain the equipment at the required operating efficiency. The collection and disposal of air contaminants shall be performed in a manner so as to minimize the introduction of contaminants to the outer air. Transport of collected air contaminants in Priority I and II areas requires the use of material handling methods specified in Rule 370(2).<sup>2</sup> (R 336.1370)
- 10. Any air cleaning device shall be installed, maintained, and operated in a satisfactory manner and in accordance with the Michigan Air Pollution Control rules and existing law. (R 336.1910)

#### **Emission Limits**

- 11. Unless otherwise specified in this ROP, the permittee shall comply with Rule 301, which states, in part, "Except as provided in Subrules 2, 3, and 4 of this rule, a person shall not cause or permit to be discharged into the outer air from a process or process equipment a visible emission of a density greater than the most stringent of the following:"<sup>2</sup> (R 336,1301(1))
  - a. A 6-minute average of 20% opacity, except for one 6-minute average per hour of not more than 27% opacity.
  - b. A limit specified by an applicable federal new source performance standard.

The grading of visible emissions shall be determined in accordance with Rule 303,

- 12. The permittee shall not cause or permit the emission of an air contaminant or water vapor in quantities that cause, alone or in reaction with other air contaminants, either of the following:
  - a. Injurious effects to human health or safety, animal life, plant life of significant economic value, or property.<sup>1</sup>
     (R 336.1901(a))
  - b. Unreasonable interference with the comfortable enjoyment of life and property. (R 336.1901(b))

#### Testing/Sampling

- 13. The department may require the owner or operator of any source of an air contaminant to conduct acceptable performance tests, at the owner's or operator's expense, in accordance with Rule 1001 and Rule 1003, under any of the conditions listed in Rule 1001(1).<sup>2</sup> (R 336.2001)
- 14. Any required performance testing shall be conducted in accordance with Rule 1001(2), Rule 1001(3) and Rule 1003. (R 336.2001(2), R 336.2001(3), R 336.2003(1))
- 15. Any required test results shall be submitted to the Air Quality Division (AQD) in the format prescribed by the applicable reference test method within 60 days following the last date of the test. (R 336.2001(5))

#### Monitoring/Recordkeeping

- 16. Records of any periodic emission or parametric monitoring required in this ROP shall include the following information specified in Rule 213(3)(b)(i), where appropriate. (R 336.1213(3)(b))
  - a. The date, location, time, and method of sampling or measurements.
  - The dates the analyses of the samples were performed.
  - c. The company or entity that performed the analyses of the samples.
  - d. The analytical techniques or methods used.
  - e. The results of the analyses.
  - f. The related process operating conditions or parameters that existed at the time of sampling or measurement,
- 17. All required monitoring data, support information and all reports, including reports of all instances of deviation from permit requirements, shall be kept and furnished to the department upon request for a period of not less than 5 years from the date of the monitoring sample, measurement, report or application. Support information includes all calibration and maintenance records and all original strip-chart recordings, or other original data records, for continuous monitoring instrumentation and copies of all reports required by the ROP. (R 336.1213(1)(e), R 336.1213(3)(b)(ii))

#### Certification & Reporting

- 18. Except for the alternate certification schedule provided in Rule 213(3)(c)(iii)(B), any document required to be submitted to the department as a term or condition of this ROP shall contain an original certification by a Responsible Official which state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. (R 336.1213(3)(c))
- 19. A Responsible Official shall certify to the appropriate AQD District Office and to the USEPA that the stationary source is and has been in compliance with all terms and conditions contained in the ROP except for deviations that have been or are being reported to the appropriate AQD District Office pursuant to Rule 213(3)(c). This certification shall include all the information specified in Rule 213(4)(c)(i) through (v) and shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the certification are true, accurate, and complete. The USEPA address is: USEPA, Air Compliance Data Michigan, Air and Radiation Division, 77 West Jackson Boulevard, Chicago, Illinois 60604-3507. (R 336,1213(4)(c))
- 20. The certification of compliance shall be submitted annually for the term of this ROP as detailed in the special conditions, or more frequently if specified in an applicable requirement or in this ROP. (R 336.1213(4)(c))
- 21. The permittee shall promptly report any deviations from ROP requirements and certify the reports. The prompt reporting of deviations from ROP requirements is defined in Rule 213(3)(c)(ii) as follows, unless otherwise described in this ROP. (R 336.1213(3)(c))
  - a. For deviations that exceed the emissions allowed under the ROP, prompt reporting means reporting consistent with the requirements of Rule 912 as detailed in Condition 25. All reports submitted pursuant to this paragraph shall be promptly certified as specified in Rule 213(3)(c)(iii).
  - b. For deviations which exceed the emissions allowed under the ROP and which are not reported pursuant to Rule 912 due to the duration of the deviation, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe reasons for each deviation and the actions taken to minimize or correct each deviation.
  - c. For deviations that do not exceed the emissions allowed under the ROP, prompt reporting means the reporting of all deviations in the semiannual reports required by Rule 213(3)(c)(i). The report shall describe the reasons for each deviation and the actions taken to minimize or correct each deviation.
- For reports required pursuant to Rule 213(3)(c)(ii), prompt certification of the reports is described in Rule 213(3)(c)(iii) as either of the following: (R 336.1213(3)(c))
  - Submitting a certification by a Responsible Official with each report which states that, based on information and belief formed after reasonable inquiry, the statements and information in the report are true, accurate, and complete.

- b. Submitting, within 30 days following the end of a calendar month during which one or more prompt reports of deviations from the emissions allowed under the ROP were submitted to the department pursuant to Rule 213(3)(c)(ii), a certification by a Responsible Official which states that; "based on information and belief formed after reasonable inquiry, the statements and information contained in each of the reports submitted during the previous month were true, accurate, and complete." The certification shall include a listing of the reports that are being certified. Any report submitted pursuant to Rule 213(3)(c)(ii) that will be certified on a monthly basis pursuant to this paragraph shall include a statement that certification of the report will be provided within 30 days following the end of the calendar month.
- 23. Semiannually for the term of the ROP as detailed in the special conditions, or more frequently if specified, the permittee shall submit certified reports of any required monitoring to the appropriate AQD District Office. All instances of deviations from ROP requirements during the reporting period shall be clearly identified in the reports. (R 336.1213(3)(c)(i))
- 24. On an annual basis, the permittee shall report the actual emissions, or the information necessary to determine the actual emissions, of each regulated air pollutant as defined in Rule 212(6) for each emission unit utilizing the emissions inventory forms provided by the department. (R 336.1212(6))
- 25. The permittee shall provide notice of an abnormal condition, start-up, shutdown, or malfunction that results in emissions of a hazardous or toxic air pollutant which continue for more than one hour in excess of any applicable standard or limitation, or emissions of any air contaminant continuing for more than two hours in excess of an applicable standard or limitation, as required in Rule 912, to the appropriate AQD District Office. The notice shall be provided not later than two business days after the start-up, shutdown, or discovery of the abnormal conditions or malfunction. Notice shall be by any reasonable means, including electronic, telephonic, or oral communication. Written reports, if required under Rule 912, must be submitted to the appropriate AQD District Supervisor within 10 days after the start-up or shutdown occurred, within 10 days after the abnormal conditions or malfunction has been corrected, or within 30 days of discovery of the abnormal conditions or malfunction, whichever is first. The written reports shall include all of the information required in Rule 912(5) and shall be certified by a Responsible Official in a manner consistent with the CAA.<sup>2</sup> (R 336,1912)

#### **Permit Shield**

- 26. Compliance with the conditions of the ROP shall be considered compliance with any applicable requirements as of the date of ROP issuance if either of the following provisions is satisfied. (R 336.1213(6)(a)(i), R 336.1213(6)(a)(ii))
  - a. The applicable requirements are included and are specifically identified in the ROP.
  - b. The permit includes a determination or concise summary of the determination by the department that other specifically identified requirements are not applicable to the stationary source.

Any requirements identified in Part E of this ROP have been identified as non-applicable to this ROP and are included in the permit shield.

- 27. Nothing in this ROP shall alter or affect any of the following:
  - a. The provisions of Section 303 of the CAA, emergency orders, including the authority of the USEPA under Section 303 of the CAA. (R 336.1213(6)(b)(i))
  - The liability of the owner or operator of this source for any violation of applicable requirements prior to or at the time of this ROP issuance. (R 336.1213(6)(b)(ii))
  - The applicable requirements of the acid rain program, consistent with Section 408(a) of the CAA. (R 336.1213(6)(b)(iii))
  - d. The ability of the USEPA to obtain information from a source pursuant to Section 114 of the CAA. (R 336.1213(6)(b)(iv))
- 28. The permit shield shall not apply to provisions incorporated into this ROP through procedures for any of the following:

- a. Operational flexibility changes made pursuant to Rule 215. (R 336.1215(5))
- b. Administrative Amendments made pursuant to Rule 216(1)(a)(i)-(iv). (R 336.1216(1)(b)(lii))
- Administrative Amendments made pursuant to Rule 216(1)(a)(v) until the amendment has been approved by the department. (R 336.1216(1)(c)(iii))
- d. Minor Permit Modifications made pursuant to Rule 216(2). (R 336.1216(2)(f))
- e. State-Only Modifications made pursuant to Rule 216(4) until the changes have been approved by the department. (R 336.1216(4)(e))
- 29. Expiration of this ROP results in the loss of the permit shield. If a timely and administratively complete application for renewal is submitted not more than 18 months, but not less than 6 months, before the expiration date of the ROP, but the department fails to take final action before the end of the ROP term, the existing ROP does not expire until the renewal is issued or denied, and the permit shield shall extend beyond the original ROP term until the department takes final action. (R 336.1217(1)(c), R 336.1217(1)(a))

#### Revisions

- For changes to any process or process equipment covered by this ROP that do not require a revision of the ROP
  pursuant to Rule 216, the permittee must comply with Rule 215. (R 336.1215, R 336.1216)
- 31. A change in ownership or operational control of a stationary source covered by this ROP shall be made pursuant to Rule 216(1). (R 336.1219(2))
- 32. For revisions to this ROP, an administratively complete application shall be considered timely if it is received by the department in accordance with the time frames specified in Rule 216. (R 336.1210(10))
- 33. Pursuant to Rule 216(1)(b)(iii), Rule 216(2)(d) and Rule 216(4)(d), after a change has been made, and until the department takes final action, the permittee shall comply with both the applicable requirements governing the change and the ROP terms and conditions proposed in the application for the modification. During this time period, the permittee may choose to not comply with the existing ROP terms and conditions that the application seeks to change. However, if the permittee fails to comply with the ROP terms and conditions proposed in the application during this time period, the terms and conditions in the ROP are enforceable. (R 336.1216(1)(c)(iii), R 336.1216(2)(d), R 336.1216(4)(d))

#### Reopenings

- 34. A ROP shall be reopened by the department prior to the expiration date and revised by the department under any of the following circumstances:
  - a. If additional requirements become applicable to this stationary source with three or more years remaining in the term of the ROP, but not if the effective date of the new applicable requirement is later than the ROP expiration date. (R 336.1217(2)(a)(i))
  - b. If additional requirements pursuant to Title IV of the CAA become applicable to this stationary source. (R 336.1217(2)(a)(ii))
  - c. If the department determines that the ROP contains a material mistake, information required by any applicable requirement was omitted, or inaccurate statements were made in establishing emission limits or the terms or conditions of the ROP. (R 336.1217(2)(a)(iii))
  - If the department determines that the ROP must be revised to ensure compliance with the applicable requirements. (R 336.1217(2)(a)(iv))

#### Renewals

35. For renewal of this ROP, an administratively complete application shall be considered timely if it is received by the department not more than 18 months, but not less than 6 months, before the expiration date of the ROP. (R 336.1210(9))

#### Stratospheric Ozone Protection

- 36. If the permittee is subject to Title 40 of the Code of Federal Regulations (CFR), Part 82 and services, maintains, or repairs appliances except for motor vehicle air conditioners (MVAC), or disposes of appliances containing refrigerant, including MVAC and small appliances, or if the permittee is a refrigerant reclaimer, appliance owner or a manufacturer of appliances or recycling and recovery equipment, the permittee shall compty with all applicable standards for recycling and emissions reduction pursuant to 40 CFR Part 82, Subpart F.
- 37. If the permittee is subject to 40 CFR Part 82 and performs a service on motor (fleet) vehicles when this service involves refrigerant in the MVAC, the permittee is subject to all the applicable requirements as specified in 40 CFR Part 82, Subpart B, Servicing of Motor Vehicle Air Conditioners. The term "motor vehicle" as used in Subpart B does not include a vehicle in which final assembly of the vehicle has not been completed by the original equipment manufacturer. The term MVAC as used in Subpart B does not include the air-tight sealed refrigeration system used for refrigerated cargo or an air conditioning system on passenger buses using Hydrochlorofluorocarbon-22 refrigerant.

