Jefferson North Assembly Plant Sustainment Project

> Application for Permit to Install

> > March 2020

FIAT CHRYSLER AUTOMOBILES

TABLE OF CONTENTS

	Page
1.0 INTRODUCTION	1
2.0 PROJECT ANALYSIS	3
3.0 PROCESS DESCRIPTION	4
3.1 BODY SHOP	4
3.2 GENERAL ASSEMBLY ("GA")	4
3.3 PAINT SHOP	4
3.4 COMBUSTION EQUIPMENT	5
4.0 CRITERIA POLLUTANT EMISSION ESTIMATES	6
4.1 VOC EMISSION ESTIMATES	6
4.2 PARTICULATE MATTER (PM, PM-10 AND PM _{2.5}) EMISSION ESTIMATES	6
4.2.1 Coating PM emissions	7
4.2.2 Combustion Devices	8
4.4 OTHER CRITERIA POLLUTANTS	8
5.0 REGULATORY ANALYSIS	9
5.1 FEDERAL NEW SOURCE REVIEW - MODIFICATIONS	9
5.1.1 VOC Sources	9
5.1.2 PSD - Attainment Pollutants	9
5.2 STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES (NSPS)	9
5.2.1 Surface Coating of Automobiles and Light Duty Trucks	10
5.2.2 Natural Gas Combustion	10
5.3 NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS 5.3.1 Auto MACT	10
5.3.2 Boiler MACT	10
5.3.3 RICE MACT	11
5.4 STATE APPLICABLE REQUIREMENTS	11
5.4.1 State New Source Review	11
5.4.2 State Best Available Control Technology Requirements	11
5.4.3 State Toxic Air Contaminants Requirements	12
6.0 BEST AVAILABLE CONTROL TECHNOLOGY	13
6.1 BACT APPROACH	13
6.1.1 Paint and Body Shop Sealers BACT	13
6.1.2 E-COAT BACT 6.1.3 Tutone (Toncoat) BACT	13
6.1.4 Existing Topcoat Color Lines BACT	22
6.1.5 Purge/Clean BACT	25
6.1.6 Repair Operations	26
6.1.7 Fluid/Fuel Fill Operations	27
6.1.8 Washer Fluids	27
6.1.9 TANKS 6.1.10 Pody Solvent Wine	28
6.1.11 Glass Installation	28 29
0.1.11 Grass instantation	2)

TABLE OF CONTENTS

	Page
6.1.12 VOCs from Combustion Sources	29
6.2 BACT SUMMARY – JNAP SUSTAINMENT	30
6.3 FLEXIBLE PERMIT BACT	30
6.4 VOLUNTARY ADJUSTMENT OF EXISTING FPI LIMITS	32
7.0 TOXIC AIR CONTAMINANTS AND DISPERSION MODELING	34
7.1 TOXIC - BEST AVAILABLE CONTROL TECHNOLOGY REQUIREMENTS	34
7.2 HEALTH BASED SCREENING LEVEL REQUIREMENTS	34
7.2.1 Stack Height and Building Downwash Consideration	35
7.2.2 Meteorological Data	35
7.2.3 Dispersion Coefficients	35
7.2.4 Receptors	36
7.2.5 Terrain Elevation	36
7.2.6 Dispersion Modeling Results	36
8.0 CRITERIA POLLUTANT EMISSIONS IMPACT ANALYSIS	37
8.1 OZONE IMPACT ANALYSIS	37
8.2 MINOR SOURCE MODELING POLICY – AQD 22	38
8.2.1 NO _X Specific Modeling Parameters	38
8.2.2 Meteorological Data	39
8.2.3 NO _X Annual NAAQS	39
8.2.4 Single Source NO _X and PM _{2.5} Modeling Results	40
8.2.5 Cumulative Modeling	40
9.0 ADDITIONAL IMPACT ANALYSES	43
9.1 CONSTRUCTION AND GROWTH IMPACTS	43
9.2 IMPACT ON SOIL AND VEGETATION	43
9.3 ANALYSIS OF THREATENED AND ENDANGERED SPECIES	43
9.4 IMPACT ON VISIBILITY – CLASS I AREAS	43
10.0 CONCLUSION	44

ATTACHMENTS

Figure 1: NO₂ Significant Impact Area Figure 2: PM_{2.5} Significant Impact Area

Appendix A:	Permit to Install Application Form
Appendix B:	Emission Calculations
Appendix C:	Toxic Air Contaminant – NO ₂ /PM _{2.5} Impact Summary
Appendix D:	Dispersion Modeling Input/Output Files
Appendix E:	Site Layout
Appendix F:	Process Flow Diagram - Tutone
Appendix G:	Tutone Material SDS/EDSs
Appendix H:	BACT Development and COST Spreadsheets
Appendix I:	NESHAP Surface Coating of Automobiles and Light Duty Trucks -
	Reconstruction Analysis

1.0 INTRODUCTION

Fiat Chrysler Automobiles US LLC ("FCA") owns and operates the existing Jefferson North Assembly Plant ("JNAP") located at 2101 Conner Avenue in Detroit, Wayne County, Michigan. The historical activities at the JNAP complex include automobile and light duty truck manufacturing. JNAP currently produces two SUV models; the Jeep Grand Cherokee and the Dodge Durango.

The facility currently operates three main topcoat coating lines. Originally, the facility operated a tutone line in addition to the three main topcoat lines. The tutone line has been inoperable for several years and the terms and conditions associated with its operation were eliminated from the current Renewable Operating Permit several years ago. FCA is now planning to implement a sustainment program that includes various activities within the existing facility, one of which includes reactivating the tutone coating booth and oven to accommodate demand for vehicles with a tutone roof. The tutone booth structure and space for the oven remain in their former location. In addition, a rapid repair operation will be relocated to a small building expansion to better accommodate tutone operations. Details of the current permit status for JNAP and the plans for various sustainment activities and reactivation of the tutone operation are provided in the following sections.

BACKGROUND

As noted above, the plans for the JNAP facility include an overall sustainment effort which is intended to refurbish and update the facility, which is necessary in order to maintain consistent production and launch the next generation of vehicles. The sustainment efforts will be implemented without resultant increases in production rates or production capacity beyond those of the original facility.

The air use permit (i.e., Permit to Install or "PTI") for the current JNAP operations was issued on April 19, 2010 as PTI number 18-08. The permit terms and conditions applicable to the existing operations were structured and formatted according to the Michigan Flexible Permitting Initiative ("FPI"). The terms and conditions of the FPI were subsequently rolled into the Renewable Operating Permit ("ROP") MI-ROP-N2155 dated June 9, 2017 (which is also a Source-Wide PTI). The current version of the ROP expires on June 9, 2022.

The FPI conditions include an overall ton per year limit for volatile organic compounds ("VOCs") from assembly operations at the existing facility (1,085.8 tpy) as well as a pounds of VOC per job limit (4.8 pounds per vehicle), each an average on a 12-month rolling basis. Other criteria pollutants are subject to annual emission and fuel consumption limits as well.

The JNAP facility is located in an area currently designated as attainment with respect to the National Ambient Air Quality Standards (NAAQS) for all criteria pollutants except ozone. The Southeast Michigan area where JNAP is located was designated as an ozone non-attainment area in 2018 with respect to the updated 8-hour ozone NAAQS. The JNAP facility is an existing major stationary source under both the Prevention of Significant Deterioration ("PSD") and the federal non-attainment new source review ("NANSR") programs (40 CFR Part 52) because potential VOC emissions exceed the 250/100 ton per year (tpy) thresholds, respectively.

The proposed sustainment activities at JNAP will constitute a minor modification under the NANSR program for VOCs (as precursors to ozone) as well as the PSD program for attainment pollutants. As a

result, there are no offset or lowest achievable emission rate (LAER) requirements applicable to the changes to VOC sources.

Pursuant to Michigan Air Pollution Control Rules 336.1702 (Rule 702), the proposed changes as part of the sustainment activities will be required to demonstrate that any new or modified VOC sources will institute best available control technology ("BACT") for VOCs.

Section 2.0 of this document provides an overview of the project, Section 3.0 provides background on the proposed tutone process and the relocation of the rapid repair operation. Sections 4.0 through 9.0 address the various state and federal regulatory requirements and demonstrations associated with this application. Section 10.0 provides the application's conclusions.

2.0 PROJECT ANALYSIS

FCA evaluated whether the proposed activities at the JNAP facility ("the JNAP Project") potentially trigger the applicable PSD and Nonattainment NSR programs. As explained elsewhere in this application, we have determined that the JNAP Project will not trigger PSD or NSR.

In reaching this conclusion, FCA considered the potential for "project aggregation," including whether the JNAP Project merits aggregation with the project at the Mack Assembly Plant ("MAP") that was previously permitted by PTI #14-19 on April 26, 2019. The project aggregation analysis effectively mimics that for determining when to combine activities for evaluation of Rule 278 circumvention or "sham permitting." As explained below, the JNAP Project constitutes a separate project and set of activities from the previously permitted MAP permitted activities.

The federal law and guidance regarding "project aggregation" was clarified by USEPA at *Prevention of Significant Deterioration (PSD) and Nonattainment NSR: Aggregation; Reconsideration*, 83 Fed. Reg. 57,324 (Nov. 15, 2018). In addition to summarizing the relevant body of federal guidance that developed over the years, USEPA's 2018 Aggregation Action clarified several points of potential confusion, including the key points from prior applicability determinations and earlier Federal Register items. In general, USEPA continues to focus on whether projects are "substantially related," which includes consideration of whether the projects in question:

- Were jointly planned in the same capital improvement or engineering study
- Technically or economically depend on each other for viability, sharing an interrelationship and interdependence
- Share an intrinsic relationship (e.g., physical proximity, stages of production process, etc.)
- Occur close in time and at components that are functionally interconnected, either technically or economically, although timing alone is not determinative

Comparing the JNAP and MAP projects, they: (1) were not jointly planned, but rather were reviewed as separate project/activities in different years, each with a separate corporate review and approval process; (2) can each exist and operate independently as separate facilities, as confirmed by JNAP's independent operation for decades; (3) do not have an intrinsic relationship given that they involve two entirely separate manufacturing operations and different assembly lines; (4) will have distinct emission units at the respective facilities; and (5) each have entirely separate management personnel and separate financial centers. As a result, the JNAP Project merits treatment as a standalone project rather than part of a larger, staged project.

Under the overlapping state guidance for evaluating Rule 278 circumvention or sham permitting, cited in the January 2016 PTI Workbook (PDF p.21-22) and October 2005 PTI Guidebook (PDF pp.18-21), the JNAP and MAP projects do not merit treatment as a single activity. In addition to the temporal separation, the activities were proposed, reviewed, and approved as separate capital appropriations in separate years, thereby satisfying the "rule of thumb" provided by AQD. Combined with the lack of interdependence (e.g., unlike the related coating line and power source discussed in the PTI Guidebook example on PDF p.18), there is no evidence of Rule 278 circumvention or sham permitting

3.0 PROCESS DESCRIPTION

The following sections briefly describe the various planned sustainment activities at the JNAP facility, including the new tutone process and relocated rapid repair operations being installed as part of the project.

3.1 BODY SHOP

There will be no significant changes to the existing body shop (a.k.a. Body in White, or "BIW") needed to accommodate the planned tutone line equipment and related sustainment installations. There will be some retooling, including that required to accommodate electric vehicle product and replacing or repairing of old conveyors and carriers. A small amount of new or replaced natural gas equipment and some welding equipment will be upgraded. FCA anticipates that these changes will result in similar emissions as to those in the past, and no significant emission units will be modified in the body shop.

3.2 GENERAL ASSEMBLY ("GA")

Various departments within the GA area will be retooled to include replacing old conveyance, carriers and making station improvements. Supplemental/replacement glass installation stations will be incorporated into the existing general assembly operations; testing laboratories will be relocated to small building bumpouts, and some small combustion equipment will be replaced. The changes to GA do not result in an increase in production capacity.

3.3 PAINT SHOP

At the existing paint shop, un-coated vehicles enter from the BIW area and proceed to a phosphate tank for surface treatment. Except for natural gas combustion related emissions from air handling units and the drying oven, no other process emissions result from these operations. After phosphate, the vehicles proceed through the electro-deposition ("E-coat") dip tank and oven, then proceed to sealer application, powder guidecoat operations, followed by entrance into one of three topcoat booths that apply solvent borne basecoat and clearcoat.

The E-coat oven VOC emissions are controlled by a thermal oxidizer. The guidecoat/primer operation is a dry powder application and a curing oven with no VOC controls. The topcoat lines rely on VOC controls for portions of the booth application areas and the ovens. VOC emissions from topcoat booths are routed to a concentrator followed by a thermal oxidizer. VOCs from the topcoat ovens are exhausted directly to a thermal oxidizer.

The new tutone process is designed to apply a base and clear coat to just the roof area of the vehicle. Vehicles that will have the tutone roof will be processed as follows: The vehicle will receive a tack off of the roof area and then proceed to the proposed tutone booth where only the exterior roof of the vehicle will receive base (black) and clear coatings. There will be no additional topcoat applied or sprayed to the roof area once a tutone roof is applied.

With the exception of an observation area (where no coating is applied), the exhaust from the tutone booths will be routed to a concentrator and then an oxidizer to control emissions of VOCs. The tutone oven exhaust will also be directed to an oxidizer.

The remainder of the vehicle's surface area will be coated in one of the three topcoat color lines. The tutone roof will be masked (i.e., covered) and no coating will be applied to that masked area in the topcoat line.

After exiting a topcoat booth, vehicles will enter an oven and cooling tunnel. Upon cooling, vehicles are inspected and polished. Severely blemished vehicles are directed back to one of the main topcoat booths. Less major repairs are conducted in one of the rapid repair booths. Due to the location of the tutone operation, the current rapid repair area will be relocated to a new building addition. Air in the rapid reprocess booths is filtered and then exhausted to atmosphere. Completed vehicles then leave the paint shop and are directed to the general/final assembly area.

Additionally, there are certain paint shop operations that will be refurbished or relocated as part of the planned sustainment activities at JNAP.

- 1. Coating applicators in the topcoat booths will be replaced with new units and automation to improve overall efficiency,
- 2. Powder coating operations will receive new automation
- 3. The rapid repair operation will be relocated and a new building addition constructed to house the process:
- 4. The existing purfoam operation will be relocated to the paint shop, using the same exhaust design as the current operation (i.e. the process has no exhaust stacks and the minimal emissions will exhaust into the in-plant environment). There will be no change to material used or the per unit application rates;
- 5. The sealer operations will include replacement of existing robotic sealer application equipment, but no new materials or exhaust systems are anticipated;
- 6. Conveyor systems will be replaced or repaired

These changes will not result in an increase to the topcoat line's production rate or capacity.

3.4 COMBUSTION EQUIPMENT

As part of the proposed sustainment project, FCA will install a small amount of new or replace existing combustion equipment that will consist only of natural gas-fired units. The new equipment will include the tutone oven, the relocated rapid repair air supply units, various other air supply houses, air make-up units, space heaters and a concentrator/thermal oxidizer control device. The table below provides a summary of the proposed new installations of combustion equipment and their respective heat input ratings.

Table 3.0 - Combustion Equipment					
Equipment Type	Heat Input (MMBtu/hr)				
Concentrator/Oxidizer	20.0				
New Ovens/ASH/AMU/Space Heat	171.6				
TOTALS	191.6 MMBtu/hr				

As noted, the majority of the sustainment activities are intended to refurbish and update the facility in order to maintain consistent production at the current capacity, accommodate electric vehicles components and launch the next generation of vehicles. Only certain changes will result in changes to emissions which have been addressed within this document.

4.0 CRITERIA POLLUTANT EMISSION ESTIMATES

Presented in the table below are the proposed annual criteria pollutant emission levels associated with new or modified equipment as part of the sustainment efforts. Appendix B provides detailed calculations with assumptions regarding control equipment, etc. demonstrating the methods for determining the emission levels in the table.

Table 4.0 – Project Criteria Pollutant Emission Summary Table							
Emission Source	VOC Emissions (tpy)	NOx Emissions (tpy)	CO Emissions (tpy)	PM-10/2.5 Emissions (tpy)	SO2 Emissions (tpy)	GHG Emissions (tpy)	
Tutone Booth/Oven	20.9	-	-	0.56	-	-	
Rapid Repair	0.86	-		0.23	-	-	
Purge/Clean Solvents	7.7	-	-	-	-	-	
Combustion-Ovens/ASH	2.38	15.55	36.28	3.28	0.26	43,971	
Combustion-RTO/Conc	0.43	3.94	6.62	0.6	0.05	5,125	
Color line reductions for tutone vehicles*	- 10.1						
TOTAL	22.11	19.49	42.9	4.67	0.31	49,096	
Major Modification Threshold	40	40/40	100	15/10	40	75,000	

* - The roof area of each vehicle will be coated in <u>either</u> the tutone line or a Color line, not both. Therefore, the corresponding reduction realized at the Color line for the projected tutone vehicles is included.

The basic method used to calculate estimated emissions from the upgrades and new coating installations is described below.

4.1 VOC EMISSION ESTIMATES

Potential new sources of VOC emissions associated with the sustainment project include: surface coating operations (tutone) and natural gas fuel combustion.

In general, VOC emissions from coating applications are estimated based on projected material usage, the VOC content of the material and emission reduction achieved by the control system, as appropriate. The following general approach was used, where CE stands for a control device control efficiency.

Gallon/vehicle * lbs VOC/gallon * vehicles/yr * 1 ton/2000 lbs * (1-CE) = X tons/year

Emissions from fuel combustion are based on the projected amount of fuel consumed (based on burner rating) and the corresponding published emission factor. In general, add-on emission controls for VOCs from natural gas sources are not relied upon.

4.2 PARTICULATE MATTER (PM, PM₁₀ AND PM_{2.5}) EMISSION ESTIMATES

Potential new sources of particulate matter ("PM") emissions associated with the sustainment project include: tutone surface coating operations, surface repair operations and fuel combustion.

The following discussion describes the basis for the PM emissions calculation for each source type.

4.2.1 Coating PM emissions

Emissions of particulate matter from the tutone coating line overspray will be controlled with the use of a water wash system that relies upon a downdraft designed booth. This system is also used throughout the existing topcoat application process and is similar to that which is employed for PM control in other paint shops. In addition, the tutone operation booth air will be routed to a concentrator followed by an oxidizer. Prior to the VOC control systems, an additional level of PM control is required in order to minimize particulate matter from negatively impacting the control devices. As a result, the overall emission profile for particulate matter emissions (both PM_{10} and $PM_{2.5}$) from the tutone coating booths is substantially reduced.

Potential emissions of PM for the proposed tutone operations are been based upon an industry accepted assumed grain loading (1.5 grains/1000 ft³) in the exhaust, an assumed air flow rate from the tutone booth (based upon the air flow rate through the coating zones) and the hours of operation for the calendar year. The booth design requires filtered air to be introduced into the booth and additional filtration systems prior to exhausting to the control devices. For the tutone coating operation, all of the booth coating application zones will be controlled by a concentrator followed by thermal oxidation. The tutone oven will exhaust directly to the RTO.

The figure below provides an example of the tutone booth exhaust pre-concentrator filter system:

FCA has conservatively assumed that the second filtration system (filter house) prior to the concentrator

FCA has conservatively assumed that the second filtration system (filter house) prior to the concentrator and oxidizer will be 98% efficient. Below is the particulate matter calculation for the primer and topcoat booths.

1.5 grains/1000 cubic feet * (1-0.98) removal *Xft3/min = Y grains/min

Y gr/min * 60 min/hr * 1 lb/7000 grains = Z pounds per hour

Z pounds/hour * 8,760 hours/yr * 1 ton/2000 lbs = W tons per year

Note that the coating booths will likely operate less than 8,760 hours per year.

PM emissions for the relocated rapid repair operation were estimated based upon the use of dry filtration systems and previous testing of PM emissions at FCA assembly plants.

It should be noted that the increase in PM_{10} and $PM_{2.5}$ emissions based upon the proposed allowable emissions provided are below their respective major source thresholds and therefore, the emissions of

Abatement Filter House

these pollutants are not subject to the BACT requirement nor the impact analysis under the federal PSD program.

4.2.2 Combustion Devices

FCA is proposing the use of natural gas as the fuel in any new or replaced combustion devices as part of the sustainment efforts at JNAP. The PM_{10} and $PM_{2.5}$ potential emissions based upon the maximum capacity of these units will be in the range of 4.0 tons per year. PM emissions from these units was based on AP-42 or manufacturer's emission factors for natural gas fired combustion devices and the maximum rated heat input capacity of the combustion units. FCA also assumed that $PM_{2.5}$ is equal to PM_{10} .

For the majority of new air supply houses and air makeup units, the combustion exhaust air will require filtration and temperature/humidification control. The exhaust from the combustion of natural gas will be mixed with fresh air and then filtered followed by cooling. Once cooled, the air will be filtered again prior to introduction into the spray booths or other areas of the facility.

4.3 NO_X EMISSION ESTIMATES

For annual NOx emissions from the new combustion operations, the following approach was used:

MMcf/yr * Emission Factor lbs NOx/MMcf * hrs/yr * 1 ton/2000 lbs = X tons per year

4.4 OTHER CRITERIA POLLUTANTS

Other criteria pollutants (i.e., CO, SO2) that were the result of combustion emissions were estimated in the same fashion as NOx above (i.e. using AP-42 emission factors).

5.0 REGULATORY ANALYSIS

5.1 FEDERAL NEW SOURCE REVIEW – MODIFICATIONS

As indicated, the sustainment activities and change to the JNAP facility will be completed in an area that is now designated as marginal non-attainment for ozone, and attainment of the NAAQS for all other criteria pollutants. The applicability of federal and state air quality regulations has been evaluated accordingly. The proposed sustainment efforts that include a new tutone booth/oven and rapid repair operation at the existing assembly plant will be considered a minor modification (an increase less than significance) of an existing major stationary source of regulated air pollutant emissions under the federal NANSR program. Increases of the other criteria pollutants will also remain below the corresponding major modification (significance) thresholds for attainment pollutants.

The following sections present an evaluation of the proposed changes with respect to NANSR and PSD, as appropriate.

5.1.1 VOC Sources

FCA has evaluated the emissions associated with the proposed sustainment efforts at JNAP based upon potential emissions from the proposed new emission sources. The emissions increases associated with the new tutone operation are based upon a 163,800 jobs/year maximum production rate in the tutone booth and oven. Rapid repair is based upon historical emissions and repair rates for the entire paint shop and any new or replaced combustion equipment is based upon projected natural gas usage. Other sustainment related changes at the existing topcoat operations, like replacing old applicators with new, more efficient equipment, will likely result in a decrease in VOC emissions.

As indicated, the VOC emissions from the proposed sustainment activities, including the new operations, will result in increases that are less than the major modification significance thresholds under the NSR program. As a result, the proposed changes to VOC emissions are not subject to NANSR review.

5.1.2 PSD - Attainment Pollutants

Potential emissions of Nitrogen Oxides, Carbon Monoxide, Greenhouse gases, SO_2 and Pb have been estimated based upon standard emission factors and the maximum rated heat input capacity of any new natural gas-fired combustion units planned for installation as part of the sustainment project. As noted previously, the potential emissions are all less than the NSR major modification significance levels for these pollutants, including NOx as an ozone nonattainment precursor (see Table 4.0).

5.2 STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES (NSPS)

The federal Standards of Performance for New Stationary Sources (NSPS) consist of technology-based emission standards for new, modified or reconstructed categories of stationary sources. Specific proposed new equipment installations at the plant will be subject to NSPSs, which are found at 40 CFR Subpart 60.

5.2.1 Surface Coating of Automobiles and Light Duty Trucks

New Source Performance Standards (NSPS) for surface coating of automobiles and light duty trucks, 40 CFR 60 Subpart MM will apply to the new tutone coating line. Specifically, standard limitations are

E-Coat - 1.34 lbs VOC/GACS Primer – 12.0 lbs VOC/GACS Topcoat - 12.27 lbs VOC/GACS

At JNAP, the facility complies with the applicable Subpart MM standards based upon the performance levels for E-Coat, primer and topcoat. The NSPS limits are subsumed within the FPI permit limits and conditions. This will also be the case for the proposed tutone operation.

5.2.2 Natural Gas Combustion

The NSPS found in 40 CFR 60 Subpart Dc for Small Industrial-Commercial-Institutional Steam Generating Units may be applicable to any natural gas-fired combustion unit that will be installed above the 10 MMBtu/hr heat input threshold. At this time, there are no plans to install any units that would be subject to Subpart Dc.

5.3 NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS

5.3.1 Auto MACT

The NESHAPs (or MACT standards) are applicable to facilities that are existing, new or reconstructed major sources of hazardous air pollutants (HAPs). 40 CFR 63 Subpart IIII established National Emission Standards for Hazardous Air Pollutants (NESHAP) for Surface Coating of Automobiles and Light Duty Trucks. The existing JNAP facility is subject to the standards in Subpart IIII for existing sources and complies without the use of add-on control devices. Similarly, for the new tutone operation, FCA anticipates being able to comply with the same standards for existing sources and will be able to do so without the use of add-control equipment.

Based upon the plans for tutone and the sustainment efforts, FCA has concluded that the proposed changes do not result in JNAP being considered a new or reconstructed source subject to the new source MACT standard under Subpart IIII.

Pursuant to the Subpart IIII standards, reconstruction is addressed as follows in § 63.3082 [emphasis added]:

(f) An affected source is reconstructed if its **paint shop** undergoes replacement of components to such an extent that:

(1) The fixed capital cost of **the new components** exceeded 50 percent of the fixed capital cost that would be required to construct a **new paint shop**; and

(2) It was technologically and economically feasible for the reconstructed source to meet the relevant standards established by the Administrator pursuant to section 112 of the Clean Air Act (CAA).

(g) An affected source is existing if it is not new or reconstructed.

Based upon the above definition, FCA has determined that the costs associated with new components in the paint shop would not exceed 50% of the cost of an entirely new paint shop. See Appendix I for the detailed cost demonstration. Accordingly, the reconstruction cost estimate indicates that the facility will continue to be subject to existing source requirements pursuant to 40 CFR 63 Subpart IIII.

5.3.2 Boiler MACT

At this time, FCA does not anticipate the project will include the installation of new boilers or process heaters subject to 40 CFR 63 Subpart DDDDD for Industrial, Commercial, and Institutional Boilers and Process Heaters.

5.3.3 RICE MACT

At this time, FCA does not anticipate that there will be additional emergency engines installed as part of this project at JNAP.

5.4 STATE APPLICABLE REQUIREMENTS

The following sections address State of Michigan Act 451 regulations that are applicable to the proposed changes.

5.4.1 State New Source Review

Submittal of this document and the application form included in Appendix A addresses the State of Michigan's NSR program requirements.

State of Michigan Public Act 451, Rule 336.1201 (Rule 201) requires that a Permit to Install (PTI) be obtained for the construction or modification of a process or process equipment which may emit an air contaminant. While the proposed changes will result in emissions increases, JNAP's current FPI permit is structured such that these changes could be accommodated by the current limits and not require a PTI application. However, due to the emissions control proposed for the tutone operation, the AQD has indicated that the FPI needs to be amended to include the appropriate terms for operation of those controls.

5.4.2 State Best Available Control Technology Requirements

State of Michigan Rule 702 addresses new sources of VOCs specifically and states the following [emphasis added]:

R 336.1702 New sources of volatile organic compound emissions generally.

Rule 702. A person who is responsible for any new source of volatile organic compound emissions shall not cause or allow the emission of volatile organic compound emissions from the new source in excess of the lowest maximum allowable emission rate of the following:

(a) The maximum allowable emission rate listed by the department on its own initiative or based upon the application of the best available control technology.

(b) The maximum allowable emission rate specified by a new source performance standard promulgated by the United States environmental protection agency under authority enacted by title *I*, part A, section 111 of the clean air act, as amended, 42 U.S.C. §7413.

(c) The maximum allowable emission rate specified as a condition of a permit to install or a permit to operate.

(d) The maximum allowable emission rate specified in part 6 of these rules which would otherwise be applicable to the new source except for the date that the process or process equipment was placed into operation or for which an application for a permit to install, under the provisions of part 2 of these rules, was made to the department. If the part 6 allowable emission rate provides for a future compliance date, then the future compliance date shall also be applicable to a new source pursuant to this subdivision.

In accordance with Rule 702 (a), FCA has addressed best available control technology ("BACT") for the sustainment project. In addition, at the request of EGLE-AQD, this application also includes a demonstration that the current FPI limits continue to be consistent with and satisfy BACT obligations. These demonstrations are presented in Section 6.0.

5.4.3 State Toxic Air Contaminants Requirements

The Michigan Air Pollution Control regulations include Rules 224 which requires new or modified sources to implement T-BACT (Toxics BACT) for sources or emissions of TACs. Rule 225 states that:

"Rule 225. (1) A person who is responsible for any proposed new or modified emission unit or units for which an application for a permit to install is required by part 2 of these rules and which emits a toxic air contaminant (TAC) shall not cause or allow the emission of the toxic air contaminant from the proposed new or modified emission unit or units in excess of the maximum allowable emission rate which results in a predicted maximum ambient impact that is more than the initial threshold screening level or the initial risk screening level, or both, except as provided in subrules (2) and (3) of this rule and in R 336.1226."

FCA has completed a detailed impact analysis for TAC emissions in Section 7.0 of this application.

6.0 BEST AVAILABLE CONTROL TECHNOLOGY

As noted previously, VOC emissions associated with the proposed sustainment project, including the proposed new tutone coating operation, will not result in an emission increase that exceeds the 40 ton per year significance threshold for a major modification in a marginal ozone non-attainment area. Due to the controls associated with tutone, AQD has indicated that it is necessary to incorporate additional terms in the FPI conditions that will address operation of the planned VOC controls. As such, AQD has requested that FCA provide a demonstration that BACT will continue to be satisfied for both new and existing VOC emission units that will be addressed by the FPI.

In addition, Michigan's Rule 702 requires new sources of VOCs to demonstrate that BACT will be implemented for each new or modified emission unit. The paragraphs that follow provide FCA's demonstration that the existing and proposed new operations will incorporate BACT in relation to sources of VOC emissions.

BACT is defined as that emission reduction technology which provides the maximum degree of reduction achievable based on energy, environmental and economic impacts and other costs associated with emission control. BACT is determined on a source-specific case-by-case basis and must be at least as stringent as any applicable New Source Performance Standards (NSPS) (i.e., in this case 40 CFR 60 Subpart MM).

US EPA's top-down BACT requirements can be classified in five distinct steps as follows:

STEP 1: Identify All Control Technologies
STEP 2: Eliminate Technically Infeasible Options
STEP 3: Rank Remaining Control Technologies by Control Effectiveness
STEP 4: Evaluate Most Effective Controls and Document Results
STEP 5: Select BACT

Although Michigan does not specifically require a top-down approach, the steps of the top down BACT process will satisfy the Rule 702 requirements in Michigan.

6.1 BACT APPROACH

For purposes of the BACT analysis, FCA addressed the various VOC sources similar to previous BACT analyses, with the emphasis on emission reduction technologies from the same type of coating operation and less emphasis on the source specific emission rates since the JNAP facility is existing and physical modifications are not being proposed for the majority of the VOC sources. Below is the BACT demonstration for the various VOC sources at JNAP.

6.1.1 Paint and Body Shop Sealers BACT

Although the sealer application systems are only being updated and relocated, FCA reviewed the various State Implementation Plans (SIPs) and also the Control Techniques Guideline (CTG) for Automobile and Light Duty Trucks issued by USEPA under Section 183e of the Clean Air Act in September 2008 for existing sources. The SIPs reviewed and the CTG did not identify any more efficient emission reduction techniques or stringent limitations for sealers than those identified in the RACT/BACT/LAER Clearinghouse (RBLC) or issued permits with specific limits for sealers.

The proposed upgrades to the sealer operations utilize low VOC containing materials with an average VOC content of less than 0.3 pounds per gallon on a weighted average basis (not including glass sealers). In contrast, the SIPs and CTG reviewed only identify recommended existing source limits of over 5 lbs VOC/gallon. FCA has not identified other available sealers with lower VOC contents that would substantially reduce VOC emissions from this operation (below the proposed level). FCA believes this to be the case due to the need for sealers to be viscous enough to be pump-able or hand applied to the vehicle body.

The following is a summary of the recent RBLC, permit limits, and related determinations applicable to sealers reviewed as part of this application.

Source	Date	Lbs VOC/Gallon
		Minus H ₂ O
GM Shreveport Assembly	3-24-00	0.5
GM Lansing GR Assembly	2-27-00	0.3
Nissan North America	4-4-01	0.3
GM Delta Assembly	9-26-01	0.3
FCA Jefferson North	12-17-01	0.3
GM- Lansing Craft Ctr.	4-2-02	0.3
Honda Manufacturing	10-18-02	0.3
Alabama		
Ford Michigan Truck	9-8-03	FPI Limit
	(1-8-09)	
GM Lordstown (Ohio BAT)	2-12-04	0.3
Toledo Supplier Park	9-3-04	0.3
Toyota Texas**	6-16-04	0.3
Kia Motors Georgia	6-20-07	0.45
Volkswagen, Tennessee	10-10-08	N/A
FCA Belvidere Assembly (Body shop only)	9-16-11	0.16 automated application and 0.25
		manual (monthly avg)
Hyundai Motor Alabama	6-12-12	0.3
Ford Kentucky Truck	2-19-14	0.3
Subaru of Indiana	5-19-14	0.38 lbs/gal
GM Delta Twp	5-9/2014	0.3
Tesla, Fremont California	7-9-15	Included in guidecoat limits for ovens
FCA SHAP (Bed only)	4-16-18	0.25
FCA WTAP	8-26-19	0.25 monthly average

Table 6.1 - Summary of Recent Sealer VOC BACT/LAER Determinations

* All of the above are BACT determinations except GM Lordstown and FCA WTAP.

** Combined sealers, adhesives and undercoat

The materials at JNAP are similar to other assembly plants using low VOC materials. For a portion of the paint shop sealers that are exposed to the sealer oven, the emissions from the oven are routed to one of two existing E-coat Oxidizers (Oxidizer B). Due to the fact that the majority of other sealers applied throughout the facility are applied at stations on the plant floor and emissions tend to be fugitive in nature, there is essentially no opportunity to implement further emission reduction techniques such as add-control for sealer application stations. Note that any sealer VOCs that are released in the E-coat or Topcoat ovens will be routed to a thermal oxidizer along with the other emissions released in the ovens. Based upon the above determinations, FCA has determined that

BACT for the body and paint shop sealers and adhesives is the use of low VOC materials and the FPI limits should not be revised as the existing sealer operations continue to meet BACT for VOCs.

6.1.2 E-Coat BACT

STEP 1: Identify All Control Technologies – E-coat

FCA recognizes that there are three key aspects to defining BACT for emission reductions from surface coating operations as presented below. The current JNAP E-coat system utilizes thermal oxidation on the E-Coat oven portion of emissions. Accordingly, the sections that follow address the appropriateness of oxidation on the oven and provides an analysis of utilizing VOC emission reduction techniques for the existing dip tank, which is presently not controlled.

Emission reduction technologies:

- 1) Coating Materials
- 2) Coating Application Methods
- 3) VOC Control

Each one of these is addressed below for the existing JNAP E-coat operations:

1) E-Coat Materials

Although E-coat emission levels are such that they are not considered significant or major, FCA has addressed E-coat in the BACT review process since the E-coat operation will be part of the analysis demonstrating that the existing FPI limits are appropriate and should be retained. For E-coat materials, low VOC waterborne materials are an industry standard and have been widely used across the U.S. FCA is not aware of any coating materials that would provide additional VOC reductions beyond those which are currently used in the industry. Although solvent borne coatings could be used in a dip tank like the E-coat operations, such materials evaporate much more rapidly than waterborne E-coat materials and therefore constant addition of solvent would likely be required, increasing emissions and likely impeding coating quality and consistency. Additionally, safety issues with the electro-deposition process prohibit solvent coatings from being viable for E-coat immersion. FCA is not aware of any other coatings available that would reduce VOC emissions further.

2) E-Coat Coating Application Methods

The electro-deposition process provides essentially 100% transfer efficiency of the coating particles (resin and pigment) in the E-coat materials. Through electrochemistry, particles migrate toward the vehicle body and are deposited onto the body surface, creating a strong bond between the coating and the body to provide a durable coating. Once the coating application deposition is completed, the body is rinsed in a succession of individual spray and/or immersion rinse stations. FCA did not identify any other application methods that could be implemented at JNAP that would provide a transfer efficiency greater than that of immersion and reduce VOC emissions.

3) VOC Control

Add-on controls reduce the amount of VOC emissions by either destruction or recovery with or without recycling of VOC emission in the exhaust streams. FCA identified the following as available add-on control technologies for the control of VOCs from the proposed E-coat operations as well as typical control efficiencies for VOCs:

- Thermal Oxidation (90-99%)
- Catalytic Oxidation (90-99%)
- Carbon Adsorption (90-95%)
- Condensation (50-85%)

FCA believes that condensation technology is not technically feasible for this application due to the high humidity associated with a water-based dip tank, and the dilute nature of the exhaust streams (as a result of low emissions from E-Coat materials). Furthermore, FCA is not aware of any automotive surface coating operations that have successfully utilized condensation controls on E-coat.

The two categories of add-on control devices typically used by the automobile and light-duty truck assembly coatings operations are: combustion (thermal or catalytic oxidation) and recovery (adsorption). While other types of control devices can be used to reduce VOC emissions, the following summary covers those control devices known to be used with automobile and light-duty truck surface coating operations: oxidation and hybrid systems (concentrator followed by an oxidizer).

Table 6.2 provides a summary of the RBLC and issued E-coat operation control technologies.

Source	Tank	Oven	Date	lbs/GACS*
Nissan North America	NA	Oxidation	4-4-01	0.13
GM Delta Assembly	Oxidation	Oxidation	9-26-01	0.04
GM- Lansing Craft Ctr.	Oxidation	Oxidation	4-2-02	0.04
Honda Manufacturing Alabama			10-18-02	0.13
GM Lansing Craft	Oxidation	Oxidation	2-11-03	0.04
Ford Michigan Truck	Oxidation	Oxidation	9-8-03	FPI Limit
_			(1-8-09)	
Ford Wixom Assembly	Oxidation	Oxidation	2-26-04	0.25
Toledo Supplier Park	Oxidation	Oxidation	09-07-04	0.04
Toyota Texas	NA	Oxidation	6-16-04	0.13
Kia Motors Georgia	NA	Oxidation	6-20-07	0.19
Volkswagen, Tennessee	NA	Oxidation	10-10-08	0.26
Hyundai, Alabama	NA	Oxidation	06-12-12	0.13
Ford Kentucky Truck	Oxidation	Oxidation	2-19-14	0.04
Subaru of Indiana	NA	Oxidation	5-19-14	1.15 lbs/gal
Tesla, Fremont California	Oxidation	Oxidation	7-9-15	1.42

Table 6.2 - Summary of Recent E-Coat VOC BACT/LAER Determinations

* The above are BACT or LAER determination results

NA - No controls identified

Oxidation destroys VOC emissions in an exhaust stream by exposing the stream to an oxidizing atmosphere at high temperatures. Oxidizers are typically used in the automobile and light-duty

truck surface coating industry to control bake oven exhaust emissions. Oxidizers may be of thermal or catalytic design and combust VOC-containing exhaust streams. Catalytic oxidizers are similar to thermal oxidizers but employ a catalyst to aid in the oxidation reaction. As a result, catalytic oxidizers operate at lower combustion temperatures relative to that required in thermal oxidizers. Both types of oxidizers generally utilize either regenerative or recuperative techniques to preheat inlet gas in order to decrease energy costs associated with high oxidation temperatures. They may also use primary or secondary heat recovery to reduce energy consumption. In general, oxidizers may achieve destruction efficiencies of greater than 95 percent as applied to coating application operations with high and constant concentrations of VOC.

Hybrid systems consist of a concentrator followed by an oxidizer. Hybrid systems are used in the automobile and light-duty truck surface coating industry to control spray booth exhaust emissions, most often exhaust from automated zones of the spray booth. The concentrator is typically a carbon or zeolite rotor. The concentrator reduces the volume and increases the VOC concentration of the inlet stream to the oxidizer.

STEP 2: Eliminate Technically Infeasible Options

As noted above, powder coatings and in general, spray application methods have been eliminated from this analysis due to the lack of a spray coating application that provides the coverage needed for corrosion protection at this stage in the vehicle body coating operation. Add-on condensation controls have also been eliminated due to the low exhaust concentrations from the E-coat operations.

STEP 3: Rank Remaining Control Technologies by Control Effectiveness

Of the remaining emission reduction technologies which are all add-on controls, the rankings are as follows:

- Thermal Oxidation (90-99%)
- Catalytic Oxidation (90-99%)
- Carbon Adsorption (90-95%)

Of the above control options, limited collateral environmental impacts are noted. Combustion of natural gas in thermal and catalytic oxidizers results in slight increases in combustion emissions, but carbon adsorption results in waste issues as well. FCA has determined that collateral issues do not obviate the consideration of the top three options.

STEP 4: Evaluate Most Effective Controls and Document Results

FCA currently relies on thermal oxidation for control of VOCs from the E-Coat oven. Since this is the most effective control in terms of efficiency, there is no need to demonstrate or document the results any further.

With regards to add-on controls for the Ecoat tank, FCA evaluated available options for the existing JNAP operation. The current thermal oxidizer used to abate the Ecoat oven also provides the heated air to dry the vehicles in the oven. The oven thermal oxidizer does not have the capacity to accommodate an increase in air flow from the tank exhaust and routing the moist tank air to the oven would tax the drying system and jeopardize energy efficiency. On this basis, FCA determined that it is not technically

feasible to rely on the existing control system for tank VOC emissions reductions and, therefore, the analysis requires the inclusion of a new oxidizer to realize such control.

In order to determine whether such an approach would constitute BACT for JNAP, FCA completed a cost analysis to determine the \$/ton value associated with a new thermal oxidizer (see Appendix H). The VOC input used in the cost analysis was determined by looking at the VOC emissions contribution from Ecoat relative to the total facility wide emissions. E-Coat contributes approximately 2.45% of the total VOC emissions. Using this same percentage (2.45%) in relation to the current FPI allowable VOC emission level of 1,085 tpy, E-coat's emissions available for control are 26.6 tons VOC/year. This value is considered conservative since it includes the total VOC emissions from the E-coat oven which are already controlled and would not be addressed with a new oxidizer. The BACT cost analysis indicates the annual \$/ton VOC control cost is \$13,630 which is considered cost prohibitive (see Appendix H).

STEP 5: Select BACT

For purposes of BACT and the existing E-coat operations, FCA reviewed available information related to the E-coat processes at numerous recently permitted automotive manufacturing facilities. All recently permitted E-coat operations identified were noted as utilizing water-borne immersion (vehicle dip) application methods. The low VOC waterborne material and the dip application method followed by oxidation of the oven (or the tank and oven emissions) and FCA did not identify other similar E-coat operations using different materials or application methods that would serve to reduce E-coat emissions further at JNAP.

Based upon the information in the included cost analysis and contained in Table 6.2, FCA has concluded that BACT for E-coat is the use of thermal oxidation to control VOCs from the E-coat oven and that the opportunity to control the tank emissions is cost prohibitive. Accordingly, the current FPI limit should not be adjusted as the current control profile reflects BACT for E-coat at JNAP.

6.1.3 Tutone (Topcoat) BACT

As described above, FCA will reactivate an existing but currently inactive tutone booth that will apply both basecoat and clearcoat to the roof portion of vehicles. The proposed booth will rely on VOC emission controls on both the booth and oven exhaust. Table 6.3 below provides a summary of the RBLC for topcoat operations as well as VOC emission limits and control technologies identified in various permits. Due to the limited number of tutone specific limits and the fact that tutone typically relies on the same basecoat and clearcoat technology employed by topcoat (it is typically considered part of topcoat in regulatory programs), FCA referred to the topcoat technologies and control profiles for this analysis.

STEP 1: Identify All Control Technologies

FCA recognizes that there are three key aspects to defining BACT for emission reductions control technologies from tutone surface coating operations as follows:

- 1) Coating Materials
- 2) Coating Application Methods
- 3) VOC Control

Each one of these is addressed below for tutone

1) Coating Materials

Through a review of the RBLC and recently issued permits for assembly plants, FCA has determined that evaluated topcoat (or tutone) materials have consisted of the following:

- Solvent Borne High Solids Basecoat and Clearcoat
- Solvent Borne Low Solids Basecoat and Clearcoat
- Water Borne Basecoat and Clearcoat
- Powder

2) Topcoat/tutone Application Methods

Application technologies for topcoat/tutone materials consist of the following:

- High Volume (HV) Electrostatics
- Low Volume (LV) Electrostatics
- HV Low Pressure
- LV Low Pressure
- Air atomized

The above application methods can be performed with either robotic or manual application methods. Coating technologies such as flow coating, dip coating, airless air spray, roll coating, and thin film atomized technologies have all proven to be technically infeasible for spray application of topcoat materials to automobiles and light duty trucks primarily due to market driven quality objectives.

3) Topcoat/Tutone Add-on Controls

Add-on controls available for topcoat/tutone booths include the following:

- Thermal Oxidation (90-99%)
- Catalytic Oxidation (90-99%)
- Carbon Adsorption (or VOC concentrators) (90-95%)
- Condensation (50-85%)

The following table provides a review of the recent topcoat BACT/LAER Determinations and the type of control technology for topcoat/tutone operations.

Table 0.5 - Summary of Recent Topcoat (Table) VOC Dire 1/Dirent Determinations				
Source	Date	Booth Control Technology	Oven Controls	Lbs VOC per GACS
Nissan North America - Mississippi (New topcoat booth in 2015)	4-4-01 (revised 1/14/15)	Concentrator & Oxidation on CC automatic sections	Oxidation	5.2
GM Delta Assembly - Michigan	9-26-01	Oxidation on CC automatic sections	Oxidation	5.42

Table 6.3 - Summary of Recent Topcoat (Tutone) VOC BACT/LAER Determinations

Source	Date	Booth Control	Oven	Lbs VOC per
		Technology	Controls	GACS
GM Grand River - Michigan	4-02	Concentrator & Oxidation on CC automatic sections	Oxidation	5.2
GM- Lansing Craft Ctr Michigan	4-2-02	Concentrator & Oxidation on CC automatic sections	Oxidation	6.6
Honda Manufacturing - Alabama	10-18-02	Oxidation on CC automatic sections	Oxidation	5.2
GM Lordstown – Ohio	2-12-04	Concentrator & Oxidation on CC automatic sections	Oxidation	6.07
Honda of America – Marysville, Ohio	2-26-04	Oxidation on CC automatics	Oxidation	8.00
Ford Wixom Assembly – Michigan (Closed)	2-26-04	Oxidation on CC automatics	Oxidation	5.29
Hyundai Motor - Alabama	3-23-04	Oxidation on CC automatic sections	Oxidation	5.2
Toyota – San Antonio Texas	6-21-04	Carbon followed by Oxidation on CC automatics	Oxidation	5.2
FCA Supplier Park - Toledo, Ohio	9-3-04	Oxidation on BC Flash Zones and CC automatics	Oxidation	5.42
GM Flint Assembly - Michigan	8-29-05	WB Basecoat/Oxidation on CC automatics	Oxidation	5.5
Nissan – Canton Mississippi	12-1-05	WB Basecoat/Oxidation on CC automatics	Oxidation	5.2
Volkswagen, Tennessee	10-10-08	WB Basecoat/Oxidation on CC automatics	Oxidation	5.2
Kia Motors Georgia	6-20-07	WB Basecoat/Oxidation on CC automatics	Oxidation	5.2
Hyundai Alabama	6-12-12	WB Basecoat/Oxidation on CC automatics	Oxidation	5.2
Ford Michigan Truck	1-8- 09/revised 2018	Solvent BC and CC/Oxidation on Booths/Ovens	Oxidation	FPI Limit
Ford Kentucky Truck	2-19/14	3-Wet – Oxidation on booths and ovens	Oxidation	3.53
Subaru Indiana	5-19-14	Oven Oxidation Only	Oxidation	10.96 lbs/gallon; 10.41 lbs/gal
Tesla Fremont California	7-9-15	Solvent BC&CC/Oxidation on booths and ovens	Oxidation	4.8 (combined primer and topcoat)
Ford Chicago Assembly	6-30-2017	Exterior automatics routed to oxidizer	Oxidation	12.0
FCA SHAP*	4-6-18	WB BC/Solvent CC Oxidation on Booths/Ovens	Oxidation	2.32
FCA Mack Avenue **	4-26-19	WB BC/Solvent CC Concentrators/RTO on booths	Oxidation	FPI Limit

Source	Date	Booth Control Technology	Oven Controls	Lbs VOC per GACS
FCA WTAP New Paint Shop**	8-26-19	WB BC/Solvent CC Concentrators/RTO on booths	Oxidation	3.53
FCA WTAP Refurbished Line 1**	8-26-19	Solvent BC/Solvent CC Concentrators/RTO on booths	Oxidation	3.53

* Application indicates controls on WB Booths for TACs compliance only and lbs/GACS value applies only to coating a truck bed, not the entire vehicle.

** Permitted sources currently under construction.

STEP 2: Eliminate Technically Infeasible Options

Materials

As noted above, FCA is proposing to rely on solvent borne basecoats and a solvent borne clearcoat in the tutone booth to maintain consistency with the materials and coating quality from the current JNAP coating operations. Based upon the proposed coating materials, FCA considered whether there were technically feasible lower emitting materials that could be used in the proposed tutone operations.

As described, FCA is proposing the use of a system which incorporates one or two basecoat colors and solvent borne clear coat. The reason this system is being proposed is because the topcoat operations in the existing paint shop and proposed tutone coating line must produce a vehicle coating quality that is consistent. In order to accomplish this objective, the booth structure, paint delivery/application system, air handling and booth set up must be relatively close to the same as the current coating application equipment. It should be noted that the use of powder guidecoat (powder anti-chip) in combination with the proposed tutone basecoat and clearcoat system are likely the lowest VOC content system being used with solvent borne technology. As a result of the above, no further consideration is given to coating material technology in this analysis.

Application Technologies

FCA is proposing to rely on robotically operated applicators with the majority being high volume electrostatics that includes some bell/bell technology. There are currently no plans for routine use of manual application to address cut-ins etc. (i.e., the booth will be entirely automated) except for emergency circumstances. For purposes of this analysis, this application method provides the greatest transfer efficiency (TE) of the available coating technologies within the automobile and light duty truck industry. It should be noted that specific transfer efficiency. Hence, this analysis did not attempt to identify actual percentages at other facilities due to the variance that occurs in TE over time and the limited application surface area for the tutone roof. Accordingly, there is no need to complete the remaining steps of the BACT analysis for coating application technology.

Add-on Controls

All of the add-on controls identified are technically feasible.

STEP 3: Rank Remaining Control Technologies by Control Effectiveness

As noted, the topcoat materials must be identical to the current paint shop topcoat materials, and the most efficient application methods, robotic electrostatics and bell technology, will be utilized. Hence, the only remaining step for ranking is related to the add-on controls. As noted above, thermal oxidation is considered the most efficient add-on control and the one that FCA is proposing for use on the proposed tutone operation. Emissions from the booths will be cascaded/recirculated and the exhaust will be directed to a concentrator followed by a thermal oxidizer. The tutone oven exhaust will be routed directly to an oxidizer.

STEP 4: Evaluate Most Effective Controls and Document Results

FCA will control the booth portions of the tutone application zone, the heated flash-off zones and tutone bake oven. Accordingly, since concentrator/thermal oxidation systems are the most efficient emission reduction technique available in terms of add-on controls, there is no need to consider BACT further for the tutone booth.

STEP 5: Select BACT

FCA is proposing to rely on VOC emission controls on the tutone line that are consistent with recently permitted solvent/solvent chemistry topcoat lines. FCA will operate tutone within the JNAP FPI-based VOC limits. The emission levels associated with the FPIs for other sources are generally not reflective of modifications such as the installation of a tutone line (which essentially relocates coating of the roof from the basecoat booth to the tutone line) and existing emission units. As a result, FCA relied on these permits for technology-based information as opposed to information related to performance and emission levels.

FCA believes that the most appropriate BACT demonstration is the use of controls on the tutone booth and oven which is planned for the proposed coating line followed by incorporation into the current FPI limit applicable to JNAP (i.e., FCA is not requesting an increase to the FPI limits). It should also be recognized that coating the roof in a separate tutone booth and eliminating the application of those coatings to the roof in the main color booths will result in a decrease in VOC emissions for the main topcoat portion of the operation.

6.1.4 Existing Topcoat Color Lines BACT

There are three existing topcoat Color lines at JNAP. Each spray booth relies on emission controls where bell applicators are used as well as VOC emission controls on the oven exhaust. For those portions of the spray booths that remain uncontrolled (the robotic zones that were formerly manual application zones), FCA evaluated whether additional emission reductions could be achieved through the use of add-on emission reduction technologies.

STEP 1: Identify All Control Technologies

FCA recognizes that there are three key aspects to defining BACT for emission reductions control technologies from the existing topcoat operations as follows:

- 1) Coating Materials
- 2) Coating Application Methods

3) VOC Control

Each one of these is addressed below for topcoat.

1) Topcoat Materials

Through a review of the RBLC and recently issued permits for assembly plants, FCA has determined that evaluated topcoat materials have consisted of the following:

- Solvent Borne High Solids Basecoat and Clearcoat
- Solvent Borne Low Solids Basecoat and Clearcoat
- Water Borne Basecoat and Clearcoat
- Powder

2) Topcoat Application Methods

Application technologies for topcoat materials consist of the following:

- High Volume (HV) Electrostatics
- Low Volume (LV) Electrostatics
- HV Low Pressure
- LV Low Pressure
- Air atomized

The above application methods can be done with either robotic or manual application methods. Coating technologies such as flow coating, dip coating, airless air spray, roll coating, and thin film atomized technologies have all proven to be technically infeasible for spray application of topcoat materials to automobiles and light duty trucks primarily due to market driven quality objectives.

3) Topcoat Add-on Controls

Add-on controls available for topcoat booths include the following:

- Thermal Oxidation (90-99%)
- Catalytic Oxidation (90-99%)
- Carbon Adsorption (or VOC concentrators) (90-95%)
- Condensation (50-85%)

STEP 2: Eliminate Technically Infeasible Options

Topcoat Materials

As noted above, FCA relies on solvent borne basecoats and a solvent borne clearcoat in the color booths at JNAP. This coating technology system is part of the overall design at JNAP and the paint shop is structured to accommodate the materials and coatings currently used in the paint shop. Based upon plans to retain the current coating system in the main color booths, emission reductions by converting

the basecoat portion of the topcoat system to a waterborne system would require a complete replacement of the booths with structures and materials that would accommodate waterborne coatings. As such, no further consideration is given to the topcoat materials planned for use in the existing Color lines as they are typical VOC content solvent borne materials.

Application Technologies

FCA relies on robotically operated applicators with the majority being high volume electrostatics that includes bell/bell technology. As noted, JNAP booths rely on robotic and reciprocating electrostatic bell applicators technology. FCA routinely updates coating applicators as coating quality and technology updates allow, for example, when technology issues warrant it (i.e., new software compatible systems are needed) or when improvements in efficiency can be realized. As part of the sustainment activities, FCA anticipates replacing the current coating applicators with what are anticipated to be more efficient applicators that rely on updated software systems. It should be noted that specific transfer efficiencies ("TE") are dynamic in that each vehicle configuration (e.g., new model years) and coating may have slightly different overall transfer efficiency. Hence, this analysis does not attempt to identify actual TE percentages at other facilities due to the variance that occurs in TE over time. Accordingly, there is no need to complete the remaining steps of the BACT analysis for coating application technology, as FCA employs equipment that is designed to yield surface coating's state of the art transfer efficiencies.

Add-on Controls

All of the add-on controls identified are technically feasible

STEP 3: Rank Remaining Control Technologies by Control Effectiveness

As noted, the topcoat materials in the existing booths will continue to use solvent borne technology and the most efficient application methods, robotic electrostatics and bell technology, will also be utilized. Therefore, the only remaining step for ranking is related to the add-on controls. Whether there is an effective method to increase the emission reduction potential of the existing systems such that BACT would dictate a change and the FPI limits would need to be adjusted is the basis for considering control of the booth sections that are currently uncontrolled.

FCA evaluated the viability of using the current exhaust system in the topcoat booth and the current emission control system (concentrators/oxidizers for booths and oxidizers for ovens) to control the robot zones of the existing booths. The large exhaust air flow rates from the JNAP booths lends itself to using the concentrator/oxidizer type of control, however the current system (both duct work and control equipment) do not have the capacity to accommodate the additional volume of air. In order to reduce these exhaust rates, the booths would require a complete reconfiguration to allow for recirculation of the air. Performing this reconfiguration would require a protracted production downtime, resulting in this option being so costly that FCA did not consider this option any further.

Therefore, controlling the robot zones of the booth exhaust directly with a new thermal oxidation is considered the most efficient in terms of control. Considering the large air volume, it is much more cost effective to concentrate the VOCs and then route a smaller portion of air to an oxidizer, similar to the current system. Accordingly, FCA considered this approach in Step 4 below.

STEP 4: Evaluate Most Effective Controls and Document Results

FCA evaluated the potential for routing the uncontrolled portions of the existing booth exhaust to VOC controls and determined that the costs associated with adding separate new controls would prove cost prohibitive. The analysis demonstrated costs in excess of \$17,091/ton of VOCs controlled (see Appendix H).

The costs analysis is specific to JNAP and what would be involved to ensure that the existing booth configurations and the exhaust could be directed to new control devices on the roof and near the topcoat booths. The analysis did not include production down time or other similar operational impact costs, even though such costs would be significant. The attached COST spreadsheets have been created for the scenario where the current uncontrolled booth exhaust is routed to a concentrator followed by an oxidizer. The capital costs included in the COST sheets are based upon the estimates specific to JNAP. The key criteria used in the cost analysis are as follows:

- The VOC emissions available for control were estimated to be 442 tpy
- The exhaust flow rate of the uncontrolled portion of the booth was 612,000 cfm
- A concentrator would be used to capture 90% of the VOCs and reduce air flow to an oxidizer to 10% of the total exhaust (612,000 cfm to 61,200 cfm)
- The oxidizer would be capable of 95% destruction of the VOCs from the concentrator (90% of the 442 tpy)
- Each control device and associated equipment would have a 20-year life

Based upon the information in the attached cost analysis and contained in Table 6.3 above, FCA has concluded that BACT for topcoat at JNAP is the continued use of concentrators and thermal oxidation as they are currently configured to control VOCs. Accordingly, the current FPI limit should not be adjusted as the current control profile reflects BACT for the existing topcoat operations at JNAP.

6.1.5 Purge/Clean BACT

FCA reviewed the various SIPS and state regulations with VOC emission limits for purge and cleaning operations. FCA did not identify a SIP limit that was more stringent that the limits contained within the various permits reviewed. Accordingly, Table 6.4 below provides a summary of the RBLC for purge/clean operations as well as VOC emission limits and control technologies identified in various permits.

Source	Date	Tons VOC per 1000	VOC Emission
		Vehicles*	Limit
GM Lansing GR Assembly	2-27-00	NA	127 tpy
GM Delta Assembly	9-26-01	0.55	161.9 tpy
Honda Manufacturing	10-18-02	NA	100 tpy
Alabama			
Toyota – Princeton, Indiana	6-27-03	1.85	836.3 tpy
GM Lordstown	2-12-04	0.53	266.7 tpy
Toyota San Antonio Texas	6-21-04	1.74	348.4 tpy
FCA Toledo Supplier Park	9-3-04	1.18	237.6 tpy

Table 6.4 - Summary of Recent Cleaning Solvent/Purge VOC BACT/LAER Determinations

Source	Date	Tons VOC per 1000	VOC Emission
		Vehicles*	Limit
Nissan North America	12-1-05	0.75	372.57 tpy
Kia Motors Georgia	6-20-07	0.6	NA
VW Tennessee	10-10-08	NA	391 tpy
Hyundai Alabama	6-12-12	NA	150 tpy
Ford Kentucky Truck	2-19-14	NA	NA
FCA SHAP**	4-6-18	0.2	82.6 tpy
Ford Michigan Truck	8-15-18	NA	FPI Limit

* Tons VOC emitted per 1,000 vehicles are calculated values of expected performance. Some have been evaluated as part of a facility's BACT review but none are included as permit limits except for the SHAP facility.

** The SHAP facility is a truck bed only paint shop

Tons VOC emitted per 1,000 vehicles are calculated values of expected performance. Some have been evaluated as part of a facility's BACT review, but few are included as permit limits. Based upon the information presented above, very recent permitting actions for solvent cleaning and purge operations (i.e., recent BACT analyses in Michigan) for automotive assembly operations have suggested that the review include an evaluation of emission rates that represent tons or pounds of VOC per vehicle (or per 1,000 vehicles) produced.

Due to the uniqueness of each facility and the associated cleaning operations, FCA has concluded that the most appropriate approach for solvent cleaning and purge used in the tutone operation is based upon the use of low VOC materials (where applicable), implementation of appropriate work practices (including waste management practices) and capture of solvent based purge followed by controls being operated when purging occurs.

FCA also has determined that a pound per vehicle value varies widely because the emissions from solvent cleaning operations are not directly dependent upon vehicle production. As mentioned earlier, relatively constant amounts of booth and equipment cleaning are required whether production volume is high or low. Assembly plants also use production down time to perform deep cleaning operations. For the tutone and topcoat operations, cleaning will occur even when the demand for tutone or non-tutone vehicles may be low. Historically, JNAP has VOC emissions in a range slightly less than 0.6 tons per 1000 vehicles. While the additional tutone booth will impact this value, the fact that the booth will essentially be 100% controlled will serve to reduce purge and cleaning emissions.

Accordingly, and as noted, the BACT for purge and solvent cleaning at JNAP is best defined as reclaiming solvent-based purge materials, where appropriate, and implementing work practice standards to minimize VOC emissions from solvent cleaning operations. FCA currently implements work practice standards to minimize emissions and capture purge for reclamation. Therefore, the FPI limits do not require adjustment as a result of the above BACT demonstration for purge and cleaning operations at JNAP.

6.1.6 Repair Operations

FCA reviewed the various SIPs and also the Control Techniques Guideline (CTG) for Automobile and Light Duty Trucks issued by USEPA under Section 183e of the Clean Air Act in September 2008 for existing sources. The SIPs reviewed and the CTG did not identify any emission reduction techniques

or limitations for repair beyond those identified in the RBLC or issued permits with specific limits for repair.

The relocated rapid repair operations are directly impacted by process quality assurance and quality control programs within the industry. FCA strives to minimize repairs and believes that the proposed relocated and updated rapid repair operation will allow for increased control over issues typically resulting in post-production repair. Nevertheless, VOC emissions from repair operations are dictated by the type of repair required (i.e., E-Coat repair vs topcoat) the size of repair, and the VOC content and usage rates of the repair materials. FCA did not identify any new technologies for repair operations that would lower VOC emissions beyond what is used in the current repair operations. Accordingly, the repairs to the vehicle must be identical in order to produce a quality coating on the vehicle planned for production. As repairs are a non-value added activity it is inherent that FCA will take efforts to minimize the number of repairs. BACT for repair operations is somewhat undefined, but the use of coatings containing no more than 4.8 lbs VOC/gallon has been established as BACT in many recent permits. The coatings used in the repair operations will have average VOC contents below the 4.8 lbs/gallon level and total emissions are expected to be less than one ton per year of VOCs. As a result, the current operation satisfies BACT and the current FPI VOC limits do not warrant adjustment to account for any changes to the rapid repair operation.

6.1.7 Fluid/Fuel Fill Operations

FCA reviewed the various SIPs and also the Control Techniques Guideline (CTG) for Automobile and Light Duty Trucks issued by USEPA under Section 183e of the Clean Air Act in September 2008 for existing sources. The SIPs reviewed and the CTG did not identify any more efficient emission reduction techniques or more stringent limitations for fluid fill than those identified in the RBLC or issued permits with specific limits for such operations.

BACT for fuel fill operations is based upon the production levels for each facility since introduction of gasoline into fuel storage tanks followed by dispensing into vehicles are a function of stage I (storage tank filling) and stage II (vehicle dispensing) VOC emission controls. The majority of permits reviewed for gasoline fill operations did not contain specific limits since the majority of these operations are similar and emissions are dependent upon production levels. All of the most recent permits noted that Stage II emission controls have been replaced by the use of on-board recycling and vapor recovery (ORVR) systems. ORVR systems typically provide 95% or greater control of VOCs and nearly 100% of vehicles produced in the U.S. now employ ORVR.

For gasoline storage tanks, BACT has been defined as the use of submerged fill and a vapor balance system. All of the permits reviewed suggested that this technology was being utilized and emission rates were not typically included (typically tank sizes were noted, but emission levels were not). FCA incorporates these technologies at JNAP for gasoline storage tanks as well as the ORVR system on the vehicles produced there. Based upon the above BACT demonstration for fuel filling operations, FCA believes that the FPI limits should not be reduced for fuel filling since the current system constitutes BACT.

6.1.8 Washer Fluids

FCA reviewed the various SIPs and also the Control Techniques Guideline (CTG) for Automobile and Light Duty Trucks issued by USEPA under Section 183e of the Clean Air Act in September 2008 for existing sources. The SIPs reviewed and the CTG did not identify any more efficient emission

reduction techniques or stringent limitations for washer fluid than those identified in the RBLC or issued permits with specific limits for such operations.

Similar to gasoline fill, the VOC emissions from use of windshield washer fluid fill are a function of the vehicle production level. These operations are typically not controlled but will employ submerged fill for tank filling operations. A review of the various permits suggests that VOC emission limits are typically not included in permits and that BACT or LAER for fluid fill operations is essentially the same across the industry since the fluid is typically methanol and must meet certain physical parameters. Based upon the filling of small containers on the vehicle, FCA did not identify any emission reduction techniques that would constitute BACT beyond what FCA currently uses at JNAP. Accordingly, adjustment of the FPI VOC limits are not warranted as a result of washer fluids.

6.1.9 TANKS

Emissions of VOCs from storage tanks for gasoline used in vehicles are dependent upon the physical characteristics of the tank, the location of the tank (i.e., which part of the country) and the proposed throughput. Accordingly, emissions from storage tanks are not typically included as part of a BACT demonstration other than for the proposed vapor balance/control systems and the RVP of the gasoline. FCA's emission estimates for such tanks is completed using USEPA's TANKS program. The existing storage tanks all rely upon submerged fill and vapor balance in accordance with MDEQ-AQD's Part 7 regulations. As a result, FCA believes that for tanks of a similar size and in a similar location, BACT is the reliance on the Part 7 requirements. No other technologies or emission reduction techniques were identified for storage tanks.

Other storage tanks are used for windshield washer fluid (methanol), brake fluid, engine coolant and refrigerants.

For the methanol storage, the same submerged fill and vapor balance system as gasoline is used. For those materials with low volatility (brake fluid and engine coolant) only submerged fill is relied upon since emissions will be minimal. Refrigerants are stored in pressurized vessels which do not result in emissions. FCA requires all delivery/shipments be completed with tankers that are equipped with Stage I vapor controls.

For purposes of the BACT analysis related to storage tanks other than for gasoline, the same concepts apply in that the materials are relatively standard across the industry and emission levels are dependent upon the location of the facility geographically and the weather conditions throughout the year. Emissions from these tanks are in the pounds per year range and therefore, are typically not addressed in permits with specific limits.

Accordingly, FCA believes that BACT is represented by the current tank systems and no adjustment to the FPI limits are warranted as a result of the tanks at JNAP.

6.1.10 Body Solvent Wipe

FCA reviewed the various SIPs and also the Control Techniques Guideline (CTG) for Automobile and Light Duty Trucks issued by USEPA under Section 183e of the Clean Air Act in September 2008 for existing sources. The SIPs reviewed and the CTG did not identify any limitations specific to solvent wiping beyond those identified in the RBLC or issued permits with specific limits for such operations.

The body solvent wiping process involves pre-moistened wipes which are containerized and provide for a single use method that minimizes evaporative losses of VOCs. These containers can be closed when not in use. Typically, solvent wiping occurs in uncontrolled booths or areas of the facility and as a result, essentially all VOCs are assumed to evaporate. It should be noted that there may be waste materials that are ultimately disposed of, but these materials are difficult to track and estimate. BACT for these operations are essentially the same across the industry and nearly all plants use containerized, single use wipes. FCA estimates wipe emissions at JNAP have historically been roughly 0.17-0.2 pounds per vehicle for solvent wipe. These materials are usually included in the purge and cleaning solvent category and could be considered part of the BACT demonstration identified for purge and cleaning materials as well. The sustainment operations and the addition of a tutone booth should have minimal impacts on the solvent wipe operations. Currently, FCA knows of no specific methods to reduce solvent wipe emissions beyond what is currently being done at the facility. Accordingly, BACT for solvent wipe does not warrant an adjustment of the current FPI levels.

6.1.11 Glass Installation

FCA reviewed the various SIPs and also the Control Techniques Guideline (CTG) for Automobile and Light Duty Trucks issued by USEPA under Section 183e of the Clean Air Act in September 2008 for existing sources. The SIPs reviewed and the CTG did not identify any more efficient emission reduction techniques or stringent limitations for glass installation than those identified in the RBLC or issued permits with specific limits for such operations.

Glass installation involves the use of primer and wiping materials prior to installation with adhesives. Note that due to safety requirements, these materials are standardized across the industry. For example, Michigan's Rule 621 states the following:

Four and nine-tenths pounds of volatile organic compounds emitted per gallon of coating, minus water, as applied for glass adhesion body primer. For the purpose of this subdivision, "glass adhesion body primer" means the prime coating that is applied to automobile or truck bodies as part of the glass bonding system.

Due to the safety requirements for glass in vehicles, the use of alternative materials is generally considered difficult if not impossible and the use of emission controls is not warranted due to the low level of VOC emissions from this operation. As a result, FCA determined that BACT for VOCs is represented by the current materials and operation and the FPI limits should not be adjusted based upon glass installation.

6.1.12 VOCs from Combustion Sources

VOCs generated from combustion sources are limited to products of combustion of natural gas. FCA did not identify any lower emitting fuels or burner configuration technologies that would reduce VOC emissions from the proposed and existing natural gas combustion sources, FCA has determined that the use of natural gas as fuel in these units constitutes BACT based upon USEPA's AP-42 Compilation of Air Emission Factors which is considered a widely acceptable emission rate for VOCs from natural gas combustion. The FPI limits should not be adjusted based upon the fact that there are no further opportunities to reduce VOC emissions from natural gas combustion.

6.2 BACT SUMMARY – JNAP SUSTAINMENT

The table below provides the results of the above VOC BACT analysis in summary format for the existing JNAP facility and the planned sustainment activities.

	1 able 0.5 -	DACT Summary	
Source	Application/Matls	Controls	BACT
Sealers	Robotic	Some sealers will	Current Low VOC
	pump/manual	be exposed to	Materials
	Applied	controls on abated	
	11	ovens	
Ecoat Tank	Immersion/Low	None	Current Materials and
	VOC waterborne		Application
	coatings		
Tutone (Topcoat)	High efficiency	BC/CC Booth to	Controls on Booth and
_	applicators	concentrator/RTO,	Ovens
		BC Flash, and	
		Oven to RTO	
Topcoat 1,2 and 3	High efficiency	Controls on recip.	Current Control
-	applicators	robotic zones in	Profile
		booths and ovens	
Purge/Clean	NA	Purge Capture and	Current Solvent
-		work practices	Management System
Repair	Manual	None	Current Profile
Fuel Fill/Tanks	ORVR/Submerged	ORVR/Submerged	Current
	fill and Vapor	fill and Vapor	ORVR/Submerged fill
	Balance	Balance	and Vapor Balance
Washer Fill	Standard Material	Submerged fill	NA
Glass Installation	Safety Based	None	Current Materials and
	Materials		Application
Process Fuel	NA	None	Natural Gas
Combustion			

Table 6.5 – BACT Summary

6.3 FLEXIBLE PERMIT BACT

As noted previously, the EGLE-AQD has requested that FCA amend the FPI to address the tutone VOC emission controls and include in the application a demonstration that the FPI limits are appropriate based upon the applicability of Rule 702 to both the new and existing emission sources. As provided in Table 6.6, FCA's proposed sustainment activities and the addition of the tutone operation include the use of VOC emission reduction techniques that are equivalent to BACT for the existing operations and the new operations on an emission unit specific basis.

The following section provides a demonstration as to the continued applicability of the current FPI limits from a facility wide basis. The current FPI emission limits applicable to the VOC sources at JNAP consist of a ton per year limit and a pound per job limit as noted below.

Table 6.6 – Existing FP1 Conditions					
Pollutant	Limit	Time Period/ Operating Scenario	Equipment		
1. VOC	1085.8 tpy	12-month rolling time period as	FG-FACILITY		
2. VOC	4.8 pounds per job	12-month rolling time period	FG-FACILITY		

Table 6.6 – Existing FPI Conditions

FCA evaluated the various FPIs from the most recent permits issued and the applicable annual and pounds VOC per job limits. The table below presents a summary of the various FPI limits FCA used for this comparison:

Source	Date	Pounds VOC/job	VOC Emission
			Limit
GM Lansing GR Assembly	3/13/2006	5.73	264.3 tpy
GM Orion Assembly	2/26/2010	4.6	748.5 tpy
GM Flint Assembly	3/31/2014	4.8	649.6 tpy
FCA Sterling Heights	1/4/2011	4.5	673.2 tpy
FCA Jefferson North	4/19/2010	4.8	1085.8 tpy
Ford Dearborn Assembly	1/24/2007	4.8	897 tpy
Ford Michigan Assembly	1/8/2009	4.8	903.0
Ford Flat Rock Assembly	11/23/2010	4.8	732.0
FCA Mack Assembly	4/26/2019	3.0	381.1 tpy

In addition, pound per job based limits were identified in the RBLC for the Toyota facility in Georgetown, Kentucky and include the following:

	10,000 00018		,
Source	Date	Pounds VOC/Job	VOC tpy Limit
Topcoat	11//26/2013	3.54	NA
E-Coat	11/26/2013	0.116	NA
Primer (Guidecoat)	11/26/2013	1.026	NA
Sealer	11/26/2013	0.8	NA
	Total	5.482	

Table 6.8 – Toyota Georgetown Permit Limits

From these limits, it can be concluded that the overall pound per job value at the Georgetown facility is greater than the most recently issued FPI levels discussed above. Only four of the VOC sources are identified for the Kentucky plant and the total (5.482 lbs/job) is above the existing FPI limits, which typically includes all of the main VOC operations within the paint shop (e.g., purge and cleaning solvents, etc.).

Finally, FCA also considered Plantwide Applicability Limits (PAL) Permits provided in the table below. As can be seem from the table, PAL permits are generally developed based upon historic baseline emission levels and are not necessarily driven by BACT or LAER. Hence, the limits in PAL permits when compared on a pound per job basis, are generally higher.

Source	Date	PAL VOC Limit	Equivalent lbs/job
Ford Kansas City Assembly	2009/renewed in 2018	2,353 tpy	NA
BMW South Carolina	9-8-2009	>324,000 jobs - 855 tpy	5.28

Table 6.9 - VOC PAL Summary

As can be seen from the above tables, the FPI VOC limits associated with the JNAP facility are in the range of those for existing sources. FCA recognizes that the most recent permitted facility is Mack Assembly and that the FPI limit was established at 3.0 pounds per vehicle. However, the Mack Assembly facility is still

under construction, and will be a water-based topcoat facility with two main, recirculated booths and full abatement of those booths. JNAP is a solvent borne topcoat facility with three main coating lines and VOC controls on a significant portion of the booths and ovens. The booth air flow configuration and the topcoat chemistry employed at Mack Assembly are not comparable to that of JNAP, and, therefore, the lbs/job limits are also not comparable (see Sec 6.1.4 for further details and discussions of JNAP's configuration).