#### Risk Management Plan

- 38. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall register and submit to the USEPA the required data related to the risk management plan for reducing the probability of accidental releases of any regulated substances listed pursuant to Section 112(r)(3) of the CAA as amended in 40 CFR 68.130. The list of substances, threshold quantities, and accident prevention regulations promulgated under 40 CFR Part 68, do not limit in any way the general duty provisions under Section 112(r)(1).
- 39. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall comply with the requirements of 40 CFR Part 68, no later than the latest of the following dates as provided in 40 CFR 68.10(a):
  - a. June 21, 1999,
  - b. Three years after the date on which a regulated substance is first listed under 40 CFR 68,130, or
  - c. The date on which a regulated substance is first present above a threshold quantity in a process.
- 40. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall submit any additional relevant information requested by any regulatory agency necessary to ensure compliance with the requirements of 40 CFR Part 68.
- 41. If subject to Section 112(r) of the CAA and 40 CFR Part 68, the permittee shall annually certify compliance with all applicable requirements of Section 112(r) as detailed in Rule 213(4)(o)). (40 CFR Part 68)

#### **Emission Trading**

42. Emission averaging and emission reduction credit trading are allowed pursuant to any applicable interstate or regional emission trading program that has been approved by the Administrator of the USEPA as a part of Michigan's State Implementation Plan. Such activities must comply with Rule 215 and Rule 216. (R 336.1213(12))

#### Permit to Install (PTI)

- 43. The process or process equipment included in this permit shall not be reconstructed, relocated, or modified unless a PTI authorizing such action is issued by the department, except to the extent such action is exempt from the PTI requirements by any applicable rule,2 (R 336,1201(1))
- 44. The department may, after notice and opportunity for a hearing, revoke PTI terms or conditions if evidence indicates the process or process equipment is not performing in accordance with the terms and conditions of the PTI or is violating the department's rules or the CAA.2 (R 336.1201(8), Section 5510 of Act 451)
- 45. The terms and conditions of a PTI shall apply to any person or legal entity that now or hereafter owns or operates the process or process equipment at the location authorized by the PTI. If a new owner or operator submits a written request to the department pursuant to Rule 219 and the department approves the request, this PTI will be amended to reflect the change of ownership or operational control. The request must include all of the information required by Subrules (1)(a), (b) and (c) of Rule 219. The written request shall be sent to the appropriate AQD District Supervisor, EGLE.<sup>2</sup> (R 336.1219)
- 46. If the installation, reconstruction, relocation, or modification of the equipment for which PTI terms and conditions have been approved has not commenced within 18 months of the original PTI issuance date, or has been interrupted for 18 months, the applicable terms and conditions from that PTI, as incorporated into the ROP, shall become void unless otherwise authorized by the department. Furthermore, the person to whom that PTI was issued, or the designated authorized agent, shall notify the department via the Supervisor, Permit Section, EGLE, AQD, P. O. Box 30260, Lansing, Michigan 48909, if it is decided not to pursue the installation, reconstruction, relocation, or modification of the equipment allowed by the terms and conditions from that PTI.2 (R 336.1201(4))

Footnotes:

1 This condition is state-only enforceable and was established pursuant to Rule 201(1)(b).

<sup>&</sup>lt;sup>2</sup>This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

#### **B. SOURCE-WIDE CONDITIONS**

Part B outlines the Source-Wide Terms and Conditions that apply to this stationary source. The permittee is subject to these special conditions for the stationary source in addition to the general conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply to this source, NA (not applicable) has been used in the table. If there are no Source-Wide Conditions, this section will be left blank.

#### C. EMISSION UNIT SPECIAL CONDITIONS

Part C outlines terms and conditions that are specific to individual emission units listed in the Emission Unit Summary Table. The permittee is subject to the special conditions for each emission unit in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no conditions specific to individual emission units, this section will be left blank.

#### **EMISSION UNIT SUMMARY TABLE**

The descriptions provided below are for informational purposes and do not constitute enforceable conditions.

| Emission Unit ID | Emission Unit Description<br>(Including Process Equipment & Control<br>Device(s))                                                                                          | Installation<br>Date/<br>Modification Date | Flexible Group ID |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|
| EUBLR003         | 99 MMBtu/hr boiler fired on natural gas-or #2 fuel oil. Boiler No. 3                                                                                                       | 05/01/1994<br>10/11/2012                   | NA                |
| EUDYE001         | Paper dyeing process #1                                                                                                                                                    | 01/01/1920<br>11/22/1994                   | NA                |
| EUPROCESS        | Process chemical usage                                                                                                                                                     | 01/01/1965                                 | NA                |
| EUBLR004         | A natural gas-fired boiler rated at 186.8 MMBtu/hr for steam production used on the paper machine. The boiler is equipped with low NOx burners and flue gas recirculation. | 02/19/2014                                 | NA                |

#### EUBLR003 EMISSION UNIT CONDITIONS

#### **DESCRIPTION**

Boiler rated 99 MMBtu/hr, fired on natural gas and No.2 fuel oil.

Flexible Group ID: NA

#### POLLUTION CONTROL EQUIPMENT

NA

#### I. EMISSION LIMIT(S)

| 20 | Pollutant       | Limit                                            | Time Period/ Operating<br>Scenario                                                    | Equipment | Monitoring/<br>Testing<br>Method | Underlying<br>Applicable<br>Requirements                                 |
|----|-----------------|--------------------------------------------------|---------------------------------------------------------------------------------------|-----------|----------------------------------|--------------------------------------------------------------------------|
| 1. | NOx             | 14.35 pph <sup>2</sup>                           | Hourly                                                                                | EUBLR003  | SC V.1                           | R 336.1205(1)(a)<br>R 336.2803<br>R 336.2804<br>40 CFR 52.21(c)<br>& (d) |
| 2. | NOx             | 26.4 tpy <sup>2</sup>                            | 12-month rolling time<br>period as determined at<br>the end of each calendar<br>month | EUBLR003  | SC VI.5                          | R 336.1205(3)                                                            |
| 3. | SO <sub>2</sub> | 50.94 pph <sup>2</sup>                           |                                                                                       | EUBLR003  | SC V.1                           | R 336.1205(1)(a)<br>R 336.2803<br>R 336.2804<br>40 CFR 52.21(c)<br>& (d) |
| 4. | SO <sub>2</sub> | 27.8 tpy <sup>2</sup>                            | 12-month rolling time<br>period as determined at<br>the end of each calendar<br>month | EUBLR003  | SC VI.5                          | R 336.1205(3)                                                            |
| 5. | PM              | 0.10 lbs/1000<br>lbs exhaust<br>gas <sup>2</sup> | Instantaneous                                                                         | EUBLR003  | SC V.1                           | R 336.1331(1)(a)                                                         |

#### II. MATERIAL LIMIT(S)

|    | Material       | Limit                                       | Time Period/ Operating<br>Scenario                                                    | Equipment | Monitoring/<br>Testing Method | Underlying<br>Applicable<br>Requirements |
|----|----------------|---------------------------------------------|---------------------------------------------------------------------------------------|-----------|-------------------------------|------------------------------------------|
| 1. | No. 2 fuel oil | 775,000<br>gallons per<br>year <sup>2</sup> | 12-month rolling time<br>period as determined at<br>the end of each calendar<br>month | EUBLR003  | SC IV.2<br>SC VI.2            | R-336.1205(3)                            |

|    | Material       | Limit                                                                              | Time Period/ Operating<br>Scenario | Equipment | Monitoring/<br>Testing Method | Underlying<br>Applicable<br>Requirements                                       |
|----|----------------|------------------------------------------------------------------------------------|------------------------------------|-----------|-------------------------------|--------------------------------------------------------------------------------|
| 2. | No. 2 fuel oil | The sulfur<br>content shall<br>not exceed 0.5<br>percent by<br>weight <sup>2</sup> | Instantaneous                      | EUBLR003  |                               | R 336.1225<br>R 336.1402(1)<br>40 CFR 52.21 (c) & (d)<br>40 CFR Part 60.42c(d) |

#### NA

#### III. PROCESS/OPERATIONAL RESTRICTION(S)

- The permittee shall not exceed 867,240 MMBtu per year of heat input into EUBLR003, based on a 12-month rolling time period as determined at the end of each calendar month<sup>2</sup>. (R 336.1205(3), 40 CFR Part 60.40c(a))
- The permittee shall burn only pipeline quality natural gas and diesel fuel in EUBLR003.<sup>2</sup> (R 336.1225, R 336.1702, 40 CFR Part 60.41c)
- The permittee shall operate EUBLR003 in accordance with manufacturer's recommendations for safe and proper operation to minimize emissions during periods of startup, shutdown and malfunction.<sup>2</sup> (R 336.1912)

#### IV. DESIGN/EQUIPMENT PARAMETER(S)

- The heat input capacity of EUBLR003 shall not exceed a maximum of 99 million BTU per hour.<sup>2</sup> (R 336.1205(3), R 336.1225, 40 CFR Part 60.40c(a))
- The permittee shall install, calibrate, maintain, and operate in a satisfactory manner a device to monitor and record the use of each fuel used in EUBLR003 on a monthly basis.<sup>2</sup> (R 336.1205(3), R 336.1225)

#### V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

 Upon request from the district supervisor, the permittee shall verify NOx, SO2, and PM emission rates from EUBLR003 by testing at owner's expense, in accordance with the Department requirements. Testing shall be performed using an approved EPA Method listed in:

| Pollutant       | Test Method Reference                                                           |
|-----------------|---------------------------------------------------------------------------------|
| PM              | 40 CFR Part 60, Appendix A; Part 10 of the Michigan Air Pollution Control Rules |
| PM10/PM2.5      | 40 CFR Part 51, Appendix M                                                      |
| NOx             | 40 CFR Part 60, Appendix A                                                      |
| SO <sub>2</sub> | 40 CFR Part 60, Appendix A                                                      |

An alternate method, or a modification to the approved EPA Method, may be specified in an AQD-approved Test Protocol. No less than 30 days prior to testing, the permittee shall submit a complete test plan to the AQD Technical Programs Unit and District Office. The AQD must approve the final plan prior to testing, including any modifications to the method in the test protocol that are proposed after initial submittal. The permittee must submit a complete report of the test results to the AQD Technical Programs Unit and District Office within 60 days following the last date of the test.<sup>2</sup> (R 336.1213(3), R 336.2001, R 336.2003, R 336.2004)

 The permittee shall notify the AQD Technical Programs Unit Supervisor and the District Supervisor not less than 30 days of the time and place before performance tests are conducted.<sup>2</sup> (R 336.1213(3))

#### VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- The permittee shall complete all required calculations in a format acceptable to the AQD District Supervisor by the last day of the calendar month, for the previous calendar month, unless otherwise specified in any monitoring/recordkeeping special condition.<sup>2</sup> (R 336.1205(3), R 336.2803, R 336.2804, 40 CFR 52.21 (c) & (d))
- The permittee shall keep, in a satisfactory manner, monthly fuel use records for EUBLR003. The records must indicate the type and total amount of each fuel used in EUBLR003. All records shall be kept on file and made available to the Department upon request.<sup>2</sup> (R 336.1205(3), R 336.1225, 40 CFR 60.48c(g))
- The permittee shall keep, in a satisfactory manner, records of calculations of the heat input to EUBLR003 on a
  monthly and a 12-month rolling time period basis as determined at the end of each calendar month,<sup>2</sup>
  (R 336,1205(3), 40 CFR Part 60,40c(a))
- 4. The permittee shall keep, in a satisfactory manner, fuel supplier certification records or fuel sample test data, for each delivery of diesel fuel oil used in EUBLR003, demonstrating that the fuel sulfur content meets the requirement of SC II.2. The certification or test data shall include the name of the oil supplier or laboratory, and the sulfur content of the fuel oil.<sup>2</sup> (R 336.1205(3), R 336.1402(1), 40 CFR Part 60.48c(f)(1))
- 54. The permittee shall keep, in a satisfactory manner, NO<sub>x</sub> and SO<sub>2</sub> emission calculations for EUBLR003 on a monthly and 12-month rolling time period basis as determined at the end of each calendar month. All records shall be kept on file and made available to the Department upon request.<sup>2</sup> (R 336.1205(3), R 336.2803, R 336.2804, 40 CFR 52.21(c) & (d))

#### See Appendix4

#### VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall
  be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to
  December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be
  postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year.
  (R 336.1213(4)(c))

#### See Appendix 8

#### VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

| Stack & Vent ID | Maximum Exhaust<br>Diameter / Dimensions<br>(inches) | Minimum Height<br>Above Ground<br>(feet) | Underlying Applicable<br>Requirements                         |
|-----------------|------------------------------------------------------|------------------------------------------|---------------------------------------------------------------|
| 1. SVBLR003     | 482                                                  | 33²                                      | R 336.1225<br>R 336.2803, R 336.2804<br>40 CFR 52.21(c) & (d) |

#### IX. OTHER REQUIREMENT(S)

 The permittee shall comply with all provisions of the federal Standards of Performance for New Stationary Sources as specified in 40 CFR Part 60, Subparts A and Dc, as they apply to EUBLR003. (40 CFR Part 60, Subparts A & Dc)

The permittee shall comply with all provisions of the federal National Emissions Standards for Hazardous Air Pollutants in 40 CFR Part 63, Subparts A and DDDDD, as they apply to EUBLR003. (40 CFR Part 63, Subparts A & DDDDD)

Footnotes:

1 This condition is state only enforceable and was established pursuant to Rule 201(1)(b).

2 This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

# EUDYE001 EMISSION UNIT CONDITIONS

#### **DESCRIPTION**

Paper Dyeing

Flexible Group ID: NA

#### POLLUTION CONTROL EQUIPMENT

**Tank Covers** 

#### I. EMISSION LIMIT(S)

| Pollutant | Limit                 | Time Period/ Operating<br>Scenario | Equipment | Monitoring/<br>Testing Method | Underlying<br>Applicable<br>Requirements |
|-----------|-----------------------|------------------------------------|-----------|-------------------------------|------------------------------------------|
| 1. VOC    | 9,1 pph <sup>2</sup>  | Hourly                             | EUDYE001  | SC VI.1<br>SC VI.2            | R 336.1201(3)                            |
| 2. VOC    | 26.7 tpy <sup>2</sup> | 12-month rolling time period       | EUDYE001  | SC VI.2                       | R 336.1201(3)                            |

#### II. MATERIAL LIMIT(S)

NA

#### III. PROCESS/OPERATIONAL RESTRICTION(S)

1. The permittee shall not operate EUDYE001 unless the tank covers are in place.<sup>2</sup> (R 336.1201(3), (R 336.1910)

#### IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

#### V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

NA

## VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- The permittee shall maintain a record of the Volatile Organic Compound content of each material used in EUDYE001.<sup>2</sup> (R 336.1201(3), (R 336.1213(3))
- The permittee shall maintain a monthly record of the usage rate of each VOC containing material used in EUDYE001.<sup>2</sup> (R 336.1201(3), (R 336.1213(3))
- The permittee shall keep a written record to document the status of compliance with material limitations, emission limits, and other requirements specified in this table,<sup>2</sup> (R 336.1213(3))

#### VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- 3. Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year. (R 336,1213(4)(c))

See Appendix 8

VIII. STACK/VENT RESTRICTION(S)

NA

IX. OTHER REQUIREMENT(S)

NΑ

Footnotes:

1 This condition is state only enforceable and was established pursuant to Rule 201(1)(b).

<sup>&</sup>lt;sup>2</sup>This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

# EUPROCESS EMISSION UNIT CONDITIONS

#### **DESCRIPTION**

Paper manufacturing process chemical use

Flexible Group ID: NA

#### POLLUTION CONTROL EQUIPMENT

NA

### I. EMISSION LIMIT(S)

| F  | ollutant                                           | Limit                  | Time Period/ Operating<br>Scenario | Equipment                                                   | Monitoring/<br>Testing Method | Underlying<br>Applicable<br>Requirements  |
|----|----------------------------------------------------|------------------------|------------------------------------|-------------------------------------------------------------|-------------------------------|-------------------------------------------|
| 1. | VOC                                                | 82.3 tpy <sup>2</sup>  | 12-month rolling time period       | EUPROCESS<br>(Total VOCs<br>including cleaning<br>solvents) | SC VI.3                       | R 336.1201(3)<br>R 336.1702(3)            |
| 2. | Keresene<br>(CAS No.<br>8008-20-6)                 | 349 lbs <sup>2</sup>   | 8 hour shift                       | EUPROCE'SS                                                  | SC VI.1                       | R 336.1201(3)<br>R 336.1702<br>R 336.1901 |
| 3. | Petroleum<br>Distillate<br>(CAS No.<br>64742-47-8) | 18.72 tpy <sup>2</sup> | 12-month rolling time period       | EUPROCESS                                                   | SC VI.2                       | R 336,1201(3)<br>R 336,1702<br>R 336,1901 |

#### II. MATERIAL LIMIT(S)

NA

#### III. PROCESS/OPERATIONAL RESTRICTION(S)

NA

#### IV. DESIGN/EQUIPMENT PARAMETER(S)

NA

## V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

NA

#### VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

The permittee shall record the usage rates and calculate the No. 1 fuel oil or kerosene (CAS #8008-20-6) emission rates from EUPROCESS for each 8-hour shift to determine compliance with the limitation specified under Emission Limits above.<sup>2</sup> (R 336.1201(3), R 336.1213(3))

- 2.1. The permittee shall record the usage rates and calculate the petroleum distillates (CAS #64742-47-8) emission rates from EUPROCESS for each month and year based on a 12-month rolling time period as determined at the end of each calendar month to determine compliance with the limitation specified under Emission Limits above.<sup>2</sup> (R 336.1201(3), R 336.1213(3))
- 3-2. The permittee shall record the usage rates and calculate the total VOC emission rates from EUPROCESS including the cleaning solvents and excluding the dye, for each month and year based on a 12-month rolling time period as determined at the end of each calendar month to determine compliance with the limitation specified under Emission Limits above,<sup>2</sup> (R 336.1201(3), R 336.1213(3))
- 4-3. The permittee shall keep records of the VOC content, water content and density of each VOC containing material used or mixed.<sup>2</sup> (R 336.1201(3), (R 336.1213(3))

#### VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall
  be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to
  December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be
  postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year.
  (R 336.1213(4)(c))

See Appendix 8

#### VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

| Stack & Vent ID | Maximum Exhaust<br>Diameter /<br>Dimensions<br>(Inches) | Minimum Height<br>Above Ground<br>(feet) | Underlying Applicable<br>Requirements |
|-----------------|---------------------------------------------------------|------------------------------------------|---------------------------------------|
| #1-Beater #2    | 8 <sup>2</sup>                                          | 30.72                                    | (R 336,1201(3), R 336,1901)           |
| #2-Machine-1    | 60 <sup>2</sup>                                         | 442                                      | (R 336.1201(3), R 336.1901)           |
| #3-Machine-2    | 48 x 48 <sup>2</sup>                                    | 442                                      | (R 336.1201(3), R 336,1901)           |
| #4-Machine-3    | 36 <sup>2</sup>                                         | 472                                      | (R 336,1201(3), R 336,1901)           |
| #5-Machine-4    | 36 <sup>2</sup>                                         | 472                                      | (R 336.1201(3), R 336.1901)           |
| #6-Machine-5    | 48 <sup>2</sup>                                         | 45 <sup>2</sup>                          | (R 336,1201(3), R 336,1901)           |
| #7-Machine-6    | 67 x 62 <sup>2</sup>                                    | 43 <sup>2</sup>                          | (R 336.1201(3), R 336.1901)           |
| #8-Machine-7    | 42 x 42 <sup>2</sup>                                    | 45 <sup>2</sup>                          | (R 336.1201(3), R 336.1901)           |
| #9-Machine-8    | 48 <sup>2</sup>                                         | 45 <sup>2</sup>                          | (R 336.1201(3), R 336.1901)           |
| #10-Machine-9   | 60 <sup>2</sup>                                         | 42 <sup>2</sup>                          | (R 336.1201(3), R 336.1901)           |

#### IX. OTHER REQUIREMENT(S)

NA

#### Footnotes:

<sup>&</sup>lt;sup>1</sup>This condition is state only enforceable and was established pursuant to Rule 201(1)(b).

<sup>&</sup>lt;sup>2</sup>This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

# EUBLR004 EMISSION UNIT CONDITIONS

#### **DESCRIPTION**

A natural gas-fired boiler rated at 186.8 MMBtu/hr for steam production. The boiler is equipped with low NOx burners and flue gas recirculation.

Flexible Group ID: NA

#### POLLUTION CONTROL EQUIPMENT

Low NOx burners and flue gas recirculation

#### I. EMISSION LIMIT(S)

|    | Pollutant   | Limit                      | Time Period/<br>Operating Scenario                                                    | Equipment | Monitoring/<br>Testing Method | Underlying<br>Applicable<br>Requirements |
|----|-------------|----------------------------|---------------------------------------------------------------------------------------|-----------|-------------------------------|------------------------------------------|
| 1. | NOx         | 0.20 lb/MMBTU <sup>2</sup> | 30-day average rolling<br>time period                                                 | EUBLR004  | SC VI.2<br>or<br>SC VI.3      | 40 CFR 60.44b(i)                         |
| 2. | GHG as CO₂₀ |                            | 12-month rolling time<br>period as determined at<br>the end of each<br>calendar month | EUBLR004  | SCVI.6                        | R 336.1205(1)(a) & (b)                   |

#### II. MATERIAL LIMIT(S)

| Material       | Limit                  | Time Period/ Operating<br>Scenario                                                    | Equipment | Monitoring/<br>Testing Method | Underlying Applicable<br>Requirements                                                        |
|----------------|------------------------|---------------------------------------------------------------------------------------|-----------|-------------------------------|----------------------------------------------------------------------------------------------|
| I, Natural Gas | 1247 MMcf <sup>2</sup> | 12-month rolling time<br>period as determined at<br>the end of each calendar<br>month | EUBLR004  | SC VI.5                       | R 336.1205(1)(a) & (b)<br>R 336.1224<br>R 336.1225<br>R 336.1702(a)<br>40 CFR 52.21(c) & (d) |

#### III. PROCESS/OPERATIONAL RESTRICTION(S)

- The permittee shall not operate EUBLR004 unless a malfunction abatement plan (MAP) as described in Rule 911(2), for EUBLR004 operation, has been submitted within 180 days of permit issuance, and is implemented and maintained. The MAP shall, at a minimum, specify the following:
  - a) A complete preventative maintenance program including identification of the supervisory personnel responsible for overseeing the inspection, maintenance, and repair of air-cleaning devices, a description of the items or conditions that shall be inspected, the frequency of the inspections or repairs, and an identification of the major replacement parts that shall be maintained in inventory for quick replacement.
  - b) An identification of the source and air-cleaning device operating variables that shall be monitored to detect a malfunction or failure, the normal operating range of these variables, and a description of the method of monitoring or surveillance procedures.
  - c) A description of the corrective procedures or operational changes that shall be taken in the event of a malfunction or failure to achieve compliance with the applicable emission limits.

If at any time the MAP fails to address or inadequately addresses an event that meets the characteristics of a malfunction, the permittee shall amend the MAP within 45 days after such an event occurs. The permittee shall also amend the MAP within 45 days, if new equipment is installed or upon request from the District Supervisor. The permittee shall submit the MAP and any amendments to the MAP to the AQD District Supervisor for review and approval. If the AQD does not notify the permittee within 90 days of submittal, the MAP or amended MAP shall be considered approved. Until an amended plan is approved, the permittee shall implement corrective procedures or operational changes to achieve compliance with all applicable emission limits. (R 336.1225, R 336.1331, R 336.1910, R 336.1911, 40 CFR 52.21(c) and (d))

 The permittee shall burn only pipeline quality natural gas in EUBLR004.2 (R 336.1205(1)(a) & (b), R 336.1224, R 336.1225, R 336.1702(a), 40 CFR 52.21(c) & (d), 40 CFR Part 60, Subpart Db)

#### IV. DESIGN/EQUIPMENT PARAMETER(S)

- The maximum design heat input capacity for EUBLR004 shall not exceed 186,8 MMBtu per hour on a fuel heat input basis.<sup>2</sup> (R 336.1205(1)(a) & (b), 40 CFR 52.21(c) & (d), 40 CFR Part 60, Subpart Db)
- The permittee shall not operate EUBLR004 unless the low NOx burners and flue gas recirculation system are installed, maintained, and operated in a satisfactory manner.<sup>2</sup> (R 336.1205(1)(a) & (b), R 336.1910, 40 CFR 52.21(c) & (d))
- The permittee shall install, calibrate, maintain and operate, in a satisfactory manner, a device to monitor and record the daily natural gas usage rate for EUBLR004 on a continuous basis.<sup>2</sup> (R 336.1205(1)(a) & (b), R 336.1224, R 336.1225, R 336.1702(a), 40 CFR 52.21(c) & (d), 40 CFR 60.49b(d))
- 4. If the permittee chooses the compliance method specified in SC VI.2, the permittee shall install, calibrate, maintain and operate in a satisfactory manner, devices to monitor and record the NO<sub>x</sub> emissions, and oxygen (O<sub>2</sub>), or carbon dioxide (CO<sub>2</sub>), content of the exhaust gas from EUBLR004 on a continuous basis.<sup>2</sup> (R 336.1205(1)(a) & (b), 40 CFR 52.21(c) & (d), 40 CFR 60.48b, 40 CFR Part 75)

#### V. TESTING/SAMPLING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

NΑ

#### VI. MONITORING/RECORDKEEPING

Records shall be maintained on file for a period of five years. (R 336.1213(3)(b)(ii))

- The permittee shall complete all required calculations in a format acceptable to the AQD District Supervisor by the 30th day of the calendar month, for the previous calendar month, unless otherwise specified in any monitoring/recordkeeping special condition.<sup>2</sup> (R 336.1205(1)(a) & (b), 40 CFR 52.21(c) & (d), 40 CFR Part 60, Subpart Db)
- Except as specified in SC VI.3, the permittee shall continuously monitor and record, in a satisfactory manner, the NO<sub>x</sub> emissions and the O<sub>2</sub>, or CO<sub>2</sub>, emissions from EUBLR004. The permittee shall operate each Continuous Emission Monitoring System (CEMS) to meet the timelines, requirements and reporting detailed in Appendix A and shall use the CEMS data for determining compliance with SC I.1.<sup>2</sup> (R 336.1205(1)(a) & (b), 40 CFR 52.21(c) & (d), 40 CFR Part 60, Subpart Db)
- 3. As an alternative to the compliance method specified in SC VI.2, the permittee may demonstrate compliance by monitoring EUBLR004 operating conditions and predicting NO emission rates in a satisfactory manner. The permittee shall submit a plan that identifies the operating conditions to be monitored and the records to be maintained. The permittee shall operate each Predictive Emission Monitoring System (PEMS) to meet the timelines, requirements and reporting detailed in Appendix A and shall use the PEMS data for determining compliance with SC I.1.2 (R 336.1205(1)(a) & (b), 40 CFR 52.21(c) & (d), 40 CFR Part 60, Subpart Db)

- 4. The permittee shall keep monthly natural gas usage records, in a format acceptable to the AQD District Supervisor, indicating the amount of natural gas used, in cubic feet, on an average calendar day basis, a calendar month basis, and a 12-month rolling time period basis. The permittee shall keep all records on file at the facility and make them available to the Department upon request.<sup>2</sup> (R 336.1205(1)(a) & (b), R 336.1224, R 336.1225, R 336.1702(a), 40 CFR 52.21(c) & (d), 40 CFR 60.49b(d))
- 5. The permittee shall calculate and keep, in a satisfactory manner, records of the monthly and 12-month rolling annual capacity factor for natural gas for EUBLR004. The permittee shall keep all records on file and make them available to the Department upon request.<sup>2</sup> (40 CFR 60,49b(d))
- The permittee shall calculate and keep, in a satisfactory manner, records of monthly and 12-month rolling total CO<sub>x</sub> e emissions for EUBLR004, as required by SC I.2. The permittee shall keep all records on file and make them available to the Department upon request.<sup>2</sup> (R 336.1205(1)(a) & (b))
- 7. The permittee shall keep, in a satisfactory manner, records of the fuel receipts from the fuel supplier that certify that the natural gas meets the definition of natural gas defined in 40 CFR 60.41b for EUBLR004 on file at the facility and make them available to the Department upon request.<sup>2</sup> (R 336.1205(1)(a) & (b), 40 CFR 52.21(c) and (d), 40 CFR Part 60, Subpart Db, 40 CFR 60.49b(r)(1))
- 8. The permittee shall maintain records of all information necessary for all notifications and reports as specified in these special conditions as well as that information necessary to demonstrate compliance with the emission limits of this permit. This information shall include, but shall not be limited to the following:
  - a) Compliance tests and any testing required under the special conditions of this permit.
  - b) Monitoring data.
  - c) Verification of heat input capacity required to show compliance with SC IV.1.
  - d) Identification, type and the amounts of fuel combusted in EUBLR004 on an average calendar day basis.
  - e) All records required by 40 CFR 60.7 and 60.49b.
  - f) All calculations necessary to show compliance with the limits contained in this permit.

All of the above information shall be stored in a format acceptable to the AQD and shall be consistent with the requirements of 40 CFR 60.7(f).<sup>2</sup> (R 336.1205(1)(a) & (b), R 336.1224, R 336.1225, R 336.1702(a), R 336.1912, 40 CFR 52,21(c) & (d), 40 CFR 60.7(f), 40 CFR Part 60, Subpart Db)

#### See Appendix 3

#### VII. REPORTING

- 1. Prompt reporting of deviations pursuant to General Conditions 21 and 22 of Part A. (R 336.1213(3)(c)(ii))
- Semiannual reporting of monitoring and deviations pursuant to General Condition 23 of Part A. The report shall
  be postmarked or received by the appropriate AQD District Office by March 15 for reporting period July 1 to
  December 31 and September 15 for reporting period January 1 to June 30. (R 336.1213(3)(c)(i))
- Annual certification of compliance pursuant to General Conditions 19 and 20 of Part A. The report shall be
  postmarked or received by the appropriate AQD District Office by March 15 for the previous calendar year.
  (R 336.1213(4)(c))
- 4. The permittee shall provide written notification of construction and operation to comply with the federal Standards of Performance for New Stationary Sources, 40 CFR 60.7. The permittee shall submit this notification to the AQD District Supervisor within the time frames specified in 40 CFR 60.7.2 (40 CFR 60.7)
- The permittee shall provide written notification of the actual date of initial startup to comply with the federal Standards of Performance for New Stationary Sources, 40 CFR 60,49b(a). The notification shall include:
  - a. The design heat input capacity of EUBLR004 and identification of the fuels to be combusted in EUBLR004.
  - b. The annual capacity factor at which the owner or operator anticipates operating the facility based on all fuels fired and based on each individual fuel fired.