FCA has also reviewed JNAP's past actual VOC emissions relative to the FPI limits. The highest VOC emissions levels, based on the 12-month rolling average (as reported in the facility's Quarterly Emissions Report) for the last four years are presented below:

Tuble 0.10 Tuble freedun Elimborens						
Year	Highest VOC (tpy)	% of limit	Highest VOC (lbs/job)	% of limit		
Current FPI Limit	1,085.8		4.8			
2015	693.6	63.9%	3.87	80.6%		
2016	733.3	67.5%	4.06	84.6%		
2017	809.5	74.5%	4.42	92.1%		
2018	809.3	74.5%	4.33	90.2%		

Table 6.10 – Past Actual Emissions

As can be seen from the above table, JNAP has operated within a reasonable margin of compliance relative to the FPI annual and pound per job limits.

Therefore, the above demonstration confirms that the existing FPI limits, with the existing and proposed emission reduction techniques, continue to demonstrate the best available control technology for the proposed sustainment and existing activities at JNAP.

6.4 VOLUNTARY ADJUSTMENT OF EXISTING FPI LIMITS

As concluded in the previous section, the current FPI limits do not require adjustment and are considered BACT for the operations at JNAP. However, FCA is proposing a voluntary reduction to the FPI limits. These new limits would be applicable 12 months after the completion of the sustainment project. FCA is proposing a reduction of the lb VOC /job and VOC tpy limit as noted below:

Table 6.11 – Proposed FPI Limits Adjustments						
Pollutant	Current Limit	Proposed Limit	Time Period/ Operating Scenario	Equipment		
1. VOC	1085.8 tpy	995.3 tpy	12-month rolling time period	FG-FACILITY		
2. VOC	4.8 lbs/job	4.4 lbs/job	12-month rolling time period	FG-FACILITY		

Similar to the FPI limit for VOCs, there are annual limits applicable to other criteria pollutants as well. As part of the analysis of the FPI limits, the past actual emissions for the various pollutants by calendar year were compared to the applicable FPI limit:

Table 6.12 – Past Actual Emissions						
Year	NOx (tpy)	CO (tpy)	PM_{10} (tpy)	SO_2 (tpy)		
Current FPI Limit	153.9	133.6	42.4	3.4		
2015	56.8	7.6	33.13*	0.4		
2016	53.1	8.9	32.5*	0.4		
2017	54.7	4.7	33.1	0.4		

Year	NOx (tpy)	CO (tpy)	PM ₁₀ (tpy)	SO_2 (tpy)
Current FPI Limit	153.9	133.6	42.4	3.4
2018	58.7	5.0	33.88*	0.6

* - FCA notes that the PM_{10} values noted in the MAERS database appear to contain erroneous information, as each entry is off by a factor of 10. The values noted in this table are correct and were submitted in JNAP's corresponding quarterly emissions report.

FCA has reviewed the FPI limits for the various criteria pollutants above and believes that certain pollutant allowable emission levels can also be reduced, while others should remain unchanged. FCA believes PM (applicable to both PM_{10} and $PM_{2.5}$) allowable emission levels should remain as they currently exist in the FPI since PM emissions are not expected to change substantially. For NOx and CO, FCA is proposing to voluntarily reduce both the allowable natural gas usage levels as well as allowable emission rates for these pollutants.

Natural gas usage is currently subject to a FPI based limit of 3,719.7 MM ft³/year. FCA is proposing to reduce the allowable natural gas combustion level to 3,000 MM ft³/year (a 20% reduction). FCA is, therefore, also proposing a commensurate 20% reduction in NOx and CO emission levels to 122.4 tons NOx per year and CO to 107.81 tpy.

FCA notes that any new or replacement natural gas combustion equipment will be equipped with low NOx burner technology, providing an additional basis for the proposed reduction in allowable NOx (also a non-attainment pollutant).

FCA has proposed adjusted levels as noted in the table below:

	NOx (tpy)	CO (tpy)	PM ₁₀ (tpy)	PM _{2.5} (tpy)	SO ₂ (tpy)	Natural Gas (MMCf/yr)
Current Limit	153.9	133.6	42.4	NA	3.4	3,719
Proposed Limit	122.4	107.81	42.4	42.4	3.4	3,000

Table 6.13 – Proposed Voluntary FPI Limits Adjustments
7.0 TOXIC AIR CONTAMINANTS AND DISPERSION MODELING

7.1 TOXIC - BEST AVAILABLE CONTROL TECHNOLOGY REQUIREMENTS

Michigan Rule 224 requires the application of Best Available Control Technology for toxics (T-BACT) for new or modified sources of toxic air contaminants for which a permit to install is required to be submitted. However, Rule 224(2)(c) indicates that the requirement for T-BACT does not apply to "*An emission unit or units which only emits toxic air contaminants that are particulates or VOCs and which is in compliance with BACT or LAER requirements for particulates and VOCs.*" As indicated in Section 5 of this document, the proposed new coating line will meet the requirements of LAER and BACT for VOC. Therefore, the T-BACT requirement has been satisfied since the TACs resulting from operation of the coating operations are VOCs as well.

7.2 HEALTH BASED SCREENING LEVEL REQUIREMENTS

Michigan Rule 225 states that new or modified sources of toxic air contaminants (TACs) which are subject to the requirements to obtain a PTI shall not cause or allow the emission of the toxic air contaminant from the proposed new or modified emission unit or units in excess of the maximum allowable emission rate which results in a predicted maximum ambient impact that is more than the initial threshold screening level (ITSL) or initial risk screening level (IRSL) or both.

Ambient air impacts are typically estimated using dispersion modeling. The recommended dispersion model in the USEPA's "Guideline on Air Quality Models" (Appendix W to 40 CFR 51) is AERMOD. Therefore, AERMOD version 19191 was used to estimate the maximum potential ambient air impact concentrations of TACs from the new processes at JNAP pursuant to Michigan Rule 225.

The impact concentrations calculated in AERMOD are directly proportional to the emission rate used in the model (i.e., if a process is modeled with an emission rate of 1 lb/hr, but the actual emission rate of the TAC is 0.2 lb/hr, then the actual impact concentration will be 1/5 of the predicted impact concentration). This proportionality was used to simplify the modeling process to predict the maximum impact concentrations of many TACs using fewer modeling runs.

The modeling for TACs associated with the proposed project was completed using a non-pollutant specific emission rate from each exhaust stack or source of 1 lb/hr. The maximum ambient air impact concentration of a particular TAC from each stack or source can then be determined by scaling these non-pollutant specific impacts by the maximum potential emission rate of the TAC from that stack or source. The maximum ambient air impacts of the TAC from each stack were then summed to determine a total maximum ambient air impact for the TAC. While this method reduces the number of modeling iterations needed, it is overly conservative as the sum of maximum impacts per stack will almost always be greater than the true maximum impact, due to the fact that the maximum impact for each stack is not likely to coincide geographically (i.e., at the same receptor) or temporally (i.e., at the same time) with every other stack.

Appendix C presents tables containing the calculated emissions for each TAC from each process associated with the proposed changes to JNAP. The emission rates were based upon the maximum potential usage rate of materials, maximum projected production rates, as well as the design of the oxidizer controls, where appropriate.

7.2.1 Stack Height and Building Downwash Consideration

The AERMOD dispersion model considers the influence of building structures on exhaust stack plumes. These conditions occur when the height of an exhaust stack is less than its Good Engineering Practice (GEP) stack height (generally 2.5 times the height of the influencing structure). A building will have an influence on an exhaust plume if the distance between the two is less than five times the height or width (whichever is smaller) of the building.

The location of the influencing structures at the existing facility relative to the proposed exhaust stacks associated with the proposed new operations were calculated using the USEPA Building Profile Input Program - Prime (BPIP-Prime). BPIP-Prime calculates the projected influence of building widths and heights depending upon wind direction for use in the building downwash algorithms of the AERMOD model.

Appendix D provides an electronic copy of the dispersion modeling files, including the BPIP-PRIME files.

7.2.2 Meteorological Data

The most recent year of available surface and upper air meteorological data (2018) recorded at the nearest National Weather Service (NWS) Station to the facility was used to calculate TAC impact concentrations. The surface air meteorological data was recorded at the Coleman A. Young International Airport (DET) located in Detroit, Michigan, station number 14822. The upper air data was recorded at NWS station in White Lake, Michigan.

The meteorological data used in the AERMOD calculations was based upon one-minute readings from the NWS Automated Surface Observing System (ASOS). Pursuant to EGLE procedure, the meteorological data was processed using the adjusted frictional velocity (u*) to improve model performance during periods of low winds/stable conditions. The meteorological data was downloaded from the EGLE Internet site.

7.2.3 Dispersion Coefficients

Dispersion modeling uses data that represents the dispersion of pollutants in rural or urban areas. The Guideline on Air Quality Models presents the procedures for determining the appropriate dispersion coefficients. The Guideline indicates that the selection of rural or urban dispersion coefficients should follow "one of the procedures suggested by Irwin⁷⁴ to determine whether the character of an area is primarily urban or rural." The Guideline goes on to indicate that "of the two methods, the land use procedure is considered more definitive". Therefore, the land use method will be used to determine the appropriate dispersion coefficients for use with the modeling.

The land use procedure is identified in 7.2.1.1(b)(i) of the Guideline and states:

"Classify the land use within the total area, A_o , circumscribed by a 3km radius circle about the source using the meteorological land use typing scheme proposed by Auer⁷⁵. If land use types 11, 12, C1, R2, and R3 account for 50 percent or more of A_o , use urban dispersion coefficients; otherwise, use appropriate rural dispersion coefficients."

The area circumscribed by a 3-km radius surrounding the JNAP facility is comprised of greater than 50% of land types I1, I2, C1, R2, and R3. Therefore, modeling options for urban areas was used in the dispersion modeling analyses.

7.2.4 Receptors

Receptor positions (i.e., locations where pollutant impact concentrations are calculated) were established based on the USEPA definition of ambient air, that is, "that portion of the atmosphere, external to buildings, to which the general public has access." It is the USEPA's policy that the portion of air exempt from being considered ambient air is that which is owned or controlled by the source, where the source employs measures, which may include physical barriers, that are effective in precluding access to the land by the general public. JNAP precludes access to the facility through the use of fences, surveillance, and twenty four-hour security personnel.

Based on the USEPA definition of ambient air, an initial set of receptors with spacing of approximately 25 meters was placed along fence and/or property lines of the facility and extended to 50 meters beyond the fence line. To ensure that the locations of the maximum ambient air impact concentrations were identified, an additional receptor grid with a spacing of 100 meters, extending to 400 meters beyond the fences were utilized.

The location of the calculated air pollutant impact concentrations are expressed in Universal Transverse Mercator (UTM) coordinates.

7.2.5 Terrain Elevation

The AERMOD dispersion model is capable of accounting for terrain elevation when calculating impact concentrations. To ensure that the results of the dispersion modeling analysis were as accurate as possible, terrain elevations were included in this modeling analysis. The elevations were based upon Digital Elevation Model (DEM) terrain data gathered by the United States Geological Survey (USGS). The DEM data was obtained from the USGS's National Elevation Dataset which can be accessed via the internet and the 'National Map Viewer'.

7.2.6 Dispersion Modeling Results

Table C-7 in Appendix C presents the maximum ground-level TAC impact concentrations from the proposed operations.

As indicated in the table, the predicted ambient air impact concentrations of TACs are below the applicable Michigan Rule 225 thresholds.

8.0 CRITERIA POLLUTANT EMISSIONS IMPACT ANALYSIS

Construction or modification of major sources resulting in a proposed potential emission increase of criteria pollutants greater than corresponding significance levels must demonstrate compliance with both PSD increments and the NAAQS. The existing JNAP facility is a major source of VOCs, and as indicated in Section 3 of this document, the proposed operations will not result in a significant increase in potential emissions of VOCs. Nevertheless, the area where JNAP is located is considered an ozone non-attainment area (VOC and NOx as precursors), so FCA completed the MERPs analysis below as part of this application to demonstrate the ozone impact.

8.1 OZONE IMPACT ANALYSIS

Current USEPA guidance respective to addressing impacts of single source emissions on ground level ozone are based upon a two-tier approach. The first tier is based upon the use of technically credible relationships between emissions of precursors (i.e., VOC) and ambient impacts based upon existing modeling results or studies. The second tier, when necessary, involves a case by case application of chemical transport modeling (e.g., Lagrangian models or Eulerian grid models).

Tier 1 demonstrations are typically based upon Modeled Emission Rates for Precursors (MERP). Per US EPA guidance, a MERP describes an emission rate of a precursor that is expected to result in a change in the ambient pollutant that would be less than a specific critical air quality threshold (i.e., the Significant Impact Level, or SIL). For ozone, that threshold is 1 ppb. MERP values are expressed in tons per year and are derived via the following equation:

 $MERP = (Applicable SIL) \times \frac{(Modeled \ emission \ rate \ from \ hypothetical \ source)}{(Modeled \ ambient \ impact \ from \ hypothetical \ source)}$

MERPs are based upon geographical location, which take into account the area's sensitivity to precursor emissions and regional or local atmospheric conditions. Based upon a review of the data provided in US EPAs "Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and $PM_{2.5}$ under the PSD Permitting Program", FCA believes that the most representative source is a low-level source located in Macomb Co., Michigan. The ozone impacts and associated emission rates of precursors VOC and NO_x respective to the representative source are:

Precursor	Emission Rate (tpy)	Impact (ppb)
VOC	500	0.251
NO _X	500	0.941

Based upon the equation above, the MERPs for VOC and NO_X are:

VOC MERP =
$$(1 \, ppb) \times \frac{(500 \, tpy)}{(0.251 \, ppb)} = 1,992 \, tpy$$

$$NOx MERP = (1 ppb) \times \frac{(500 tpy)}{(0.941 ppb)} = 531 tpy$$

As indicated in Section 3 of this document, the maximum potential emission rates of VOC and NO_X from the proposed project are 31.36 and 19.49 tpy, respectively. Each of these values are well below the MERP

for their respective pollutants. Additionally, the sum of the ratios of the proposed emissions to the MERPs is well below 1.0:

VOC MERP Ratio = $\frac{(32.18 tpy)}{(1,992 tpy)} = 0.016$

NOx MERP Ratio $= \frac{(19.49 tpy)}{(531 tpy)} = 0.04$

Combined MERP Ratio = 0.016 + 0.04 = 0.056

The sum of VOC and NO_X MERP ratios less than 1.0 indicates that the combined emissions will not result in emissions that will cause or contribute to a violation of the ozone NAAQS.

8.2 MINOR SOURCE MODELING POLICY – AQD 22

Construction or modification of major sources resulting in a proposed potential emission increase of criteria pollutants greater than corresponding significance levels must demonstrate compliance with both PSD increments and the NAAQS. As indicated in Section 3 of this document, the proposed modifications will result in emissions increases less than their respective significance levels for all criteria pollutants. Therefore, the changes are not subject to criteria pollutant modeling pursuant to federal NSR.

However, EGLE-AQD makes a determination on whether emissions from such projects (i.e., minor modifications) will interfere with the NAAQS or PSD increments for other criteria pollutants. EGLE-AQD Policy and Procedure document number AQD-22 provides guidance for the AQD to assist in making this determination, and whether dispersion modeling of a minor source or minor modification should be required.

Table 1 of AQD-22 applies to emissions of NO_X, SO₂, and PM₁₀ NAAQS and increment. For SO₂, the proposed increase in emissions will be below 25% of the SER, indicating that modeling is not required, regardless of the stack parameters associated with the emission unit.

Table 2 of AQD-22 indicates that for emission sources of CO less than the SER, no impact analysis is required, regardless of stack parameters. As noted previously, the project's CO emissions are less than the SER. Therefore, no analysis is required.

EGLE-AQD has requested that a quantitative dispersion modeling analysis be completed for the project for both NO₂ and PM_{2.5}, pursuant to the AQD-022 modeling policy and standard USEPA modeling guidance for regulated pollutants.

8.2.1 NO_X Specific Modeling Parameters

EPA guidance for modeling of NO₂ describes three tiers of analysis. Tier 1 assumes that 100% of the NO_x emitted from sources is converted to NO₂. Tier 2 methods include the use of an ambient ratio, whereby a percentage of the NO_x is said to be converted to NO₂. This is either 80% for the original ambient ration method, or a percentage from the Ambient Ratio Method 2 (ARM2) which is based upon NO_x and NO₂ data from the EPA's Air Quality System. Tier 3 analyses use either the Ozone Limiting Method (OLM) or the Plume Volume Molar Ratio Method (PVMRM) which take into account the effect of the ratio of NO_x to NO₂ in the exhaust stack of a process, as well as the ground level ozone concentration's role in the conversion of NO_x to NO₂.

To avoid overly conservative impact predictions, a Tier 3 analysis for the evaluation of NO₂ impacts from the proposed changes to JNAP was completed using PVMRM.

As indicated above, there are additional variables taken into account when completing an impact analysis using PVMRM. The first is the ground level ozone concentration. The ozone concentration values can be entered as an annual value (i.e., assumes the same hourly value for each hour of the year), or it can be varied by time of day, season, or even each hour for each year of meteorological data evaluated.

Based upon discussions with the EGLE, measured hourly ground level ozone values were incorporated into the PVMRM modeling analysis. The values used were recorded at the nearest EPA monitor (number 26163019) located on 7 Mile Road in Detroit. The values were recorded from 2014 through 2018 and match the 5-year meteorological data set used for the NO_X modeling.

Another variable specific to Tier 3 NO_X modeling is the ratio of NO_2 to NO_X found in the exhaust stack of the process, known as the 'in stack ratio' (ISR). To determine an appropriate ISR for the proposed JNAP facility, the EPA Support for Regulatory Atmospheric Modeling (SCRAM) NO_2/NO_X ISR Database was reviewed.

The ISR Database contains actual measured NO₂ to NO_x ratios for a variety of sources, submitted via a formal collection process initiated by the Office of Air Quality Planning and Standards (OAQPS) as well as data collected by various regional, state, and local air permitting offices prior to the formal OAQPS collection process. FCA identified information on ISR for seven different processes similar to the proposed combustion units at JNAP (i.e., natural gas fired ASH, low NO_x technology, no post combustion controls). Some of these sources contained many test values, while others had only a few. The average ISR values from these tests range from a low of 0.068 to a high of 0.155. The individual hourly ISR from these tests range from a low of 0.0198 to a high of 0.1711. The average of all the tests combined is 0.0642. FCA conservatively set the ISR for the JNAP to 0.1 based upon review of the available data.

8.2.2 Meteorological Data

As recommended by the Guideline, five years of meteorological data was used for the NO_X and PM_{2.5} modeling analysis. The meteorological data was recorded at Station IDs 14822 and 4830. As indicated above, the data was recorded from 2014-2018.

The raw meteorological data measurements are processed using AERMET. One of the variables that is calculated by AERMET is friction velocity (u*, or u-star) which is used in turn to calculate other variables such as mixing height and initial horizontal and vertical dispersion. It has been determined that during periods of low wind speeds, the performance of AERMOD could be improved. Accordingly, optional meteorological data incorporating the modified u-star values was used. The meteorological data was processed by the MDEGLE.

8.2.3 NO_X Annual NAAQS

In addition to using Tier 3 modeling to compare the ambient air impacts of NO_2 to the 1-hour NO_2 NAAQS, dispersion modeling using default AERMOD settings was completed for comparison to the annual NO_2 NAAQS.

8.2.4 Single Source NO_X and PM_{2.5} Modeling Results

The Significant Impact Level (SIL) for NO₂ is 7.5 μ g/m³ for the 1-hour standard and is 1 μ g/m³ for the annual standard. The SIL for PM_{2.5} is 1.2 μ g/m³ for the 24-hour standard and 0.2 μ g/m³ or the annual standard. Sources with maximum impacts below the SIL are said to not cause or contribute to predicted exceedances of the NAAQS. The table below presents the results of the NO_X and PM_{2.5} modeling and shows that the maximum impact for certain averaging periods are above their respective SILs. Therefore, a cumulative modeling analysis was required, and is discussed in the following section.

Pollutant	Averaging Period	SIL (µg/m ³)	Project Impacts (μg/m ³)
NO	1-hr	7.5	59.8
NO_2	Annual	1.0	1.61
DM	24-hr	1.2	4.31
F 1 V1 2.5	Annual	0.2	0.94

Table 8.1 - NO_x and PM_{2.5} Impacts

The area of significant impact for both NO₂ and PM_{2.5} from the proposed tutone project is localized to an area no more the 860m and 465m, respectively. Figures 8-1 and 8-2 show the area of significant impact for NO₂ and PM_{2.5}. Appendix D provides an electronic copy of the dispersion modeling files associated with the NO_X and PM_{2.5} analyses.

8.2.5 Cumulative Modeling

Because the maximum impacts of NO_2 and $PM_{2.5}$ from the proposed processes at JNAP are greater than the applicable SILs, cumulative modeling analyses, which include not only the proposed project, but also other nearby sources of applicable criteria pollutants, as well as a measured ambient background concentration was completed.

As with the single source analysis described above, the cumulative modeling analysis was completed using Tier 3 PVMRM and measured hourly ground level ozone concentrations for NO_2 . The NO_2/NO_X ISR for JNAP was maintained at 0.1.

8.2.5.1 Ambient Background

For a cumulative modeling analysis and comparison to the NAAQS, a measured ambient background concentration is included. In the absence of site-specific data, background concentrations are typically obtained from local monitoring sites. The nearest monitor that has been operating and recording ambient NO_2 and $PM_{2.5}$ concentrations for at least three years is located on East 7 Mile Road in Detroit (station ID 26163019).

The average of the most recent three years (2016-2018) of measurements indicates an ambient 1hr concentration of NO₂ of 79.8 μ g/m³. For PM_{2.5}, the monitor averages are 19.7 μ g/m³ for the 24-hour averaging time, and 8.1 μ g/m³ for the annual averaging time. These background concentrations were included in the cumulative modeling analyses for comparison to the NAAQS.

8.2.5.2 Nearby Sources of NO2 and PM2.5

In addition to the potential emissions from the proposed source and ambient background, the cumulative modeling analysis must include actual emissions from other nearby sources of the regulated

pollutant. The term 'nearby' is not defined in the Guideline, or federal regulations. This is by design, as which sources should be included in a NAAQS modeling demonstration is determined on a case by case basis by the reviewing authority. In general, off-site sources whose emissions result in a significant impact gradient within the Significant Impact Area of subject facility are included.

Michigan Rule R336.1240 requires modeling demonstrations for comparison to the NAAQS and PSD Increments be made in accordance with the procedures in 40 CFR51.160 and Appendix W to 40CFR51, Guideline on Air Quality Models (or the "Guideline") which are adopted by reference in Michigan Rule R336.1902. Therefore, emissions from nearby sources of NO₂ and PM_{2.5} were incorporated in accordance with the process presented in the Guideline.

Guideline Section 8.2.2 Requirements indicates that "For purposes of demonstrating compliance in a PSD assessment, the regulatory modeling of inert pollutants shall use the emission input data shown in Table 8-2 for short and long-term NAAQS." Table 8.2 indicates that the term "nearby" includes existing sources at the facility that are not affected by the modification and indicates that emissions of nearby sources be based upon temporally representative emissions when actually operating, reflective of the most recent two years. In addition, on August 3, 2017, the US EPA's, Office of Air Quality Planning & Standards presented guidance in the form of a webinar entitled "Appendix W - Section 8, Modeling Domain, Source Data and Background Concentrations". The content of that presentation includes an explanation stating that: "For the 'few' nearby sources to be explicitly modeled, typical/representative actual emissions (adjusted by operating level) should be used." FCA included the nearby sources in the modeling consistent with the Guideline's 8.2.2 Requirements and Table 8-2 instructions.

The existing sources of NO_X and $PM_{2.5}$ at JNAP that will not be affected by the proposed sustainment and tutone project include general building heat, existing boiler operations, and existing coating operations.

Temporally representative emissions of NO_x and PM_{2.5} from natural gas combustion related to general building heat was determined based upon actual natural gas usage over the most recent two years, as well as the actual hours that building heat was utilized. Since the hours of operation of space heating is not tracked directly, it was determined based upon the hours during which the outside ambient temperature falls below 65 °F (an established metric used in the energy/heating industry). In order to determine the actual hours of operation of the heating units, FCA analyzed meteorological data for the most recent two years of the nearest NWS station (DET Station 14822). This data (actual fuel consumption and heating hours) was used to determine the actual operating level (MMft³/hr) for the building heat.

Appendix H provides the calculations of both the heating hours based upon meteorological data, and the temporally representative emission rates of the building heat for JNAP.

For each of the four existing boilers at the JNAP powerhouse, fuel usage data (natural gas) is available. Since the operation data is based upon daily use (rather than hourly use), FCA conservatively used the 75th percentile of daily actual operating capacity to calculate a temporally representative hourly emission rate from each existing boiler."

The remainder of emissions from existing processes at JNAP are tied directly to the production rate (e.g., $PM_{2.5}$ emissions from existing topcoat operations are directly related to production). Therefore, temporally representative emissions from these processes were based upon the actual emissions from the most recent two years as well as actual production hours.

The emissions from the proposed tutone coating line, as well as other new equipment associated with the proposed changes to the JNAP facility (e.g., natural gas combustion space heaters) were included in the modeling analyses based upon proposed maximum allowable emissions. Since many of the processes at MAP were recently permitted, these nearby processes were also incorporated into the modeling analyses based upon permitted capacity.

The building space heat at MAP, which is located directly north of the JNAP facility, is the only existing process at that nearby facility that will be incorporated into the modeling based upon temporally representative actual emissions. The emission rates will be based upon actual natural gas usage rates and ambient temperature as described above. Appendix H also provides calculations of temporally representative emission rates for the existing building heat at MAP.

8.2.5.3 Secondarily Formed PM_{2.5}

In addition to directly emitted $PM_{2.5}$, the emissions of other pollutants (e.g., NO_X and SO_2) have the potential to act as precursors for the formation of secondary $PM_{2.5}$.

The combined NO_X and SO₂ emission rates from the proposed sustainment and tutone operations will be well below their respective SERs of 40 TPY. U.S EPA's Guidance for $PM_{2.5}$ Permit Modeling (EPA-454/B-14-001) indicates that for instances where a source has direct emissions exceeding the SER, but precursor NO_X and SO₂ emissions are below the SERs, only direct emissions need to be evaluated. FCA believes that due to limited precursor emissions, secondarily formed $PM_{2.5}$ from the proposed operations will have little to no effect on ambient air quality, and that measured $PM_{2.5}$ monitor values will sufficiently account for secondarily formed $PM_{2.5}$ in the area.

8.2.5.4 Results of Cumulative NO2 and PM2.5 Modeling

As presented in the table below, emissions from the proposed JNAP changes, in conjunction with emissions from nearby sources and a measured ambient background concentration result in ambient air impacts less than the applicable NAAQS.

Pollutant	Averaging Period	Project Impacts (µg/m ³)	Ambient Background (µg/m ³)	Total * Impact (μg/m ³)	NAAQS (µg/m³)
NO.	Annual	1.61	19.2	30.29	100
NO_2	1 hr	59.8	79.6	176.1	188
DM	Annual	0.94	8.1	10.8	12
P1N12.5	24 hr	4.31	19.2	33.2	35

Table 8.2 - Cumulative NO_x Impacts and NAAQS

*Includes nearby source impacts

9.0 ADDITIONAL IMPACT ANALYSES

In accordance with AQD-022, the impacts of air, ground and water pollution on soils, vegetation and visibility caused by an increase in emissions of any regulated pollutant from the source and associated growth must be assessed. This section presents an analysis of the anticipated impact the JNAP sustainment activity's air pollutant emissions and growth are likely to have to the area's soil, vegetation, and visibility.

9.1 CONSTRUCTION AND GROWTH IMPACTS

The construction activities that will be performed at the plant are not anticipated to have any adverse effects on human health or welfare. The addition of the new equipment (e.g., tutone operations) at the plant should not result in any noticeable residential growth in the area. Commercial growth is anticipated to occur at a gradual rate in the future.

9.2 IMPACT ON SOIL AND VEGETATION

Predicted concentrations of criteria pollutants resulting from the proposed project do not cause or contribute to a violation of applicable NAAQS, and the MERPs demonstration indicates no significant impact to ozone concentrations. Thus, no impact on local or regional soil and vegetation is anticipated to occur from this project.

9.3 ANALYSIS OF THREATENED AND ENDANGERED SPECIES

The threatened and endangered species in Wayne County, Michigan are typically found in small stream corridors with well-developed riparian woods and upland forests. The activities to be performed at the JNAP location is not anticipated to change air quality in the areas typically occupied by these endangered species. As such, no adverse impacts are anticipated to occur to the threatened and endangered species.

9.4 IMPACT ON VISIBILITY – CLASS I AREAS

Assessment of the potential impact to visibility (regional haze analysis) is required if the source is located within 100 km of a Class I area. An evaluation may be requested if the source is within 200 km of a Class I area. The nearest Class I Area to the existing JNAP site is the Seney Wildlife Refuge which is greater than 200 kilometers north of the Southeast Michigan area. It is anticipated that impacts (concentrations and visibility) at this Class I Area will not be significant because the distance between the project site and the wildlife refuge is greater than 200 kilometers. In addition, the traditional air pollutants that affect visibility are sulfates, nitrates and particulates. The sustainment activities being proposed by FCA will not result in a significant emission increase of these visibility impairment air pollutants.

10.0 CONCLUSION

FCA is requesting that a PTI be issued to allow for implementation of the described sustainment activities at the JNAP facility. FCA has developed emission estimates and a regulatory analysis that supports the incorporation of the new tutone operation and the proposed VOC control system into the existing FPI applicable to the JNAP facility. The FPI levels can be retained based upon the BACT analysis for both new and existing sources of VOCs and the estimated annual emission levels. The proposed changes are also supported by an appropriate demonstration that the facility will comply with the provisions of State and Federal air quality regulations. Although the FPI limits are appropriate as they currently exist, FCA is proposing adjustments to the FPI limits such that the allowable emission levels will be reduced for the non-attainment pollutants of VOC and NOx, and for CO. FCA is also proposing a reduction in the allowable natural gas consumption amount.

FIGURES

Figure 1 - FCA JNAP Tutone Project Significant Impact Area – NO2 March 2020

Figure 2 - FCA JNAP Tutone Project Significant Impact Area – PM_{2.5} March 2020

APPENDIX A

PERMIT TO INSTALL APPLICATION FORM

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY - AIR QUALITY DIVISION **PERMIT TO INSTALL APPLICATION**

For authority to install, construct, reconstruct, relocate, or modify process, fuel-burning or refuse burning equipment and/or control equipment. Permits to install are required by administrative rules pursuant to Section 5505 of 1994 PA 451, as

FOR DEQ USE APPLICATION NUMBER

Please type or print clearly. The "Application Instructions" and "Information Required for an Administratively Complete Permit to Install Application" are available on the Air Quality Division (AQD) Permit Web Page at http://www.deq.state.mi.us/aps. Please call the AQD at 517-373-7023 if you have not been contacted within 15 days of your application submittal.

1. FACILITY CODES: State Registration Number (SRN) and North American In	dustry Classifi	cation System (NAICS)	
SRN N 2 1 5 5 NAICS			
2. APPLICANT NAME: (Business License Name of Corporation, Partnership, Ir FCA US LLC	idividual Owne	r, Government Agency)	u .
3. APPLICANT ADDRESS: (Number and Street)		MAIL CODE:	(i
CITY: (City, Village or Township)	TATE	ZIP CODE:	COUNTY:
Auburn Hills	MI	48326	Oakland
4. EQUIPMENT OR PROCESS LOCATION: (Number and Street if different the 2101 Conner Avenue	nan Item 3)		
CITY: (City, Village or Township) Detroit		ZIP CODE : 48215	COUNTY: Wayne
5. GENERAL NATURE OF BUSINESS; Automobile and Light Duty Truck Manufact	uring		
6. EQUIPMENT OR PROCESS DESCRIPTION: (A Description MUST Be Prov	ided Here, Inc	lude Emission Unit IDs. Attac	h additional sheets if necessary; number and
The Jefferson North Assembly Plant will	undergo	sustainment act	ivities which will
include refurbishment of certain equipme	nt and .	adding a new tut	one booth/oven and
activities and the existing Flexible Per	mitting	Initiative (FPI	applicable to the
facility.	2		
7. REASON FOR APPLICATION: (Check all that apply.)			
INSTALLATION / CONSTRUCTION OF NEW EQUIPMENT OR PROC	ESS		
OTHER – DESCRIBE	EQUIPMENT	UR PROCESS - DATE INST	ALLED:
8. IF THE EQUIPMENT OR PROCESS THAT WILL BE COVERED BY THIS PE LIST THE PTI NUMBER(S):	ERMIT TO INS	TALL (PTI) IS CURRENTLY (COVERED BY ANY ACTIVE PERMITS,
9. DOES THIS FACILITY HAVE AN EXISTING RENEWABLE OPERATING PE	RMIT (ROP)?	NOT APPLICABLE	
PENDING APPLICATION OR ROP NUMBER: MI-ROP-N2155-20)17		
10. AUTHORIZED EMPLOYEE: Tyree Minner	TITLE: Plan	t Manager	PHONE NUMBER: (Include Area Code) 313-252-6599
SIGNATURE: Your Manual	DATE:	2-23-20	E-MAIL ADDRESS: Tyree.Minner@fcagroup
11. CONTACT: (If different than Authorized Employee, The person to contact v Sandra Walker	vith questions	regarding this application)	PHONE NUMBER: (Include Area Code) 248-512-1143
CONTACT AFFILIATION: FCA Air Compliance Engineer	E-MAIL Sand	ADDRESS ra.Walker@fcagro	pup.com
12. IS THE CONTACT PERSON AUTHORIZED TO NEGOTIATE THE TERMS	AND CONDIT	IONS OF THE PERMIT TO IN	ISTALL? XES NO
5 FOR DEQ USE ONL	Y - DO NOT	WRITE BELOW	
DATE OF RECEIPT OF ALL INFORMATION REQUIRED BY RULE 203:			
DATE PERMIT TO INSTALL APPROVED:	SIGNATUR	Ξ:	
DATE APPLICATION / PTI VOIDED:	SIGNATUR	Ξ:	
DATE APPLICATION DENIED:	SIGNATUR	 E:	
A PERMIT CERTIFICATE WILL BE ISSUE	D UPON AP	PROVAL OF A PERMIT TO	DINSTALL
			EQP 5615E (Bev. 09/2006

APPENDIX B

EMISSION CALCULATIONS

Criteria Pollutant Emission Calculations FCA JNAP Sustainment - March 2020

Production	163800 veh/yr Emission Unit		VOCs (TPY)
	Tutone		20.9
	Rapid Repair		0.86
	Tutone Purge/Clean		7.7
	Natural Gas	_	2.81
		Subtotal:	32.18

Reduction of BC&CC in Color 10.07

Total net change:

22.11 tpy

	Coating Usage ³	١	/OC (lbs/gal) ⁴	TE ⁶		"OSL" % Car	ryover @100%TE	1
Coating Family	Gals/vehicle	Formula	Analytical	%	Booth	"Observation"	Flash-off Zone	Bake Oven
Basecoat (black DX8)	0.153	3.74	4.14	71.9%	81.4%	5.6%	5.3%	7.7%
Clearcoat	0.191	3.70	3.91	77.5%	66.7%	8.8%	0.0%	24.5%

	Capture Efficiency (%)					Control Efficiency (%) RTO ²				Control Efficiency (%) Concentrator				
	Booth	"Observation"	Flash-off	Oven	Booth	"Observation"	Flash-off	Oven	Booth	"Observation"	Flash-off	Oven		
New Paintshop														
Basecoat	100%	100%	100%	100%	95.0%	0.0%	95.0%	95.0%	90.0%	0.0%	90.0%	0.0%		
Clearcoat	100%	100%	100%	100%	95.0%	0.0%	0.0%	95.0%	90.0%	0.0%	90.0%	0.0%		

Production Rate (Jobs/year)⁵ 170,352

	Coating	VOC Generated (lbs)						VOC	Controlled (lbs)			VOC Emitted (lbs)				VOC (lbs)	VOC (tons)		
													Booth-	Booth-					
		Booth -			Flash-off				Booth-		Flash-off		via	via		Zone via	Bake Oven		
Coating Family	Gals	Formula	Booth - Analytical	Observation	Zone	Bake Oven	Total	Booth-Formula	Analytical	Observation	Zone	Bake Oven	Conc/RTO	Conc/RTO	Observation	Conc/RTO	via RTO	TOTAL	TOTAL
Basecoat	26,064	27,392	63,153	4,345	4,112	5,974	104,975	23,420	53,996	0	3,516	5,675	3,972	9,157	4,345	596	299	18,369	9.2
Clearcoat	32,537	27,087	65,763	8,676	0	24,156	125,683	23,160	56,228	0	0	22,948	3,928	9,536	8,676	0	1,208	23,348	11.7
TOTALS	:												7,899	18,693	13,021	596	1,506	41,716	20.9

Notes:

1 - OSL generated from JNAP test data for Color line 2 (June 5, 2018 Stack Test) for exterior application (controlled zones) since roof is all exterior

2- Control Efficiency assumed to be 90% or 95% minimum for each device

3- BC and CC Usage based upon 12-4-19 powerpoint file from Tracy Moorer with worst case estimates

4 - VOC Content for BC and CC from PPG EDS

5- Production Rate for tutone includes 4% reprocess rate

6 - TE from JNAP 2018 VOC Report - BC is average of three tests (70.1, 70.1 and 75.5)