The permittee shall submit this notification to the AQD District Supervisor within 15 days after initial startup occurs.2 (40 CFR 60.49b(a))

6. The permittee shall submit all reports required by the federal Standards of Performance for New Stationary Sources, 40 CFR 60.49b, as applicable. The permittee shall submit these reports to the AQD District Supervisor within the time frames specified in 40 CFR 60.49b and/or 40 CFR 60.7.2 (40 CFR 60.7, 40 CFR 60.49b(h) &

#### See Appendix 8

#### VIII. STACK/VENT RESTRICTION(S)

The exhaust gases from the stacks listed in the table below shall be discharged unobstructed vertically upwards to the ambient air unless otherwise noted:

| Stack & Vent ID | Maximum Exhaust Diameter / Dimensions (inches) | Minimum<br>Height Above<br>Ground<br>(feet) | Underlying Applicable<br>Requirements |
|-----------------|------------------------------------------------|---------------------------------------------|---------------------------------------|
| 1. SVBOILER4    | 72 <sup>2</sup>                                | 40 <sup>2</sup>                             | R 336.1225, 40 CFR 52.21(c) & (d)     |

#### IX. OTHER REQUIREMENT(S)

The permittee shall comply with all provisions of the federal Standards of Performance for New Stationary Sources as specified in 40 CFR Part 60, Subparts A and Db, as they apply to EUBLR004. (40 CFR Part 60, Subparts A & Db)

Footnotes: 1 This condition is state only enforceable and was established pursuant to Rule 201(1)(b).

<sup>2</sup>This condition is federally enforceable and was established pursuant to Rule 201(1)(a).

## D. FLEXIBLE GROUP SPECIAL CONDITIONS

Part D outlines the terms and conditions that apply to more than one emission unit. The permittee is subject to the special conditions for each flexible group in addition to the General Conditions in Part A and any other terms and conditions contained in this ROP.

The permittee shall comply with all specific details in the special conditions and the underlying applicable requirements cited. If a specific condition type does not apply, NA (not applicable) has been used in the table. If there are no special conditions that apply to more than one emission unit, this section will be left blank.

## **E. NON-APPLICABLE REQUIREMENTS**

At the time of the ROP issuance, the AQD has determined that the requirements identified in the table below are not applicable to the specified emission unit(s) and/or flexible group(s). This determination is incorporated into the permit shield provisions set forth in the General Conditions in Part A pursuant to Rule 213(6)(a)(ii). If the permittee makes a change that affects the basis of the non-applicability determination, the permit shield established as a result of that non-applicability decision is no longer valid for that emission unit or flexible group.

| Emission Unit/Flexible<br>Group ID | Non-Applicable Requirement | Justification                                           |
|------------------------------------|----------------------------|---------------------------------------------------------|
| EUPROCESS                          | 40 CFR Part 60, Subpart BB | Facility is not a Kraft Paper Mill                      |
| EUPROCESS                          | 40 CFR Part 63, Subpart S  | Facility process and materials not subject to Subpart S |

# **APPENDICES**

Appendix 1. Acronyms and Abbreviations

| Telefolis (1994) 1994 1994 1994 | Common Acronyms                          |                   | Pollutant / Measurement Abbreviations                            |
|---------------------------------|------------------------------------------|-------------------|------------------------------------------------------------------|
| AQD                             | Air Quality Division                     | acfm              | Actual cubic feet per minute                                     |
| BACT                            | Best Available Control Technology        | BTU               | British Thermal Unit                                             |
| CAA                             | Clean Air Act                            | °C                | Degrees Celsius                                                  |
| CAM                             | Compliance Assurance Monitoring          | CO                | Carbon Monoxide                                                  |
| CEM                             | Continuous Emission Monitoring           | CO <sub>2</sub> e | Carbon Dioxide Equivalent                                        |
| CEMS                            | Continuous Emission Monitoring System    | dscf              | Dry standard cubic foot                                          |
| CFR                             | Code of Federal Regulations              | dscm              | Dry standard cubic meter                                         |
| СОМ                             | Continuous Opacity Monitoring            | °F                | Degrees Fahrenheit                                               |
| Department/                     | Michigan Department of Environment,      | gr                | Grains                                                           |
| department                      | Great Lakes, and Energy                  | HAP               | Hazardous Air Pollutant                                          |
| EGLE                            | Michigan Department of Environment,      | Hg                | Mercury                                                          |
|                                 | Great Lakes, and Energy                  | hr                | Hour                                                             |
| EU                              | Emission Unit                            | HP                | Horsepower                                                       |
| FG                              | Flexible Group                           | H₂S               | Hydrogen Sulfide                                                 |
| GACS                            | Gallons of Applied Coating Solids        | kW                | Kilowatt                                                         |
| GC                              | General Condition                        | lb                | Pound                                                            |
| GHGs                            | Greenhouse Gases                         | m                 | Meter                                                            |
| HVLP                            | High Volume Low Pressure*                | mg                | Milligram                                                        |
| ID                              | Identification                           | mm                | Millimeter                                                       |
| IRSL                            | Initial Risk Screening Level             | MM                | Million                                                          |
| ITSL                            | Initial Threshold Screening Level        | MW                | Megawatts                                                        |
| LAER                            | Lowest Achievable Emission Rate          | NMOC              | Non-methane Organic Compounds                                    |
| MACT                            | Maximum Achievable Control Technology    | NO <sub>x</sub>   | Oxides of Nitrogen                                               |
| MAERS                           | Michigan Air Emissions Reporting System  | ng                | Nanogram                                                         |
| MAP                             | Malfunction Abatement Plan               | PM                | Particulate Matter                                               |
| MSDS                            | Material Safety Data Sheet               | PM10              | Particulate Matter equal to or less than 10                      |
| NA                              | Not Applicable                           |                   | microns in diameter                                              |
| NAAQS                           | National Ambient Air Quality Standards   | PM2,5             | Particulate Matter equal to or less than 2.5 microns in diameter |
| NESHAP                          | National Emission Standard for Hazardous | pph               | Pounds per hour                                                  |
| LIGHO.                          | Air Pollutants                           | ppm               | Parts per million                                                |
| NSPS                            | New Source Performance Standards         | ppmv              | Parts per million by volume                                      |
| NSR                             | New Source Review                        | ppmw<br>%         | Parts per million by weight                                      |
| PS                              | Performance Specification                | ''                | Percent                                                          |
| PSD                             | Prevention of Significant Deterioration  | psia              | Pounds per square inch absolute                                  |
| PTE                             | Permanent Total Enclosure                | psig              | Pounds per square inch gauge                                     |
| PTI                             | Permit to Install                        | scf               | Standard cubic feet                                              |
| RACT                            | Reasonable Available Control Technology  | sec               | Seconds                                                          |
| ROP                             | Renewable Operating Permit               | SO <sub>2</sub>   | Sulfur Dioxide                                                   |
| SC                              | Special Condition                        | TAC               | Toxic Air Contaminant                                            |
| SCR                             | Selective Catalytic Reduction            | Temp              | Temperature                                                      |
| SNCR                            | Selective Non-Catalytic Reduction        | THC               | Total Hydrocarbons                                               |
| SRN                             | State Registration Number                | tpy               | Tons per year                                                    |
| TEQ                             | Toxicity Equivalence Quotient            | μg                | Microgram                                                        |
| USEPA/EPA                       | United States Environmental Protection   | μm                | Micrometer or Micron                                             |
|                                 | Agency                                   | voc               | Volatile Organic Compounds                                       |
| VE                              | Visible Emissions                        | yr                | Year                                                             |

\*For HVLP applicators, the pressure measured at the gun air cap shall not exceed 10 psig.

#### Appendix 2. Schedule of Compliance

The permittee certified in the ROP application that this stationary source is in compliance with all applicable requirements and the permittee shall continue to comply with all terms and conditions of this ROP. A Schedule of Compliance is not required. (R 336.1213(4)(a), R 336.1119(a)(ii))

#### Appendix 3. Monitoring Requirements

# NO<sub>x</sub> Monitoring Continuous Emission Monitoring System (CEMS) and Predictive Emission Monitoring System (PEMS) Requirements

- Within 30 calendar days after commencement of trial operation, the permittee shall submit two copies of a Monitoring Plan to the AQD, for review and approval. The Monitoring Plan shall include drawings or specifications showing proposed locations and descriptions of the required CEMS/PEMS.
- Within 150 calendar days after commencement of trial operation, the permittee shall submit two copies of a complete test plan for the CEMS/PEMS to the AQD for approval.
- Within 180 calendar days after commencement of trial operation, the permittee shall complete the installation and testing of the CEMS/PEMS.
- Within 60 days of completion of testing, the permittee shall submit to the AQD two copies of the final report demonstrating the CEMS/PEMS complies with the requirements of the corresponding Performance Specifications (PS) in the following table.

| Pollutant                          | Applicable<br>PS |
|------------------------------------|------------------|
| NOx                                | 2                |
| O <sub>2</sub> and CO <sub>2</sub> | 3                |
| PEMS                               | 16               |

- 5. The span value shall be 2.0 times the lowest emission standard or as specified in the federal regulations.
- The CEMS shall be installed, calibrated, maintained, and operated in accordance with the procedures set forth in 40 CFR 60.13 and PS 2 and 3 of Appendix B to 40 CFR Part 60. If a PEMS is installed in lieu of a CEMS, the PEMS shall be installed, maintained, and operated in accordance with PS 16 of Appendix B to 40 CFR Part 60. as proposed or promulgated,
- 7. Each calendar quarter, the permittee shall perform the Quality Assurance Procedures of the CEMS set forth in Appendix F of 40 CFR Part 60. If a PEMS is installed in lieu of a CEMS, the permittee shall perform the Quality Assurance Procedures of the PEMS set forth in PS 16 of Appendix B to 40 CFR Part 60, as proposed or promulgated. Within 30 days following the end of each calendar quarter, the permittee shall submit the results to the AQD in the format of the data assessment report (Figure 1, Appendix F).
- In accordance with 40 CFR 60,7(c) and (d), the permittee shall submit two copies of an excess emission report (EER) and summary report in an acceptable format to the AQD, within 30 days following the end of each calendar quarter. The Summary Report shall follow the format of Figure 1 in 40 CFR 60.7(d). The EER shall include the following information:
  - a. A report of each exceedance above 0.20 lb NO /MMBtu. This includes the date, time, magnitude, cause and corrective actions of all occurrences during the reporting period, A report of all periods of CEMS/PEMS

Page 29 of 31

downtime and corrective action. A report of the total operating time of EUBLR004 during the reporting period. A report of any periods that the CEMS/PEMS exceeds the instrument range. If no exceedances or CEMS/PEMS downtime occurred during the reporting period, the permittee shall report that fact.

The permittee shall keep all monitoring data on file for a period of at least five years and make them available to the AQD upon request.

#### Appendix 4. Recordkeeping

#### Fuel Oil Analysis:

For each fuel oil shipment received, the permittee shall obtain from the fuel oil supplier a laboratory analysis of the sulfur content. The determination of sulfur content (percent by weight) shall be carried out in accordance with any of the following precedures: ASTM Method D129-64 or ASTM Method 1552-83, or ASTM Method 2622-87 or ASTM Method 1266-87, or an alternative method approved by the AQD District Supervisor. For each fuel oil shipment received, the permittee shall also record the date received, source of fuel oil and supplier, and gallons received. These records shall be retained by the permittee for a minimum of 5 years and made available to the Air Quality Division upon request.

#### Appendix 45. Testing Procedures

Specific testing requirement plans, procedures, and averaging times are detailed in the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

#### Appendix 56. Permits to Install

The following table lists any PTIs issued or ROP revision applications received since the effective date of the previously issued ROP No. MI-ROP-A6475-2014a. Those ROP revision applications that are being issued concurrently with this ROP renewal are identified by an asterisk (\*). Those revision applications not listed with an asterisk were processed prior to this renewal.

Source-Wide PTI No MI-PTI-A6475-2014a is being reissued as Source-Wide PTI No. MI-PTI-A6475-2019.

| Permit to<br>Install<br>Number | ROP Revision Application Number | Description of Equipment or Change | Corresponding<br>Emission Unit(s) or<br>Flexible Group(s) |
|--------------------------------|---------------------------------|------------------------------------|-----------------------------------------------------------|
| NA                             | NA                              | NA NA                              | NA                                                        |

#### Appendix 67. Emission Calculations

Specific emission calculations to be used with monitoring, testing or recordkeeping data are detailed in the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, this appendix is not applicable.

#### Appendix 78. Reporting

#### A. Annual, Semiannual, and Deviation Certification Reporting

The permittee shall use EGLE, AQD, Report Certification form (EQP 5736) and EGLE, AQD, Deviation Report form (EQP 5737) for the annual, semiannual and deviation certification reporting referenced in the Reporting Section of the Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Alternative formats must meet the provisions of Rule 213(4)(c) and Rule 213(3)(c)(i), respectively, and be approved by the AQD District Supervisor.

#### B. Other Reporting

Specific reporting requirement formats and procedures are detailed in Part A or the appropriate Source-Wide, Emission Unit and/or Flexible Group Special Conditions. Therefore, Part B of this appendix is not applicable.

# 2023 MAERS report

# 2023 Emissions Inventory Report

# UP Paper LLC. (A6475)

# **Emissions Summary**

|                                                                        |                                                                                                                                                                                                                             | <u> Proposition of the Proposition</u> |                                                                                 |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Pollutant Code/CAS#                                                    | Pollutant Name                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Emissions<br>(tons)*                                                      |
| co                                                                     | Carbon Monovide                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.8165                                                                          |
| 7439921                                                                | Lead                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00025                                                                         |
| NOX                                                                    | Nitrogen Oxides                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.45938                                                                        |
| PMIO-PRI                                                               | PM10 Primary (Fift + Cond)                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.75896                                                                         |
| PM10-FIL                                                               | PM10 Filterable                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.93974                                                                         |
| PM25-PRI                                                               | PM2.5 Primary (Filt + Cond)                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.75896                                                                         |
| PM25-FiL                                                               | PM2.5 Filterable                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,93974                                                                         |
| PM-CON                                                                 | PMCondensible                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.81922                                                                         |
| SO2                                                                    | Sulfur Dioxide                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.29676                                                                         |
| voc                                                                    | Volatile Organic Compounds                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7,1103                                                                          |
| NH3                                                                    | Ammonia                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.58272                                                                         |
| HAZARDOUS AIR POLLU                                                    | TANT (HAP) and/or OTHER POLLUTANT EMISSIONS TOTALS                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |
| Pollutant Code/CAS#                                                    | Pollutant Name                                                                                                                                                                                                              | is VOC/PM?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Total Emissions<br>(tons)*                                                      |
| CO2                                                                    | Carbon Dioxide (GHG)                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |
| <b>**</b> • •                                                          | (4.1.7)                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59,352.0                                                                        |
| CH4                                                                    | Methane (GHG)                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59,352.0<br>1.13758                                                             |
| CH4<br>N2O                                                             |                                                                                                                                                                                                                             | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                               |
| N2O                                                                    | Methanie (GHG)                                                                                                                                                                                                              | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.13758                                                                         |
| N2O<br>91576                                                           | Methane (GHG)<br>Nitrous Oxide (GHG)                                                                                                                                                                                        | -<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.13758<br>1.08812                                                              |
|                                                                        | Methane (GHG) Nitrous Ovide (GHG) 2-Methylnaphthalene (HAP)                                                                                                                                                                 | -<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.13758<br>1.08812<br>0.00001                                                   |
| N2O<br>91576<br>56495                                                  | Methane (GHG) Nitrous Oxide (GHG) 2-Methylnaphthalene (HAP) 3-Methylcholanthrene (HAP)                                                                                                                                      | -<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.13758<br>1.08812<br>0.00001<br><.00001                                        |
| N2O<br>91576<br>56495<br>57976                                         | Methane (GHG) Nitrous Oxide (GHG) 2-Methylcholanthrene (HAP) 3-Methylcholanthrene (HAP) 7,12-Dimethylbenz[a]Anthracene (HAP)                                                                                                | -<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.13758<br>1.08812<br>0.00001<br><.00001<br>0.00001                             |
| N2O<br>91576<br>56495<br>57976<br>83329                                | Methane (GHG) Nitrous Oxide (GHG) 2-Methylnaphthalene (HAP) 3-Methylcholanthrene (HAP) 7,12-Dimethylbenz[a]Anthracene (HAP) Acenaphthene (HAP)                                                                              | -<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.13758<br>1.08812<br>0.00001<br><.00001<br>0.00001                             |
| N2O<br>91576<br>56495<br>57976<br>83329<br>208968                      | Methane (GHG) Nitrous Oxide (GHG) 2-Methylnaphthalene (HAP) 3-Methylcholanthrene (HAP) 7,12-Dimethylbenz[a]Anthracene (HAP) Acenaphthene (HAP)                                                                              | -<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.13758<br>1.08812<br>0.00001<br><.00001<br>0.00001<br><.00001                  |
| N2O<br>91576<br>56495<br>57976<br>83329<br>208968<br>120127<br>7440382 | Methane (GHG) Nitrous Oxide (GHG) 2-Methylcholanthrene (HAP) 3-Methylcholanthrene (HAP) 7,12-Dimethylbenz[a]Anthracene (HAP) Acenaphthene (HAP) Acenaphthylene (HAP) Anthracene (HAP)                                       | -<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.13758 1.08812 0.00001 <.00001 0.00001 <.00001 <.00001 <.00001                 |
| N2O<br>91576<br>56495<br>57976<br>83329<br>208968<br>120127<br>7440382 | Methane (GHG) Nitrous Oxide (GHG) 2-Methylnaphthalene (HAP) 3-Methylcholanthrene (HAP) 7,12-Dimethylbenz[a]Anthracene (HAP) Acenaphthene (HAP) Acenaphthylene (HAP) Anthracene (HAP) Arsenic (HAP)                          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.13758 1.08812 0.00001 <.00001 0.00001 <.00001 <.00001 <.00001 0.00001         |
| N2O<br>91576<br>56495<br>57976<br>83329<br>208968<br>120127            | Methane (GHG) Nitrous Oxide (GHG) 2-Methylcholanthrene (HAP) 3-Methylcholanthrene (HAP) 7,12-Dimethylbenz[a]Anthracene (HAP) Acenaphthene (HAP) Acenaphthylene (HAP) Anthracene (HAP) Arsenic (HAP) Benz[a]Anthracene (HAP) | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.13758 1.08812 0.00001 <.00001 <.00001 <.00001 <.00001 <.00001 <.00001 <.00001 |

| Pollutant Code/CAS# | Pollutant Name                |                                   | Is VOC/PM?                              | Total Emission<br>(tons)*  |
|---------------------|-------------------------------|-----------------------------------|-----------------------------------------|----------------------------|
| 191242              | Benzolg,h,i,jPerylene (HAP)   |                                   | -                                       | <.00001                    |
| 207089              | Benzo[k]Fluoranthene (HAP)    |                                   | -                                       | <.00001                    |
| 7440417             | Beryllium (HAP)               |                                   | -                                       | 0.00001                    |
| 7440439             | Cadmium (HAP)                 |                                   | -                                       | 0.00054                    |
| 7440473             | Chromium (HAP)                |                                   | -                                       | 0.00069                    |
| 218019              | Chrysene (HAP)                |                                   | -                                       | <.00001                    |
| 7440484             | Cobalt (HAP)                  |                                   | -                                       | 0.00004                    |
| 53703               | Dibenzo(a,h)Anthracene (HAP)  |                                   | -                                       | <.00001                    |
| 206440              | Ruoranthene (HAP)             |                                   | •                                       | <.00001                    |
| 86737               | Ruorene (HAP)                 |                                   | _                                       | <.00001                    |
| 50000               | Formaldehyde (HAP)            |                                   | voc                                     | 0.03709                    |
| 110543              | Hexane (HAP)                  |                                   | voc                                     | 0.89028                    |
| 193395              | Indeno[1,2,3-c,d]Pyrene (HAP) | -                                 | -                                       | <00001                     |
| 7439965             | Manganese (HAP)               | •                                 | -                                       | 0.00019                    |
| 7439976             | Mercury (HAP)                 | ÷                                 | -                                       | <.0001                     |
| 91203               | Naphthalene (HAP)             |                                   | VOC                                     | 0.0003                     |
| 7440020             | Nickel (HAP)                  |                                   | •                                       | 0.00104                    |
| 85018               | Phenanthrene (HAP)            |                                   | ~                                       | 0.00001                    |
| 129000              | Pyrene (HAP)                  |                                   | _                                       | <00001                     |
| 7782492             | Selenium (HAP)                |                                   | -                                       | 0.00001                    |
| 108883              | Toluene (HAP)                 |                                   | voc                                     | 0.00168                    |
| EMISSIONS TOTALS    |                               |                                   |                                         |                            |
|                     |                               | Total CAP<br>Emissions<br>(tons)* | Total HAP/OTHER<br>Emissions<br>(tons)* | Total Emissions<br>(tons)* |
|                     |                               | 44.48253                          | 59,355,15874                            | 59,399,64127               |

# 2023 Emissions Report

## UP Paper LLC. (A6475)

FACILITY Facility Identifier: A6475 Facility Name: UP Paper LLC.

Company/Owner Name:

UP Paper LLC.

Description:

RECYCLED PAPER MANUFACTURER

Status: NAICS: OP - Operating

Status Year:

322121 (Primary) - Paper (except Newsprint) Mils

Comments:

ADDRESS

402 West Elk Street MANISTIQUE, MI 49854 Location Address:

LOCATION

Latitude (decimal degress): 45.96

Longitude (decimal degress): -86.2551 UTM X (meters); 557800

Collection Method:

Data Collection Date:

UTMY (meters): 5090600 UTM Zone:

16

001 - address matching-house number

101 - Entrance Point of a Facility, System, or Geographic Reference Point:

Station

Geodetic Reference System: 002 - North American Datum of 1983

| RELEASE POINTS        |               |                                                |        |                                                                                                                               |                                                                                                      |
|-----------------------|---------------|------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| ID .                  | Туре          | Description                                    | Status | Details                                                                                                                       | Location                                                                                             |
| FUG001<br>(FUGNIVE)   | Fugitive Area | Pseudostack (facility-wide fugilive emissions) | OP     | Rigitive Height:, Rigitive Width:, Rigitive Length:, Rigitive Angle:                                                          | Lises Facility Site Location                                                                         |
| SV0028<br>(SVBOILER4) | Vertical      | Natural gas boiler stack                       |        | Height: 40.0 FEET, Shape: Orcular, Diameter: 6.0 FEET, Temperature: 594.0 F, Flow Rate: 47,573.0 ACPM, Velocity: 28.04251 FFS | Verified Location: No, Latil.ong: (45,9685, -86,254), UTMX/Y/72: (557797.224071, 5090818.161268, 16) |

| CONTROL DEVICE        |                        |        |                                                              |
|-----------------------|------------------------|--------|--------------------------------------------------------------|
| <b>ID</b>             | Description            | Status | Control Measure Uptime/Effectiveness   Controlled Pollutants |
| CD0001<br>(CDFGRBRL4) | Flue Gas Recirculation | OP     | 26 - Rue Gas Recirculation                                   |
| CDXXELR4)             | Low NOX Burners        | OP     | 205 - Low NOx Burner (LNB)                                   |

| CONTROL PATHS                                                               |             |                                                                                          |  |  |  |
|-----------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------|--|--|--|
| D 11 july                                                                   | Description | Control Path Seignents                                                                   |  |  |  |
| CF0001 (CCF0001)                                                            | boiler#4    | Seq: 1, C00002 (CDLNBLRf) (Device): 100.0%<br>Seq: 2, C00001 (CDFGRBL4) (Device): 100.0% |  |  |  |
| Controlled Pollutants: CO-Carbon Monocide: 86.0%, NOX-Nirogen Oxides: 64.7% |             |                                                                                          |  |  |  |

,

| EMISSIONUNTS          |                                                                                                                                                                                                                                                             |                                                                                                        |                       |                                                                                                       |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|
| D                     | Туре                                                                                                                                                                                                                                                        |                                                                                                        | Status                | <b>Details</b>                                                                                        |  |  |  |  |
| ELD022<br>(ELELR003)  | 100 - Boiler                                                                                                                                                                                                                                                | Portable fuel oil fired boiler or natural gas fired boiler.<br>Heat input rating 99 million BTU per ho | OP                    | Operation Start:, Design Capacity: 99.0 EBRIUNR                                                       |  |  |  |  |
|                       | Comment: Description truncated to 100 characters, and his<br>Permit to Install #155-12.]                                                                                                                                                                    | as been added fully here:[Portable fuel oil fired boiler or natu                                       | ral gas fired boiler. | Heat input rating 99 million BTU per hour, Steamoutput rating 75,000 pounds per hour. Permitted under |  |  |  |  |
|                       | Additional Information: Emission Unit NAICS: 322121, Electric Generation; No, Contrustion Source: Yes, Install Date: 05/06/1994                                                                                                                             |                                                                                                        |                       |                                                                                                       |  |  |  |  |
| H.0031<br>(H.BLR004)  | 100 - Boiler                                                                                                                                                                                                                                                | Natural gas fired boiler, rated at 186.8 MM/Btu/hr for steamproduction used on the paper machine.      | ОР                    | Operation Start: , Design Capacity: 186.8 EBBTU/HR                                                    |  |  |  |  |
|                       | Comment: Description truncated to 100 characters, and has been added fully here:[Natural gas fired boiler, rated at 186.8 MAVBtu/hr for steamproduction used on the paper machine. The boiler is equipped with low NOx burners and flue gas recirculation.] |                                                                                                        |                       |                                                                                                       |  |  |  |  |
|                       | Additional Information: Bectric Generation: No, Contrustion Source: Yes, Install Date: 02/11/2015                                                                                                                                                           |                                                                                                        |                       |                                                                                                       |  |  |  |  |
| EL0024<br>(ELDYE001)  | 310 - Roof vents/Building vents                                                                                                                                                                                                                             | Paper dyeing process                                                                                   | OP                    | Operation Start:, Design Capacity:                                                                    |  |  |  |  |
|                       | Additional Information: Enission Unit NAICS: 322121, Be                                                                                                                                                                                                     | ctric Generation: No, Combustion Source: No, Install Date: 01                                          | /01/1920              |                                                                                                       |  |  |  |  |
| EL0032<br>(ELFROCESS) | 310 - Roof vents/Building vents                                                                                                                                                                                                                             | Papermaking and Aulping operation                                                                      | ОР                    | Operation Start., Design Capacity:                                                                    |  |  |  |  |
|                       | Additional Information: Enission Unit NAICS: 322121, Ber                                                                                                                                                                                                    | ctric Generation: No, Contoustion Source: No                                                           | 1                     |                                                                                                       |  |  |  |  |

| UNIT PROCESSES        |                      | 医乳腺性乳膜                  |                                                                    |                |                                                                             |
|-----------------------|----------------------|-------------------------|--------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------|
| Emission Unit ID      | Unit Process ID      | scc                     |                                                                    | Status         | Details                                                                     |
| EL0022 (BLBLF003)     | FF0001               | 10200501                | Portable boiler, Grade #2 fuel oil 1000 gallons per year           | œ              | Release Point Apportionment:<br>FUG001 (FUGITVE), Not Controlled: 100.0%    |
|                       | Additional Informat  | ion: Previous AQDD: 1   | 0200501                                                            |                |                                                                             |
| B.0022 (BLBLR003)     | PR0002               | 10200602                | Portable Boiler, natural gas fired                                 | α <sub>P</sub> | Release Point Apportionment:<br>FUG001 (FUGITVE), Not Controlled: 100.0%    |
|                       | Additional Informat  | ion: Previous AQQQ 1    | 0200602                                                            | ·              |                                                                             |
| E.0031 (ELELF004)     | FF0001               | 10200602                | Natural Gas Boiler for Steam Production for Paper<br>Manufacturing | CP CP          | Release Point Apportionment:<br>SV0028 (SVBOLER4), C70001 (CDF0001): 100.0% |
|                       | Additional Informati | ion: Previous ACDE: 10  | 0200602                                                            |                |                                                                             |
| EL0024 (ELDYE001)     | FR0002               | 3079998                 | Paper dye process, tons of dye used per year                       | CP.            | Release Point Apportionment:<br>FUG001 (RUGTIVB), Not Controlled: 100.0%    |
|                       | Additional Informati | ion: Previous ACDID: 30 | 7799998                                                            |                |                                                                             |
| ELXXX2<br>(ELPROCESS) | PF0001               | 30799998                | Papermaking and Pulping operation                                  | CPin 2023      | Release Point Apportionment:<br>FUG001 (FUG11VB), Not Controlled: 100.0%    |