	Material Usage	VOC (lbs/gal)				
Coating Family	Gallons Per veh ¹	Formula ²	Booth ⁴	"observation"	Flash-off	Bake Oven
Purge	0.031	7.25	20.0%	0.0%	0.0%	0.0%
Cleaning Solvents Tutone ³	0.017	5.000	100.0%	0.0%	0.0%	0.0%

		Capture Effic	iency (%)		Co	ontrol Efficiency (%	%) Concentrator	r/RTO
New Tutone	Booth	"observation"	Flash-off	Oven	Booth	"observation"	Flash-off	Oven
Purge	95.0%	0%	0%	0%	85.50%	0.0%	0.0%	95.0%
Cleaning Solvents Tutone ³	0%	0%	0%	0%	0.0%	0.0%	0.0%	95.0%

Production Rate (Jobs/year) 163,800

Emissions	Material	VOC Generated (lbs)					VOC Controlle	d (lbs)			VOC Emitt	ed (lbs)		VOC (lbs)	VOC (tons)	
										Bake				Bake Oven via		
Coating Family	Gals	Booth	"observation"	Flash-off	Bake Oven	Total	Booth	"observation"	Flash-off	Oven	Booth	"observation"	Flash-off	RTO	TOTAL	TOTAL
Purge	5,078	7,363	0	0	0	7,363	5,980	0	0	0	1,382	0	0	0	1,382	0.7
Cleaning Solvents Tutone	2,785	13,923	0	0	0	13,923	0	0	0	0	13,923	0	0	0	13,923	7.0
																0.0
																0.0
TOTALS:											15,305	0	0	0	15,305	7.7

1 - Usage per vehicle from paint operations

2 - VOC content from VOC report Information for Gage Purge

3 - Assumes that 100% of the cleaning materials will be emitted in the booths and will not be subject to controls

4 - Assumes 80% purge capture rate and 20% emitted in controlled portion of booth with 95% capture based upon no uncontrolled spray zone

B-4 Rapid Repair

Criteria Pollutant Emission Calculations FCA JNAP Sustainment - March 2020

	Coating Usage	VOC content	Volatility	B/O Split		
Coating Family	Gals/Vehicle1	lb/gal	%	Booth	Bake Oven	
Repair Coatings	0.0150	4.800	100.0%	100.0%	0.0%	

	Capture Effici	ency (%)	Control Effici	ency (%)
	Booth	Oven	Booth	Oven
New Paintshop				
Repair Coatings	100%	100%	0.0%	0.0%
	100%	100%	0.0%	0.0%

24,000

Production Rate (Jobs/year)

Emissions		VOC Generate	d (lbs)		VOC Cont	rolled (lbs)		VOC Emi	nitted (lbs)		
					Booth-		Booth-	Bake			
Coating Family	Gals	Booth	Bake Oven	Total	Analytical	Bake Oven	Analytical	Oven	TOTAL	TOTAL	
Repair Coatings	360	1,728	0	1,728	0	0	1,728	0	1,728	0.86	
TOTALS:									1,728	0.86	

1 - Based upon JNAP 2018 Usage adjusted to account for

2 - Assume 400K vehicles per year maximum

3 - Assumes 4.8 lbs/gallon

				Annual		CRITERIA POLLUTANTS								
Emission		Source	Source	Source	Potential			PM-10			NO _x			
Unit/Group	Control Equipment Description	Capacity/	Operating	Operating	Hours of			Removal	Potential	Potential			Potential	Potential
Identification	Emission Unit Description	Rating (MMBtu/hr) ¹	Rate (MMcf/yr)	Basis ⁴	Operation	EF	EF Units	Efficiency	(lb/hr)	(tpy)	EF ²	EF Units	(lb/hr)	(tpy)
Paint Shop	Combustion Equipment													
RTO	Thermal Oxidizer	15.0	118.3	90%	8,760	7.6	lb/mmscf	-	0.114	0.45	50	lb/mmscf	0.75	2.96
Conc Desorp	Desorption Heater	5.0	39.4	90%	8,760	7.6	lb/mmscf	-	0.038	0.150	50	lb/mmscf	0.25	0.99
Tutone Oven	Oven (12,8 and 12) - includes incin	32.0	252.3	90%	8,760	7.6	lb/mmscf	-	0.243	0.96	36	lb/mmscf	1.15	4.54
Building Addition - Rapid Reprocess ³	ASH	28.4	124.4	50%	8,760	7.6	lb/mmscf	-	0.216	0.47	36	lb/mmscf	1.02	2.24
Bldg Addition - CTVV and Water Test ⁵	ASH	12.9	56.5	50%	8760	7.6	lb/mmscf	-	0.098	0.21	36	lb/mmscf	0.46	1.02
Tutone ASH 1,2,3,4 and Heated Flash ⁶	ASH, Heated flash	78.3	343.0	50%	8760	7.6	lb/mmscf		0.595	1.30	36	lb/mmscf	2.82	6.17
Building AHU #39 & #40 ⁷	Support Powder & Bldg	20.0	87.6	50%	8760	7.6	lb/mmscf		0.152	0.33	36	lb/mmscf	0.72	1.58
	Total New Equipment - (tpy)	191.6	1,021						1.46	3.88			3.64	19.49

												GREE	NHOUSE G	ASES	
CO				VOCs				SO ₂				CO ₂	CH ₄	N ₂ O	CO ₂ e
		Potential	Potential			Potential	Potential			Potential	Potential	EF			Potential
EF	EF Units	(lb/hr)	(tpy)	EF	EF Units	(lb/hr)	(tpy)	EF	EF Units	(lb/hr)	(tpy)	(lbs / mmBtu)			(tpy)
84	lb/mmscf	1.26	4.97	5.5	lb/mmscf	0.08	0.33	0.6	lb/mmscf	0.01	0.04	116.89	0.0022	0.00022	3,844
84	lb/mmscf	0.42	1.66	5.5	lb/mmscf	0.03	0.11	0.6	lb/mmscf	0.00	0.01	116.89	0.0022	0.00022	1,281
84	lb/mmscf	2.69	10.60	5.5	lb/mmscf	0.18	0.69	0.6	lb/mmscf	0.02	0.08	116.89	0.0022	0.00022	8,200
84	lb/mmscf	2.39	5.22	5.5	lb/mmscf	0.16	0.34	0.6	lb/mmscf	0.02	0.04	116.89	0.0022	0.00022	7,277
84	lb/mmscf	6.58	2.37	5.5	lb/mmscf	0.07	0.16	0.6	lb/mmscf	0.01	0.02	116.89	0.0022	0.00022	3,305
84	lb/mmscf	1.68	14.40	5.5	lb/mmscf	0.43	0.94	0.6	lb/mmscf	0.05	0.10	116.89	0.0022	0.00022	20,064
84	lb/mmscf	1.68	3.68	5.5	lb/mmscf	0.11	0.24	0.6	lb/mmscf	0.01	0.03	116.89	0.0022	0.00022	5,125
		15.01	42.90			0.94	2.81			0.10	0.31				49,096

Notes

1 - Based upon total heat input information from Paint and Building Groups

2 - NOx Emission Factors for low Nox

3 - Source: Q Matrix #55, 3-27-19

4 - Based on information from heat load estimates

5 - Source: Facilities spreadsheet 10-19-19 and email of 10-17-19

6 - Source: FGragnaniello email 11/01/19

Particulate Matter (all PM assumed to be PM-10 and PM2.5)

Combustion Equipment ¹				
	MMBtu/hr	Fuel		Tons/yr
RTO	15	Nat Gas		0.45
Desorp	5	Nat Gas		0.15
Tutone Oven	32	Nat Gas		0.96
Building Addition - Rapid Reprocess	28.4	Nat Gas		0.47
Bldg Addition - CTVV and Water Test	12.9	Nat Gas		0.21
Tutone ASH 1,2,3,4 and Heated Flash	78.3	Nat Gas		1.30
Building AHU #39 & #40	20	Nat Gas		0.33
			Subtotal	3.88

Coating Equipment

	# of EU	gr/dscf	cfm	lbs/hr/line	hrs/yr	Tons/yr
Tutona Black (Observation Zone)	1	0.0004	25 000	0.09	8 760	0.28
ratolie black (observation zone)	1	0.0004	23,000	0.09	8,700	0.58
					Subtotal	0.38

Tutone - booth routed to concentrator then to an

RTO³

			Conversion to lbs/hr			
		apply 98% for	Booth Air Exhaust to		lbs/min (7000	
	(grains/1000 cf)	(grns/1000 cf)	Concentrator (cfm)	grains/min	grains/lb)	lbs/hr
	1.5	0.03	161487	4.8	0.0007	0.042
		0.042	8760	2000		0.18
		lbs/hr	hrs/yr	lbs/ton		tons/yr
				Coa	ting Subtotal	0.18
<u>Rapid Repair</u>						
		# of EU	lbs/hr/EU	hrs/yr	lbs/yr	tpy
Repair Total PM (Ib/hr/ station)		2	0.026	8760	456	0.23
(repair estimates based upon stack test EFs)						
						4.67

1 - Combustion Emissions based upon AP-42 factors and annual utilization heat input capacity for each type of combustion unit.

2 - Observation zone PM emission rates from 2014 stack test on similar observation zone and booth.

3 - Grains/dscf used for coating Booths based upon 1.5 grain/1000 cf with 98% additional filtration/controls for recirculation - assumes all PM emitted makes it through the RTO

VOC Emisssions Reductions in Color Line From Roof Coating in Tutone

Amount of paint sprayed is basis for calculation					
Projected BC & CC Total usage for roof (0.153+0.191)	0.344 gal/veh	(See tut	tone booth tab for usages)		
Total vehicle projected usage (BC & CC) or monotone veh	2.22 gal/veh	(Data p	rovided by Manufacturing Engineering Dept.)		
Roof usage / Total Vehicle usage (ratio in terms of %)	15.5% The perce (This valu yield th	rcent of total coating attributable to the roof alue based upon projected usages - JNAP actual usa the roof being 23% of total usage)			
Projected VOC emissions from roof coating in Color Line					
Actual topcoat VOC emissions in tons/year from JNAP VOC report	508.8 tpy 550.6 tpy	2017 2018			
VOC emissions associated w/Roof (based upon % of usage and tons per year from Topcoat)	78.84 tpy 85.32 tpy	2017 2018	(based upon 444,462 veh/yr - painted) (based upon 459,263 veh/yr - painted)		
Projected VOCs in 'color Line from vehicles planned for tutone	0.35 lbs VOC p 0.37 lbs VOC p 0.36 avg lbs V	oer veh fro oer veh fro OC from r	om roof om roof oof/veh (2017 & 2018)		
170,352 veh/yr in tutone line	30.93 tpy	VOCs th currer	nat would have been emitted by coating roofs in nt Color Line		
Projected Tutone Roof tons VOC/year	20.9 tpy	from pr	roposed tutone		
Anticipated reduction moving from Color booths to tutone booth	10.07 tpy	reductio	on		

APPENDIX C

CRITERIA AND TAC IMPACT SUMMARY

Table C-1 - Exhaust Stack Parameters FCA JNAP Tutone and Sustainment - March 2020

Source ID	Source Description	Easting (X)	Northing (Y)	Stack Height	Temperature	Exit Velocity	Stack Diameter	Flow Rate
		(m)	(m)	(ft)	(°F)	(fps)	(ft)	(acfm)
Point Sources								
JNAP Tutone Stack	S							
C12TTRTO	JNAP Color 1 Color 2 and TT Booth RTO Exhaust Stack	337,867	4,692,892	113	300	70.32	6.50	140,000
TT2	JNAP TT CC obs	337,896	4,692,996	113	70	36.68	9.00	140,000
TT1	JNAP TT BC obs	337,928	4,693,011	113	70	24.62	10.00	116,000
TTCONC	JNAP Concentrator exhaust for tutone line	337,843	4,692,879	113	90	48.00	7.83	138,784
TTOVRTO	Tutone oven RTO	337,819	4,692,954	70	300	40.00	2.00	7,540
RR1	Rapid Reprocess 1	337,758	4,692,884	70	75	56.02	5.00	66,000
RR2	Rapid reprocess 2	337,746	4,692,878	70	75	56.02	5.00	66,000
Nearby Existing So	urces - JNAP							
ECRTO1	JNAP Ecoat RTO 1	337,906	4,693,057	69	542	130.36	1.30	10,380
ECRTO2	JNAP Ecoat RTO 2	337,895	4,693,052	69	542	29.78	3.30	15,282
L1BC1BTH	Line one Basecoat booth	337,968	4,693,034	91	70	32.68	10.00	154,000
L2BC1BTH	Line 2 BC Booth	337,977	4,693,015	91	70	32.68	10.00	154,000
L3BC1BTH	Line 3 BC Booth exhaust	337,986	4,692,992	125	70	35.44	10.00	167,000
L1CCBTH	line 1 CC booth exhaust	337,867	4,692,983	91	70	32.75	9.00	125,000
LINE2CCBTH	Line 2 CC Booth Exhaust	337,875	4,692,963	91	70	32.75	9.00	125,000
LINE3CCBTH	Line 3 CC Booth exhaust	337,882	4,692,943	125	70	32.89	10.00	155,000
C1CONC	Color 1 concentrator exhaust	337,873	4,692,895	113	90	40.00	7.33	101,369
C2CONC	JNAP Existing Color 2 Concentrator	337,886	4,692,900	113	90	40.00	7.33	101,369
C3CONC	Color 3 booth concentrator exhaust	337,830	4,692,872	113	90	40.00	9.00	152,681
C10VRT0	JNAP Color 1 Oven RTO	337,811	4,692,944	91	798	92.51	2.20	21,102
C2OVRTO	JNAP Color 2 Oven RTO	337,817	4,692,933	94	798	92.51	2.20	21,100
C3OVRTO	JNAP Color 3 Oven RTO	337,828	4,692,918	125	798	35.89	3.10	16,253
C3BTRTO	Color 3 Booth RTO	337,819	4,692,868	113	600	25.76	4.59	25,611
JANPPWDR	JNAP powder Antichip Oven	337,766	4,693,024	87	80	34.63	7.00	79,959
N2155_1	FCA JNAP EUBOILER4	338,014	4,693,176	100	100	164.04	4.00	123,685
N2155_2	FCA JNAP EUBOILER3	338,020	4,693,161	75	100	164.04	4.00	123,685
N2155_4	FCA JNAP EUBOILER2	338,018	4,693,166	75	100	164.04	4.00	123,685
N2155_5	FCA JNAP EUBOILER1	338,016	4,693,171	75	100	164.04	4.00	123,685
LOWBAKE	Composite Stack of 5 low bake repair stations	337,838	4,693,211	58	70	40.00	2.83	15,132
JEFFPW	JNAP Emergency Fire Pump West	337,524	4,693,316	16	300	40.00	0.75	1,060
JEFFPE	JNAP Emergency Fire Pump East	338,427	4,693,141	16	300	40.00	0.75	1,060
Nearby Existing So	urces - MAP							
PUMP1	MAP - PUMP1	337,270	4,693,960	15	300	81.76	0.62	1,505
PUMP2	MAP - PUMP2	337,049	4,694,745	15	300	81.76	0.62	1,505
PUMP3	MAP - PUMP3	337,044	4,694,747	15	300	81.76	0.62	1,505
PRMOBS	MAP Prime Obs	337,074	4,694,115	120	75	48.93	3.67	31,000
CIBCOBS	MAP Color 1 BC Obs	337,095	4,694,118	120	75	47.16	3.00	20,000
CICCOBS	MAP Color 1 CC Obs	337,059	4,694,191	120	75	50.13	3.33	26,251
C2BCOBS	MAP Color 2 BC Obs	337,104	4,694,123	120	75	47.16	3.00	20,000
C2CCOBS	MAP Color 2 CC Obs	337,067	4,694,195	120	/5	50.13	3.33	26,251
BOOTHCONC		337,043	4,694,169	130	90	48.83	7.00	112,/50
KIU BBBCC		337,083	4,694,225	130	260	48.48	5.6/	/3,36/
KPRCS	IVIAP Kapid Keprocess	337,049	4,694,209	120	/0	41.18	6.50	81,995
SPUTPRM		337,103	4,694,053	120	/0	40.79	4.1/	33,3/4
HWGI		336,953	4,694,228	15	200	24.58	1.1/	1,5//
HWG2		336,953	4,694,227	15	200	24.58	1.1/	1,577
		336,954	4,694,226	15	200	24.58	1.17	1,5//
		337,007	4,094,118	15	200	24.58	1.17	1,5//
nwus		337,008	4,094,110	12	200	24.58	1.1/	1,5//

Table C-1 - Exhaust Stack ParametersFCA JNAP Tutone and Sustainment - March 2020

Source ID	Source Description	Easting (X)	Northing (Y)	Stack Height	Temperature	Exit Velocity	Stack Diameter	Flow Rate
		(m)	(m)	(ft)	(°F)	(fps)	(ft)	(acfm)
HWG6	MAP HWG6	337,123	4,694,025	90	200	24.58	1.17	1,577
HWG7	MAP HWG7	337,125	4,694,026	90	200	24.58	1.17	1,577
HWG8	MAP HWG8	337,126	4,694,026	90	200	24.58	1.17	1,577
HWG9	MAP HWG9	337,128	4,694,027	90	200	24.58	1.17	1,577
GEN1A	MAP 350 hp NG Generator	336,975	4,694,625	10	200	170.47	0.62	3,138
GEN1B	MAP 350 hp NG Generator	337,137	4,694,260	10	200	170.47	0.62	3,138
GEN2	MAP 770 hp NG Generator	337,149	4,694,065	10	200	170.47	0.62	3,138
GEN3	MAP 770 hp NG Generator	337,096	4,694,010	10	200	170.47	0.62	3,138
PRMHT1	MAP Primer Oven 1 Heater Box	337,035	4,694,207	120	287	43.96	1.00	2,072
PRMHT2	MAP Primer Oven 2 Heater Box	337,043	4,694,211	120	287	43.96	1.00	2,072
C10VHT	MAP Color 1 Oven Heater Box	337,030	4,694,170	120	282	53.22	0.83	1,728
C2OVHT	MAP Color 2 Oven Heater Box	337,038	4,694,174	120	282	53.22	0.83	1,728
Nearby Sources -	EGLE Provided Off-Site							
A7809	U S STEEL GREAT LAKES WORKS	326,000	4,683,000	76	240	39.04	7.62	106,944
A9831	MARATHON PETROLEUM COMPANY LP	322,000	4,683,150	133	476	20.34	4.44	18,875
B2169	CARMEUSE LIME Inc, RIVER ROUGE OPERATION	324,525	4,682,560	71	450	4.79	23.80	127,859
B2810	DTE Electric Company - River Rouge Power Plant	325,800	4,682,000	425	320	524.46	12.83	4,068,238
N6631	DEARBORN INDUSTRIAL GENERATION	322,600	4,685,595	60	1073	482.94	17.75	7,170,184
P0408	EES COKE BATTERY LLC	326,126	4,683,543	187	783	85.63	17.41	1,222,871
B2814	DETROIT THERMAL BEACON HEATING PLANT	331,560	4,689,140	250	415	75.30	10.00	354,859
M4148	DETROIT RENEWABLE POWER, LLC	331,054	4,692,742	337	312	136.80	7.58	370,728
B3567	SAINT MARY'S CEMENT	323,850	4,683,450	40	70	32.81	1.000	1,546
Area Sources						-		
JNAP Tutone Proc	esses	na	na	na	na	na	na	na
TTNG	Various NG combustion sources in paint associated with TT	na	na	na	na	na	na	na
RRADD	Rapid reprocess building addition ASH	na	na	na	na	na	na	na
CTVVNG	CTVV building addition NG combustion	na	na	na	na	na	na	na
Nearby Existing S	ources - JNAP					-		
N2155_7	Area Source representing EU Heaters	na	na	na	na	na	na	na
Nearby Existing S	ources - MAP							
PSROOF	Mack Assembly PS PH Vents	na	na	na	na	na	na	na
MAEP2NG	MAEP NG Combustion	na	na	na	na	na	na	na
MAEPEX	Existing MAEP NG heaters	na	na	na	na	na	na	na

Table C-2. TAC Emission Calculations from Basecoat.FCA JNAP Tutone and Sustainment - March 2020

CAS	Pollutant	Solid Black								
				Max	Hourly			Max Hourly -	Annual Average	
		Percent by weight	Observation Emissions	Concentrator Emissions	Oven Oxidizer Emissions	Booth Oxidizer Emissions	Observation Emissions	Concentrator Emissions	Oven Oxidizer Emissions	Booth Oxidizer Emissions
	Color Code:	DX8								
	Supplier Code:									
			(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
64-17-5	Ethanol	2.5%	3.75E-02	8.43E-02	2.58E-03	3.79E-02	2.43E-02	5.46E-02	1.67E-03	2.46E-02
67-56-1	Methyl Alcohol	0.1%	1.50E-03	3.37E-03	1.03E-04	1.52E-03	9.73E-04	2.18E-03	6.69E-05	9.83E-04
67-63-0	Isopropyl Alcohol	0.6%	9.00E-03	2.02E-02	6.19E-04	9.10E-03	5.84E-03	1.31E-02	4.01E-04	5.90E-03
67-64-1	Acetone	0.1%	1.50E-03	3.37E-03	1.03E-04	1.52E-03	9.73E-04	2.18E-03	6.69E-05	9.83E-04
71-36-3	1-Butanol	0.1%	1.50E-03	3.37E-03	1.03E-04	1.52E-03	9.73E-04	2.18E-03	6.69E-05	9.83E-04
78-83-1	Isobutanol	1.5%	2.25E-02	5.06E-02	1.55E-03	2.28E-02	1.46E-02	3.28E-02	1.00E-03	1.47E-02
95-63-6	1,2,4-Trimethyl Benzene	0.3%	4.50E-03	1.01E-02	3.10E-04	4.55E-03	2.92E-03	6.55E-03	2.01E-04	2.95E-03
100-41-4	Ethylbenzene	0.3%	4.50E-03	1.01E-02	3.10E-04	4.55E-03	2.92E-03	6.55E-03	2.01E-04	2.95E-03
103-09-3	2-Ethylhexyl acetate	0.4%	6.00E-03	1.35E-02	4.13E-04	6.07E-03	3.89E-03	8.74E-03	2.68E-04	3.93E-03
108-65-6	1-Methoxy-2-Propyl Acetate	1.5%	2.25E-02	5.06E-02	1.55E-03	2.28E-02	1.46E-02	3.28E-02	1.00E-03	1.47E-02
108-83-4	2,6-Dimethylheptanone	8.6%	1.29E-01	2.90E-01	8.87E-03	1.30E-01	8.37E-02	1.88E-01	5.75E-03	8.46E-02
108-87-2	Methylcyclohexane	0.6%	9.00E-03	2.02E-02	6.19E-04	9.10E-03	5.84E-03	1.31E-02	4.01E-04	5.90E-03
108-88-3	Toluene	0.1%	1.50E-03	3.37E-03	1.03E-04	1.52E-03	9.73E-04	2.18E-03	6.69E-05	9.83E-04
123-86-4	N-BUTYL ACETATE	18.4%	2.76E-01	6.20E-01	1.90E-02	2.79E-01	1.79E-01	4.02E-01	1.23E-02	1.81E-01
141-78-6	Ethyl Acetate	0.1%	1.50E-03	3.37E-03	1.03E-04	1.52E-03	9.73E-04	2.18E-03	6.69E-05	9.83E-04
142-82-5	Heptane	1.3%	1.95E-02	4.38E-02	1.34E-03	1.97E-02	1.26E-02	2.84E-02	8.69E-04	1.28E-02
1330-20-7	Xylenes	1.2%	1.80E-02	4.04E-02	1.24E-03	1.82E-02	1.17E-02	2.62E-02	8.03E-04	1.18E-02
7732-18-5	Water	0.3%	4.50E-03	1.01E-02	3.10E-04	4.55E-03	2.92E-03	6.55E-03	2.01E-04	2.95E-03
8032-32-4	VM and P naphtha	3.2%	4.80E-02	1.08E-01	3.30E-03	4.85E-02	3.11E-02	6.99E-02	2.14E-03	3.15E-02
19549-80-5	4,6-Dimethyl-2Heptanone	1.2%	1.80E-02	4.04E-02	1.24E-03	1.82E-02	1.17E-02	2.62E-02	8.03E-04	1.18E-02
64741-66-8	Petroleum Distillates	1.4%	2.10E-02	4.72E-02	1.44E-03	2.12E-02	1.36E-02	3.06E-02	9.36E-04	1.38E-02
64742-48-9	naphtha (petroleum), hydrotreated heavy	0.1%	1.50E-03	3.37E-03	1.03E-04	1.52E-03	9.73E-04	2.18E-03	6.69E-05	9.83E-04
64742-49-0	naphtha (petroleum), hydrotreated light	1.2%	1.80E-02	4.04E-02	1.24E-03	1.82E-02	1.17E-02	2.62E-02	8.03E-04	1.18E-02
64742-95-6	SC 100 / Aromatic 100	0.7%	1.05E-02	2.36E-02	7.22E-04	1.06E-02	6.81E-03	1.53E-02	4.68E-04	6.88E-03
	Weight per Gallon (lb/gal):	8.12								

Max Production	170,352	veh/yr	
Max Line Speed	30	veh/hr	
BC Application	0.153	gal/veh	
BC TE	0.719	(a)	
OSL test - Booth, Flash	0.867	(b)	
OSL test - Observation	0.056	(c)	
OSL test - Oven	0.077	(d)	
Fraction to Observation	0.040264	(a)*(c)	
Fraction to Concentrator	0.9044	(1-a)+(a*b)	
Fraction Direct to RTO	0.0554	(a)*(d)	
Total	1.00		
Concentrator Capture	0.9	lb/lb	
RTO Destruction Efficiency	0.95	lb/lb	

Example Calculation: Emissions of Isobutanol

(1.5/100)*(8.12 lb/gal)*(30 veh/hr)*(0.153 gal/vel)=	5.59E-01	lb/hr used
(5.59E-01 lb/hr)(0.040264) =	2.25E-02	lb/hr emitted BC Observation
(5.59E-01 lb/hr)*(0.9044)*(1-0.90) =	5.06E-02	lb/hr emitted Concentrator
(5.59E-01 lb/hr)*(0.0554)*(1-0.95) =	1.55E-03	lb/hr emitted Oven RTO
(5.59E-01 lb/hr)*(0.9044)*(0.90)*(1-0.95) =	2.28E-02	lb/hr emitted Booth RTO

Table C-3. TAC Emission Calculations from Clearcoat. FCA JNAP Tutone and Sustainment - March 2020

		Clearcoat		Max	Hourly		Max Hourly - Annual Average				
CAS	Chemical	CSRC8002R (% by wt.)	Observation (lb/hr)	Concentrator (lb/hr)	Oven Oxidizer (lb/hr)	Booth Oxidizer (lb/hr)	Observation (Ib/hr)	Concentrator (lb/hr)	Oven Oxidizer (lb/hr)	Booth Oxidizer (lb/hr)	
67-63-0	Isopropanol	1.30%	0.042	0.046	0.006	0.021	0.027	0.030	0.004	0.0134	
78-83-1	lsobutanol ³	0.60%	0.020	0.021	0.003	0.010	0.013	0.014	0.002	0.0062	
95-63-6	1,2,4-Trimethyl Benzene	3.10%	0.101	0.110	0.014	0.049	0.065	0.071	0.009	0.0321	
98-82-8	Cumene	0.10%	0.003	0.004	0.000	0.002	0.002	0.002	0.000	0.0010	
100-41-4	Ethylbenzene	0.10%	0.003	0.004	0.000	0.002	0.002	0.002	0.000	0.0010	
107-98-2	Propylene Gly. Mono-Methyl Ether	4.80%	0.156	0.170	0.022	0.077	0.101	0.110	0.014	0.0496	
103-65-1	Propylbenzene	0.40%	0.013	0.014	0.002	0.006	0.008	0.009	0.001	0.0041	
108-65-6	1-Methoxy 2-Propyl Acetate	11.00%	0.359	0.390	0.050	0.176	0.232	0.253	0.032	0.1138	
108-67-8	1,3,5-Trimethylbenzene	0.60%	0.020	0.021	0.003	0.010	0.013	0.014	0.002	0.0062	
526-73-8	1,2,3-Trimethylbenzene	0.30%	0.010	0.011	0.001	0.005	0.006	0.007	0.001	0.0031	
624-54-4	Pentyl Propionate	7.80%	0.254	0.277	0.035	0.124	0.165	0.179	0.023	0.0807	
1330-20-7	Xylene	0.50%	0.016	0.018	0.002	0.008	0.011	0.011	0.001	0.0052	
7732-18-5	Water	0.20%	0.007	0.007	0.001	0.003	0.004	0.005	0.001	0.0021	
34590-94-8	Dipropyl. Gly. Mono-Methyl Ether	4.10%	0.134	0.145	0.019	0.065	0.087	0.094	0.012	0.0424	
64742-95-6	SC 100 / Aromatic 100	5.50%	0.179	0.195	0.025	0.088	0.116	0.126	0.016	0.0569	
70657-70-4	2-Methoxy 1-propyl acetate	0.10%	0.003	0.004	0.000	0.002	0.002	0.002	0.000	0.0010	
	Density (lb/gal)	8.34									

Max Production	170,352	veh/yr	
Max Line Speed	30	veh/hr	
Total CC Application	0.191	gal/veh	
CC TE	0.775	(a)	
OSL test - Booth, Flash	0.667	(b)	
OSL test - Observation	0.088	(c)	
OSL test - Oven	0.245	(d)	
Fraction to Observation	0.068	(a)*(c)	
Fraction to Concentrator	0.742	(1-a)+(a*b)	
Fraction direct to RTO	0.190	(a)*(d)	
total	1.00		
Concentrator Capture	0.9	lb/lb	
Oxidizer Destruction	0.95	lb/lb	

Example Calculation: Emissions of Pentyl Propionate

(0.191 gal/veh)*(30 veh/hr)*(8.34 lb/gal)*(0.078) =	3.73	lb/hr used
(3.73 lb/hr)*(0.068) =	0.254	lb/hr emitted CC Observation
(3.73 lb/hr)*(0.742)*(1-0.90) =	0.277	lb/hr emitted Concentrator
(3.73)*(0.190)*(1-0.95) =	0.035	lb/hr emitted Oven RTO
(3.73 lb/hr)*(0.742)*(0.90)*(1-0.95) =	0.124	lb/hr emitted RTO

AA Platant Part Part Part Part Par														Max Hourly -
Image: Image:<	CAS	Pollutant	JRM	GW7	JSC	JWD	RUW	кхј	LAU	NRV	SHR	сс		Annual
Image: Image:<													Max Hourly	Average
Image: Provide and analysis of the sector of the														
beam beam <th< th=""><th></th><th></th><th colspan="9">Percent by Weight</th><th></th><th></th></th<>			Percent by Weight											
Image Image <th< th=""><th></th><th></th><th></th><th></th><th>1</th><th></th><th>1</th><th>1</th><th></th><th>I</th><th></th><th>1</th><th></th><th></th></th<>					1		1	1		I		1		
S00.00 Formade/my (tram Rein) ¹ 1.751 1.01 1.751 1.00 0.000 0.0005 S7.96.1 Metry (Actob) 0.0 0.000 0.0005 <													(lb/hr)	(lb/hr)
bit Add Image <	50-00-0	Formaldehyde (from Resin) ¹	1.251	1.001	1.251	1.251	1.251	1.251	1.251	1.001	1.251	1.30	0.0097	0.0009
Crisol Methy Akodol Image 0.12 0.13 0.13 0.13 0.13 0.14 0.15 0.14 0.25 0.13 0.0007 0.00067 0.0007	64-17-5	Ethanol		1.90	2.16			2.3	1.8				0.0090	0.0008
Chease Constrained 0.44 0.15 0.22 0.4 0.2 0.21 0.44 0.55 1.30 0.0007 0.00007 173-163	67-56-1	Methyl Alcohol			0.12	0.12		0.1					0.0005	0.0000
Privation Image	67-63-0	Isopropanol	0.44	0.15	0.22	0.4	0.2	0.5	0.21	0.4	0.5	1.30	0.0067	0.0006
713-03 induction 0 0.14 - 0.11 0.15 1.3 - 0.0101 0.0001 784-00 Any Maching 1.95 1.22 1.50 0.64 1.22 1.9 1.05 1.1 2.1 0.0008 0.00097 0.00097 0.00097 95-36 1.2,4-1'imethylastnere 0.18 2.00 0.50 0.3 0.20 0.1 2.33 0.0203 0.0001 00044.4 Ethyl Bercene 0.30 0.30 0.4 0.3 0.1 0.3 0.3 0.10 0.0001 0.0001 0.0001 0.0001 0.0002 <t< td=""><td>67-64-1</td><td>Acetone</td><td></td><td></td><td></td><td></td><td></td><td>0.2</td><td></td><td></td><td></td><td></td><td>0.0007</td><td>0.0001</td></t<>	67-64-1	Acetone						0.2					0.0007	0.0001
11-16 1.16 2.3 1 1.7 1.0008 0.0008 808-31 isobularial 1.95 1.32 1.50 1.1 2.1 0.0008 0.0008 808-26 Methy Methy Methy Meanen 0.17 - - - 0.2 - 0.0008 0.0001 88-63 Currenc 0.17 - - 0.4 0.3 0.11 0.3 0.30 0.0001 0.0	71-36-3	n-Butanol			0.14			0.1	0.6	3.2			0.0120	0.0011
278-831 Isooutanol 1.95 1.32 1.30 0.64 1.2 1.05 1.1 2.1 0.58 0.0099 000099 95-626 Methyl Metharylate 0.18 2.90 0.50 0.34 0.5 0.3 0.20 0.1 3.35 0.0268 0.00091 95-636 1.1,4+Irmethyl Bervare 0.30 0.30 0.44 0.5 0.3 0.10 0.35 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0000 0.0003 0.0004 0.0005 0.0000	71-41-0	Amyl Alcohol	0.98		1.6		2.3				1.7		0.0086	0.0008
08-02-6 Methy Methy Methy Methy Methy 0.18 2.90 0.50 0.34 0.50 0.34 0.50 0.34 0.50 0.34 0.0001 0.00083 0.00014 08-02-6 Currene 0.36 0.300 0.300 0.0001 0.300 0.0002	78-83-1	Isobutanol	1.95	1.32	1.50	0.64	1.2	1.9	1.05	1.1	2.1	0.58	0.0097	0.0009
95-85 12,4-Irmethy Benzene 0.18 2.90 0.50 0.34 0.50 0.30 0.01 3.35 0.0763 0.0001 100-41-4 Ethyl Benzene 0.30 0.30 0.4 0.3 0.11 0.36 0.0001 103-93 2.Ethylhexyl actatu 0.50 0.30 0.4 0.3 0.11 0.30 0.0002 103-85 N-proghlemsne 0.50 0.50 0.4 0.50 0.0001 0.0002 0.00001 108-15-1 Methyl solpuly Ketone 0.10 0.11 0.20 0.1 0.1 0.1 0.0000 0.00001 108-65 1.Methyl solpuly Ketone 0.10 0.11 0.20 0.1 0.1 0.000 0.0001 108-67 1.35 frimethylkenzene 0.50 0.6 10.59 0.0004 0.0004 108-83 Disophyl Ketone 7.8 15.20 7.1 11.00 9.3 0.5 0.00 0.0001 108-67 1.35 frimethylkenzenen 0.30 <td>80-62-6</td> <td>Methyl Methacrylate</td> <td>0.17</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.2</td> <td></td> <td></td> <td>0.0008</td> <td>0.0001</td>	80-62-6	Methyl Methacrylate	0.17							0.2			0.0008	0.0001
UB-82-8 Currence Image: Currence	95-63-6	1,2,4-Trimethyl Benzene	0.18	2.90	0.50	0.34	0.5	0.3	0.20	0.1		3.35	0.0263	0.0024
100-414 Ethyl Benyene 0.30 0.30 0.40 0.31 0.33 0.10 0.0002 0.0002 103-63 - 2. "Ethylheryl actate 0.50 - - 0.6 0.2 0.40 0.0002 0.0002 103-65 - 1. Propylberseme 0.10 0.11 0.20 - - - 0.40 0.0003 0.0000 103-65 - 1. Methyl solupi Kenne 0.10 0.11 0.20 - 0.1 0 - - 0.0005 0.0000 108-65 6 1. Methyl solupi Kenne 0.10 0.11 0.20 - 0.1 0 - 0.0005 0.0000 108-67 6 1.3.5 rmethylkensene 0.35 - - 0.2 0.39 0 - 0.0004 0.0001 108-83 7 2.6 Dimethyl 4-Heptanol - 7.3 11.50 - 7.4 1.509 9.3 - - 0.0033 0.0003 108-83 8 Dispergonalamine - 7.4 1.500 - <td>98-82-8</td> <td>Cumene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.16</td> <td>0.0006</td> <td>0.0001</td>	98-82-8	Cumene										0.16	0.0006	0.0001
103-0-3 2-fttylkeydactate 0.5 - 0.6 0.2 - 0.0022 0.0002 103-55 N-Propylbrance 0.50 - I I 0.002 0.0000 103-55 N-Propylbrance 0.10 0.11 0.20 I 0.11 0.1 0.000 0.0000 0.0000 108-112 Methyl sobutyl Ketone 0.00 0.11 0.20 I 0.1 0.1 0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0	100-41-4	Ethyl Benzene		0.30	0.30		0.4	0.3	0.11	0.3	0.3	0.10	0.0019	0.0002
103-65-1 Progylemene 0.50 - - - - 0.0000 0.00000 103-35-5 N-Progyl Proginate 0.10 0.11 0.20 0.11 0 - 0.0000 0.0000 0.0000 0.00001 103-13-1 Methyl sobutyl Ketone 0.10 0.11 0.20 0.11 0 - 0.0000 0.00005 0.00001 108-65 1-Methony 2-progul acetate 0.9 2.04 - 0.50 0.60 0.000 0.0005 0.0001 108-67.8 1.3.51 trimethylhemezne 0.9 0.8 0.7 0.0033 0.0001 108-83.7 Zebimethyl-4-Hetpatol - 7.9 1.609 9.3 - 0.0583 0.0003 108-84.7 Methylcyclohexane 0.030 0.66 0.50 0.2 0.2 0.33 0.55 0.0031 0.00031 103-74 Disbotryl Ketone 0.030 0.66 0.50 0.01 - - 0.030 0.0000 1.50	103-09-3	2-Ethylhexyl acetate						0.6	0.2				0.0022	0.0002
108-3e5 N+ProgName 0.12 0.12 0.12 0.13 0.14 0.10 0.120 0.03 0.0001<	103-65-1	Propylbenzene		0.50								0.40	0.0039	0.0004
108-101 Methyl ingoldy Ketone 0.10 0.11 0.20 0.14 0 0 0.0008 0.0001 108-11-2 Methyl angl (schold) 0.9 2.04 0.74 0.50 0.66 10.99 0.0490 0.0005 108-65-6 1-Methoxy 2-propyl actate 0.9 2.04 0.7 0.50 0.66 0.600 0.0004 0.0001 108-67-8 1.5,5 Trinettylhemene 0.0 0.5 0.2 0.2 0.39 0 0.0014 0.0001 108-87-8 1.5,5 Trinettylhemene 0.00 0.66 0.50 0.2 0.2 0.3 0.5 0.0031 0.00031 108-87-8 Tolutne 0.00 0.66 0.50 0.2 0.2 0.3 0.5 0.0031 0.00031 119-57 Dispropandiamine 0.00 0.666 0.50 0.2 0.2 0.3 0.8 0.0710 0.00031 123-86 Ethyl Acetate 0.40 0.30 0.40	106-36-5	N-Propyl Propionate			0.12								0.0005	0.0000
108 Methy any lackhol Image of the second s	108-10-1	Methyl Isobutyl Ketone	0.10	0.11	0.20			0.1	0				0.0008	0.0001
108 65-6 1-Methony 2-propyl acetate 0.9 2.04 0.5 10.66 10.99 0.0494 0.0004 108 67-8 1.3.5 Trinettylybensene 0.5 0.2 0.39 0 0.0044 0.0004 108 83-7 2.6-Dimethyl-4-Heptanol 7.8 15.20 2.7 16.69 9.3 0 0.0033 0.0033 108 847-2 Methylcychoexane 0.30 0.80 2.0 0.2 0.3 0.5 0.033 0.0033 108 847-3 Methylcychoexane 0.30 0.80 2.0 0.2 0.13 0.5 0.0033 0.0003 108 847-3 Dilisopropanolamine 0.71 13.68 13.3 0.5 0.0301 0.0000 123 864 n-Buryl Acetate 5.47 11.80 13.88 13.3 13.3 0.0014 0.0003 123 864 n-Buryl Acetate 5.47 11.80 0.1 0.0013 0.0003 147.82.6 Ethyl Acetate 1.35 1.60 4.5	108-11-2	Methyl amyl alcohol			0.14				0				0.0005	0.0000
108-67-8 1,3,5 Timethylbenzene 0.5 0 0 0.60 0.0004 0.0004 108-82-7 2,6-Dimethyl-Hetheptanol 0.35 0 0.71 16.09 9.3 0 0.0014 0.0033 0.0003 108-83-8 Disobutyl Ketone 7.98 15.20 0 7.1 16.09 9.3 0.0 0.0033 0.0003 108-83-7 Methylyclohexane 0.00 0.66 0.50 0.2 0.2 0.13 0.5 0.0031 0.0003 108-87-7 Methylyclohexane 0.00 0.66 0.50 0.2 0.2 0.13 0.5 0.0031 0.0000 123-864 n-Butyl Acetae 5.47 11.80 19.6 13.68 18.3 0.0010 0.0053 123-854 n-Heptane 1.35 1.60 0 1.45 3.91 3.5 0 0.003 0.0003 124-854 n-Heptane 1.35 1.60 0 4.5 3.91 3.5 0 0.003 0.0003 124-876 Ethyl Acetate 5.71 0.12	108-65-6	1-Methoxy 2-propyl acetate		0.9	2.04				0.50	0.6		10.99	0.0490	0.0045
108-82.7 2.6-Dimethyl-4-Heptanol 0.035 0.2 0.39 0 0.0014 0.0001 008-31.8 Disobutyl Ketone 7.38 15.20 7.1 16.09 9.3 0.0033 0.0003 108-83.8 Toluene 0.00 0.66 0.50 0.2 0.13 0.5 0.0033 0.0003 108-83.8 Toluene 0.00 0.66 0.50 0.2 0.13 0.5 0.0033 0.0003 123-86.4 n-Butyl Acetate 5.47 11.80 19.6 13.68 18.3 0.0014 0.0005 13173-26 Ethyl Acetate 5.47 11.80 1.60 1.6 1.6 0.0014 0.0003 141-78-6 Ethyl Acetate 0.40 1.25 1.60 1.4 1.4 0.30 0.0030 0.0001 122-82-5 n-Heptane 1.35 1.60 1.4 1.4 0 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 <	108-67-8	1,3,5 Trimethylbenzene		0.5								0.60	0.0046	0.0004
108-83.8 Disobuty Ketone 7.98 15.20 7.1 16.09 9.3 0.0583 6.0003 108-87.2 Methylycybexane 0.30 0.80 0.9 0.8 0.7 Methylycybexane 0.003 0.0003 108-87.2 Methylycybexane 0.00 0.66 0.50 0.2 0.2 0.13 0.5 0.003 0.0003 110-97.4 Disopropanolamine 0.00 0.66 0.50 0.2 0.2 0.13 0.5 0.003 0.0003 137.32.6 Pethylextate 5.47 11.80 0.7 0.12 0.1 0.003 0.0031 0.0003 147.86 Ethyl Acetate 0.41 0.12 0.1 0.1 0.003 0.0030 0.0031 0.0013 147.86 Ethyl Acetate 0.35 1.60 1.2 0.1 1.5 0.00 0.003 0.0030 0.0031 142.82.5 n-Heptane 0.00 1.33 1.60 1.1 1.3 0.00 0	108-82-7	2,6-Dimethyl-4-Heptanol			0.35			0.2	0.39	0			0.0014	0.0001
108-87-2 Methycychokexne 0.30 0.80 0.9 0.8 0.7 0.0003 0.0003 109-87-2 Toluene 0.00 0.66 0.50 0.2 0.13 0.5 0.0031 0.0003 110-97-4 Disopropanolamine 0.00 0.66 0.50 0.2 0.13 0.5 0.0011 0.0003 0.0003 123-86-4 n-Butyl Acetate 5.47 11.80 19.6 13.68 18.3 0.0014 0.0004 0.0003 141-78-6 Ethyl Acetate 0.12 0.1 1 0.0015 0.0003 0.0003 242-82-5 n-Heptane 1.35 1.60 4.5 3.91 3.5 0.0016 0.00025 252-54 1.2.3 Timethylbenzene 0.40 1.6 4.5 3.91 3.5 0.0000 0.00025 252-54 N-Methyl-Pyrolidone 0.00 0 0.0000 0.0000 0.00001 1330-20-7 Xylene 0.35 1.40 1.20 0.4	108-83-8	Diisobutyl Ketone		7.98	15.20			7.1	16.09	9.3			0.0583	0.0053
1010-88-3 1010-ene 0.00 0.06 0.50 0.02 0.13 0.50 0.001 0.0000 123-86-4 n-Butyl Acetate Image: Constraint of the second o	108-87-2	Methylcyclohexane		0.30	0.80			0.9	0.8	0.7	0.5		0.0033	0.0003
110-97-4 Dissproganolamine C <thc< th=""> C <thc< th=""> C</thc<></thc<>	108-88-3	Toluene	0.00	0.66	0.50		0.2	0.2	0.13		0.5		0.0031	0.0003
123-84 n-Buttyl Acetate 5.47 11.80 11.80 19.5 13.8 18.8 1 0.0010 0.0003 137-32-6 2-Mettylbutan-1-01 0 0.12 0 0.11 1 0.003 0.0034 0.0003 141-78-6 Ethyl Acetate 1.35 1.60 0.12 0.1 1 0 0.00 0.0030 0.0030 142-82-5 n-Hegtane 0.31 1.35 1.60 0 0.12 1.6 0.00 0.000 0.003 0.0030 0.0030 526-73-8 1,2,3 Trimethylbenzene 0.00 5.71 0 0 0.88 0.0 0.000 0.0002 330-01-2 Proprionic Acid, N-Butyl ester 5.71 0.4 1.8 1.2 0.6 1.1 1.3 0.04 0.0001 333-20-7 Xylene 0.35 1.40 1.20 0.4 1.8 1.2 0.6 1.1 1.3 0.54 0.001 302-27 Xylene 0.35 1.40 1.20 0.4 1.8 1.2 2.3 5.2 0.0 <td>110-97-4</td> <td>Diisopropanolamine</td> <td></td> <td>E 47</td> <td>11.00</td> <td></td> <td></td> <td>10.6</td> <td>10.00</td> <td>10.0</td> <td></td> <td></td> <td>0.0000</td> <td>0.0000</td>	110-97-4	Diisopropanolamine		E 47	11.00			10.6	10.00	10.0			0.0000	0.0000
13/3-2-b 2-Methyloutan-1-ol 0.000 0.0003 0.0003 0.0003 1417-86-0 Ethyl Acetate 0.12 0.1 0 0.0005 0.0003 142-82-5 n-Heptane 1.35 1.60 0.1 0.1 0.0005 0.0003 142-82-5 n-Heptane 0.40 4.5 3.91 3.5 0.00 0.003 0.0003 526-73-8 1,2,3 Trimethylbenzene 0.40 - - 0.8 0.0000 0.0005 872-50-4 N-Methyl-2-Pyrrolidone 0.00 - - - 0.6 1.1 1.3 0.54 0.0000 0.0005 8023-224 Naphtha 4.10 3.84 3.00 1.03 3.7 4.6 3.25 2.3 5.2 0 0.0007 0.0001 130-20-7 Xylene 0.20 1.13 3.7 4.6 3.25 1.3 0.0007 0.0001 130-20-7 Trimethylbenztone 1.25 2.28 1.11 2.52 1.3 0.0007 0.0001 15551-13-7 Trimethylbenztone 0	123-86-4	n-Butyl Acetate		5.47	11.80			19.6	13.68	18.3			0.0710	0.0065
141-78-b Ethyl Acetate 0.12 0.11 0.11 0.11 0.10 0.1000 0.0000 526-73-8 1,2,3 Trimethylbenzene 0.40 1.35 1.60 4.5 3.91 3.5 0.030 0.0003 0.0003 590-01-2 Proprionic Acid, N-Butyl ester 5.71 1 1 1 0.8 0.00 0.0005 330-02-7 Xylene 0.30 1.40 1.20 0.4 1.8 1.2 0.6 1.1 1.3 0.54 0.0000 330-20-7 Xylene 0.33 1.40 1.20 0.4 1.8 1.2 0.6 1.1 1.3 0.54 0.0000 0.0000 303-23-4 Naphtha 4.10 3.84 3.00 1.03 3.7 4.6 3.25 2.3 5.2 0 0.0001 0.0001 1954-98-5 46-dimethyl 2-heptanone 1.25 2.28 1.11 2.52 1.3 0 0.0019 0.0001 0.0001 0.0001 0.0	137-32-6	2-Methylbutan-1-ol			0.90			0.1					0.0034	0.0003
142-82-3 h-Heptane 1.35 1.00 4.5 3.91 3.5 0 0.0103 0.0013 526-73-8 1.2,3 Timethylbenzene 0.40 1 1 1 0.0013 0.0003 590-01-2 Proprionic Acid, N-Butyl ester 5.71 1 1 0 0.00 0.0003 0.0003 3130-20-7 Kylene 0.35 1.40 1.20 0.4 1.8 1.22 0.6 1.1 1.3 0.0007 0.0003 3032-32-4 Naphtha 4.10 3.84 3.00 1.03 3.7 4.6 3.25 2.3 5.2 0.0186 0.0007 0.0001 8032-32-4 Naphtha 4.10 3.84 3.00 1.03 3.7 4.6 3.25 2.3 5.2 0.0186 0.0007 0.0001 8052-41-3 Stoddard Solvent 1.25 2.28 1.1 2.52 1.3 0 0.0008 0.0001 34590-94-8 Dipropyl.Gly.Mono-Methyl Ether 0.20 0.20 1.8 2.3 1.5 0 0.0119 0.0011 0	141-78-6	Ethyl Acetate		4.25	0.12			0.1	2.01	2.5			0.0005	0.0000
S26-73-8 12,3 rimetryloenzene 0.000 0.0000 0.0000 0.0000 0.0000 872-50-4 N-Methyl-2-Pyrrolidone 0.00 1 1 0.8 0 0.0000 0.0000 1330-20-7 Kylene 0.35 1.40 1.20 0.4 1.8 1.2 0.6 1.1 1.3 0.54 0.0007 0.0000 8032-32-4 Naphtha 4.10 3.84 3.00 1.03 3.7 4.6 3.25 2.3 5.2 0.0016 0.0007 0.0001 952-41-3 Stoddard Solvent 1 3.84 3.00 1.0 3.7 4.6 3.25 2.3 5.2 0.0 0.0007 0.0001 19549-80-5 4 6-dimethyl 2-heptanone 1.25 2.28 1.1 2.52 1.3 0.6 0.0 0.0007 0.0001 355511-3-7 Trimethylbenzene 0.64 3.14 1.1 2.52 1.3 1.5 0.0004 0.0000 46741-6-6 Petroleum	142-82-5	n-Heptane		1.35	1.60			4.5	3.91	3.5		0.00	0.0163	0.0015
Subcliniz Constraint Constrai	526-73-8	1,2,3 Trimethylbenzene		0.40						0.0		0.30	0.0030	0.0003
872-50-4 N-Netriki-2yrroliable 0.000 0.0001 0.0001	590-01-2	Proprioriic Acid, N-Butyl ester	0.00	5.71						0.8	0		0.0270	0.0025
1350-0-7 Aylene 0.35 1.40 1.20 0.4 1.8 1.2 0.8 1.1 1.3 0.0087 0.00087 8032-32-4 Naphtha 4.10 3.84 3.00 1.03 3.7 4.6 3.25 2.3 5.2 0 0.0186 0.0007 8052-41-3 Stoddard Solvent 1.25 2.28 1.1 2.52 1.3 0 0.0008 0.0008 25551-13-7 Trimethylbenzene 1.25 2.28 1.1 2.52 1.3 0 0.0008 0.0001 34590-94-8 Dipropyl. Gly. Mono-Methyl Ether 0 0.20 1.1 1.8 2.3 6.50 0.030 0.0001 34590-94-8 Dipropyl. Gly. Mono-Methyl Ether 0.64 3.14 2.2 3 1.5 0 0.011 0.11 0.10 0.0001 3472-47-8 Distillates 0.64 3.14 0.22 0.2 0.2 0.6 0.011 0.0002 0.0002 64742-48-9 Naphtha 0.26 0.10 0.10 1.7 1.6 1.3 <td< td=""><td>872-50-4</td><td>N-Methyl-2-Pyrrolldone</td><td>0.00</td><td>1.40</td><td>1 20</td><td>0.4</td><td>1.0</td><td>1.2</td><td>0.6</td><td>0</td><td>1.2</td><td>0.54</td><td>0.0000</td><td>0.0000</td></td<>	872-50-4	N-Methyl-2-Pyrrolldone	0.00	1.40	1 20	0.4	1.0	1.2	0.6	0	1.2	0.54	0.0000	0.0000
abs2-24-4 Naphtha 4.10 3.84 3.00 1.05 3.7 4.6 3.25 2.3 5.2 0 0.0186 0.0017 8052-41-3 Stoddard Solvent 1 0.2 0 0 0.0001 0.0001 19549-80-5 4 6-dimethyl 2-heptanone 1.25 2.28 1.1 2.52 1.3 0 0.0001 0.0008 0.0001 34590-94-8 Dipropyl. Gly. Mono-Methyl Ether 0 0.02 1.8 2.3 1.5 0.001 0.0008 0.0001 64741-66-8 Petroleum Distillates 0.64 3.14 2.22 3 1.5 0 0.011 0.011 64742-47-8 Distillates 0.64 3.14 0.1 0.1 0.1 0.1 0.01 0.001 0.0004 0.0000 64742-47-8 Distillates 0.26 0.2 0.2 0.6 1.3 0.000 0.0002 0.0000 64742-48-9 Naphtha, hydrotrea	1330-20-7	Nerekthe	0.35	1.40	1.20	0.4	1.8	1.2	0.6	1.1	1.3	0.54	0.0087	0.0008
0352-41-53 Stotdard Siverit Image: Stotdard Siverit 0.001 0.0007 0.0001 19549-80-5 4 6-dimethyl 2-heptanone 1.25 2.28 Image: Stotdard Siverit 0.001 0.0008 25551-13-7 Trimethylbenzene 0.001 0.200 Image: Stotdard Siverit 0.001 0.0008 34590-94-8 Dipropyl. Gly. Mono-Methyl Ether 0 0.64 3.14 Image: Stotdard Siverit 0.001 0.0001 64742-47-8 Distillates 0.64 3.14 Image: Stotdard Siverit 0.11 0.1 0.1 0.1 0.001 0.0004 0.0000 64742-47-8 Distillates 0.66 0.100 Image: Stotdard Siverit 0.000 0.0001 0.0001 64742-48-9 Naphtha 0.26 Image: Stotdard Siverit 0.1 0.1 0.1 0.1 0.1 0.00 0.0002 0.0000 64742-48-9 Naphtha, hydrotreatel light 0.60 1.50 Image: Stotdard Siverit Image: Stotdard Siverit 0.0000 0.0000 64742-94-5 SC 150 / Aromatic 150 Image: Stotdard Siverit 0.027 Image: Stotdard Siverit </td <td>8032-32-4</td> <td>Naphtha Staddard Salvant</td> <td>4.10</td> <td>3.84</td> <td>3.00</td> <td>1.03</td> <td>5.7</td> <td>4.0</td> <td>3.25</td> <td>2.3</td> <td>5.2</td> <td></td> <td>0.0186</td> <td>0.0017</td>	8032-32-4	Naphtha Staddard Salvant	4.10	3.84	3.00	1.03	5.7	4.0	3.25	2.3	5.2		0.0186	0.0017
19549-80-3 4 6-0imetry 2-fleptable 1.25 2.28 1.1 2.52 1.3 1.6 0.0091 0.0001 25551-13-7 Trimethylbenzene 0 0.20 1.8 1.8 0.00 0.0003 0.0003 34590-94-8 Dipropyl. Gly. Mono-Methyl Ether 0.64 3.14 1.8 2.3 6.50 0.030 0.0030 64741-66-8 Petroleum Distillates 0.64 3.14 1.8 0.1 0.1 0.1 0.01 0.011 0.0001 64742-47-8 Distillates 0.26 0.10 1.8 0.22 3 1.5 1.6 0.0004 0.0001 64742-48-9 Naphtha 0.26 0.10 0.1 0.1 0.1 1.5 1.6 0.0023 0.0002 64742-48-9 Naphtha, hydrotreated light 0.60 1.50 1.7 1.6 1.3 1.8 0.0002 0.0002 0.0002 64742-49-0 Naphtha, hydrotreated light 0.60 1.50 1.5 1.7 1.6 1.3 1.8 0.0000 0.0000 0.0000 647	8052-41-3	A C dimethyl 2 hontonono		1 35	2.20			1 1	0.2	1.2	0		0.0007	0.0001
23351-15-7 Infinitedriptication Image: Section of the sectin of the section of the section of the sectin of the section of th	19549-80-5	4 6-dimethyl 2-neptanone		1.25	2.28			1.1	2.52	1.5			0.0091	0.0008
3439548 Diploply, Gy, Monor-Methylether Image: Construction of the construction of th	23531-13-7	Dipropul Cly Mono Mothyl Ethor			0.20			1 0		2.2		6 50	0.0008	0.0001
64742-07-8 Distillates 0.04 3.14 0 0.1 0.1 0.1 0.1 0.01 0.001 0.0004 0.0004 64742-47-8 Distillates 0.26 0.10 0.1 0.1 0.1 0.1 0.1 0.1 0.0004 0.0004 64742-48-9 Naphtha, hydrotreated light 0.26 0.2 0.2 0.2 0.2 0.6 0.0002 0.0002 64742-49-0 Naphtha, hydrotreated light 0.60 1.50 0 1.7 1.6 1.3 0 0.0062 0.0006 64742-88-7 Mineral Spirits 0 0.60 1.50 0 1.7 1.6 1.3 0 0.0000 0.0000 64742-88-7 Mineral Spirits 0 0.60 1.50 0 1.7 1.6 1.3 0 0.0000 0.0000 64742-94-5 SC 150 / Aromatic 150 0 0.27 0 0.67 0.9 0.5 0.41 0.3 6.65 0.0490 0.00450 64742-95-6 SC 100 / Aromatic 100 0.30 5.10 0.94 <td>54590-94-8</td> <td>Dipropyl. Gly. Mono-Wetnyl Ether</td> <td></td> <td>0.64</td> <td>2.14</td> <td></td> <td></td> <td>1.8</td> <td>2</td> <td>2.3</td> <td></td> <td>0.50</td> <td>0.0330</td> <td>0.0030</td>	54590-94-8	Dipropyl. Gly. Mono-Wetnyl Ether		0.64	2.14			1.8	2	2.3		0.50	0.0330	0.0030
64742-47-8 Distinates 0.10 0.10 0.11 0.11 0.11 0.10 0.0004 0.0004 64742-48-9 Naphtha 0.26 0.2 0.2 0.2 0.6 0.0 0.0023 0.0002 64742-49-0 Naphtha, hydrotreated light 0.60 1.50 0.2 0.2 0.2 0.6 0.0 0.0062 0.0006 64742-49-0 Naphtha, hydrotreated light 0.60 1.50 0 1.7 1.6 1.3 0 0.0062 0.0006 64742-88-7 Mineral Spirits 0 0.27 0 0.1 0.41 0.3 0.001 0.0001 64742-95-6 SC 100 / Aromatic 100 0.30 5.10 0.94 0.67 0.9 0.5 0.41 0.3 6.65 0.0490 0.0045 64742-95-6 SC 100 / Aromatic 100 0.30 5.10 0.94 0.67 0.9 0.5 0.41 0.3 6.65 0.0490 0.0045 64742-95-6 SC 100 / Aromatic 100 0.30 5.10 0.94 0.67 0.9 0.5 0.41<	64741-00-8	Petroleum Distillates		0.64	3.14			2.2	3	1.5			0.0119	0.0011
64742-46-5 Naphtha, hydrotreated light 0.26 1.7 0.2 0.2 0.2 0.0 0.002 0.0023 0.0002 64742-49-0 Naphtha, hydrotreated light 0.60 1.50 1.7 1.6 1.3 1.6 0.0062 0.00062 0.0006 64742-88-7 Mineral Spirits 1 1.6 1.7 1.6 1.3 1.6 0.0000 0.0000 0.0000 64742-94-5 SC 150 / Aromatic 150 1 0.27 1.6 1.7 1.6 1.3 1.6 0.0010 0.0010 0.0001 0.0001 64742-95-6 SC 100 / Aromatic 100 0.30 5.10 0.94 0.67 0.9 0.5 0.41 0.3 6.65 0.0490 0.0045 64742-95-6 SC 100 / Aromatic 100 0.30 5.10 0.94 0.67 0.9 0.5 0.41 0.3 6.65 0.0490 0.0045 64742-95-6 SC 100 / Aromatic 100 0.30 5.10 0.94 0.67 0.9 0.41 0.3 6.65 0.0490 0.0045 Maximum Hourly Coating usage (64742-47-8	Distillates	0.26		0.10		0.2	0.1	0.1	0.1			0.0004	0.0000
64742-49-0 Napintia, invaloritation invaloritation involved light Image: Insert of the involved li	64742-48-9	Naphtha, hydrotroatod light	0.20	0.60	1 50		0.2	0.2	0.2	1.2			0.0023	0.0002
64742-94-5 SC 150 / Aromatic 150	64742-49-0	Mineral Spirits		0.00	1.50	+		1./	1.0	1.5	+		0.0002	0.0000
64742-95-6 SC 100 / Aromatic 100 0.30 5.10 0.94 0.67 0.9 0.5 0.41 0.3 6.65 0.0490 0.0045 64742-95-6 SC 100 / Aromatic 100 0.30 5.10 0.94 0.67 0.9 0.5 0.41 0.3 6.65 0.0490 0.0045 Maximum Hourly Coating usage (gal/hr) 0.0450 0.0411 0.00411 0.00411 0.00411 0.00411 0.00411 0.00411 0.00411 0.00411 0.00411 0.00411 0.00	64742-00-7 64742-04-5	SC 150 / Aromatic 150			0.27								0.0000	0.0000
Normalie 100 0.30 3.10 0.34 0.34 0.35 0.41 0.35 0.65 0.0490 0.0045 Image: Contraction of the second se	64742-94-9	SC 100 / Aromatic 100	0 30	5 10	0.27	0.67	0.0	05	0.41	0.3		6 65	0.0010	0.0001
Meight per Gallon (lb/gal): 8.16 10.49 8.41 8.48 8.28 8.05 8.35 7.95 8.3400 Maximum Hourly Coating usage (gal/hr) 0.0450 <td< td=""><td>04742-99-0</td><td>SC 100 / Aromatic 100</td><td>0.50</td><td>5.10</td><td>0.94</td><td>0.07</td><td>0.9</td><td>0.5</td><td>0.41</td><td>0.5</td><td></td><td>0.05</td><td>0.0490</td><td>0.0045</td></td<>	04742-99-0	SC 100 / Aromatic 100	0.50	5.10	0.94	0.07	0.9	0.5	0.41	0.5		0.05	0.0490	0.0045
Weight per Galloli (lb/gal). 0.10 10.49 0.41 0.40 0.20 0.05 0.05 0.30 7.55 8.3400 Maximum Hourly Coating usage (gal/hr) 0.0450		Weight per Gallen /Ih/celly	Q 1C	10.40	Q /1	Q / Q	8 26	8 05	8 05	8 26	7 05	8 2400		
imum Annual Average Hourty Coating Lisage (gal/hr) 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430 0.0430	N/~	vinum Hourly Coating usage (gal/br)	0.10	10.49	0.41	0.40	0.20	0.05	0.05	0.50	0.0450	0.5400		
		verage Hourly Coating Usage (gdl/III)	0.040	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430	0.0430		

Notes: 1 - Formaldehyde may be emitted from topcoat during the curing of melamine resin in the ovens. To account for an annual average production of formaldehyde, the weighted average amount of resin was used, taking into account the expect color speciation, and conversion of 5% of the resin to formaldehyde.

Example Calculation: Emissions of Isopropanol

(1.9/100)*(8.05 lb/gal)*(0.045 gal/hr) =	0.0069	lb/hr Basecoat	
(0.58/100)*(8.34 lb/gal)*(0.045 gal/hr) =	0.00218	lb/hr Clearcoat	
	0.0091	lb/hr total	

Table C-5. TAC Emission Calculations from Paint Purge and Booth Cleaning Materials.

FCA JNAP Tutone and Sustainment - March 2020

		Gage S-712	Chemico 5131G	CN-38185	Chemico 5100G	Gage 30180 Purge				
CAS	Chemical	Cleaner	Cleaner	Cleaner	Cleaner	Purge	Concentrator	Oxidizer	Concentrator	Oxidizer
		(% by wt)	(% by wt)	(% by wt)	(% by wt)	(% by wt)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
67-56-1	Methyl Alcohol					1.00%	0.0293	0.0132	0.0183	0.0082
67-63-0	Isopropyl Alcohol					10.00%	0.2934	0.1320	0.1829	0.0823
67-64-1	Acetone					1.00%	0.0293	0.0132	0.0183	0.0082
71-36-3	n-Butanol					10.00%	0.2934	0.1320	0.1829	0.0823
78-83-1	Isobutanol					5.00%	0.1467	0.0660	0.0914	0.0411
78-93-3	Methyl Ethyl Ketone					1.00%	0.0293	0.0132	0.0183	0.0082
91-20-3	Naphthalene					0.50%	0.0147	0.0066	0.0091	0.0041
95-63-6	1,2,4-Trimethyl Benzene			20.0%		20.00%	0.6036	0.7737	0.3762	0.4823
97-85-8	Isobutyl isobutyrate					3.00%	0.0880	0.0396	0.0549	0.0247
98-82-8	Cumene			1.0%		5.40%	0.1593	0.0968	0.0993	0.0603
100-41-4	Ethylbenzene					26.80%	0.7864	0.3539	0.4901	0.2206
106-36-5	n-Propyl Propionate					5.00%	0.1467	0.0660	0.0914	0.0411
108-10-1	Methyl Isobutyl Ketone					10.00%	0.2934	0.1320	0.1829	0.0823
108-21-4	Isopropyl Acetate					10.00%	0.2934	0.1320	0.1829	0.0823
108-67-8	1,3,5 Trimethyl Benzene			5.0%		0.00%	0.0042	0.1274	0.0026	0.0794
108-88-3	Toluene					2.20%	0.0646	0.0290	0.0402	0.0181
111-76-2	2-Butoxy Ethanol		40.0%		25.0%	0.00%	0.0416	1.2654	0.0259	0.7887
112-34-5	2-(2-Butoxyethoxy) Ethanol	20.0%				0.00%	0.0215	0.6541	0.0134	0.4077
123-86-4	n-Butyl Acetate					20.00%	0.5868	0.2641	0.3658	0.1646
141-43-5	Monoethanolamine		2.0%			0.00%	0.0021	0.0633	0.0013	0.0394
526-73-8	1,3,5 Trimethyl Benzene			1.0%		0.00%	0.0008	0.0255	0.0005	0.0159
624-41-9	2-Methyl Butyl Acetate			20.0%		0.00%	0.0167	0.5096	0.0104	0.3177
628-63-7	n-Amyl Acetate			50.0%		0.00%	0.0418	1.2741	0.0261	0.7941
1330-20-7	Xylene					33.20%	0.9742	0.4384	0.6072	0.2732
5989-27-5	d-Limonene	10.0%				0.00%	0.0107	0.3270	0.0067	0.2038
60828-78-6	trimethylnonylphenoxy polyethylene	20.0%				0.00%	0.0215	0.6541	0.0134	0.4077
64742-94-5	Heavy Aromatic Naphtha					3.00%	0.0880	0.0396	0.0549	0.0247
64742-95-6	SC 100 / Aromatic 100			50.0%		20.00%	0.6287	1.5382	0.3919	0.9587
	•		• • • • •		•					

0.89	2.85	7.32	1.43	7.25
8.42	8.15	6.56	8.29	7.26
0.017	0.017	0.017	0.017	0.337
0.143	0.139	0.112	0.141	2.445
4.30	4.16	3.35	4.23	73.36
2.68	2.59	2.09	2.64	45.72
	0.89 8.42 0.017 0.143 4.30 2.68	0.89 2.85 8.42 8.15 0.017 0.017 0.143 0.139 4.30 4.16 2.68 2.59	0.89 2.85 7.32 8.42 8.15 6.56 0.017 0.017 0.017 0.143 0.139 0.112 4.30 4.16 3.35 2.68 2.59 2.09	0.89 2.85 7.32 1.43 8.42 8.15 6.56 8.29 0.017 0.017 0.017 0.017 0.143 0.139 0.112 0.141 4.30 4.16 3.35 4.23 2.68 2.59 2.09 2.64

Cleaners

RTO operating when cleaners are used (i.e., cleaners controlled)
 No carryover = No Obs Emissions

Purge		
- Fraction reclaim for Prime, BC, and CC		
- Control for Purge		
- No Carryover = No Obs Emissions		
Max Production	163,800	veh/yr
Max Line Speed	30	veh/hr
Cleaners Control fraction	0.25	lb/lb
Concentrator Capture	0.90	lb/lb
Oxidizer Destruction	0.95	lb/lb
Purge Reclaim	0.6 fra	action reclaim

Example Calculation - Aromatic 100

controlled:

(0.112 lb/veh)*(30 veh/hr)*(0.50)*(0.25)*(1-0.9) = (2.445 lb/veh)*(30 veh/hr)*(0.20)*(1-0.6)*(1-0.9) =

(0.112 lb/veh)*(30 veh/hr)*(0.50)*(0.25)*(0.9)(1-.95) = (2.445 lb/veh)*(30 veh/hr)*(0.20)*(1-.6)*(0.9)(1-.95) =

uncontrolled: (0.112 lb/veh)*(30 veh/hr)*(0.50)*(1-0.25) = 0.0418 lb/hr Concentrator from Cleaner 0.5868 lb/hr Concentrator from Purge 0.6287 lb/hr Concentrator Total

0.0188 lb/hr RTO from Cleaner 0.2641 lb/hr RTO from Purge

1.2553 lb/hr RTO stack uncontolled Cleaner

1.5382 lb/hr RTO Total

				Emission Rate					
		BC Obs Stack Max Hourly	CC Obs Stack Max hourly	Conc Stack Max hourly	Building Addition RR ASH Max hourly	Booth RTO Max hourly	Oven RTO Max hourly	Powder and Bldg Support Max hourly	CTVV Max hourly
CAS	Name	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)
50-00-0	Formaldehyde	1.47E-03	1.47E-03	2.94E-03	2.13E-03	1.50E-03	1.20E-04	1.50E-03	9.68E-04
50-32-8	Benzo(a)pyrene	2.35E-08	2.35E-08	4.70E-08	3.41E-08	2.40E-08	3.84E-08	2.40E-08	1.55E-08
53-70-3	Dibenzo(a,h)anthracene	2.58E-08	2.58E-08	5.17E-08	3.75E-08	2.64E-08	4.22E-08	2.64E-08	1.70E-08
56-49-5	3-Methylchloranthrene	2.01E-07	2.01E-07	4.02E-07	2.91E-07	2.05E-07	3.28E-07	2.05E-07	1.32E-07
56-55-3	Benz(a)anthracene	3.52E-09	3.52E-09	7.05E-09	5.11E-09	3.60E-09	5.76E-09	3.60E-09	2.32E-09
71-43-2	Benzene	4.11E-05	4.11E-05	8.22E-05	5.96E-05	4.20E-05	6.72E-05	4.20E-05	2.71E-05
83-32-9	Acenaphthene	3.52E-08	3.52E-08	7.05E-08	5.11E-08	3.60E-08	5.76E-08	3.60E-08	2.32E-08
85-01-8	Phenanathrene	3.33E-07	3.33E-07	6.66E-07	4.83E-07	3.40E-07	5.44E-07	3.40E-07	2.19E-07
86-73-7	Fluorene	5.48E-08	5.48E-08	1.10E-07	7.95E-08	5.60E-08	8.96E-08	5.60E-08	3.61E-08
91-20-3	Naphthalene	1.19E-05	1.19E-05	2.39E-05	1.73E-05	1.22E-05	1.95E-05	1.22E-05	7.87E-06
91-57-6	2-Methylnaphthalene	4.70E-07	4.70E-07	9.40E-07	6.82E-07	4.80E-07	7.68E-07	4.80E-07	3.10E-07
106-97-8	Butane	4.11E-02	4.11E-02	8.22E-02	5.96E-02	4.20E-02	6.72E-02	4.20E-02	2.71E-02
108-88-3	Toluene	6.66E-05	6.66E-05	1.33E-04	9.66E-05	6.80E-05	1.09E-04	6.80E-05	4.39E-05
109-66-0	Pentane	5.09E-02	5.09E-02	1.02E-01	7.38E-02	5.20E-02	8.32E-02	5.20E-02	3.35E-02
110-54-3	Hexane	3.52E-02	3.52E-02	7.05E-02	5.11E-02	3.60E-02	5.76E-02	3.60E-02	2.32E-02
120-12-7	Anthracene	4.70E-08	4.70E-08	9.40E-08	6.82E-08	4.80E-08	7.68E-08	4.80E-08	3.10E-08
129-00-0	Pyrene	9.79E-08	9.79E-08	1.96E-07	1.42E-07	1.00E-07	1.60E-07	1.00E-07	6.45E-08
191-24-2	Benzo(g,h,i)perylene	2.35E-08	2.35E-08	4.70E-08	3.41E-08	2.40E-08	3.84E-08	2.40E-08	1.55E-08
193-39-5	Indeno(1,2,3-cd)pyrene	3.52E-09	3.52E-09	7.05E-09	5.11E-09	3.60E-09	5.76E-09	3.60E-09	2.32E-09
208-96-8	Acenaphthylene	3.52E-08	3.52E-08	7.05E-08	5.11E-08	3.60E-08	5.76E-08	3.60E-08	2.32E-08
205-82-3	Benzo(k)fluoranthene	3.52E-09	3.52E-09	7.05E-09	5.11E-09	3.60E-09	5.76E-09	3.60E-09	2.32E-09
205-99-2	Benzo(b)fluoranthene	3.52E-09	3.52E-09	7.05E-09	5.11E-09	3.60E-09	5.76E-09	3.60E-09	2.32E-09
206-44-0	Fluoranthene	5.87E-08	5.87E-08	1.17E-07	8.52E-08	6.00E-08	9.60E-08	6.00E-08	3.87E-08
218-01-9	Chrysene	3.52E-10	3.52E-10	7.05E-10	5.11E-10	3.60E-10	5.76E-10	3.60E-10	2.32E-10
7439-96-5	Manganese	7.44E-06	7.44E-06	1.49E-05	1.08E-05	7.60E-06	1.22E-05	7.60E-06	4.90E-06
7439-97-6	Mercury	5.09E-06	5.09E-06	1.02E-05	7.38E-06	5.20E-06	8.32E-06	5.20E-06	3.35E-06
7439-98-7	Molybdenum	2.15E-05	2.15E-05	4.31E-05	3.12E-05	2.20E-05	3.52E-05	2.20E-05	1.42E-05
7440-02-0	Nickel	4.11E-05	4.11E-05	8.22E-05	5.96E-05	4.20E-05	6.72E-05	4.20E-05	2.71E-05
7440-38-2	Arsenic	3.92E-06	3.92E-06	7.83E-06	5.68E-06	4.00E-06	6.40E-06	4.00E-06	2.58E-06
7440-39-3	Barium	8.61E-05	8.61E-05	1.72E-04	1.25E-04	8.80E-05	1.41E-04	8.80E-05	5.68E-05
7440-41-7	Beryllium	2.35E-07	2.35E-07	4.70E-07	3.41E-07	2.40E-07	3.84E-07	2.40E-07	1.55E-07
7440-43-9	Cadmium	2.15E-05	2.15E-05	4.31E-05	3.12E-05	2.20E-05	3.52E-05	2.20E-05	1.42E-05
7440-48-4	Cobalt	1.64E-06	1.64E-06	3.29E-06	2.39E-06	1.68E-06	2.69E-06	1.68E-06	1.08E-06
7440-50-8	Copper	1.66E-05	1.66E-05	3.33E-05	2.41E-05	1.70E-05	2.72E-05	1.70E-05	1.10E-05
7782-49-2	Selenium	4.70E-07	4.70E-07	9.40E-07	6.82E-07	4.80E-07	7.68E-07	4.80E-07	3.10E-07
95-50-1	1,2 Dichlorobenzene ¹	2.35E-05	2.35E-05	4.70E-05	3.41E-05	2.40E-05	3.84E-05	2.40E-05	1.55E-05
541-73-1	1,3 Dichlorobenzene	2.35E-05	2.35E-05	4.70E-05	3.41E-05	2.40E-05	3.84E-05	2.40E-05	1.55E-05
106-46-7	1,4 Dichlorobenzene	2.35E-05	2.35E-05	4.70E-05	3.41E-05	2.40E-05	3.84E-05	2.40E-05	1.55E-05
na	7,12-Dimethylbenz(a)anthrace	2.04E-05	2.04E-05	4.07E-05	2.95E-05	2.08E-05	3.33E-05	2.08E-05	1.34E-05