| Emission Unit ID                                                                                                                                                          | Unit Process ID                                                             | Throughput                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | garante de Agranda de la Carta de Cart<br>Carta de Carta de C | <u> </u>                                                                   |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| BJ0022<br>(BJ6LR003)                                                                                                                                                      | PR0001<br>Portable boiler,<br>Grade #2 fuel oil<br>1000 gallons per<br>year | ess was not operating, or was not required to report errissions, during the reporting period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                 |                                                                            |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Emission Unit ID                                                                                                                                                          | Unit Process ID                                                             | Throughput                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                 |                                                                            |                                                                         |                                                     | A STANDARD CONTRACTOR |  |  |
| EL0022<br>(ELBI.R003)                                                                                                                                                     | PR0002<br>Portable Boiler,<br>natural gas fired                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coperations:  hocess was not operating, or was not required to report emissions, during the reporting period.                                                                                                                   |                                                                            |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Emission Unit ID                                                                                                                                                          | Unit Process ID                                                             | Throughput Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 |                                                                            |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| H70001 Natural Cas Boiler for Steam B.BLR004) Roduction for Paper Manufacturing RF0001 Natural Cas Boiler Annual Throughput: 989.2 MLUCN CLBIC FEET (Natural Cas) (Input) |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | put)                                                                                                                                                                                                                            |                                                                            | Average Hours/Day: 2<br>Actual Days/Year: 365<br>Actual Hours/Year: 8,7 | 4.0, Days/Week: 7.0, Weeks/Y <b>ear:</b> 52.0<br>.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| -                                                                                                                                                                         |                                                                             | Pollutant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Emis, Factor (Lbs/UCM)                                                                                                                                                                                                          | Emis, Fa                                                                   | ctor UOM                                                                | Calculation Method                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           |                                                                             | CO-Carbon Monoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84.0                                                                                                                                                                                                                            | -11 -                                                                      | ALLIONOUBICFEET                                                         | 28-WF- USEPA WebFREEF (pre-control)                 | Estimated Emis: (Tons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                           |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Overall Control Efficiency: 86.0%                                                                                                                                                                                               |                                                                            |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           | •                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ozone Season Emissions (Tons): 24235401938832                                                                                                                                                                                   |                                                                            |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           |                                                                             | 7439921 - Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0005                                                                                                                                                                                                                          | FETZ MILONO DOUTT                                                          |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           | 1                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Overall Control Efficiency:                                                                                                                                                                                                     | 0.0%                                                                       |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           |                                                                             | NOX - Nitrogen Oxides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.0                                                                                                                                                                                                                           | EBFT3 - MILLION CUBIC FEET 28-WF - USEPA WebFFRE EF (pre-control) 17.45938 |                                                                         |                                                     | 17.45938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                           |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Overall Control Efficiency: 6                                                                                                                                                                                                   | 4.7%                                                                       | ,                                                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ozone Season Emissions (                                                                                                                                                                                                        | Tons): 7.2                                                                 | s): 7 <i>.27474224</i> 9646                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           |                                                                             | PMIO-FRI - PMIO Primary (Fit + Cond)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.6                                                                                                                                                                                                                             | E6F13-N                                                                    | LLICNCUBICFEE                                                           | 28-WF- USEPA WebFREEF (pre-control)                 | 3.75896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                           | Overall Control Efficiency: 0.                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                 |                                                                            |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           | L                                                                           | PM10-FIL - FM10 Filterable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.9                                                                                                                                                                                                                             | EEFT3-M                                                                    | LLIONOUBICFEET                                                          | 28-WF - USEPA WebFREEF (pre-control)                | 0.93974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                           |                                                                             | Overall Control Efficiency: 0.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                            |                                                                         | ency: 0.0%                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           | Emission Comment: Pollutant and meta                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nt and meta                                                                                                                                                                                                                     | I meta-data defaulted from Errission Factor reference source.              |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           | į                                                                           | PM25-PRI - PM2.5 Primary (Pitt + Cond)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.6                                                                                                                                                                                                                             |                                                                            | LLICNOUBICFEET                                                          | 28-WF - USEPA WebFFRE EF (pre-control)              | 3.75896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                           | Г                                                                           | FM25-FIL - PM2.5 Fitterable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Overall Control Efficiency: 0                                                                                                                                                                                                   | .0%                                                                        |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           | L                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.9                                                                                                                                                                                                                             | L                                                                          | LLONOUBICHEET                                                           | 28-WF - USEPA WebFIREEF (pre-control)               | 0.93974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                           |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Overall Control Efficiency: 0                                                                                                                                                                                                   |                                                                            |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           | Γ                                                                           | Discount Transaction of the Contraction of the Cont | Emission Comment: Pollutar                                                                                                                                                                                                      |                                                                            |                                                                         | ion Factor reference source.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           | L                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.7                                                                                                                                                                                                                             |                                                                            | <u> Тю</u> исивісн <del>е</del> т                                       | 28-WF- USEPA WebFIRE EF (pre-control)               | 2.81922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                           |                                                                             | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Overall Control Efficiency: 0                                                                                                                                                                                                   |                                                                            |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                                                                                                                                                           |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Emission Comment: Pollutant and meta-data defaulted from Emission Factor reference source.                                                                                                                                      |                                                                            |                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |

| Pollutant                             |                                                                                            | S NEWSTER OF STREET, AND A CONTROL | The same of the control of the contr | all the residence of the section of |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|
| Pollutant                             | Emis Factor (Lbs/UOM)                                                                      | Emis Factor UCM                    | Calculation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Estimated Emis (Tons)               |  |  |  |
| 200 O.K. P. VI                        | Tage 1                                                                                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| SO2 - Sulfur Dioxide                  | 0.6                                                                                        | ESFT3-MLLICN CLEICFEET             | 28-WF- LISEPA WebFIRE:EF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.296759999999999                   |  |  |  |
|                                       | Overall Control Efficiency:                                                                | 0.0%                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| VOC- Volatile Organic Compounds       | 5.5                                                                                        | EBFT3-MILLION CLEICFEET            | 28-WF- USEPA WebFREEF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,7203                              |  |  |  |
|                                       | Overall Control Efficiency:                                                                | 0.0%                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
|                                       | Ozone Season Emissions                                                                     | (Tons): 1.13345842401              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| N-B-Armonia                           | 32                                                                                         | EGFT3-MILLION CLEICFEET            | 28-WF- USEPA WebFIRE EF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.58272                             |  |  |  |
|                                       | Overall Control Efficiency:                                                                | 0.0%                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| C-14 - Methane                        | 23                                                                                         | BSF13-MILLION CUBIC FEET           | 29-RF - S/L/T Reference EF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.13758                             |  |  |  |
|                                       | Overall Control Efficiency:                                                                | 0.0%                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| CO2 - Carbon Dioxide                  | 120,000,0                                                                                  | ESF13-MILLION OLDIC FEET           | 29-RF - SfL/T Reference EF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 59,352,0                            |  |  |  |
| · · · · · · · · · · · · · · · · · · · | Overali Control Efficiency: 0.0%                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
|                                       | Emission Comment: Pollutant and meta-data defaulted from Emission Factor reference source. |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| N2O - Nitrous Oxide                   | 22                                                                                         | B6FT3 - MILLION CLBIC FEET         | 29-RF - S/L/T Reference EF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.08812                             |  |  |  |
|                                       | Overall Control Efficiency: 0.0%                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| 108883 - Taluene                      | 0.0034                                                                                     | ESF13-MILIONOLEICFEET              | 28-WF- USEPA WebFIREEF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00168164                          |  |  |  |
|                                       | Overall Control Efficiency: 0.0%                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| 110543 - Hexane                       | 1.8                                                                                        | BBFT3-MILLION CUBIC FEET           | 28-WF- USEPA WebFIREEF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.89028                             |  |  |  |
|                                       | Overall Control Efficiency: 0.0%                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| 120127 - Anthracene                   | 0.0000024                                                                                  | ESFT3-MILLION CUBIC FEET           | 28-WF- USEPA WebFIREEF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00000118704                       |  |  |  |
|                                       | Overall Control Efficiency: 0.0%                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| 129000 - Pyrene                       | 0.000005                                                                                   | ESFT3-MILLION OLDIC FEET           | 28-WF- LISEPA WebFIRE EF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00002473                          |  |  |  |
|                                       | Overall Control Efficiency: 0.0%                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| 191242 - Benzo[g,h,i,]Perylene        | 0.0000012                                                                                  | ESFTS - MALLION CLESC FEET         | 28-WF - USEPA WebFREEF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00000059352                       |  |  |  |
|                                       | Overall Control Efficiency: 0.0%                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| 193395 - Indeno(1,2,3-c,djPyrene      | 0.0000018                                                                                  | ESFT3-MLUONCUBICHET                | 28-WF - USEPA WebFIFE EF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00000089028                       |  |  |  |
| -                                     | Overall Control Efficiency: 0.0%                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| 205992 - Benzojbji Fluorantinene      | 0.000018                                                                                   | EBFT3-MILLION OUBIC FEET           | 28-WF- USEPA WebFIRE EF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00000089028                       |  |  |  |
|                                       | Overall Control Efficiency: 0.0%                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| 206440 - Fluoranthene                 | 0.00003                                                                                    | EDFT3-MLLIONCUBIC FEET             | 28-WF-USEPA WebFIFEEF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000014838                        |  |  |  |
|                                       | Overall Control Efficiency: 0.0%                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |  |  |  |
| 207089 - Benzo[kjRuoranthene          | 0.000018                                                                                   | EBFT3 - MILLION CUBIC FEET         | 20 MC LISTIN MANUFACTOR AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000000000                         |  |  |  |
|                                       | Overali Control Efficiency:                                                                |                                    | 28-WF-USEPA WebFIFEEF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00000089028                       |  |  |  |
| 208968 - Acenaphthylene               | 0.0000018                                                                                  | ESFT3-MULION CUBIC FEET            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                         |  |  |  |
|                                       |                                                                                            | ENTIS- MILLUNUISCHELL              | 28-WF- USEFA WebFIRE EF (pre-control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00000089028                       |  |  |  |

| Pollutant                             | Emis. Factor (Lbs/UOM)                                                                     | Emis. Factor LICM          | Calculation Method                      | Estimated Emis. (Ton                    |  |  |  |
|---------------------------------------|--------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------|-----------------------------------------|--|--|--|
|                                       | Overall Control Efficiency: 0.0%                                                           |                            |                                         |                                         |  |  |  |
| 218019 - Chrysene                     | 0.0000018                                                                                  | ESFTS - MILLION CLEIC FEET | 28-WF- USEPA WebFREEF (pre-control)     | 0.00000089028                           |  |  |  |
|                                       | Overall Control Efficiency:                                                                | 0.0%                       | , , , , , , , , , , , , , , , , , , ,   |                                         |  |  |  |
| 50000 - Formaldehyde                  | 0.075                                                                                      | EGFT3-MILLION CUBIC FEET   | 28-WF- USEPA WebFPEEF (pre-control)     | 0.03709499999999                        |  |  |  |
|                                       | Overali Control Efficiency:                                                                | 0.0%                       |                                         | 4.20.00.00000                           |  |  |  |
| 50328 - Berzo(ajPyrene                | 0.0000012                                                                                  | BEFTS-MILLONGLEICHET       | 28-WF- USEPA WebFIREEF (pre-control)    | 0.00000059352                           |  |  |  |
|                                       | Overall Control Efficiency:                                                                | 0.0%                       |                                         | 10000000                                |  |  |  |
| 53703 - Dibenzo(a,h)Anthracene        | 0.0000012                                                                                  | BEFTS - MILLION CUBIC FEET | 28-WF-USEPA WebFREEF (pre-control)      | 0.0000059352                            |  |  |  |
|                                       | Overall Control Efficiency:                                                                | 0.0%                       | and the second                          | 0.0000002                               |  |  |  |
| 56495 - 3-Methylcholanthrene          | 0.0000018                                                                                  | ESFT3-MLLIONGLEICFEET      | 28-WF- USERA WebFREEF (pre-control)     | 0.00000089028                           |  |  |  |
|                                       | Overall Control Efficiency:                                                                | 0.0%                       |                                         | 2.000.000.20                            |  |  |  |
| 56553 - Benz(a)Anthracene             | 0.000018                                                                                   | EDF13-MLLIONOUBICFEET      | 28-WF- USB'A WebFIFE (pre-control)      | 0.00000089028                           |  |  |  |
|                                       | Overall Control Efficiency 0.0%                                                            |                            |                                         |                                         |  |  |  |
| 57976-7,12-Dimethylbenz[a]Antitracene | 0,00016                                                                                    | ESF13-MLLONCUBICFEET       | 28-WF - USEPA WebFREEF (pre-control)    | 0.000007913599999                       |  |  |  |
|                                       | Overall Control Efficiency: 0.0%                                                           |                            |                                         |                                         |  |  |  |
|                                       | Emission Comment: Pollutant and meta-data defaulted from Emission Factor reference source. |                            |                                         |                                         |  |  |  |
| 71432 - Benzene                       | 0.0021                                                                                     | EGFT3-MLLIQNQUBICFEET      | 28-WF- USEPA WebFREEF (pre-control)     | 0.00400000000000                        |  |  |  |
|                                       | Overall Control Efficiency:                                                                |                            | 2014 - CESTANGINEE (DECORD)             | 0.00103865999999                        |  |  |  |
| 7439965 - Manganese                   | 0.00038                                                                                    | BOFT3-MLUONCUBICHET        | 28-WF - USEPA WebFREEF (pre-control)    | 0.000187948                             |  |  |  |
|                                       | Overall Control Efficiency, 0.0%                                                           |                            |                                         |                                         |  |  |  |
| 7439976 - Mercury                     | 0.0000000008                                                                               | ESFT3-MILIONOLEICFEET      | 29-RF - STUT Reference EF (pre-control) | 0.0000000000000000000000000000000000000 |  |  |  |
|                                       | Overall Control Efficiency:                                                                | <u> </u>                   | 27 COTTOGGE (DECISIO)                   | 0.00000000039568                        |  |  |  |
| 7440020 - Nickel                      | 0.0021                                                                                     | EEFT3 - MLLION CUBIC FEET  | 28-WF-USEPA WebFREEF (pre-control)      |                                         |  |  |  |
|                                       | Overall Control Efficiency:                                                                |                            | 20-VII - COOK VICEITE (DICCOMO)         | 0.001033659999999                       |  |  |  |
| 7440382 - Arsenic                     | 0.0002                                                                                     | ESFT3 - MLLION CUBIC FIFET | 20 ME LICENSALES                        |                                         |  |  |  |
|                                       | Overall Confrol Efficiency:                                                                | ł,                         | 28-WF - USEPA WebFIRE EF (pre-control)  | 0.00009892                              |  |  |  |
| 7440417 - Beryllium                   | 0.000012                                                                                   | BFT3-MLLIQNOUBICHET        | 20145 15574144177577                    |                                         |  |  |  |
|                                       | Overall Control Efficiency:                                                                |                            | 28-WF- USEPA WebFIRE EF (pre-cortirol)  | 0,0000059352                            |  |  |  |
| 7440439 - Cachrium                    | 0.0011                                                                                     | BF13-MILIONOUBICHEET       | 20145 18770 1861 7877                   |                                         |  |  |  |
|                                       | Overall Confrol Efficiency: (                                                              | 1                          | 28-WF-USEPA WebFIREEF (pre-control)     | 0.00054406                              |  |  |  |
| 440473 - Chromium                     | 0.0014                                                                                     | ESF13-MILLION CUBIC FEET   | 20 ME   PETA MALESTA                    |                                         |  |  |  |
|                                       | 0.00069244  Overall Control Efficiency: 0.0%                                               |                            |                                         |                                         |  |  |  |
| 7440484 - Cobets                      | 0.000084                                                                                   | I                          |                                         |                                         |  |  |  |
|                                       | Overall Control Efficiency: (                                                              | ESFT3 - MLLION CUBIC FEET  | 28-WF-USEPA WebFFEEF (pre-control)      | 0.000041546399999                       |  |  |  |