				Annual Operating	
	NG Usage Rate		Max hourly	Basis	Max hourly - Annual Average
New Paint Shop					
15	MMBtu/hr RTO	0.015	MMft ³ /hr	0.9	0.0135 MMft ³ /hr
5	MMBtu/hr Conc Desorp	0.0050	MMft ³ /hr	0.9	0.0045 MMft ³ /hr
32	MMBtu/hr Ovens (12,8 and 12)	0.032	MMft ³ /hr	0.9	0.0288 MMft ³ /hr
28.4	MMBtu/hr Building Addition RR ASH	0.0284	MMft ³ /hr	0.5	0.0142 MMft ³ /hr
78.3	MMBtu/hr ASH Heated flash	0.0783	MMft ³ /hr	0.5	0.03915 MMft ³ /hr
12.9	MMBtu/hr CTVV Water Test	0.013	MMft ³ /hr	0.5	0.00645 MMft ³ /hr
20.0	MMBtu Support Powder and Bldg	0.020	MMft3/hr	0.5	0.01 MMft3/hr
191.60	MMBtu/hr TOTAL	0.192	MMft ³ /hr		0.1066 MMft ³ /hr

					Emiss	ion Rate			
					Building				
					Addition RR			Powder and Bldg	
		BC Obs Stack	CC Obs Stack	Conc Stack	ASH	Booth RTO	Oven RTO	Support	СТVV
		Max Hourly	Max hourly	Hourly Ann Avg	Hourly Ann Avg				
CAS	Name	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	Hourly Ann Avg	Hourly Ann Avg	(lb/hr)	(lb/hr)
50-00-0	Formaldehyde	7.34E-04	7.34E-04	1.47E-03	1.07E-03	1.35E-03	1.08E-04	7.50E-04	4.84E-04
50-32-8	Benzo(a)pyrene	1.17E-08	1.17E-08	2.35E-08	1.70E-08	2.16E-08	3.46E-08	1.20E-08	7.74E-09
53-70-3	Dibenzo(a,h)anthracene	1.29E-08	1.29E-08	2.58E-08	1.87E-08	2.38E-08	3.80E-08	1.32E-08	8.51E-09
56-49-5	3-Methylchloranthrene	1.00E-07	1.00E-07	2.01E-07	1.46E-07	1.85E-07	2.95E-07	1.03E-07	6.62E-08
56-55-3	Benz(a)anthracene	1.76E-09	1.76E-09	3.52E-09	2.56E-09	3.24E-09	5.18E-09	1.80E-09	1.16E-09
71-43-2	Benzene	2.06E-05	2.06E-05	4.11E-05	2.98E-05	3.78E-05	6.05E-05	2.10E-05	1.35E-05
83-32-9	Acenaphthene	1.76E-08	1.76E-08	3.52E-08	2.56E-08	3.24E-08	5.18E-08	1.80E-08	1.16E-08
85-01-8	Phenanathrene	1.66E-07	1.66E-07	3.33E-07	2.41E-07	3.06E-07	4.90E-07	1.70E-07	1.10E-07
86-73-7	Fluorene	2.74E-08	2.74E-08	5.48E-08	3.98E-08	5.04E-08	8.06E-08	2.80E-08	1.81E-08
91-20-3	Naphthalene	5.97E-06	5.97E-06	1.19E-05	8.66E-06	1.10E-05	1.76E-05	6.10E-06	3.93E-06
91-57-6	2-Methylnaphthalene	2.35E-07	2.35E-07	4.70E-07	3.41E-07	4.32E-07	6.91E-07	2.40E-07	1.55E-07
106-97-8	Butane	2.06E-02	2.06E-02	4.11E-02	2.98E-02	3.78E-02	6.05E-02	2.10E-02	1.35E-02
108-88-3	Toluene	3.33E-05	3.33E-05	6.66E-05	4.83E-05	6.12E-05	9.79E-05	3.40E-05	2.19E-05
109-66-0	Pentane	2.54E-02	2.54E-02	5.09E-02	3.69E-02	4.68E-02	7.49E-02	2.60E-02	1.68E-02
110-54-3	Hexane	1.76E-02	1.76E-02	3.52E-02	2.56E-02	3.24E-02	5.18E-02	1.80E-02	1.16E-02
120-12-7	Anthracene	2.35E-08	2.35E-08	4.70E-08	3.41E-08	4.32E-08	6.91E-08	2.40E-08	1.55E-08
129-00-0	Pyrene	4.89E-08	4.89E-08	9.79E-08	7.10E-08	9.00E-08	1.44E-07	5.00E-08	3.23E-08
191-24-2	Benzo(g,h,i)perylene	1.17E-08	1.17E-08	2.35E-08	1.70E-08	2.16E-08	3.46E-08	1.20E-08	7.74E-09
193-39-5	Indeno(1,2,3-cd)pyrene	1.76E-09	1.76E-09	3.52E-09	2.56E-09	3.24E-09	5.18E-09	1.80E-09	1.16E-09
208-96-8	Acenaphthylene	1.76E-08	1.76E-08	3.52E-08	2.56E-08	3.24E-08	5.18E-08	1.80E-08	1.16E-08
205-82-3	Benzo(k)fluoranthene	1.76E-09	1.76E-09	3.52E-09	2.56E-09	3.24E-09	5.18E-09	1.80E-09	1.16E-09
205-99-2	Benzo(b)fluoranthene	1.76E-09	1.76E-09	3.52E-09	2.56E-09	3.24E-09	5.18E-09	1.80E-09	1.16E-09
206-44-0	Fluoranthene	2.94E-08	2.94E-08	5.87E-08	4.26E-08	5.40E-08	8.64E-08	3.00E-08	1.94E-08
218-01-9	Chrysene	1.76E-10	1.76E-10	3.52E-10	2.56E-10	3.24E-10	5.18E-10	1.80E-10	1.16E-10
7439-96-5	Manganese	3.72E-06	3.72E-06	7.44E-06	5.40E-06	6.84E-06	1.09E-05	3.80E-06	2.45E-06
7439-97-6	Mercury	2.54E-06	2.54E-06	5.09E-06	3.69E-06	4.68E-06	7.49E-06	2.60E-06	1.68E-06
7439-98-7	Molybdenum	1.08E-05	1.08E-05	2.15E-05	1.56E-05	1.98E-05	3.17E-05	1.10E-05	7.10E-06
7440-02-0	Nickel	2.06E-05	2.06E-05	4.11E-05	2.98E-05	3.78E-05	6.05E-05	2.10E-05	1.35E-05
7440-38-2	Arsenic	1.96E-06	1.96E-06	3.92E-06	2.84E-06	3.60E-06	5.76E-06	2.00E-06	1.29E-06
7440-39-3	Barium	4.31E-05	4.31E-05	8.61E-05	6.25E-05	7.92E-05	1.27E-04	4.40E-05	2.84E-05
7440-41-7	Beryllium	1.17E-07	1.17E-07	2.35E-07	1.70E-07	2.16E-07	3.46E-07	1.20E-07	7.74E-08
7440-43-9	Cadmium	1.08E-05	1.08E-05	2.15E-05	1.56E-05	1.98E-05	3.17E-05	1.10E-05	7.10E-06
7440-48-4	Cobalt	8.22E-07	8.22E-07	1.64E-06	1.19E-06	1.51E-06	2.42E-06	8.40E-07	5.42E-07
7440-50-8	Copper	8.32E-06	8.32E-06	1.66E-05	1.21E-05	1.53E-05	2.45E-05	8.50E-06	5.48E-06
7782-49-2	Selenium	2.35E-07	2.35E-07	4.70E-07	3.41E-07	4.32E-07	6.91E-07	2.40E-07	1.55E-07
95-50-1	1,2 Dichlorobenzene ¹	1.17E-05	1.17E-05	2.35E-05	1.70E-05	2.16E-05	3.46E-05	1.20E-05	7.74E-06
541-73-1	1,3 Dichlorobenzene ¹	1.17E-05	1.17E-05	2.35E-05	1.70E-05	2.16E-05	3.46E-05	1.20E-05	7.74E-06
106-46-7	1,4 Dichlorobenzene ¹	1.17E-05	1.17E-05	2.35E-05	1.70E-05	2.16E-05	3.46E-05	1.20E-05	7.74E-06
na	7,12-Dimethylbenz(a)anthrace	1.02E-05	1.02E-05	2.04E-05	1.48E-05	1.87E-05	3.00E-05	1.04E-05	6.71E-06

Table C-7. TAC Emissions Summary and Ambient Air Impact Concentrations.FCA JNAP Tutone and Sustainment - March 2020

CAS	Chemical	BC1 Obs (lb/hr)	CC1 Obs (lb/hr)	Oven RTO (lb/hr)	Concentrator (lb/hr)	Booth RTO (lb/hr)	Rapid Repair 1 (lb/hr)	Rapid Repair 2 (lb/hr)	Rapid Repair NG (lb/hr)	TT NG (lb/hr)	CTVV NG (lb/hr)	Total Emission Rate (lb/hr)	Max Impact (μg/m³)	ITSL (μg/m ³)	Averaging Time	ITSL 2 (μg/m ³)	Averaging Time	IRSL (μg/m³)	Notes
50.00.0	formaldahuda	1 475 00	1 475 02	1 205 04	2.045.02	1 505 02	4 925 02	4 925 02	2 125 02	1 505 02	0.005.04	2 1745 02	0.079	20	24 hr				1
50-00-0	formaldehyde	1.4/E-03	1.47E-03	1.20E-04	2.94E-03	1.50E-03	4.83E-03	4.83E-03	2.13E-03	1.50E-03	9.08E-04	2.1/4E-02	0.078	30	24 11	-	-	00	-
50-32-8	benzo(a)pyrene	7.54E-04	7.54E-04	1.55E-05 3.84E-08	1.472-03	1.55E-05 2.40E-08	4.412-04	4.412-04	1.07E-03	7.50E-04	4.04E-04	2 200F-07	0.003	0.002	24 hr	-	-	.08	- 5
50-32-8	benzo(a)pyrene	2.35E-08	2.35E-08	3.84F-08	4.70E-08	2.40E-08	-	-	3.41E-08	2.40E-08	1.55E-08	2.299E-07	0.000	0.002	24111	-	-	.001	5
53-70-3	Dibenzo(a,h)anthracene	1.29E-08	1.29E-08	2.38E-08	2.58E-08	2.38E-08	-	_	1.87E-08	1.32E-08	8.51E-09	1.397E-07	0.000		annual	-	-	.001	5
56-49-5	3-Methylchloranthrene	1.00E-07	1.00E-07	1.85E-07	2.01E-07	1.85E-07	-	-	1.46E-07	1.03E-07	6.62E-08	1.086E-06	0.000		annual	-	-	.001	5
56-55-3	Benz(a)anthracene	1.76E-09	1.76E-09	3.24E-09	3.52E-09	3.24E-09	-	-	2.56E-09	1.80E-09	1.16E-09	1.904E-08	0.000		annual	-	-	.001	5
57-97-6	7,12-Dimethylbenz(a)anthracene	1.02E-05	1.02E-05	1.87E-05	2.04E-05	1.87E-05	-	-	1.48E-05	1.04E-05	6.71E-06	1.100E-04	0.000		annual			.001	5
64-17-5	ethyl alcohol	3.75E-02	-	2.58E-03	8.43E-02	2.58E-03	4.48E-03	4.48E-03	-	-	-	1.359E-01	0.645	19000	1 hr	-	-	-	-
67-56-1	methanol	1.50E-03	-	1.03E-04	3.27E-02	1.33E-02	2.29E-04	2.29E-04	-	-	-	4.808E-02	0.056	20000	24 hr			-	-
67-56-1	methanol	1.50E-03	-	1.03E-04	3.27E-02	1.33E-02	2.29E-04	2.29E-04	-	-	-	4.808E-02	0.132		1 hr	28000.	1 hr	-	-
67-63-0	isopropyl alcohol	-	2.75E-02	4.22E-03	2.19E-01	1.09E-01	3.05E-04	3.05E-04	-	-	-	3.689E-01	0.052	220	annual	-	-	-	-
67-64-1	acetone	-	-	1.03E-04	3.27E-02	1.33E-02	3.62E-04	3.62E-04	-	-	-	4.835E-02	0.071	5900	8 hr	-	-	-	-
71-36-3	n-butanol	-	-	6.69E-05	1.84E-01	8.45E-02	5.50E-04	5.50E-04	-	-	-	2.710E-01	0.034	350	annual	-	-	-	-
71-41-0	amyl alcohol	-	-	-	-	-	3.91E-04	3.91E-04	-	-	-	7.826E-04	0.000	120	annual	-	-	-	-
71-43-2	benzene	2.06E-05	2.06E-05	3.78E-05	4.11E-05	3.78E-05	-	-	2.98E-05	2.10E-05	1.35E-05	2.222E-04	0.000	30	annual				-
71-43-2	benzene	4.11E-05	4.11E-05	6.72E-05	8.22E-05	4.20E-05	-	-	5.96E-05	4.20E-05	2.71E-05	4.024E-04	0.002			30.	24 hr		-
71-43-2	benzene	2.06E-05	2.06E-05	3.78E-05	4.11E-05	3.78E-05	-	-	2.98E-05	2.10E-05	1.35E-05	2.222E-04	0.000	4500	annual			.1	-
78-83-1		2.25E-02	1.96E-02	4.27E-03	2.19E-01	7.71E-02	4.84E-03	4.84E-03	-	-	-	3.51/E-01	0.610	1500	8 nr	-	-	-	
78-93-3	Methyl Methoandate	-	-	-	2.93E-02	1.32E-02	2 445 05	- 2.445.05	-	-	-	4.255E-02	0.046	700	24 11	-	-	-	-
83-32-9		- 1 765-08	- 1 76F-08	- 3.24F-08	- 3.52F_08	- 3 2/F-08	5.44E-05	5.44E-05	- 2 565-08	- 1 80F-08	- 1 16F-08	1.90/F-07	0.000	210	annual	-	-	-	-
85-01-8	Phenanathrene	1.702-08	1.702-08	3.24L-08	3.32L-08	3.24L-08	-	-	2.30L-08	1.80L-08	1.10E-08	1.304L-07	0.000	0.1	annual	-	-		
86-73-7	Fluorene	2 74F-08	2 74F-08	5.00E-07	5.48F-08	5.00E-07			3 98F-08	2 80F-08	1.10E-07	2.962E-07	0.000	140	annual	-	-		-
91-20-3	naphthalene	5.97F-06	5.97F-06	1.10F-05	9.16F-03	4.13F-03	-	-	8.66E-06	6.10F-06	3.93F-06	1.332E-02	0.002	3	annual				-
91-20-3	naphthalene	1.19E-05	1.19E-05	1.95E-05	1.47E-02	6.61E-03	-	-	1.73E-05	1.22E-05	7.87E-06	2.139E-02	0.029	5	unnuur	520.	8 hr		-
91-20-3	naphthalene	5.97E-06	5.97E-06	1.10E-05	9.16E-03	4.13E-03	-	-	8.66E-06	6.10E-06	3.93E-06	1.332E-02	0.002		annual		• • •	.08	-
91-57-6	2-Methylnaphthalene	2.35E-07	2.35E-07	4.32E-07	4.70E-07	4.32E-07	-	-	3.41E-07	2.40E-07	1.55E-07	2.539E-06	0.000	10	annual	-	-	-	-
95-50-1	1,2 Dichlorobenzene 1	1.17E-05	1.17E-05	2.16E-05	2.35E-05	2.16E-05	-	-	1.70E-05	1.20E-05	7.74E-06	1.270E-04	0.000	300	annual	-	-	-	-
95-63-6	1,2,4-trimethylbenzene	4.55E-03	6.55E-02	9.32E-03	4.50E-01	5.21E-01	1.20E-03	1.20E-03	-	-	-	1.053E+00	0.131	185	annual			-	14
95-63-6	1,2,4-trimethylbenzene	4.50E-03	1.01E-01	1.44E-02	7.24E-01	8.23E-01	1.31E-02	1.31E-02	-	-	-	1.693E+00	2.416			1200.	8 hr	-	14
97-85-8	Isobutyl isobutyrate	-	-	-	5.49E-02	2.47E-02	-	-	-	-	-	7.956E-02	0.010	300	annual	-	-	-	-
98-82-8	cumene	-	2.11E-03	2.94E-04	1.02E-01	6.14E-02	2.74E-05	2.74E-05	-	-	-	1.654E-01	0.020	400	annual	-	-		-
98-82-8	cumene	-	2.11E-03	2.94E-04	1.02E-01	6.14E-02	2.74E-05	2.74E-05	-	-	-	1.654E-01	0.020		annual	-	-	.1	-
100-41-4	ethylbenzene	4.50E-03	3.26E-03	7.63E-04	8.00E-01	3.56E-01	9.33E-04	9.33E-04	-	-	-	1.166E+00	1.277	1000	24 hr	-	-		-
100-41-4	ethylbenzene	4.55E-03	2.11E-03	4.95E-04	4.95E-01	2.28E-01	8.52E-05	8.52E-05	-	-	-	7.308E-01	0.091		annual	-	-	.4	-
103-09-3	2-ethylhexyl acetate	-	-	2.68E-04	3.89E-03	8.74E-03	9.92E-05	9.92E-05	-	-	-	1.916E-02	0.003	15	annual	-	-	-	-
103-65-1	Propylbenzene	-	8.45E-03	1.18E-03	9.19E-03	4.14E-03	1.76E-04	1.76E-04	-	-	-	2.331E-02	0.004	20	annual	-	-	-	-
106-36-5	14 Dichlorohonzono 1	- 1 175 05	- 1 175 05	-	9.14E-02	4.11E-02	2.07E-05	2.07E-05	- 1 705 05	- 1 205 05	-	1.320E-U1	0.000	800	annual	-	-	-	
106-46-7	1,4 Dichlorobenzene 1	1.17E-05	1.17E-05	2.10E-05	2.35E-05	2.10E-05	-	-	1.70E-05	1.20E-05	7.74E-06	1.270E-04	0.000	800	annual	-	-	25	-
106-97-8	hutane	4 11E-02	4 11E-02	6 72E-02	8 22E-02	2.10E-03			5.96E-02	4 20F-02	2 71E-02	4.024E-01	3 493	23800	8 hr	-		.25	22
107-98-2	propylene glycol monomethyl ether		1.56F-01	2.18F-02	1.70F-01	7.66F-02	-	-	-	-	-	4.250F-01	1.572	3700	1 hr	-	-	-	-
108-10-1	methyl isobutyl ketone	-	-	-	2.93E-01	1.32E-01	3.78E-04	3.78E-04	- 1	-	-	4.262E-01	0.564	820	8 hr	-	-		1 -
108-11-2	Methyl amyl alcohol	-	-	-	-	-	2.65E-04	2.65E-04	- 1	-	-	5.298E-04	0.003	1000	8 hr	-	-		-
108-21-4	isopropyl acetate	-	-	-	2.93E-01	1.32E-01	-	-	-	-	-	4.255E-01	0.560	4200	8 hr	-	-	-	- 1
108-65-6	1-Methoxy-2-propyl Acetate	-	3.59E-01	5.15E-02	4.41E-01	1.77E-01	2.45E-02	2.45E-02	-	-	-	1.099E+00	4.276	5400	1 hr	-	-	-	-
108-67-8	1,3,5-Trimethylbenzene	-	1.27E-02	1.76E-03	1.64E-02	8.56E-02	2.11E-04	2.11E-04	-	-	-	1.169E-01	0.014	185	annual			-	14
108-67-8	1,3,5-Trimethylbenzene	-	1.96E-02	2.72E-03	2.55E-02	1.37E-01	2.31E-03	2.31E-03	-	-	-	1.893E-01	0.273			1200.	8 hr	-	14
108-82-7	2,6-Dimethyl-4-Heptanol	-	-	-			6.45E-05	6.45E-05				1.290E-04	0.000	30	annual	-	-	-	-
108-83-4	2,6-Dimethylheptanone		-	8.87E-03	.29	.00887272				-		4.367E-01	0.971	1450	8 hr				
108-83-8	Diisobutyl Ketone	-	-	-	-	-	2.91E-02	2.91E-02	-	-	-	5.829E-02	0.277	1500	8 hr	-	-	-	-
108-87-2	Methylcyclohexane	-	-	6.19E-04	.02	6.19E-04	1.63E-03	1.63E-03	-	-	-	3.373E-02	0.083	16000	8 hr	-	-	-	-
108-88-3	toluene	1.57E-03	6.66E-05	2.12E-04	6.81E-02	2.92E-02	1.56E-03	1.56E-03	9.66E-05	6.80E-05	4.39E-05	1.024E-01	0.122	5000	24 hr	-	-	-	-
109-66-0	pentane	5.09E-02	5.09E-02	8.32E-02	1.02E-01	5.20E-02	-	-	7.38E-02	5.20E-02	3.35E-02	4.982E-01	4.325	17700	8 hr	-	-	-	-
110-54-3	hexane	1.76E-02	1.76E-02	3.24E-02	3.52E-02	3.24E-02	-	-	2.56E-02	1.80E-02	1.16E-02	1.904E-01	0.121	700	annual	-	-	-	-
111-76-2	2-DUTOXYETNANOI	-	-	-	2.59E-02	7.89E-01	-	-	-	-		8.146E-01	0.070	1600	annual	-	-	-	10
112 24 5	Anumacene butyl carbital	2.35E-U8	2.35E-U8	4.32E-U8	4./UE-U8	4.32E-U8	-	-	3.41E-U8	2.40E-08	1.555-08	2.539E-U/	0.000	1000	annual	-	-	-	
112-34-5		-	-	-	1.34E-UZ	4.U8E-U1		-	+ - +	-	-	4.211E-U1	0.036	1	annuar	-	+ -	-	

Table C-7. TAC Emissions Summary and Ambient Air Impact Concentrations.FCA JNAP Tutone and Sustainment - March 2020

CAS	Chemical	BC1 Obs	CC1 Obs	Oven RTO	Concentrator	Booth RTO	Ranid Renair 1	Ranid Renair 2	Rapid Repair NG	TT NG		Total Emission	Max Impact	ITSI	Averaging	1751.2	Averaging	IRSI	Notes
CAS	Chemical	(lb/br)	(lb/br)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lh/hr)	(lb/hr)	(lb/hr)	(lb/br)	(lb/br)	(ug/m ³)	$(\mu g/m^3)$	Time	$(\mu g/m^3)$	Time	$(\mu g/m^3)$	Notes
123-86-4	n-butyl acetate	-	-	1.90F-02	1.21F+00	2.83F-01	3,55E-02	3.55F-02	-	-	-	1.856F+00	3.535	2400	8 hr	-	-	-	15
129-00-0	Pyrene	4.89E-08	4.89E-08	9.00E-08	9.79E-08	9.00E-08	-	-	7.10E-08	5.00E-08	3.23E-08	5.290E-07	0.000	100	annual	-	-	-	-
137-32-6	2-Methyl-1-butanol	-	-	-	-	-	1.56E-04	1.56E-04	-	-	-	3.111E-04	0.000	13	annual	-	-	-	-
141-43-5	Monoethanolamine	-	-	-	2.08E-03	6.33E-02	-	-	-	-	-	6.535E-02	0.067	80	8 hr	-	-	-	-
141-78-6	Ethyl Acetate	-	-	6.69E-05	9.73E-04	2.18E-03	2.07E-05	2.07E-05	-	-	-	4.783E-03	0.001	3200	annual	-	-	-	-
142-82-5	Heptane	-	-	1.34E-03	4.38E-02	1.34E-03	8.15E-03	8.15E-03	-	-	-	8.231E-02	0.224	3500	8 hr	-	-	-	-
191-24-2	Benzo(g,h,i)perylene	1.17E-08	1.17E-08	2.16E-08	2.35E-08	2.16E-08	-	-	1.70E-08	1.20E-08	7.74E-09	1.270E-07	0.000	13	annual	-	-	-	-
193-39-5	Indeno(1,2,3-cd)pyrene	1.76E-09	1.76E-09	3.24E-09	3.52E-09	3.24E-09	-	-	2.56E-09	1.80E-09	1.16E-09	1.904E-08	0.000	0	annual	-	-	.001	5
205-82-3	Benzo(k)fluoranthene	1.76E-09	1.76E-09	3.24E-09	3.52E-09	3.24E-09	-	-	2.56E-09	1.80E-09	1.16E-09	1.904E-08	0.000	0	annual	-	-	.001	5
205-99-2	Benzo(b)fluoranthene	1.76E-09	1.76E-09	3.24E-09	3.52E-09	3.24E-09	-	-	2.56E-09	1.80E-09	1.16E-09	1.904E-08	0.000	0	annual	-	-	.001	5
206-44-0	Fluoranthene	2.94E-08	2.94E-08	5.40E-08	5.87E-08	5.40E-08	-	-	4.26E-08	3.00E-08	1.94E-08	3.174E-07	0.000	140	annual	-	-	-	-
208-96-8	Acenaphthylene	1.76E-08	1.76E-08	3.24E-08	3.52E-08	3.24E-08	-	-	2.56E-08	1.80E-08	1.16E-08	1.904E-07	0.000	35	annual	-	-	-	-
218-01-9	Chrysene	1.76E-10	1.76E-10	3.24E-10	3.52E-10	3.24E-10	- 1 295 04	- 1 295 04	2.56E-10	1.80E-10	1.16E-10	1.904E-09	0.000	105	annual	-	-	.001	5
526-73-8	1,2,3-Trimethylbenzene	-	6.34E-03	8.82E-04	7.42E-03	1.90E-02	1.38E-04	1.38E-04	-	-	-	3.390E-02	0.005	185	annuai	1200	0 hr	-	14
520-73-8	1,2,3- Infinetryidenzene	- 1 17E 05	9.78E-03	1.30E-03	1.15E-02	3.03E-02	1.51E-03	1.51E-03	- 1 705 05	1 205 05	- 7 745 06	5.589E-02	0.099	2	annual	1200.	111 6	-	14
590-01-2	1,5 Dichlorobenzene 1 Propriopic Acid N-Butyl ester	1.172-05	1.172-05	2.10E-05	2.55E-05	2.10E-05	- 1 23E-03	- 1 23E-03	1.70E-05	1.20E-05	7.74E-00	2.462E-03	0.000	5 102	annual	-	-	-	-
624-41-9	2-Methyl Butyl Acetate	-	_	-	1.04E-02	3 18F-01	-	-	-	-		3 281F-01	0.028	1100	annual		_	-	<u> </u>
624-54-4	n-pentyl proprionate	-	1 65F-01	2 29F-02	1.04E 02	8.07F-02	-	-	-	-	_	4 477F-01	0.025	21	annual	-	-	-	-
628-63-7	n-Amyl Acetate	-	-	-	2.61E-02	7 94F-01	-	-	-	-	_	8 202F-01	0.071	1100	annual	-	-	-	
1330-20-7	mixed xylenes	-	1.06E-02	2.27E-03	6.30E-01	3.05E-01	3.99E-04	3.99E-04	-	-	-	9.668E-01	0.124	390	annual	-	-	-	2
5989-27-5	d-Limonene	-	-	-	6.69E-03	2.04E-01	-	-	-	-	-	2.105E-01	0.018	6250	annual	-	-	-	-
7439-96-5	Manganese	3.72E-06	3.72E-06	6.84E-06	7.44E-06	6.84E-06	-	-	5.40E-06	3.80E-06	2.45E-06	4.020E-05	0.000	0.3	annual	-	-	-	29
7439-97-6	Mercury	2.54E-06	2.54E-06	4.68E-06	5.09E-06	4.68E-06	-	-	3.69E-06	2.60E-06	1.68E-06	2.751E-05	0.000	0.3	annual			-	7
7439-97-6	Mercury	5.09E-06	5.09E-06	8.32E-06	1.02E-05	5.20E-06	-	-	7.38E-06	5.20E-06	3.35E-06	4.982E-05	0.000			1.	24 hr	-	7
7439-98-7	Molybdenum	2.15E-05	2.15E-05	3.52E-05	4.31E-05	2.20E-05	-	-	3.12E-05	2.20E-05	1.42E-05	2.108E-04	0.002	30	8 hr	-	-	-	-
7440-02-0	nickel	4.11E-05	4.11E-05	6.72E-05	8.22E-05	4.20E-05	-	-	5.96E-05	4.20E-05	2.71E-05	4.024E-04	0.000	0	-	-	-	.006	-
7440-38-2	arsenic	3.92E-06	3.92E-06	6.40E-06	7.83E-06	4.00E-06	-	-	5.68E-06	4.00E-06	2.58E-06	3.832E-05	0.000	0	-	-	-	•	-
7440-39-3	Barium	8.61E-05	8.61E-05	1.41E-04	1.72E-04	8.80E-05	-	-	1.25E-04	8.80E-05	5.68E-05	8.430E-04	0.007	5	8 hr	-	-	-	35
7440-41-7	berylium	2.35E-07	2.35E-07	3.84E-07	4.70E-07	2.40E-07	-	-	3.41E-07	2.40E-07	1.55E-07	2.299E-06	0.000	0.02	24 hr	-	-		-
7440-41-7	berylium	1.17E-07	1.17E-07	2.16E-07	2.35E-07	2.16E-07	-	-	1.70E-07	1.20E-07	7.74E-08	1.270E-06	0.000		annual	-	-	.0004	-
7440-43-9	cadmium	2.15E-05	2.15E-05	3.52E-05	4.31E-05	2.20E-05	-	-	3.12E-05	2.20E-05	1.42E-05	2.108E-04	0.000	0	-	-	-	.0006	-
7440-48-4	Cobalt	1.64E-06	1.64E-06	2.69E-06	3.29E-06	1.68E-06	-	-	2.39E-06	1.68E-06	1.08E-06	1.609E-05	0.000	0.2	8 hr	-	-	•	42
7440-50-8	Copper	1.66E-05	1.66E-05	2.72E-05	3.33E-05	1.70E-05	-	-	2.41E-05	1.70E-05	1.10E-05	1.629E-04	0.001	2	8 hr	-	-	-	-
7782-49-2	Selenium	4.70E-07	4.70E-07	7.68E-07	9.40E-07	4.80E-07	-	-	6.82E-07	4.80E-07	3.10E-07	4.598E-06	0.000	2	8 hr	-	-	-	34
8032-32-4	VM&P Naphtha	4.80E-02	-	3.30E-03	1.08E-01	3.30E-03	9.30E-03	9.30E-03	-	-	-	1.811E-01	0.450	3500	8 hr	-	-	-	1
8052-41-3	A 6 Dimothyl 2 Hontonono	-	-	- 9.035.04	-	-	3.62E-04	3.62E-04	-	-	-	7.245E-04	0.003	3500	8 nr	-	-	-	10
25551-13-7	Trimethylbenzene	-	-	6.03E-04	1.172-02	2.02E-02	3.46E-05	3.46E-05	-	-	-	6.912E-02	0.010	185	annual	-	-	-	19
25551-13-7	Trimethylbenzene				-		3.40E-03	3.40E-03	-	-		7 569F-04	0.000	105	annuar	1200	8 hr		14
34590-94-8	dipropylene glycol methyl ether	-	8.66F-02	1.21F-02	9.42F-02	4.24F-02	1.51E-03	1.51E-03	-	-	-	2.383E-01	0.045	720	annual	-	-	-	-
60828-78-6	trimethylnonylphenoxy polyethylene oxyethanol	-	-	-	1.34E-02	4.08E-01	-	-	-	-	-	4.211E-01	0.036	0.1	annual				
64741-66-8	Petroleum Distillates	-	-	9.36E-04	1.36E-02	3.06E-02	5.43E-04	5.43E-04	-	-	-	6.746E-02	0.012	138	annual	-	-	-	-
64742-47-8	Hydrotreated Light Distillate	-	-	-	-	-	1.73E-05	1.73E-05	-	-	-	3.456E-05	0.000	24	annual	-	-	-	-
64742-48-9	hydrotreated heavy napht	-	-	1.03E-04	3.37E-03	1.03E-04	1.13E-03	1.13E-03	-	-	-	7.335E-03	0.022	3500	8 hr	-	-	-	1
64742-49-0	Naphtha, hydrotreated light	1.80E-02	-	1.24E-03	4.04E-02	1.24E-03	3.08E-03	3.08E-03	-	-	-	6.709E-02	0.165	3500	8 hr	-	-	-	1
64742-94-5	Heavy Aromatic Naphtha	-	-	-	5.49E-02	2.47E-02	4.67E-05	4.67E-05			-	7.965E-02	0.010	70	annual	-	-	-	1
64742-95-6	light aromatic solvent naphtha (petroleum)	1.06E-02	1.16E-01	1.66E-02	5.25E-01	1.03E+00	2.24E-03	2.24E-03	-	-	-	1.704E+00	0.203	100	annual	-	-	-	1
70657-70-4	2-Methoxy-1-propyl Acetate	-	3.26E-03	4.54E-04	3.55E-03	1.60E-03	-	-	-	-	-	8.854E-03	0.016	500	24 hr	-	-	-	-
	Sum of Petroleum Hydrocarbon (Footnote 1)	7.81E-02	1.16E-01	2.13E-02	7.32E-01	1.06E+00	1.62E-02	1.62E-02	0.00E+00	0.00E+00	0.00E+00	2.040E+00	3.062	3500	8 hr				1
	Sum of PAH (Footnote 5)	1.03E-05	1.03E-05	1.90E-05	2.06E-05	1.90E-05	-	-	1.50E-05	1.05E-05	6.80E-06	1.116E-04	0.00006	0.001	annual			.001	<u> </u>
	Sum of Trimethylbenene (Footnote 14)	4.50E-03	1.30E-01	1.85E-02	7.61E-01	9.91E-01	1.73E-02	1.73E-02	0.00E+00	0.00E+00	0.00E+00	1.939E+00	2.792	1200	8 hr				
	Sum of Trimethylbenene (Footnote 14)	4.55E-03	8.45E-02	1.20E-02	4.74E-01	6.25E-01	1.58E-03	1.58E-03	0.00E+00	0.00E+00	0.00E+00	1.204E+00	0.149	185	annual				<u> </u>
L																			

Table C-8. TAC Emission Calculations from Natural Gas Combustion. FCA JNAP Tutone and Sustainment - March 2020

					Emission Rate						
					Building Addition RR				Powder and Bldg		
			BC Obs Stack ¹	CC Obs Stack ¹	Conc Stack ¹	ASH	Booth RTO	Oven RTO	Support	CTVV	
	RTO NG Combustion	Other NG Combustion	Max Hourly	Max Hourly	Max Hourly	Max Hourly	Max Hourly	Max Hourly	Max Hourly	Max Hourly	
		Emission Factor									
Pollutant	Emission Factor (lb/MMcf)	(lb/MMcf)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	
NOX	50	36	0.705	7.05E-01	1.41E+00	1.02E+00	1.00E+00	1.15E+00	7.20E-01	4.64E-01	
PM	7.6	7.6	1.49E-01	1.49E-01	2.98E-01	2.16E-01	3.80E-02	2.43E-01	1.52E-01	9.80E-02	

1 - ASH combustion Emissions are modeled at 50% through the observation stacks (25% BC, 25% CC) and 50% through the Concentrator stack.