|                      |                                                              | Pollutant                                                           | Emis Factor (Lbs/UCM)                      | Emis. Fa | ctor UOM                                                  | Calculation Method                                                                  | Estimated Emis. (Tons) |  |  |
|----------------------|--------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|----------|-----------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------|--|--|
|                      |                                                              | 7782492 - Selenium                                                  | 0.000024                                   | ESFT3-N  | LLONOLEICHET                                              | 28-WF - USEPA WebFIREEF (pre-control)                                               | 0.0000118704           |  |  |
|                      |                                                              |                                                                     | Overall Control Efficiency: 0              | 1.0%     |                                                           | 1                                                                                   |                        |  |  |
|                      |                                                              | 83329 - Acenzohthene                                                | 0.000018                                   | EBFI3-N  | LLIONOUBICHEET                                            | 28-WF-USEPA WebFFEEF (pre-control)                                                  | 0.00000089028          |  |  |
|                      |                                                              |                                                                     | Overall Control Efficiency:                | 0.0%     |                                                           | <u> </u>                                                                            | ·                      |  |  |
|                      |                                                              | 85018 - Fhenanthrene                                                | 0.000017 ESF13-MILIONOUBICHEET             |          |                                                           | 28-WF- USEPA WebFFEEF (pre-control)                                                 | 0.0000084082           |  |  |
|                      |                                                              |                                                                     | Overall Control Efficiency: 0              | ),0%     |                                                           |                                                                                     |                        |  |  |
|                      |                                                              | 86737 - Fluorene                                                    | 0.000028                                   | E6FT3-N  | LLIONOUBICHEET                                            | 28-WF-USEPA WebFFEEF (pre-control)                                                  | 0.000001384879999      |  |  |
|                      |                                                              |                                                                     | Overall Control Efficiency: 0.0%           |          |                                                           |                                                                                     |                        |  |  |
|                      | 91203 - Naphthaliene                                         |                                                                     | 0.00061                                    | E6F13-N  | LUONCUBICHEET                                             | 28-WF-USEFA WebFFEEF (pre-control)                                                  | 0.000301706            |  |  |
|                      |                                                              |                                                                     | Overall Control Efficiency: 0.0%           |          |                                                           |                                                                                     |                        |  |  |
|                      | 91576-2-Methylmaphthaliene                                   |                                                                     | 0.000024 ESFTS - MILLION CLEIC FEET        |          | 28-WF- USEPA WebFREEF (pre-control)                       | 0.0000118704                                                                        |                        |  |  |
|                      |                                                              |                                                                     | Overall Control Efficiency: 0              | 0.0%     |                                                           |                                                                                     |                        |  |  |
| Emission Unit ID     | Unit Process ID                                              | Throughput                                                          |                                            |          | Operations                                                |                                                                                     |                        |  |  |
| EJ0024<br>(EJDYE001) | FR0002<br>Paper dye<br>process, tons of<br>dye used per year | Process was not operating, or was not required to report emissions, | during the reporting period.               |          |                                                           |                                                                                     |                        |  |  |
| Emission Unit ID     | Unit Process ID                                              | Throughput                                                          |                                            |          | Operations                                                |                                                                                     |                        |  |  |
|                      |                                                              |                                                                     |                                            |          | Average Hours/Day: 24.0, Days/Week: 7.0, Weeks/Year: 52.0 |                                                                                     |                        |  |  |
| B.0032               | FF0001<br>Papermeking and                                    | Annual Throughput: 96,541.0 TONS (Product) (Culput)                 |                                            |          | Actual Days/Year: 365.0                                   |                                                                                     |                        |  |  |
| (ELPROCESS)          | Pulping operation                                            |                                                                     |                                            |          | Actual Hours/Year: 8,76                                   | 0.0                                                                                 |                        |  |  |
|                      |                                                              |                                                                     |                                            |          |                                                           | Seasonal Operations: Dec-Feb: 25.0%, Mar-May: 25.0%, Jun-Aug: 25.0%, Sep-Nov: 25.0% |                        |  |  |
|                      |                                                              | Pollutant                                                           | Emis. Factor (Lbs/UOM)                     | Emis. Fa | dor UCM                                                   | Calculation Method                                                                  | Estimated Enis (Toris) |  |  |
|                      |                                                              | VOC-Volatile Organic Compounds                                      |                                            |          |                                                           | 3 - Material Balance (no EF)                                                        | 4.39                   |  |  |
|                      |                                                              |                                                                     | Ozone Season Emissions (Tons): 1.829168813 |          |                                                           |                                                                                     |                        |  |  |

Back to MiEnviro Portal | Home | My Facilities | My Profile | Help

# **2023 Emissions Report**

## **Submission Confirmation**

Your submission was successful.

View official copy of record

Confirmation Number:

S20240312133630-FA6475-R2023

Submitted on:

03-12-2024 13:39:21 GMT-04:00

# **Submitted**

# **UP Paper LLC.**

Facility Identifier: A6475

Location Address: 402 West Elk Street MANISTIQUE, MI 49854

Your roles at this facility are: Editor, Submitter

View Master Facility Inventory - PDF

Done

# Signature Page

Signed By

Mark Ozoga UP Paper LLC

URL

https://mienviro.michigan.gov/siels/Document/Sign

#### Agreement #1

I certify that I have not violated any term in my Electronic Subscriber Agreement and that I am otherwise without any reason to believe that the confidentiality of my user ID and/or password have been compromised now or at any time prior to this submission. I understand that this attestation of fact pertains to the implementation, oversight, and enforcement of a federal environmental program and must be true to the best of my knowledge.

#### Agreement #2

I am the owner of the account used to perform the electronic submission and signature.

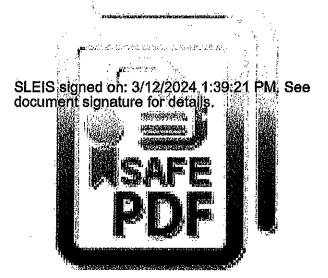
#### Agreement #3

I have the authority to submit the data on behalf of the facility I am representing.

#### Agreement #4

I agree that providing the account credentials to sign the submission document constitutes an electronic signature equivalent to my written signature.

#### Agreement #5


I have reviewed the electronic report being submitted in its entirety, and agree to the validity and accuracy of the information contained within it to the best of my knowledge.

#### Agreement #6

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

#### **Confirmation Number**

S20240312133630-FA6475-R2023



# Malfunction Abatement Plan

# Malfunction Abatement Plan for



**UP Paper LLC** 

aper LLC April 2024

Under state of Michigan R 336.1911 a malfunction abatement plan (MAP) shall be prepared to prevent, detect, and correct malfunctions or equipment failures resulting in emissions exceeding any applicable emission limitation. For our facility, a MAP was drafted under the following sections below to fulfill that requirement.

# I. Description of Source

UP Paper LLC (UP Paper) has a natural gas boiler capable of generating 150,000 lb/hr of steam at an operating pressure of 300 psig. There are emission limits in place to regulate the amount of GHGs (as  $CO_2e$ ) and  $NO_x$  that are emitted from the boiler.

The emission sources and affected emissions are as follows:

| Emission Source               | Emission Control Device    | Affected Emission |
|-------------------------------|----------------------------|-------------------|
| EUBLR004 – Natural Gas Boiler | Low NO <sub>x</sub> Burner | NO <sub>x</sub>   |
| EUBLR004 – Natural Gas Boiler | Flue Gas Recirculation     | NO <sub>x</sub>   |

# **II. Responsible Parties**

The following personnel are responsible for overseeing the specified items:

**Maintenance Manager** – Inspection, maintenance, and repair of air-cleaning devices. **Shift Supervisor & Boiler Operator** – Inspection of air-cleaning devices.

# **III.** Inspection Items

#### Low NO<sub>x</sub> Burner

Items to be inspected daily:

- Gas pressure
- Gas flows
- Flame pattern

Items to be inspected quarterly or at earliest convenience:

- Fuel safety shutoff valve for leakage
- Gas cleaner and drip leg

Items to be inspected annually:

- High and low fuel pressure interlocks
- Igniter and burner components
- Combustion control system
- Combustion air flow
- Piping, hosing, wiring, and electrical connections

### Flue Gas Recirculation

Items to be inspected quarterly or at earliest convenience:

- Fan damper linkages for looseness and binding
- Fan for proper operation
- Vibration analysis on combustion fan and electric motor

Items to be inspection annually:

- Ducting and expansion joints for cracks and/or leaks
- Damper louver bearings
- Recalibrate damper positioners

## **IV. Replacement Parts**

### Low NO<sub>x</sub> Burner

Items to be kept on hand for quick replacement:

- · Igniter spark plug
- Pilot low pressure switch
- · Main gas low pressure switch
- Main gas high pressure switch
- Main gas safety shutoff valve
- Main gas flow control valve
- Main gas pressure regulator

#### Flue Gas Recirculation

Items to keep on hand for quick replacement:

- Damper louver bearings
- Damper actuator
- Air flow transmitter
- Combustion fan bearings

# V. Normal Operating Parameters

#### Low NO<sub>x</sub> Burner

While operating EUBLR004, the burner will normally run between a firing rate of 0-100%, therefore there is no reason to believe that a certain firing rate would lead to a malfunction. Given the performance specification given to UP Paper by the boiler manufacturer the gas flow rate to this boiler should not exceed 9,100 lb/hr. In addition to this flow rate, by monitoring the flame pattern and watching for any abnormalities, the burner's proper function should be held in check.

#### Flue Gas Recirculation

The boiler fan that supplies the combustion fan will be driven by a variable frequency drive (VFD). For different operating loads it would not be unlikely to see the fan run at any speed within its capable range. However, while it is running, the inlet ducts have dampers that regulate the amount of flue gas and ambient air that is drawn into the fan inlet to make up the combustion air. There should always be a combination of each being drawn into the fan. Neither damper should be closed during operation.

Air flow readings will be monitored closely and any abrupt changes in flow without an abrupt change in load will be investigated for a root cause. Such air flow changes could be signaling an imminent problem with serious consequences.

## **VI. Corrective Procedures**

If an equipment malfunction is found as a result of performing routine inspections, UP Paper will take immediate action to remedy the problem. If an issue is found to incur an emission excursion, EGLE will be notified of the problem and a plan will be created to correct the problem as safely and expeditiously as possible.

Given the multiple circumstances that may arise from the several different malfunction scenarios it is difficult to describe each event. In general, if a burner or flue gas recirculation malfunctions shall occur, UP Paper will the following steps.

## Low NO<sub>x</sub> Burner

- Check gas flows for any surges in flow and/or pressure.
- Check flame pattern for any asymmetries, pulsations, and/or color variations.

If the flame seems to pulsate within the boiler, check to ensure gas flows and pressures are stable. Also check that combustion air flows are stable. If any flows seem to surge, ensure the gas regulator and fan drive are working properly. Any sudden changes to these devices would cause these surges.

If the flame pattern or color changes, ensure that the correct air and gas flows are present at the burner. The incorrect air/fuel ratio can result in poor combustion and potential create emission excursions.

#### Flue Gas Recirculation

- Check drive output speed with actual fan speed.
- Check inlet damper position with damper position on DCS system.
- Check damper linkages on louvers so that all the louvers are turning together.
- Inspect fresh air inlet for any blockages and/or air flow restrictions.
- Check air flows for any surges in flow and/or pressure.

As long as the boiler load stays relatively constant over a period of time, the amount of flue gas recirculation should remain relatively the same. If the air flows begin to change without a recognizable change in boiler load, there would be reason to believe that the air flow requirements are not being recognized by the control system. If the flow is too low, the fan will likely try to speed up to increase air flow. The VFD will reflect that change. If the air flow will not come up, it is possible that the air louvers are not opening properly or together, creating a block, or the air inlet is blocked, preventing the proper amount of air flow.

# ROP Required Monitoring/Recordkeeping

EUBLR004

Natural Gas (Pipeline Quality)

|                   | Gas L   | Jsage            |        | Annual   | 1            |          |           |
|-------------------|---------|------------------|--------|----------|--------------|----------|-----------|
|                   |         | 12 Month         |        |          |              |          |           |
| UP Papers         | 2023    | Rolling Sum      | 2022   |          | 12 Month     |          | Operating |
|                   | MMCF*   | MMCF             | MMCF*  | 2023 ACF | Rolling Ave. | 2022 ACF | days      |
| January           | 86.15   | 989,2            | 96,07  | 0.66     | 0.63         | 0.73     | 31        |
| February          | 85.24   | 984.2            | 90.24  | 0.65     | 0.63         | 0.69     | 28        |
| March             | 92.36   | 980.9            | 95.73  | 0.70     | 0.62         | 0.73     | 31        |
| April             | 59.34   | 950.6            | 89.62  | 0.45     | 0.60         | 0.68     | 30        |
| May               | 71.75   | 939.4            | 82.97  | 0.55     | 0.60         | 0.63     | 31        |
| June              | 70.94   | 931.4            | 78.95  | 0.54     | 0.59         | 0.60     | 30        |
| July              | 56.21   | 909.1            | 78.49  | 0.43     | 0.58         | 0.60     | 31        |
| August            | 79.00   | 926.0            | 62.10  | 0.60     | 0.59         | 0.47     | 31        |
| September         | 77.67   | 935,8            | 67.90  | 0.59     | 0.59         | 0.52     | 29        |
| October           | 83.81   | 925.6            | 93.94  | 0.64     | 0.59         | 0.72     | 31        |
| November          | 84.56   | 924.2            | 86.03  | 0.65     | 0.59         | 0.66     | 30        |
| December          | 86.74   | 933.8            | 77.13  | 0.66     | 0.59         | 0.59     | 31        |
| Max               |         | 989.2            |        |          |              |          | 364       |
| (Limit: 1.247.0 N | Mcf max | 12 month rolling | a sum) |          |              |          |           |

\*data from SEMCO billing meter

MEARS usage

|              | Gas Use |
|--------------|---------|
| Jan,Feb, Dec | 27.6%   |
| Mar - May    | 23,9%   |
| Jun - Aug    | 22.1%   |
| Sep - Nov    | 26.3%   |
|              | 100%    |

ACF=Actual/Potential

Potential = max steady state load for 8,760hrs

Potential = 0.1796 MMCF/hr x 8760 hr = 1573 MMCF

Potential per month = 1573MMCF/12 = 131.1 MMCF/month

Sample for January 2017: 62.01MMCF (from Gas Usage)/131.1MMCF=0.47

Max steady state load = 1.7960 MCF/hr

186.6 MMBtu/hr / 1.039 Btu Factor = 179.6 MCF/hr

179.6 MCF = 0.1796 MMCF

# EUBLR004

| CO₂e                                   |                      |                   |          |       |   |  |  |  |  |  |
|----------------------------------------|----------------------|-------------------|----------|-------|---|--|--|--|--|--|
|                                        |                      | 2023              | 12 Month | 2022  | l |  |  |  |  |  |
| UP Papers                              | 20230CO <sub>2</sub> | CO <sub>2</sub> e | Rolling  | CO₂e  | ı |  |  |  |  |  |
|                                        | e Tonnes*            | Tons              | Sum, tpy | Tons  | ı |  |  |  |  |  |
| January                                | 5096.000             | 5,616             | 64,238   | 6,275 | - |  |  |  |  |  |
| February                               | 5000.000             | 5,510             | 63,876   | 5,872 |   |  |  |  |  |  |
| March                                  | 5458.000             | 6,015             | 63,673   | 6,218 |   |  |  |  |  |  |
| April                                  | 3469.000             | 3,823             | 61,656   | 5,839 |   |  |  |  |  |  |
| May                                    | 4233.000             | 4,665             | 60,934   | 5,387 |   |  |  |  |  |  |
| June                                   | 4168.000             | 4,593             | 60,413   | 5,114 |   |  |  |  |  |  |
| July                                   | 3099,000             | 3,415             | 58,735   | 5,094 |   |  |  |  |  |  |
| August                                 | 4662.000             | 5,138             | 59,834   | 4,038 |   |  |  |  |  |  |
| September                              | 4569.000             | 5,035             | 60,463   | 4,406 |   |  |  |  |  |  |
| October                                | 4913.000             | 5,414             | 59,787   | 6,090 |   |  |  |  |  |  |
| November                               | 4972.000             | 5,479             | 59,712   | 5,555 |   |  |  |  |  |  |
| December                               | 5108.000             | 5,629             | 60,331   | 5,010 |   |  |  |  |  |  |
| Max                                    |                      | _                 | 64,238   |       |   |  |  |  |  |  |
| (74,975 tpy max, 12 month rolling sum) |                      |                   |          |       |   |  |  |  |  |  |

<sup>\*</sup>PEMS data (1.102 ton = 1 tonne)

| No <sub>x</sub> |                      |  |  |  |  |  |  |  |
|-----------------|----------------------|--|--|--|--|--|--|--|
|                 | Daily Ave.           |  |  |  |  |  |  |  |
| UP Papers       | 2023 NO <sub>x</sub> |  |  |  |  |  |  |  |
|                 | lb/MMBtu*            |  |  |  |  |  |  |  |
| January         | 0.043                |  |  |  |  |  |  |  |
| February        | 0.041                |  |  |  |  |  |  |  |
| March           | 0.041                |  |  |  |  |  |  |  |
| April           | 0.040                |  |  |  |  |  |  |  |
| May             | 0.039                |  |  |  |  |  |  |  |
| June            | 0.043                |  |  |  |  |  |  |  |
| July            | 0.029                |  |  |  |  |  |  |  |
| August          | 0.038                |  |  |  |  |  |  |  |
| September       | 0.038                |  |  |  |  |  |  |  |
| October         | 0.037                |  |  |  |  |  |  |  |
| November        | 0.036                |  |  |  |  |  |  |  |
| December        | 0.036                |  |  |  |  |  |  |  |
| Ave.            |                      |  |  |  |  |  |  |  |
| (0.20 lb/MM     | 3tu max)             |  |  |  |  |  |  |  |

\*PEMS data

|                 |                  |            |          |          | EUPROCE  | SS - 2023 | Potential II | s. of VOC | Emitted  |          |          |          |          |          |
|-----------------|------------------|------------|----------|----------|----------|-----------|--------------|-----------|----------|----------|----------|----------|----------|----------|
| Chemical        | voc %            |            | Jan.     | Feb.     | Mar.     | Apr.      | May          | June      | July     | Aug.     | Sept.    | Oct.     | Nov.     | Dec.     |
| NALSIZE® 7543   |                  | product #  | 239      | 0        | 0        | 0         | 0            | 197.5     | 3756.5   | 5459     | 0        | 23871    | 1541     | 0        |
| · ·             | 0.7%             | voc#       | 1.67     |          |          |           |              | 1.38      | 26.30    | 38.21    |          | 167.10   | 10.79    |          |
| Amercor 1848    |                  | product #  | 1612.34  | 1253.19  | 1354.86  | 1964.46   | 982.29       | 1456,47   | 863,69   | 1270.19  | 1134.71  | 1100.78  | 609.72   | 677.40   |
|                 | 48.08%           | voc#       | 775.21   | 602.53   | 651.42   | 944.51    | 472.29       | 700.27    | 415.26   | 610.70   | 545.57   | 529.25   | 293.15   | 325,69   |
| Amertrol HT3010 |                  | product #  | 651.79   | 491.47   | 548.18   | 529.28    | 548.18       | 538.38    | 283.54   | 1531.12  | 1010.94  | 831.72   | 884.65   | 1353,44  |
|                 | 0.30%            | voc#       | 1.96     | 1,47     | 1,64     | 1,59      | 1,64         | 1.62      | 0,85     | 4.59     | 3,03     | 2,50     | 2,65     | 4.06     |
| Perform PC8984  |                  | product #  | 13102    | 13120    | 16810    | 5822      | 12300        | 8200      | 35260    | 24660    | 10600    | 0        | 0        | 0        |
| <u> </u>        | 0.09%            | voc#       | 11.79    | 11,81    | 15,13    | 5,24      | 11.07        | 7.38      | 31.73    | 22,19    | 9,54     |          |          |          |
| Prestige 8536   |                  | product #  | 1401     | 350      | 350      | 467       | 0            | 0         | 3384     | 0        | 0        | 0        | 0        | 466      |
|                 | 8.63%            | voc#       | 120,91   | 30,21    | 30,21    | 40.30     |              |           | 292,04   |          |          |          |          | 40,22    |
| NALCO® 7542     |                  | product #  | 0        | 0        | 0        | 0         | 0            | 0         | 119      | 0        | 0        | 0        | 0        | 0        |
|                 | 0.76%            | voc#       |          |          |          |           |              |           | 0.90     |          |          |          |          |          |
| NALCO 2634      |                  | product #  | 1,035    | 990      | 522      | 630       | 0            | 0         | 0        | 0        | 0        | 0        | 0        | 0        |
|                 | 6.00%            | voc#       | 62.10    | 59.40    | 31.32    | 37.80     |              |           |          |          |          |          |          |          |
| DeAirex 8060    |                  | product #  | 4702     | 3129     | 4546     | 5624      | 1828         | 4214      | 7498     | 3670     | 8272     | 4214     | 3981     | 4369     |
|                 | 0.48%            | voc#       | 22.57    | 15.02    | 21.82    | 26.99     | 8.77         | 20.23     | 35,99    | 17,62    | 39.71    | 20.23    | 19.11    | 20.97    |
| Coreshell 61067 |                  | product #  | 0        | 0        | 0        | 0         | 0            | 270       | 559      | 1376     | 0        | 0        | 0        | 0        |
|                 | 22.17%           | voc#       |          |          |          |           |              | 59.85     | 123,90   | 304.99   |          |          |          |          |
| NALBRITE 64007  |                  | product #  | 0        | 0        | 0        | 0         | 0            | 0         | 0        | 0        | 0        | 0        | 0        | 0        |
|                 | 5,99%            | voc#       |          |          |          |           |              |           |          |          |          |          |          |          |
| 00PG007         |                  | product #  | 0        | 0        | 0        | 0         | 0            | 0         | 0        | 0        | 0        | 0        | 434      | 0        |
|                 | 1,21%            | voc#       |          |          |          |           |              |           |          |          |          |          | 5,25     |          |
| _               |                  | product #  |          |          |          |           |              |           |          |          |          |          |          | 200      |
|                 |                  | voc#       |          |          |          |           |              |           |          |          |          |          |          |          |
|                 | Chemical VOC #'s |            | 996.21   | 720.44   | 751.54   | 1,056.44  | 493.77       | 790.72    | 926.97   | 998.31   | 597.84   | 719.07   | 330.96   | 390.94   |
|                 | Rollin           | ng sum #'s | 9,388.75 | 9,382.29 | 9,429.78 | 9,565.13  | 9,176.95     | 9,529.83  | 9,716.16 | 9,787.11 | 9,847.54 | 9,735.23 | 9,125.38 | 8,773.22 |
|                 | Rolling sum tons |            | 4.69     | 4.69     | 4.71     | 4.78      | 4.59         | 4.76      | 4.86     | 4.89     | 4.92     | 4.87     | 4.56     | 4.39     |
| _               |                  | 22 CHEM    | 816.29   | 726.91   | 704.04   | 921.09    | 881.96       | 437.84    | 740.64   | 927.37   | 537.41   | 831.38   | 940.81   | 743.10   |

| Limits | Kerosene | <349 #/8hr. | 2022 max | Chem. VOC | <82.3 tpy | 4.92 tpy |

 Seasonal
 Chem

 Jan Feb Dec
 24,0%

 Mar - May
 26,2%

 Jun - Aug
 31,0%

 Sep - Nov
 18,8%

| Calculations | Chemical VOC | 8,773.22 #'s | Carb Cleaner VOC | #'s | Total VOC | 4,39 tons | Papermaking (60%) | 2,63 tons | Pulpmill (40%) | 1,75 tons |

Kerosene (#1 Died Fuel Oil) 0.00 lbs 0.00 tons Carb Cleaner cases @ 12-1# cans per case # of carb cleaner 70% VOC # VOC

| UP Papers             | EUPROCESS | 3    |      | 2023 Petroleum Distillate |         |                         |       |        |        |        |        |        |        |
|-----------------------|-----------|------|------|---------------------------|---------|-------------------------|-------|--------|--------|--------|--------|--------|--------|
| Chemical PD%          |           | Jan. | Feb. | Mar.                      | Apr.    | May                     | June  | July   | Aug.   | Sept.  | Oct.   | Nov.   | Dec.   |
| Coreshell 61067       | product#  |      | 思    | H- U                      | = 5 (4) | and a set of the second | 250   | 1932   | 1 日東省  |        | 4      | .01    | 9      |
| 30.00%                | PD#       |      |      |                           |         |                         | 81.00 | 167.70 | 412,80 |        |        |        |        |
|                       | product#  |      |      |                           |         | EUO-SERVICE             |       |        |        |        |        |        |        |
| EU-1221039            | PD#       |      |      |                           |         |                         |       |        |        |        |        |        |        |
| # Petroleum Dist.     |           | 0.00 | 0.00 | 0.00                      | 0.00    | 0.00                    | 81.00 | 167.70 | 412.80 | 0.00   | 0.00   | 0.00   | 0.00   |
| 12 mo. Rolling Sum #  | 's        | 0.00 | 0.00 | 0.00                      | 0.00    | 0.00                    | 81.00 | 248.70 | 661.50 | 661,50 | 661.50 | 661.50 | 661.50 |
| 12 mo. Rolling Sum to | ons       | 0.00 | 0.00 | 0.00                      | 0.00    | 0.00                    | 0.04  | 0.12   | 0.33   | 0.33   | 0.33   | 0.33   | 0.33   |
|                       | 2020      | 0.00 | 0.00 | 0.00                      | 0.00    | 0.00                    | 0.00  | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   | 0.00   |

<u>Limits</u> Petroleum Distillate Monthly Max Value

18.72 tpy (ROP threshold)
0.33 tpy (usage rolling sum)

Calculations:

2023 total #'s 661.50 2023 total tons 0.33