					Emission Rate						
					Building Addition RR				Powder and Bldg		
			BC Obs Stack	CC Obs Stack	Conc Stack	ASH	Booth RTO	Oven RTO	Support	CTVV	
	RTO NG Combustion	Other NG Combustion	Max Hourly AA	Max Hourly AA	Hourly Ann Avg	Hourly Ann Avg	Hourly Ann Avg	Hourly Ann Avg	Hourly Ann Avg	Hourly Ann Avg	
		Emission Factor									
Pollutant	Emission Factor (lb/MMcf)	(lb/MMcf)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	(lb/hr)	
NO _X	50	36	3.52E-01	3.52E-01	7.05E-01	5.11E-01	9.00E-01	1.04E+00	3.60E-01	2.32E-01	
PM	7.6	7.6	7.44E-02	7.44E-02	1.49E-01	1.08E-01	3.42E-02	2.19E-01	7.60E-02	4.90E-02	

	NG Usage Rate	Ma	x hourly	Annual Operating Basis	Max hourly - Annual Average			
New Paint Shop								
15	MMBtu/hr RTO	0.015	MMft ³ /hr	0.9	0.0135 MMft ³ /hr			
5	MMBtu/hr Conc Desorb	0.0050	MMft ³ /hr	0.9	0.0045 MMft ³ /hr			
32	MMBtu/hr Ovens (12,8 and 12)	0.032	MMft ³ /hr	0.9	0.0288 MMft ³ /hr			
28.4	MMBtu/hr Building Addition RR ASH	0.0284	MMft ³ /hr	0.5	0.0142 MMft ³ /hr			
78.3	MMBtu/hr ASH Heated flash	0.0783	MMft ³ /hr	0.5	0.03915 MMft ³ /hr			
12.9	MMBtu/hr CTVV Water Test	0.013	MMft ³ /hr	0.5	0.00645 MMft ³ /hr			
20.0	MMBtu Support Powder and Bldg	0.020	MMft3/hr	0.5	0.01 MMft3/hr			
191.60	MMBtu/hr TOTAL	0.192	MMft ³ /hr		0.1066 MMft ³ /hr			
	Hours of Operation							
------------------	--------------------	-------	--	--	--	--	--	--
	2017	2018						
Production Hours	5,743	5,855						
Heating Hours	6183	6006						

NG Combustion Emissions

			NG Us	sage			Emissions		
Source/Stack	Notes	2017	2018	2017	2018	2 Year Average	NOx	PN	1 _{2.5}
		(MMft ³ /yr)	(MMft ³ /yr)	(MMft ³ /hr)	(MMft ³ /hr)	(MMft ³ /hr)	(lb/hr)	(lb/hr)	(TPY) ¹
Building Heat	Modeled as area source	450.348	481.137	7.28E-02	8.01E-02	7.65E-02	7.647	0.5812	1.7698
Ecoat Incinerator A	Ecoat Oven Burners + Ecoat Incinerator A	32.25	34.46	5.62E-03	5.89E-03	5.75E-03	0.575	0.0437	0.1267
Ecoat Incinerator B	Ecoat Oven Burners + Ecoat Incinerator B	47.12	50.34	8.20E-03	8.60E-03	8.40E-03	0.840	0.0638	0.1852
Color 1 Concentrator	Color 1 Air Supply House NG	34.31	36.66	5.97E-03	6.26E-03	6.12E-03	0.612	0.0465	0.1348
Color 2 Concentrator	Color 2 Air Supply House NG	102.93	109.97	1.79E-02	1.88E-02	1.84E-02	1.835	0.1395	0.4045
Color 3 Concentrator	Color 3 Air Supply House NG	216.61	231.42	3.77E-02	3.95E-02	3.86E-02	3.862	0.2935	0.8513
Color 1, 2, TT Booth RTO	Existing C1 and C2 emissions	41.17	43.99	7.17E-03	7.51E-03	7.34E-03	0.734	0.0558	0.1618
Color 3 Booth RTO		36.14	38.61	6.29E-03	6.59E-03	6.44E-03	0.644	0.0490	0.1420
Color 1 Oven RTO	Oven and RTO Burners	38.89	41.54	6.77E-03	7.10E-03	6.93E-03	0.693	0.0527	0.1528
Color 2 Oven RTO	Oven and RTO Burners	38.89	41.54	6.77E-03	7.10E-03	6.93E-03	0.693	0.0527	0.1528
Color 3 Oven RTO	Oven and RTO Burners	66.33	70.87	1.15E-02	1.21E-02	1.18E-02	1.183	0.0899	0.2607
Sealer Oven	Exhausted via Ecoat B Stack	20.59	21.99	3.58E-03	3.76E-03	3.67E-03	0.367	0.0279	0.0809
Powder Oven	wder Oven			2.29E-02	2.40E-02	2.34E-02	2.345	0.1782	0.5169

1 - TPY Emisions of $\mathsf{PM}_{2.5}$ based upon actual annual operating factor

Production Related PM Emissions

		Product	ion Paint	Emissions		2 Year Average Emissions	
Source/Stack	Notes	2017	2018	2017	2018		
		(Veh/yr)	(Veh/yr)	(lb/hr)	(lb/hr)	(lb/hr)	(TPY) ¹
Color 1 Booth	0.133 lb PM/vehicle painted (2 Exhaust	149 796	159 720	2.445	2 606	2 5 2 6	10.225
	Stacks)	140,700	156,750	5.445	5.000	5.520	10.225
Color 2 Booth	0.133 lb PM/vehicle painted (2 Exhaust	155 426	150 120	2 500	2 615	2 (07	10 450
	Stacks)	155,450	159,150	5.599	5.015	5.007	10.459
Color 2 Booth	0.137 lb PM/vehicle painted (2 Exhaust	140 240	141 402	2 245	2 200	2 2 2 7	0.265
Color 3 Booth	Stacks)	140,240	141,403	3.345	3.309	3.327	9.305
	0.04 lb PM/br per station 10 stations No						
Sanding Grinding Operations	exhaust stacks, modeled as an area source	-	-	-	-	0.40	1.16
	0.026 lb PM/hr per station, 5 stations.						
.ow Bake Repair	Modeled all emissions from representative	-	-	-	-	0.13	0.38
	merged stack.						

1 - TPY Emisions based upon actual annual operating factor

Existing NG Combustion Emissions at MAP

	Notes		NG Us			Emissions			
Source/Stack		2017	2018	2017	2018	2 Year Average	NOx	PIV	l _{2.5}
		(MMft ³ /yr)	(MMft ³ /yr)	(MMft ³ /hr)	(MMft ³ /hr)	(MMft ³ /hr)	(lb/hr)	(lb/hr)	(TPY) ¹
Existing Building Heat	Modeled as area source	128.735	143.450	2.08E-02	2.39E-02	2.24E-02	2.235	0.1699	0.5172

1 - TPY Emisions based upon actual annual operating factor

Daily Bo	iler NG	Usage 2	2017 (1,	000 ft ³)	Daily Bo	iler NG	Usage 2	2018 (1,	000 ft ³)
	Boiler #1	Boiler #2	Boiler #3	Boiler #4		Boiler #1	Boiler #2	Boiler #3	Boiler #4
1-Jan			207		1-Jan		419	419	
2-Jan			342		2-Jan		439	439	
3-Jan			444		3-Jan		432	432	
4-Jan		235	484		4-Jan		484	484	
5-Jan		434	432		5-Jan		532	532	
6-Jan		430	430		6-Jan		506	506	
7-Jan		410	413		7-Jan		402	402	
8-Jan		397	396		8-Jan		280	278	
9-Jan		338	338		9-Jan		291	291	
10-Jan		378	107		10-Jan		107	447	
11-Jan		453			11-Jan			296	
12-Jan		466			12-Jan		234	419	
13-Jan		548	120		13-Jan		453	453	
14-Jan		307	306		14-Jan		391	388	
15-Jan		119	340		15-Jan		320	329	
16-Jan			407		16-Jan		411	411	
17-Jan			462		17-Jan		407	408	
18-Jan			428		18-Jan		346	347	
19-Jan			504		19-Jan		293	293	
20-Jan			464		20-Jan		424	55	
21-Jan			344		21-Jan		452		
22-Jan			344		22-Jan		368		
23-Jan			373		23-Jan		534		
24-Jan			443		24-Jan		389	386	
25-Jan			432		25-Jan		344	345	
26-Jan			480		26-Jan		320	168	
27-Jan		84	478		27-Jan		382	12	
28-Jan		285	285		28-Jan		61	368	
29-Jan		210	224		29-Jan		377	378	
30-Jan		344	344		30-Jan		437	438	
31-Jan		285	285		31-Jan		294	295	
1-Feb		260	260		1-Feb		303	306	
2-Feb		340	340		2-Feb		441	443	
3-Feb		382		187	3-Feb		370	372	
4-Feb		728		347	4-Feb		272	274	
5-Feb		320		174	5-Feb		393	394	
6-Feb		493			6-Feb		385	386	
7-Feb		435			7-Feb		371	373	
8-Feb		471		84	8-Feb		377	378	
9-Feb		392		394	9-Feb		362	363	
10-Feb		354		355	10-Feb		356	358	
11-Feb		343		128	11-Feb		314	315	
12-Feb		432			12-Feb		324	325	
13-Feb		466			13-Feb		352	353	
14-Feb		447		102	14-Feb		251	251	
15-Feb		316	210	105	15-Feb		36	337	
16-Feb		336	247	87	16-Feb		48	487	
17-Feb		277		279	17-Feb		291	292	
18-Feb		180		81	18-Feb		319	75	
19-Feb		114		139	19-Feb		381		
20-Feb				452	20-Feb		198		

Daily Bo	iler NG	Usage 2	2017 (1,	000 ft ³)	Daily Bo	iler NG	Usage 2	2018 (1,	000 ft ³)
	Boiler #1	Boiler #2	Boiler #3	Boiler #4		Boiler #1	Boiler #2	Boiler #3	Boiler #4
21-Feb	233	99		102	21-Feb		392	386	
22-Feb	290				22-Feb		269	269	
23-Feb	301				23-Feb		184	193	
24-Feb	364				24-Feb		233	233	
25-Feb	463	91			25-Feb		57	309	
26-Feb	250	284	2		26-Feb			399	
27-Feb	390	1	1		27-Feb			335	
28-Feb	401				28-Feb			328	
1-Mar	371				1-Mar		101	456	
2-Mar	612	96			2-Mar		100	456	
3-Mar	355	356			3-Mar		508		
4-Mar	379	381			4-Mar		537		
5-Mar	313	311			5-Mar		246	287	
6-Mar	246	76			6-Mar		270	269	
7-Mar	298				7-Mar		276	280	
8-Mar	411				8-Mar		301	302	
9-Mar	473	68			9-Mar		282	284	
10-Mar	361	360			10-Mar		291	292	
11-Mar	423	422			11-Mar		103	344	
12-Mar	383	382			12-Mar		300	300	
13-Mar	410	409			13-Mar		306	308	
14-Mar	435	434			14-Mar		277	277	
15-Mar	422	421			15-Mar		270	271	
16-Mar	331	331			16-Mar		319	320	
17-Mar	319	318			17-Mar		258	260	
18-Mar	277	276			18-Mar		131	244	
19-Mar	279	187			19-Mar			488	
20-Mar	464				20-Mar		231	348	
21-Mar	459				21-Mar		274	274	
22-Mar	443	252			22-Mar		274	274	
23-Mar	305	305			23-Mar		284	284	
24-Mar	2/3	56			24-Mar		301	301	
25-Mar	428				25-Mar		299	263	
26-Mar	3//				26-Mar		429		
27-Mar	237				27-Mar		3//		
28-IVIar	409				28-Mar		415		
29-Mar	424				29-Mar		439		
30-IVIar	510				30-Mar		453		
31-IVIar	492				31-IVIar		407		
1-Apr	420				1-Apr		503		
2-Apr	270				2-Apr		539		
3-Apr	349				3-Apr		483	07	
4-Apr	303				4-Apr		4/3	97	
5-Apr	390				5-Apr		279	280	
o-Apr	450						259	272	
7-Apr	523				7-Apr		310	311	
8-Apr	307				0 Apr		257	258	
9-Apr	243				9-Apr		298	298	
10-Apr	18/				10-Apr		263	263	
12 Arr	237				12 Apr		260	142	
12-Apr	333				12-Apr		290		

Boiler #1Boiler #2Boiler #3Boiler #3Boiler #4Boiler #4Boiler #3Boiler #4Boiler #4 <th>Daily Bo</th> <th>iler NG</th> <th>Usage 2</th> <th>2017 (1,</th> <th>000 ft³)</th> <th>Daily Bo</th> <th>iler NG</th> <th>Usage 2</th> <th>2018 (1,</th> <th>000 ft³)</th>	Daily Bo	iler NG	Usage 2	2017 (1,	000 ft ³)	Daily Bo	iler NG	Usage 2	2018 (1,	000 ft ³)
13-Apr 374 13-Apr 368 14-Apr 14-Apr 286 14-Apr 503 1 15-Apr 206 16-Apr 44-Apr 503 1 17-Apr 254 16-Apr 442 1 1 1 1 1 Apr 553 1		Boiler #1	Boiler #2	Boiler #3	Boiler #4		Boiler #1	Boiler #2	Boiler #3	Boiler #4
14-Apr 286 14-Apr 503 1 15-Apr 206 15-Apr 503 1 17-Apr 254 17-Apr 499 1 17-Apr 254 17-Apr 552 1 18-Apr 267 1 17-Apr 552 1 19-Apr 203 1 19-Apr 565 1 20-Apr 167 1 20-Apr 448 1 21-Apr 165 1 1-Apr 33 1 22-Apr 166 2 2-Apr 251 1 1 25-Apr 166 2 2-Apr 305 1 1 25-Apr 166 2 2-Apr 305 1 1 28-Apr 106 2 2-Apr 309 1	13-Apr	374				13-Apr		368		
15-Apr 206 15-Apr 499 1 16-Apr 77 16-Apr 472 1 18-Apr 254 17-Apr 555 1 19-Apr 203 18-Apr 555 1 20-Apr 167 20-Apr 468 1 21-Apr 167 22-Apr 289 1 23-Apr 144 23-Apr 24-Apr 251 1 25-Apr 166 23-Apr 305 1 23-Apr 300 1 25-Apr 166 25-Apr 300 1 27-Apr 309 1<	14-Apr	286				14-Apr		503		
16-Apr 77 16-Apr 472 17-Apr 17-Apr 254 17-Apr 582 17-Apr 18-Apr 267 17-Apr 582 17-Apr 19-Apr 203 19-Apr 468 19-Apr 22-Apr 167 19-Apr 468 19-Apr 22-Apr 165 19-Apr 23-Apr 417 167 23-Apr 166 23-Apr 23-Apr 24 16 16-Apr 21-Apr 23-Apr 24 16 16-Apr 22-Apr 289 16 16 16-Apr 21-Apr 303 16 16-Apr 16 16-Apr 21-Apr 21	15-Apr	206				15-Apr		499		
17-Apr 254 17-Apr 582 17-Apr 18-Apr 287 18-Apr 555 1 19-Apr 203 19-Apr 565 1 20-Apr 167 20-Apr 417 20-Apr 417 21-Apr 165 20-Apr 27-Apr 289 1 23-Apr 144 22-Apr 289 1 23-Apr 24-Apr 28-Apr 21-Apr 23-Apr 24-Apr 23-Apr 24-Apr 25-Apr 305 1 23-Apr 24-Apr 25-Apr 305 1 23-Apr 309 1 23-Apr 305 1 23-Apr 305 1 24-Apr 251 1	16-Apr	77				16-Apr		472		
18-Apr 287 13-Apr 565 13-Apr 19-Apr 203 0 19-Apr 468 12 22-Apr 167 0 20-Apr 417 12 22-Apr 167 0 23-Apr 289 12 23-Apr 144 0 23-Apr 241 0 12 25-Apr 166 23-Apr 305 16 25-Apr 305 10	17-Apr	254				17-Apr		582		
19-Apr 203 19-Apr 468 19-Apr 20-Apr 167 20-Apr 417 22-Apr 21-Apr 165 21-Apr 373 12 22-Apr 166 22-Apr 28-Apr 24-Apr 251 11 25-Apr 166 26-Apr 300 12 27-Apr 309 11 12 27-Apr 309 11 12 29-Apr 154 11 12 29-Apr 154 11 12 29-Apr 154 11 154 11 154 11	18-Apr	287				18-Apr		565		
20-Apr 167 20-Apr 417 17 21-Apr 165 77 373 12 22-Apr 166 22-Apr 289 141 23-Apr 166 22-Apr 289 141 24-Apr 166 22-Apr 281 141 141 25-Apr 166 25-Apr 305 141 141 141 27-Apr 159 25-Apr 300 141 1464 141 28-Apr 121 29 28-Apr 3030 1464 141 29-Apr 106 28-Apr 154 156 1-May 156 2-May 97 254 156 3-May 156 3-May 156 3-May 96 3-May 155 3-May 152 6-May 152 6-May 103 7-May 26 203 8-May 161 127 7-May 263 7-May 26 203 8-May 162 11-May 162 127 11-May <	19-Apr	203				19-Apr		468		
21-Apr 165 21-Apr 373 21-Apr 22-Apr 167 22-Apr 289 22-Apr 23-Apr 144 23-Apr 280 22-Apr 25-Apr 136 23-Apr 21-Apr 280 23-Apr 25-Apr 166 23-Apr 305 24-Apr 25-Apr 305 25-Apr 305 25-Apr 305 25-Apr 305 25-Apr 305 25-Apr 300 27-Apr 309 28-Apr 154 29-Apr 154 29-Apr 154 29-Apr 156 3-May 166 5-May 1449 166 5-May 1449 166 5-May 120 26 203 3-May 160 5-May 1212 26 203 3-May 162 127-May 161 21-May 162 12-May 162 12-May 162 12-May 161 12-May 161 12-May	20-Apr	167				20-Apr		417		
22-Apr 167 23-Apr 289 23-Apr 144 23-Apr 289 24-Apr 36 23-Apr 241 25-Apr 166 24-Apr 251 25-Apr 166 25-Apr 305 26-Apr 159 25-Apr 300 28-Apr 121 29 28-Apr 309 28-Apr 106 30-Apr 254 1-May 1-May 105 1-May 156 3-May 148 4-May 96 3-May 1448 4-May 156 3-May 103 5-May 152 6-May 1277 7-May 263 7-May 266 203 8-May 241 8-May 182 9-May 205 10-May 162 11-May 88 11-May 162 12-May 164 3-May 162 13-May 130 14-May 133	21-Apr	165				21-Apr		373		
23-Apr 144 144 24-Apr 136 24-Apr 25-Apr 166 24-Apr 25-Apr 166 25-Apr 27-Apr 159 26-Apr 28-Apr 121 29 28-Apr 121 29 28-Apr 106 26-Apr 1-May 105 26-Apr 1-May 105 1-May 2-May 96 30-Apr 2-May 96 3-May 5-May 170 56 5-May 170 56 6-May 170 56 8-May 263 7-May 26 9-May 205 10-May 160 11-May 88 11-May 162 11-May 30 7-May 163 12-May 30 78 12-May 164 13-May 130 14-May 133 15-May 138 15-May 138 16-May 173 138 15-May 1	22-Apr	167				22-Apr		289		
24-Apr 136 25-Apr 251 25-Apr 166 25-Apr 305 27-Apr 159 25-Apr 309 28-Apr 121 29 28-Apr 309 28-Apr 106 27-Apr 309 27-Apr 30-Apr 106 28-Apr 464 129-Apr 1-May 105 1-May 156 3-May 96 30-Apr 156 3-May 96 3-May 155 3-May 263 3-May 160 5-May 103 5-May 152 6-May 2127 7-May 266 203 8-May 241 8-May 182 9-May 266 203 8-May 162 11-May 88 11-May 182 9-May 162 11-May 162 12-May 164 13-May 133 16-May 133 134 14-May	23-Apr	144				23-Apr		241		
25-Apr 166 25-Apr 305 25-Apr 26-Apr 156 26-Apr 300 27-Apr 309 28-Apr 464 29-Apr 154 29-Apr 155 21-May 156 3-May 155 3-May 165 3-May 163 3-May 162 14-May 162 200 3-May 162 10-May 162 10-May 162 10-May 164 13-May 164 13-May 130 14-May 138 16-May 11-May 138 16-May 138 16-May 131 130 14-May 138 138 15-May 1318 16-May 1316 12-May	24-Apr	136				24-Apr		251		
26-Apr 166 26-Apr 310 27-Apr 28-Apr 121 29 28-Apr 309 28-Apr 30-Apr 106 28-Apr 464 28-Apr 154 30-Apr 106 1-May 105 28-Apr 464 28-Apr 2-May 97 28-Apr 464 156 3-May 96 1-May 155 3-May 96 3-May 165 3-May 263 2-May 152 6-May 1170 5-May 152 6-May 263 27-May 266 203 8-May 2205 10-May 182 9-May 162 11-May 88 11-May 182 17-May 162 11-May 130 14-May 133 162 12-May 130 14-May 133 133 14-May 130 14-May 138 15-May 138 15	25-Apr	166				25-Apr		305		
27.Apr 159 27.Apr 309 28.Apr 121 29 28.Apr 30.Apr 121 29 28.Apr 464 29.Apr 1.May 105 30.Apr 156 30.Apr 254 1.May 97 30.Apr 254 1.May 156 2.May 97 3.May 156 3.May 156 3.May 96 3.May 160 3.May 160 5.May 103 5.May 152 6.May 152 6.May 170 6.May 122 6.May 122 7.May 263 7.May 26 203 8.May 211 8.May 162 182 11.May 88 11.May 162 11.May 162 11.May 133 13 14.May 162 13.4may 12.May 130 14.May 133 134 14.May 133 134 14.May 133 15.May 155 138 15.May <td< td=""><td>26-Apr</td><td>166</td><td></td><td></td><td></td><td>26-Apr</td><td></td><td>310</td><td></td><td></td></td<>	26-Apr	166				26-Apr		310		
28-Apr 121 29 29-Apr 94 29-Apr 154 30-Apr 106 30-Apr 254 30-Apr 106 30-Apr 254 2-May 97 30-Apr 254 2-May 97 30-Apr 156 3-May 96 3-May 155 3-May 96 3-May 160 5-May 1070 5-May 152 6-May 229 7-May 26 203 9-May 205 11-May 162 12-May 163 12-May 30 78 12-May 164 13-May 162 12-May 30 78 12-May 164 13-May 164 13-May 173 12-May 164 13-May 164 13-May 173 12-May 164 13-May 164 13-May 138 16-May 164 13-May 164 13-May 138 16-May 164 13-May 164 <	27-Apr	159				27-Apr		309		
29-Apr 94 29-Apr 154 30-Apr 106 30-Apr 25-4 1-May 105 30-Apr 254 1-May 105 1-May 156 3-May 96 3-May 160 5-May 103 6-May 160 5-May 103 6-May 152 6-May 263 7-May 266 203 8-May 241 8-May 162 127 7-May 205 10-May 162 11-May 182 9-May 209 10-May 162 11-May 182 12-May 30 78 11-May 133 13-May 130 14-May 133 15-May 133 13-May 133 15-May 133 14-May 133 12-May 133 14-May 133 14-May 133 134 14-May 133 15-May	28-Apr	121	29			 28-Apr		464		
30-Apr 106 30-Apr 254 1-May 105 1-May 156 2-May 97 3-May 156 3-May 96 3-May 156 4-May 96 3-May 160 5-May 103 - 6-May 160 5-May 103 - 6-May 152 6-May 241 - 152 6-May 127 7-May 265 - 7-May 26 203 8-May 241 - 162 11-May 182 9-May 299 - 162 11-May 162 11-May 88 - 11-May 162 13-May 164 13-May 130 - 14-May 133 16-May 1164 13-May 133 15-May 133 16-May 133 16-May 170 - 138 15-May 138 <td< td=""><td>29-Apr</td><td></td><td>94</td><td></td><td></td><td>29-Apr</td><td></td><td>154</td><td></td><td></td></td<>	29-Apr		94			29-Apr		154		
1-May 105 1-May 156 2-May 97 156 3-May 96 3-May 156 3-May 96 3-May 148 4-May 96 3-May 148 4-May 96 3-May 148 4-May 103 5-May 152 6-May 170 5-May 152 6-May 299 6-May 127 7-May 263 26 203 8-May 299 9-May 162 10-May 205 10-May 162 11-May 88 11-May 162 11-May 130 11-May 161 12-May 130 14-May 138 15-May 138 15-May 138 16-May 138 15-May 138 16-May 138 15-May 138 16-May 138 15-May 138 16-May 138 15-May 138 17-May 1318 12-Ma	30-Apr		106			30-Apr		254		
2-May 97 2-May 156 3-May 96 3-May 166 5-May 103 6 3-May 148 4-May 96 3-May 160 5-May 152 6-May 170 6 6-May 127 7-May 263 127 7-May 263 7-May 266 203 8-May 182 9-May 299 9-May 266 203 8-May 182 9-May 205 0 10-May 182 9-May 169 10-May 30 78 11-May 161 10-May 130 14-May 130 14-May 133 135 134 15-May 139 138 15-May 138 136 15-May 157 138 138 138 138 138 138 138 138 138 138 138 138 134 144 12-May	1-Mav		105			1-May				156
3-May 96 3-May 148 4-May 96 3-May 160 5-May 103 6-May 152 6-May 170 6-May 127 7-May 263 26 203 8-May 241 9 8-May 26 203 8-May 299 9 6-May 182 9-May 205 10-May 162 19 10-May 30 78 11-May 162 11-May 38 11-May 164 13-May 130 14-May 130 14-May 138 15-May 138 15-May 139 15-May 138 16-May 130 14-May 130 14-May 138 144 17-May 155 15-May 138 16-May 138 18-May 157 20-May 131 144 12-May 124 21-May 138 138 25-May 160 22-May 1311 121	, 2-Mav		97			2-May				156
4-May 96 4-May 160 5-May 103 5-May 152 6-May 170 6 203 7-May 263 203 203 8-May 241 8 169 127 9-May 299 9 169 162 11-May 88 11-May 162 11-May 163 12-May 30 78 13-May 163 164 13-May 130 11-May 133 13-May 133 15-May 139 13-May 130 14-May 138 15-May 139 13-May 133 13-May 133 16-May 170 13-May 138 15-May 138 15-May 155 17-May 138 14-May 138 19-May 160 20-May 131 114 134 20-May 161 22-May 138 150 25-May 136 23-May 160 23-May 110 28-May 1117 </td <td>3-May</td> <td></td> <td>96</td> <td></td> <td></td> <td>3-May</td> <td></td> <td></td> <td></td> <td>148</td>	3-May		96			3-May				148
5-May 103 5-May 152 6-May 170 6-May 127 7-May 263 7-May 266 203 8-May 241 8 182 203 8-May 182 9-May 299 9-May 266 203 8-May 182 10-May 205 11-May 88 169 10-May 162 11-May 88 11-May 162 11-May 163 13-May 173 12-May 164 13-May 138 15-May 130 14-May 138 15-May 138 15-May 130 14-May 138 15-May 138 16-May 157 138 16-May 144 17-May 138 16-May 169 20-May 131 144 17-May 138 12-May 160 20-May 1111 21-May 131 144 25-May 16	4-May		96			4-May				160
6-May 170 6-May 127 7-May 263 6-May 227 8-May 241 6-May 266 9-May 299 9-May 266 10-May 205 6-May 182 9-May 205 169 169 10-May 30 78 11-May 162 11-May 30 78 11-May 162 13-May 130 14-May 130 14-May 130 14-May 139 130 14-May 133 130 14-May 139 164 13-May 138 15-May 138 15-May 157 16-May 144 17-May 138 18-May 161 20-May 141 22-May 141 21-May 161 21-May 138 23-May 131 24-May 138 23-May 110 23-May 110 25-May 114 <td>5-May</td> <td></td> <td>103</td> <td></td> <td></td> <td>5-May</td> <td></td> <td></td> <td></td> <td>152</td>	5-May		103			5-May				152
7-May 263 7-May 26 203 8-May 241 9 38-May 265 203 9-May 299 9 9-May 182 9-May 205 10-May 169 10-May 88 11-May 162 11-May 88 11-May 163 12-May 30 78 12-May 164 13-May 130 11-May 138 15-May 130 14-May 130 14-May 130 14-May 133 15-May 139 15-May 138 15-May 138 15-May 155 15-May 138 15-May 138 16-May 170 138 16-May 144 17-May 138 19-May 169 20-May 1315 20-May 1315 20-May 1315 20-May 169 22-May 1318 23-May 1316 22-May 1316 24-May 82 75 25-May 144 26-May 110 <td>6-May</td> <td></td> <td>170</td> <td></td> <td></td> <td>6-May</td> <td></td> <td></td> <td></td> <td>127</td>	6-May		170			6-May				127
B-May 241 B-May 241 9-May 299 10-May 205 11-May 182 9-May 205 11-May 88 169 162 11-May 88 11-May 163 162 11-May 30 78 11-May 163 13-May 173 130 11-May 130 14-May 130 14-May 130 14-May 130 14-May 139 11 13-May 133 13-May 133 15-May 139 14-May 138 15-May 138 16-May 177 138 16-May 138 14-May 138 19-May 170 12 1444 17-May 131 144 12-May 169 132 20-May 111 12 144 12-May 161 22-May 131 144 26-May 131 24-May 138 25-May<	7-May		263			7-May		26		203
9-May 299 9-May 169 10-May 205 11-May 169 11-May 88 11-May 162 11-May 30 78 11-May 173 12-May 30 78 11-May 161 13-May 173 12-May 164 13-May 130 14-May 130 14-May 130 14-May 130 14-May 130 14-May 130 14-May 130 14-May 130 14-May 138 138 15-May 170 138 15-May 138 16-May 170 138 16-May 144 17-May 155 19-May 138 138 18-May 160 20-May 111 21-May 141 21-May 161 22-May 138 23-May 128 24-May 138 23-May 136 25-May 136 25-May 114 26-May 110 28-May 1110 28-M	8-May		241			8-May		-		182
10-May 205 10-May 162 11-May 88 11-May 173 12-May 30 78 11-May 173 12-May 30 78 11-May 173 13-May 173 12-May 164 13-May 130 130 130 14-May 130 134 130 14-May 139 130 14-May 130 14-May 139 133 130 14-May 130 14-May 139 138 15-May 138 138 15-May 155 17 138 16-May 144 144 17-May 169 132 135 20-May 131 145 19-May 161 142 2-May 131 131 132 133 24-May 82 75 25-May 138 138 23-May 136 24-May 138 138 23-May 131 136 24-May 136 27-May 137	9-May		299			9-May				169
11-May 88 11-May 173 12-May 30 78 11-May 173 13-May 173 12-May 164 13-May 130 130 130 14-May 130 130 130 14-May 130 130 130 14-May 130 130 130 15-May 139 138 15-May 138 16-May 155 15-May 138 16-May 144 17-May 157 14-May 138 16-May 144 17-May 170 14-May 138 18-May 144 17-May 169 135 20-May 131 135 20-May 169 131 21-May 131 131 23-May 160 22-May 131 131 24-May 82 75 25-May 144 26-May 136 25-May 110 28-May 137 137 30-May 140 14-May <td< td=""><td>, 10-Mav</td><td></td><td>205</td><td></td><td></td><td>10-May</td><td></td><td></td><td></td><td>162</td></td<>	, 10-Mav		205			10-May				162
12-May 30 78 12-May 164 13-May 173 130 130 130 14-May 130 130 130 130 14-May 130 130 130 130 15-May 139 138 138 138 15-May 170 138 15-May 138 16-May 157 138 16-May 144 17-May 155 138 16-May 144 17-May 170 138 16-May 144 17-May 170 135 20-May 135 20-May 169 20-May 131 111 21-May 161 21-May 111 21-May 141 22-May 161 22-May 138 23-May 136 23-May 160 22-May 138 23-May 136 25-May 138 25-May 136 25-May 136 27-May 139 27-May 110 28-May 147 <td< td=""><td>, 11-Mav</td><td></td><td>88</td><td></td><td></td><td>11-May</td><td></td><td></td><td></td><td>173</td></td<>	, 11-Mav		88			11-May				173
13-May 173 13-May 130 14-May 130 13-May 130 14-May 130 138 130 15-May 139 138 138 15-May 170 138 138 16-May 170 138 16-May 144 17-May 155 16-May 144 17-May 138 18-May 157 138 16-May 144 17-May 138 19-May 170 138 16-May 144 17-May 138 19-May 169 20-May 135 20-May 131 131 21-May 161 21-May 111 21-May 111 21-May 131 21-May 160 23-May 138 23-May 132 136 25-May 138 132 25-May 136 25-May 136 27-May 114 26-May 110 28-May 110 128 27-May 133 134 29-May 144 140 <td>, 12-May</td> <td>30</td> <td>78</td> <td></td> <td></td> <td>12-May</td> <td></td> <td></td> <td></td> <td>164</td>	, 12-May	30	78			12-May				164
14-May 130 130 14-May 138 15-May 139 14-May 138 15-May 170 138 15-May 138 16-May 155 16-May 144 17-May 155 16-May 144 17-May 155 16-May 144 17-May 157 16 138 18-May 169 14-May 138 19-May 160 135 20-May 111 21-May 161 21-May 141 22-May 160 21-May 138 23-May 160 23-May 138 24-May 82 75 24-May 138 25-May 138 25-May 136 25-May 133 134 26-May 110 28-May 114 26-May 110 136 27-May 110 28-May 110 147 30-May 133 31-May 140 140 1-Jun 131 1-Jun	, 13-May	173				13-May				130
15-May 139 15-May 138 16-May 170 154 144 17-May 155 154 144 17-May 155 154 144 17-May 155 154 144 17-May 157 164 144 17-May 169 145 19-May 145 19-May 169 111 21-May 111 111 21-May 161 164 22-May 1111 111 111 <td< td=""><td>, 14-May</td><td>130</td><td></td><td></td><td></td><td>14-May</td><td></td><td></td><td></td><td>138</td></td<>	, 14-May	130				14-May				138
16-May 170 16-May 144 17-May 155 11 18-May 157 11 138 18-May 170 11 144 17-May 157 11 138 18-May 170 111 145 19-May 169 111 135 20-May 169 111 111 21-May 161 20-May 111 22-May 161 22-May 138 23-May 160 23-May 128 24-May 82 75 24-May 136 25-May 138 25-May 110 136 25-May 139 27-May 110 136 27-May 114 28-May 110 110 28-May 114 28-May 117 147 30-May 133 137 30-May 149 31-May 133 134 1-Jun 140 1-Jun 131 1-Jun 148	, 15-May	139				15-May				138
17-May 155 17-May 138 18-May 157 18-May 145 19-May 170 19-May 135 20-May 169 20-May 111 21-May 124 20-May 111 22-May 161 22-May 131 23-May 160 23-May 138 23-May 160 23-May 138 25-May 138 25-May 136 25-May 114 26-May 110 28-May 114 28-May 110 28-May 133 137 30-May 147 30-May 133 137 30-May 149 31-May 133 134 1-Jun 140 1-Jun 131 131 1-Jun 148	, 16-May	170				16-May				144
18-May 157 18-May 145 19-May 170 18-May 145 20-May 169 20-May 135 20-May 169 20-May 111 21-May 124 20-May 111 22-May 161 21-May 138 23-May 160 22-May 138 24-May 82 75 24-May 136 25-May 138 25-May 136 150 27-May 114 26-May 110 150 28-May 1144 26-May 110 110 28-May 114 28-May 110 147 30-May 133 137 30-May 147 31-May 133 131 1-Jun 140 1-Jun 131 1-Jun 148	, 17-May	155				17-May				138
19-May 170 19-May 135 20-May 169 20-May 111 21-May 124 20-May 111 22-May 161 21-May 21-May 141 22-May 160 22-May 138 23-May 138 23-May 160 23-May 138 23-May 128 24-May 82 75 24-May 136 136 25-May 114 25-May 136 144 26-May 110 27-May 114 29-May 114 26-May 110 110 28-May 114 26-May 110 110 110 28-May 114 29-May 110 117 29-May 133 137 30-May 144 31-May 1131 131 1-Jun 149 31-Jun 1131 1-Jun 148 148	18-May	157				18-May				145
20-May 169 111 21-May 124 111 21-May 161 21-May 141 22-May 161 22-May 138 23-May 160 23-May 160 138 24-May 82 75 24-May 136 25-May 138 25-May 136 144 26-May 142 26-May 144 150 27-May 139 27-May 110 110 28-May 114 28-May 117 110 29-May 133 31-May 1131 1-Jun 140 1-Jun 131 132 2-Jun 148	19-May	170				19-May				135
21-May 124 1 141 22-May 161 21-May 141 22-May 160 22-May 138 23-May 160 23-May 128 24-May 82 75 24-May 136 25-May 138 25-May 136 26-May 142 26-May 144 26-May 139 27-May 110 28-May 1144 26-May 110 29-May 1144 26-May 110 29-May 1144 28-May 1117 29-May 133 31-May 144 31-May 133 31-May 140 1-Jun 131 1-Jun 148	20-May	169				20-May				111
22-May 161 138 23-May 160 22-May 138 24-May 82 75 23-May 128 24-May 82 75 24-May 136 25-May 138 25-May 136 26-May 142 26-May 144 26-May 139 27-May 110 28-May 1144 26-May 110 28-May 1144 28-May 110 29-May 56 29-May 147 30-May 133 137 30-May 149 31-May 133 131 1-Jun 141	21-May	124				21-May				141
23-May 160 23-May 23-May 128 24-May 82 75 24-May 136 25-May 138 25-May 136 26-May 142 25-May 144 26-May 142 26-May 144 27-May 139 27-May 110 28-May 114 28-May 110 29-May 56 29-May 147 30-May 133 137 30-May 149 31-May 131 131 1-Jun 141 2-Jun 132 2-Jun 148	22-May	161				22-May				138
24-May 82 75 24-May 136 25-May 138 25-May 144 26-May 142 26-May 150 27-May 139 27-May 110 28-May 114 28-May 110 29-May 56 29-May 117 30-May 133 31-May 149 31-May 131 131 1-Jun 141 2-Jun 132 2-Jun 148	23-May	160				23-May				128
25-May 138 25-May 144 26-May 142 26-May 150 27-May 139 27-May 110 28-May 114 28-May 110 29-May 56 29-May 117 30-May 133 30-May 144 1-Jun 131 1-Jun 131 2-Jun 132 2-Jun 148	24-May	82			75	24-May				136
26-May 142 26-May 150 27-May 139 27-May 110 28-May 114 28-May 110 29-May 56 29-May 117 30-May 137 30-May 1137 31-May 133 133 31-May 140 1-Jun 131 1-Jun 142 148	25-May				138	25-May				144
27-May 139 27-May 110 28-May 114 28-May 117 29-May 56 29-May 147 30-May 137 30-May 147 31-May 133 31-May 140 1-Jun 131 1-Jun 132 2-Jun 132 2-Jun 148	26-May				142	26-May				150
28-May 114 28-May 117 29-May 56 29-May 117 30-May 137 30-May 147 31-May 133 31-May 140 1-Jun 131 1-Jun 151 2-Jun 132 2-Jun 148	, 27-May				139	27-May				110
29-May 56 29-May 147 30-May 137 30-May 149 31-May 133 31-May 140 1-Jun 131 1-Jun 151 2-Jun 132 2-Jun 148	, 28-May				114	28-May				117
30-May 137 30-May 149 31-May 133 31-May 140 1-Jun 131 1-Jun 151 2-Jun 132 2-Jun 148	, 29-May				56	29-May				147
31-May 133 31-May 140 1-Jun 131 1-Jun 151 2-Jun 132 2-Jun 148	, 30-May				137	30-May				149
1-Jun 131 1-Jun 151 2-Jun 132 2-Jun 148	, 31-May				133	31-May				140
2-Jun 132 2-Jun 148	1-Jun				131	1-Jun				151
	2-Jun				132	2-Jun				148

Daily Bo	iler NG	Usage 2	2017 (1,	000 ft ³)	Daily Bo	iler NG	Usage 2	2018 (1,	000 ft ³)
	Boiler #1	Boiler #2	Boiler #3	Boiler #4		Boiler #1	Boiler #2	Boiler #3	Boiler #4
3-Jun				127	3-Jun				121
4-Jun				112	4-Jun				147
5-Jun				114	5-Jun				160
6-Jun				140	6-Jun				156
7-Jun				133	7-Jun				149
8-Jun				134	8-Jun				153
9-Jun				126	9-Jun				153
10-Jun				125	10-Jun				122
11-Jun				86	11-Jun				156
12-Jun				119	12-Jun				150
13-Jun				121	13-Jun				130
14-Jun				120	14-Jun				165
15-Jun				119	15-Jun				144
16-Jun				118	16-Jun				147
17-Jun				114	17-Jun				114
18-Jun				102	18-Jun				130
19-lun				117	19-Jun				140
20-lun				122	20-lun				145
21-lun				129	21-lun				149
22-Jun				123	22-lun				156
22-Jun				116	23-lun				147
23 Jun 24-lun				120	24-lun				122
25-lun				112	25-lun				1//
25 Jun 26-lun				121	26-lun				1//
20 Jun 27-lun				115	27-lun				1/1
27 Jun 28-lun				113	28-lun				1/15
20 Jun 20-lun				119	20 Jun 29-Jun				143
30-lun				119	30-lun				137
1_lul				116	1-lul				10/
2_lul				110	2-101				125
2-Jul 3-Jul				122	3-101				135
<u></u>				110					76
5-Jul				110	5-Jul				117
6-Jul				123	6-Jul				120
7-Jul				123	7-101				120
8-1ul				12/	8-Jul				140
0-Jul 0-Jul				124	9-Jul				126
10_lul				110	10-Jul				120
11_lul				10/	11-Jul				131
12_Jul				104	12-Jul				137
12-Jul				105	13-Jul				130
13-Jul				107	14-Jul				129
14-Jul				111	15-Jul				125
16-Jul				20	16-Jul				100
17 Jul				00 E7	17 Jul				105
10 Jul				27	19 Jul				131
10 Jul				28	10-Jul				144
19-Jul				20	19-Jul				143
20-JUI				20	20-Jul				142
21-JUI				55	21-Jul				136
22-Jul				51	22-Jul				119
23-Jul				100	23-JUI				139

Boiler #1 Boiler #2 Boiler #3 Boiler #4 Boiler #1 Boiler #2 24-lul 132 24-lul 132 24-lul 132	Boiler #3	D 11 11 4
24-lul 132 24-lul		Boiler #4
102 27.00		136
25-Jul 142 25-Jul		126
26-Jul 137 26-Jul		129
27-Jul 130 27-Jul		128
28-Jul 130 28-Jul		130
29-Jul 133 29-Jul		107
30-Jul 111 30-Jul		125
31-Jul 114 31-Jul		129
1-Aug 127 1-Aug		126
2-Aug 124 2-Aug		125
3-Aug 122 3-Aug		121
4-Aug 126 4-Aug		122
5-Aug 126 5-Aug		110
6-Aug 55 6-Aug		113
7-Aug 122 7-Aug		124
8-Aug 127 8-Aug		123
9-Δμσ 127 9-Δμσ		125
10 Aug 127 10 Aug		120
10-Aug 127 10 Aug		122
12 Aug 12 12 12 12 12 Aug		127 69
12-Aug 111 12-Aug		110
13-Aug 120 14 Aug		119
14-Aug 123 14-Aug 127		122
15-Aug 127 15-Aug		121
10-Aug 127 10-Aug 172 4 17 Aug		116
17-Aug 123 17-Aug 10 Aug		110
18-Aug // 55 18-Aug		119
19-Aug 141 19-Aug		94
20-Aug 114 20-Aug 122		122
21-Aug 2 123 21-Aug		119
22-Aug 124 22-Aug		130
23-Aug 134 23-Aug		131
24-Aug 135 24-Aug		122
25-Aug 145 25-Aug		120
26-Aug 136 26-Aug		105
27-Aug 124 27-Aug		112
28-Aug 16 98 28-Aug		119
29-Aug 128 29-Aug		119
30-Aug 122 30-Aug		125
31-Aug 126 31-Aug		130
1-Sep 127 1-Sep		119
2-Sep 129 2-Sep		65
3-Sep 57 3-Sep		53
4-Sep 88 4-Sep		105
5-Sep 120 5-Sep		102
6-Sep 124 6-Sep		119
7-Sep 124 7-Sep		127
8-Sep 130 8-Sep		128
9-Sep 130 9-Sep		114
10-Sep 101 10-Sep		114
11-Sep 127 11-Sep		126
12-Sep 123 12-Sep		127

Daily Boiler NG Usage 2017 (1,000 ft ³) Daily Boiler NG Usage 2018 (1,000									
	Boiler #1	Boiler #2	Boiler #3	Boiler #4		Boiler #1	Boiler #2	Boiler #3	Boiler #4
13-Sep				124	13-Sep				119
14-Sep				125	14-Sep				124
15-Sep				122	15-Sep				103
16-Sep				120	16-Sep				85
17-Sep				70	17-Sep				107
18-Sep				106	18-Sep	6			107
19-Sep				135	19-Sep				125
20-Sep				124	20-Sep	31			91
21-Sep				118	21-Sep				104
22-Sep				117	22-Sep				119
23-Sep				126	23-Sep	58			50
24-Sep				110	24-Sep	117			
25-Sep			83	.34	25-Sep	116			
26-Sep			122		26-Sep	121			
27-Sen			124		27-Sep	129			
28-Sen			123		28-Sep	125			
20 Sep 20-Sep			123		20 Sep	125			
20-Son	108		10		20-Sep	111			
1 Oct	103		10		Ju-Sep	122			
1-000	107				2-Oct	123			
2-001	113				2-0ct	100			
3-0ct	142				3-0ct	132			
4-0ct	139				4-0ct	132			
5-0ct	141				5-Oct	132			
6-Oct	144				6-Oct	93	36		
7-0ct	140				7-Oct	115	3		
8-Oct	127				8-Oct	129			
9-Oct	136				9-Oct	124			
10-Oct	140				10-Oct	122			
11-Oct	144				11-Oct	147			
12-Oct	157				12-Oct	146			
13-Oct	152				13-Oct	150			
14-Oct	149				14-Oct	110			54
15-Oct	127				15-Oct				135
16-Oct	273				16-Oct				342
17-Oct	153				17-Oct				448
18-Oct	155				18-Oct			210	258
19-Oct	153				19-Oct			244	
20-Oct	153				20-Oct			384	
21-Oct	148				21-Oct			442	
22-Oct	107				22-Oct			346	
23-Oct	145				23-Oct			371	
24-Oct	156				24-Oct			463	
25-Oct	312				25-Oct			227	
26-Oct	480				26-Oct			303	
27-Oct	322				27-Oct			445	
28-Oct	439				28-Oct		358		
29-Oct	430				29-Oct		380		
30-Oct	413				30-Oct		347		
31-Oct	459				31-Oct		250		
1-Nov	464				1-Nov		363		
2-Nov	304				2-Nov		373		
							0,0		

Daily Bo	iler NG	Usage 2	2017 (1,0	000 ft ³)	Daily Bo	iler NG	Usage 2	2018 (1,	000 ft ³)
	Boiler #1	Boiler #2	Boiler #3	Boiler #4		Boiler #1	Boiler #2	Boiler #3	Boiler #4
3-Nov	377				3-Nov		386		
4-Nov	386				4-Nov		287		
5-Nov	86			125	5-Nov		254		
6-Nov				418	6-Nov		200		
7-Nov				461	7-Nov		200		122
8-Nov				509	8-Nov	150			312
9-Nov				548	9-Nov	248	122	123	
10-Nov			383	383	10-Nov		270	270	
11-Nov			304	302	11-Nov		280	285	
12-Nov			264	264	12-Nov	208	179		
13-Nov			241	242	13-Nov	302	301		
14-Nov	244			212	14-Nov	312	312		
15-Nov	455				15-Nov	278	277		
16-Nov	511				16-Nov	239	238		
17-Nov	539				17-Nov	267	267		
18-Nov	469				18-Nov	351	95	13	
19-Nov	519				19-Nov	179	276	95	
20-Nov	511				20-Nov	299	298		
21-Nov	45	10	600		21-Nov	315	314		
22-Nov		310	311		22-Nov	308	95		
23-Nov		237	52		23-Nov	229			
24-Nov		277			24-Nov	388			
25-Nov		376			25-Nov	394			
26-Nov		510			26-Nov	554	28		
27-Nov		461			27-Nov	331	330		
28-Nov		266			28-Nov	344	343		
29-Nov		403			29-Nov	345	344		
30-Nov		420			30-Nov	295	294		
1-Dec		472			1-Dec	273	273		
2-Dec		431			2-Dec	210	73		
3-Dec		390			3-Dec	432	97		
4-Dec		322			4-Dec	325	324		
5-Dec		365	70		5-Dec	317	316		
6-Dec		273	272		6-Dec	320	321		
7-Dec		326	325		7-Dec	239	239		
8-Dec		340	340		8-Dec	376	375		
9-Dec		340	340		9-Dec	710	332		
10-Dec		310	310		10-Dec	372	702		
11-Dec		335	334		11-Dec	329	328		
12-Dec		410	410		12-Dec	309	308		
13-Dec		392	392		13-Dec	281	281		
14-Dec		397	397		14-Dec	234	232		
15-Dec		358	357		15-Dec	261	261		
16-Dec		337	337		16-Dec	221	210		
17-Dec		231	233		17-Dec	335	227		
18-Dec		247	248		18-Dec	320	319		
19-Dec		229	230		19-Dec	274	273		
20-Dec		311	310		20-Dec	254	253		
21-Dec		311	311		21-Dec	245	244		
22-Dec		297	297		22-Dec	380	69		
23-Dec		253	60		23-Dec	518			

Daily Bo	iler NG	Usage 2	2017 (1,	000 ft ³)	Daily Bo	iler NG	Usage 2	2018 (1,	000 ft ³)
	Boiler #1	Boiler #2	Boiler #3	Boiler #4		Boiler #1	Boiler #2	Boiler #3	Boiler #4
24-Dec		365			24-Dec	507			
25-Dec		424			25-Dec	284			
26-Dec		504	501		26-Dec	431			
27-Dec		579	279		27-Dec	495			
28-Dec		294	294		28-Dec	412			
29-Dec		295	294		29-Dec	383	23		
30-Dec		291	290		30-Dec		244		
31-Dec		375	375		31-Dec		119		
Total Usage	35,181	34,885	22,063	20,624	Total Usage	19,111	52,873	31,877	20,524
	75th Perce	entile Usage	e (1000 ft ³)			75th Perce	entile Usage	e (1000 ft ³)	

	75th Perce	entile Usage	e (1000 ft [°])		75th Percentile Usage (1000 ft ³)
Daily	392.8	393.3	396.0	130.0	330.5 377.0 386.0 144.0
Hourly ¹	16.36	16.39	16.50	5.42	13.77 15.71 16.08 6.00
2 yr Av hrly	15.07	16.05	16.29	5.71	
1 - Hourly omig	sion rate h	ased on 24 h	ours of oper	ation ner day	

1 - Hourly emission rate based on 24 hours of operation per day

	Emissions (lb/hr) ¹											
	Boiler #1 Boiler #2 Boiler #3 Boiler #4											
NO _x	1.605	1.709	1.735	0.608								
PM _{2.5}	0.115	0.122	0.124	0.043								

1 - Emissions based on 106.5 lb NO_X/MMft³, and 7.6 lb PM_{2.5}/MMft³

Table C-11. $\,NO_X$ and $PM_{2.5}$ Emission Calculations from Natural Gas Combustion at MAP.

FCA JNAP Tutone and Sustainment - March 2020

	RTO Natural	Other Natural				Emission	n Rate			
Pollutant	Gas Combustion Emission Factor (Ib/MMBtu)	Gas Combustion Emission Factor (lb/MMcf)	Primer Obs Max hourly (lb/hr)	BC Obs Max hourly (lb/hr)	CC Obs Max hourly (lb/hr)	Indirect Fire Oven Max hourly (Ib/hr)	RTO Max hourly (lb/hr)	HWG ¹ Max hourly (lb/hr)	PH Vents Max hourly (lb/hr)	Mack 2 NG Max hourly (lb/hr)
NO _x	50	36	0.432	0.648	0.648	0.864	6.693	1.62	3.888	1.3833
Number of stacks			1	2	2	4	1	9	1	1
Emission Rate per stack (lb/hr)			0.432	0.324	0.324	0.216	6.693	0.18	3.888	1.3833
РМ	7.6	7.6	0.0912	0.1368	0.1368	0.1824	1.3642	0.342	0.8208	0.29203
Number of stacks			1	2	2	4	1	10	1	1
Emission Rate per stack (lb/hr)			0.0912	0.0684	0.0684	0.0456	1.3642	0.0342	0.8208	0.2920

				Annual	
	NG Lisage Rate	Ma	ax hourly	Operating Basis	Max hourly - Annual Average
New Paint Shon			ix nouny	operating basis	Mux nouny Annual Average
New Faile Shop			. 2 .		. 2 .
45	MMBtu/hr HWG (total)	0.045	MMft³/hr	0.5	0.0225 MMft ³ /hr
21.5	MMBtu/hr RTO	0.0215	MMft ³ /hr	1	0.0215 MMft ³ /hr
158	Direct Fire Oven Burners	0.158	MMft ³ /hr	0.5	0.079 MMft ³ /hr
24	Indirect Fire Oven Burners	0.024	MMft ³ /hr	0.5	0.012 MMft ³ /hr
12	MMBtu/hr Primer ASH	0.0120	MMft ³ /hr	0.33	0.00396 MMft ³ /hr
18	MMBtu/hr BC ASH	0.0180	MMft ³ /hr	0.33	0.00594 MMft ³ /hr
18	MMBtu/hr CC ASH	0.0180	MMft ³ /hr	0.33	0.00594 MMft ³ /hr
108.0	MMBtu/hr Misc PH vent	0.1080	MMft ³ /hr	0.33	0.03564 MMft ³ /hr
Additions to Existing	Buildings				
MMBtu/hr Mack 2 Additional					
38.425	Capacity	0.038	MMft ³ /hr	0.33	0.01268025 MMft ³ /hr
442.9	MMBtu/hr TOTAL				

Table C-11. $\rm NO_X$ and $\rm PM_{2.5}$ Emission Calculations from Natural Gas Combustion at MAP.

FCA JNAP Tutone and Sustainment - March 2020

				Emissio	n Rate			
Pollutant	Primer Obs Max hourly (lb/hr)	BC Obs Max hourly (lb/hr)	CC Obs Max hourly (lb/hr)	Indirect Fire Oven Max hourly (lb/hr)	RTO Max hourly (lb/hr)	HWG ¹ Max hourly (lb/hr)	PH Vents Max hourly (lb/hr)	Mack 2 NG Max hourly (lb/hr)
NO _x	0.14256	0.21384	0.21384	0.432	3.849	0.81	1.28304	0.456
Number of stacks	1	2	2	4	1	10	1	1
Emission Rate per stack (lb/hr)	0.14256	0.10692	0.10692	0.108	3.849	0.081	1.28304	0.456
РМ	0.0301	0.045144	0.045144	0.0912	0.7638	0.171	0.270864	0.0964
Number of stacks	1	2	2	4	1	10	1	1
Emission Rate per stack (lb/hr)	0.0301	0.0226	0.0226	0.0228	0.7638	0.0171	0.2709	0.0964

Table C-12. NO_x and $PM_{2.5}$ Emission Calculations from Natural Gas Combustion in Emergency Generators at MAP. FCA JNAP Tutone and Sustainment - March 2020

Pollutant	Natural Gas Combustion Emission Factor (g/hp-hr)	Gen 1A and 1B Hourly Ann Avg (each) (Ib/hr)	Gen 2 Hourly Ann Avg (lb/hr)	Gen 3 Hourly Ann Avg (Ib/hr)
NO _X	2	0.0881	0.1938	0.1938

Engine Size		Annual Operating Basis
350	hp Life Safety (2 units)	0.057
770	hp Generator	0.057
770	hp Life Safety	0.057

	Natural Gas Combustion Emission Factor	Gen 1A and 1B Hourly Ann Avg (each)	Gen 2 Hourly Ann Avg	Gen 3 Hourly Ann Avg
Pollutant	(lb/MMBtu)	(lb/hr)	(lb/hr)	(lb/hr)
PM2.5	0.0194	0.0109	0.0240	0.0240

Engine Size		
(hp)		(MMBtu/hr) ¹
350	hp Life Safety (2 units)	254.5
770	hp Generator	560.0
770	hp Life Safety	560.0

1 - MMBtu/hr input based upon 35% thermal efficiency and hp output

Table C-13. NO_{χ} and $PM_{2.5}$ Emission Calculations from Diesel Fired Emergency Engines at MAP.

FCA JNAP Tutone and Sustainment - March 2020

Pollutant	Diesel Combustion Emission Factor (g/hp-hr)	Hourly Ann Avg (each) (lb/hr)
NO _x	3	0.132
PM _{2.5}	0.15	0.039

Engine Size		Annual Operating Basis (NO _x)	Daily Operating Basis (PM _{2.5})
350	hp Fire Pump Engine (each)	0.057	0.333

Table C-14. Inventory of Off-site Nearby Sources Provided By EGLE. FCA JNAP Tutone and Sustainment - March 2020

				Facility	1					Stack Information					
				Emissior	ns			UTM	UTM	Hgt.	Dia	Temp	Flow	Velocity	Discharge
SRN	COMPANY	POL	(pph)	(tpy)	Other	EMISSION UNIT	ZONE	EAST	NORTH	(ft)	(inches)	(deg F)	(ACFM)	(m/s)	Туре
Nearby N	O ₂ Sources														
A7809	U S STEEL GREAT LAKES WORKS	NO2	126.4	517.4	PSD/NAAQS	COMPOSITE	17	326000	4683000	53.7	29.9	105.4	34,834	10.90	
A9831	MARATHON PETROLEUM COMPANY LP	NOx	146.5	642	PSD/NAAQS	FGDHOUPANNUAL	17	322000	4683150	133.4	53.3	476.0	18,567	6.16	V
B2169	CARMEUSE LIME Inc, RIVER ROUGE OPERATION	NO2	107.5	470.6	PSD/NAAQS	RG-Kiln#1	17	324525	4682560	71.0	285.6	450.0	128,000	1.46	Horizontal
B2810	DTE Electric Company - River Rouge Power Plant	NO2	491.2	1461.8	PSD/NAAQS	EU-BOILER#3	17	325800	4682000	425.0	154.0	320.0	1,240,000	159.86	Vertical
B2814	DETROIT THERMAL BEACON HEATING PLANT	NO2	37.0	162.1	PSD/NAAQS	COMPOSITE	17	331560	4689140	250.0	120.0	414.6	354,884	22.95	Vertical
M4148	DETROIT RENEWABLE POWER, LLC	NO2	69.1	302.8	PSD/NAAQS	EUBOILER012	17	331054	4692742	337.5	91.0	312.0	370,728	41.70	Vertical
N6631	DEARBORN INDUSTRIAL GENERATION	NOx	214.0	815	PSD/NAAQS	FGTURBINES	17	322513	4685652	60.0	213.0	1073.0	2,297,909	147.18	V
P0408	EES COKE BATTERY LLC	NO2	314.9	1411.0	PSD/NAAQS	COMPOSITE		326126	4683543	172.5	162.0	652.1	288,650	8.32	
Nearby Pl	M _{2.5} Sources														
A7809	U S STEEL GREAT LAKES WORKS	PM25	38.6	52.3	NAAQS	COMPOSITE	17	326000	4683000	42.2	21.1	70.5	18,268	10.23	
A9831	MARATHON PETROLEUM COMPANY LP	PM25	17.4	75.4	NAAQS	COMPOSITE	17	322000	4683150	187.0	79.1	510.9	108,607	17.53	
B2169	CARMEUSE LIME, INC	PM2.5	1.3	5.6	PSD	FG-KILNS1&2	17	324525	4682560	120.0	108.0	300.0	255,376	20.45	V
B2169	CARMEUSE LIME, INC	PM2.5	23.45	103.0	NAAQS	FG-KILNS1&2	17	324525	4682560	120.0	108.0	300.0	255,376	20.45	V
B3567	SAINT MARY'S CEMENT	PM2.5	0.0	0.0	PSD	FGFACILITY	17	323850	4683450	40.0	12.0	70.0	1,550	10.00	Upward
B3567	SAINT MARY'S CEMENT	PM2.5	20.5	89.9	NAAQS	FGFACILITY	17	323850	4683450	40.0	12.0	70.0	1,550	10.00	Upward
N6631	DEARBORN INDUSTRIAL GENERATION	PM25	17.6	51.6	NAAQS	COMPOSITE	17	322513	4685652	162.4	180.2	276.4	893,330	22.37	Vertical
P0408	EES COKE BATTERY LLC	PM25	35.9	157.1	NAAQS	COMPOSITE		326126	4683543	196.0	239.2	867.7	457,484	7.73	

NAAQS MODELING BACKGROUND SUMMARY

8.1

ug/m3

N	02	PM
79.6	19.2	19.2
ug/m3	ug/m3	ug/m3

Table C-15. NO₂ Impacts Summary.

FCA JNAP Tutone and Sustainment - March 2020

Pollutant	Averaging Period	Maximum Impact of Proposed Project (μg/m ³)	Significant Impact Level (µg/m³)	Project Plus Existing Nearby Source Impacts ¹ (μg/m ³)	Background Concentration ² (µg/m ³)	Total Impact (μg/m³)	NAAQS (μg/m³)
	1 hour	59.8	7.5	96.5	79.6	176.1	188
NO ₂							
	Annual	1.61	1.0	11.09	19.2	30.29	100

Notes:

1 - Pursuant to USEPA guidance, the 1 hour impact concentrations are the 1st high averaged over 5 years of meteorological data for comparison to the SIL, and the design value (98th percentile, or 8th highest daily one hour average, averaged over 5 years) for comparison to the NAAQS. The annual threshold is compared to the average over the 5 years of meteorological data.

For comparison to the NAAQS, all proposed sources associated with JNAP tutone refurbishment, as well as existing nearby sources, are included.

2 - The background concentration is the average of the design value over three years (2016-2018) of data measured at Site ID 261630019 in Wayne County Michigan (closest monitor to facility).

Table C-16. PM_{2.5} Impacts Summary.

FCA JNAP Tutone and Sustainment - March 2020

				Project Plus Existing	Background		
Pollutant	Averaging Period	Project Impacts (µg/m ³)	Significant Impact Level (µg/m³)	Source Impacts ¹ (µg/m ³)	Concentration ² (µg/m ³)	Total Impact (μg/m³)	NAAQS (μg/m³)
	24 hour	4.31	1.2	14.00	19.2	33.2	35
PM _{2.5}							
	Annual	0.94	0.2	2.71	8.10	10.8	12

Notes:

1 - Pursuant to USEPA guidance, the 24 hour impact concentrations are the 1st high averaged over 5 years of meteorological data for comparison to the SIL, and the design value (98th percentile, or 8th highest averaged over 5 years) for comparison to the NAAQS. The annual threshold is compared to the average over the 5 years of meteorological data.

For comparison to the NAAQS, all proposed new sources associated with the JNAP tutone, as well as existing nearby sources, are included.

2 - The background concentration is the average of the design value over three years (2016-2018) of data measured at Site ID 261630019 in Wayne County Michigan (closest monitor to facility).

Pollutant	Averaging Period	Impacts of Increment Consuming Sources ¹ (μg/m ³)	PSD Increment (μg/m³)
	24 hour	7.23	9.0
PM _{2.5}			
	Annual	1.69	4.0

Notes:

1 - The 24 hour impact concentration for comparison to the PSD increment is the highest 2nd high value over the 5 years of meteorological data. The annual threshold is the highest annual average value. All increment consuming sources are included.

APPENDIX D

DISPERSION MODELING INPUT/OUTPUT FILES

Flash Drive of Files are Included in Original Copy of Submittal

APPENDIX E

SITE LAYOUT

Figure E.1. FCA JNAP Tutone Project Site Layout

March 2020

APPENDIX F

PROCESS FLOW DIAGRAM

Jefferson North Assembly Plant Tutone Process Flow – March 2020

APPENDIX G

MATERIAL SDS/EDSs

PPG Industries, Inc.

Environmental Data Sheet

Tuesday, March 19, 2019

Customer: Corbin Leininger

Product: CSRC8002R DODGE CITY CLEAR

PRODUCT PHYSICAL CHARACTERISTICS:

WEIGHT PER GALLON:		8.34 lb/gal
DENSITY OF ORGANIC SOLVENT BLE		7.37 lb/gal
	Weight	Volume
NON-VOLATILE:	51.6%	45.3%
VOLATILE:	48.4%	54.7%
PERCENT OF WATER:	0.2%	0.2%
PERCENT OF EXEMPTS:	0.1%	0.1%

VOC INFORMATION:

VOC/GAL LESS WATER (LESS EXEMPTS):	4.02 lb/gal	482 g/L
ACTUAL VOC/GAL (WITH WATER WITH EXEMPTS):	4.01 lb/gal	481 g/L
VOC PER GALLON OF SOLIDS:	8.86 lb/gal	1061 g/L
VOC PER POUND OF SOLIDS:	0.93 lb/lb	

Product is photochemically reactive as per SCAQMD rule 102

VOLATILE COMPOSITION: PERCENT OF TOTAL FORMULA:

Component	Name	<u>Weight</u>	<u>Volume</u>
108-65-6	1-METHOXY-2-PROPYL ACETATE	11.0	11.4
624-54-4	PENTYL PROPIONATE	7.8	9.0
64742-95-6	SOLVENT NAPHTHA (PETROLEUM), LIGHT AROMATIC	5.5	6.3
107-98-2	PROPYLENE GLYCOL MONOMETHYL ETHER	4.8	5.2
34590-94-8	DIPROPYLENE GLYCOL MONOMETHYL ETHER	4.1	4.3
95-63-6	1,2,4-TRIMETHYLBENZENE	3.1	3.5
67-63-0	ISOPROPYL ALCOHOL	1.3	1.6
78-83-1	ISOBUTYL ALCOHOL	0.6	0.8
108-67-8	1,3,5-TRIMETHYLBENZENE	0.6	0.7
1330-20-7	XYLENES	0.5	0.5
103-65-1	Propylbenzene	0.4	0.5

526-73-8	1,2,3-TRIMETHYLBENZENE	0.3	0.3
7732-18-5	WATER	0.2	0.2
70657-70-4	2-METHOXY-1-PROPYL ACETATE	0.1	0.1
98-82-8	CUMENE	0.1	0.1
100-41-4	ETHYLBENZENE	0.1	0.1
	TOTAL OF REMAINING VOLATILES < 0.1%	0.1	0.2

REGULATORY INFORMATION BASED ON 100 GALLONS DEFAULT

Component	<u>Name</u>	lb	kg	HAPS	SARA
100-41-4	ETHYLBENZENE	0.89	0.40	Yes	Yes
95-63-6	1,2,4-TRIMETHYLBENZENE	25.46	11.55	No	Yes
98-82-8	CUMENE	0.95	0.43	Yes	No

POUND OF ORGANIC HAPS PER POUND OF SOLIDS: 0.00 POUND OF ORGANIC HAPS PER GALLON OF SOLIDS: 0.04 POUND OF ORGANIC HAPS PER GALLON OF PRODUCT: 0.02 PERCENT OF ORGANIC HAPS (VHAP): 0.2%

DISCLAIMER

This Environmental Data Sheet is not intended to replace the product's Material Safety Data Sheet.

The data contained in this Environmental Data Sheet is based on information provided to PPG by its suppliers and PPG's knowledge of PPG product formulations. PPG makes no representation or warranty regarding the accuracy of supplier furnished information or that this information or data will not change.

The information in this Environmental Data Sheet is not intended to and does not create legal rights or obligations. This information is provided for the sole use of PPG customers and is not for disclosure to competitors of PPG. PPG customers have an independent obligation to determine proper use of the information and that their use of the information is consistent with federal, state and local laws, rules and regulations.

Trace constituents present at levels less than 0.01 lb or kg are not included in the Regulatory Information section of this Environmental Data Sheet. Volatile HAPS present at levels less than 0.1% by weight for carcinogens and 1.0% for non-carcinogens will not be shown or will be indicated by a "No" in the Regulatory Section (under HAPS) of this Environmental Data Sheet.

Trace volatiles present at levels less than 0.1% are not listed individually in the volatile section of this EDS. Total trace volatiles is reported as "Total of remaining volatiles < 0.1%".

Chemical compounds generated as a result of the curing process of this coating are not included on this Environmental Data Sheet.

The USEPA listing of VOC exempt compounds [40CFR51.000(s)] is used in calculating VOC values.

PPG Industries, Inc.

Environmental Data Sheet

Friday, March 15, 2019

Customer: Corbin Leininger

Product: NHU9517R BLACK AY95-DX8

PRODUCT PHYSICAL CHARACTERISTICS:

WEIGHT PER GALLON:		8.12 lb/gal
DENSITY OF ORGANIC SOLVENT	BLEND:	6.92 lb/gal
	Weight	Volume
NON-VOLATILE:	53.5%	45.6%
VOLATILE:	46.5%	54.4%
PERCENT OF WATER:	0.3%	0.3%
PERCENT OF EXEMPTS:	0.1%	0.1%

VOC INFORMATION:

VOC/GAL LESS WATER (LESS EXEMPTS):	3.76 lb/gal	450 g/L
ACTUAL VOC/GAL (WITH WATER WITH EXEMPTS):	3.74 lb/gal	448 g/L
VOC PER GALLON OF SOLIDS:	8.21 lb/gal	983 g/L
VOC PER POUND OF SOLIDS:	0.86 lb/lb	

Product is photochemically reactive as per SCAQMD rule 102

VOLATILE COMPOSITION: PERCENT OF TOTAL FORMULA:

Component	Name	<u>Weight</u>	<u>Volume</u>
123-86-4	N-BUTYL ACETATE	18.4	20.3
108-83-8	2,6-DIMETHYLHEPTANONE	8.6	10.4
8032-32-4	VM and P naphtha	3.2	4.3
64-17-5	ETHYL ALCOHOL	2.5	3.0
108-65-6	1-METHOXY-2-PROPYL ACETATE	1.5	1.5
78-83-1	ISOBUTYL ALCOHOL	1.5	1.8
64741-66-8	PETROLEUM DISTILLATES	1.4	1.5
142-82-5	HEPTANE	1.3	1.8
64742-49-0	naphtha (petroleum), hydrotreated light	1.2	1.6
19549-80-5	4,6-DIMETHYL-2-HEPTANONE	1.2	1.4
1330-20-7	XYLENES	1.2	1.3
64742-95-6	SOLVENT NAPHTHA (PETROLEUM), LIGHT AROMATIC	0.7	0.7

108-87-2	METHYLCYCLOHEXANE	0.6	0.8
67-63-0	ISOPROPYL ALCOHOL	0.6	0.7
103-09-3	2-Ethylhexyl acetate	0.4	0.4
95-63-6	1,2,4-TRIMETHYLBENZENE	0.3	0.4
100-41-4	ETHYLBENZENE	0.3	0.3
7732-18-5	WATER	0.3	0.3
141-78-6	ETHYL ACETATE	0.1	0.1
67-56-1	METHYL ALCOHOL	0.1	0.2
64742-48-9	NAPHTHA (PETROLEUM); HYDROTREATED HEAVY	0.1	0.2
67-64-1	ACETONE	0.1	0.1
71-36-3	1-BUTANOL	0.1	0.1
108-88-3	TOLUENE	0.1	0.1
	TOTAL OF REMAINING VOLATILES < 0.1%	0.3	0.3

REGULATORY INFORMATION BASED ON 100 GALLONS DEFAULT

Component	Name	<u>lb</u>	kg	HAPS	SARA
100-41-4	ETHYLBENZENE	2.54	1.15	Yes	Yes
1330-20-7	XYLENES	9.38	4.26	Yes	Yes

POUND OF ORGANIC HAPS PER POUND OF SOLIDS: 0.03 POUND OF ORGANIC HAPS PER GALLON OF SOLIDS: 0.26 POUND OF ORGANIC HAPS PER GALLON OF PRODUCT: 0.12 PERCENT OF ORGANIC HAPS (VHAP): 1.5%

DISCLAIMER

This Environmental Data Sheet is not intended to replace the product's Material Safety Data Sheet.

The data contained in this Environmental Data Sheet is based on information provided to PPG by its suppliers and PPG's knowledge of PPG product formulations. PPG makes no representation or warranty regarding the accuracy of supplier furnished information or that this information or data will not change.

The information in this Environmental Data Sheet is not intended to and does not create legal rights or obligations. This information is provided for the sole use of PPG customers and is not for disclosure to competitors of PPG. PPG customers have an independent obligation to determine proper use of the information and that their use of the information is consistent with federal, state and local laws, rules and regulations.

Trace constituents present at levels less than 0.01 lb or kg are not included in the Regulatory Information section of this Environmental Data Sheet. Volatile HAPS present at levels less than 0.1% by weight for carcinogens and 1.0% for non-carcinogens will not be shown or will be indicated by a "No" in the Regulatory Section (under HAPS) of this Environmental Data Sheet.

Trace volatiles present at levels less than 0.1% are not listed individually in the volatile section of this EDS. Total trace volatiles is reported as "Total of remaining volatiles < 0.1%".

Chemical compounds generated as a result of the curing process of this coating are not included on this Environmental Data Sheet.

The USEPA listing of VOC exempt compounds [40CFR51.000(s)] is used in calculating VOC values.

APPENDIX H

BACT DEVELOPMENT AND COST SPREADSHEETS

BACT Cost Development – Jefferson North Assembly Plant

EU-ECOAT

The current E-coat system at JNAP consists of the E-coat tank followed by a natural gas-fired curing oven. The oven exhaust is routed to two thermal oxidizers, each of which is sized to accommodate a corresponding proportion of the exhaust. The tank air is not exhausted through a stack nor utilizes any emission controls. VOC emissions from the E-coat operation have been in the range of 10-20 tons per year (20.11 tpy in 2018) and 1.5% to 2.5% of total actual VOC emissions from the facility.

FCA evaluated the potential to control the E-coat tank as part of the BACT analysis requested by EGLE-AQD. In order to evaluate this process from a cost perspective, an estimate of potential emissions was needed to form the basis of the analysis. Based upon the historical actual emissions, FCA ratioed the E-coat emissions to the current allowable VOC tons per year in the FPI. Presently the FPI limit for the facility is 1,085.8 tons VOC per year. Based upon this limit and the percentage of VOCs that E-coat tank has represented on an actual emissions basis (2.45%), FCA calculated the potential emissions available from the E-coat tanks as follows:

1085.8 tons/year * 2.45% = 26.6 tons per year

COST ESTIMATE for CONTROLS

FCA considered two options for controlling the tank emissions. One was to route the tank emissions to the existing oven, which is then routed to an oxidizer. The other option was to route the tank emissions separately to an oxidizer.

With respect to the first option, FCA's Ecoat system relies upon both the oven burners and heat from the existing oxidizers to de-humidify the air in the curing oven. Based upon past experience, adding additional moisture from the tank system to the oven air will result in humidification, drying and curing problems. FCA professionals responsible for the E-coat operation have indicated that this option is not technically feasible. Furthermore, this option would result in significant production downtime at the facility to modify the existing exhaust systems on both the tank and the oven.

For the second option, FCA confirmed that neither of the two existing oxidizers have the air flow capacity to accommodate the Ecoat tank exhaust air. Therefore, FCA considered installing a completely new oxidizer that would address emissions from the tank. Due to the low level of VOC emissions from E-coat, FCA does not believe a concentrator would be an effective method to capture/concentrate emissions prior to oxidation. Therefore, controlling the tank exhaust directly to an oxidizer was the basis for the cost analysis included in the cost spreadsheets provided with the application.

Air flow rates from the tank exhaust were determined to be 14,600 cfm and FCA utilized the USEPA COSTAIR spreadsheets to determine the costs for control of the tank based upon installation of a new oxidizer. The annualized costs were based upon the following conservative metrics:

- Oxidizer capable of 95% destruction efficiency (control of 25.27 tpy)
- No inclusion of retrofitting or ductwork additional costs (under-estimating the cost)
- 20-year equipment life for RTO

• The annualized costs on this basis were estimated to be \$344,439 per year and the cost per ton of VOC removed was \$344,439/25.27 tons = \$13,630 per ton.

EU-TOPCOAT 1-3

The current topcoat system at JNAP consists of three topcoat lines, each with a basecoat booth followed by a clearcoat booth and a topcoat oven. The system relies on solvent borne coating in both the basecoat and clearcoat sections. The current VOC control system includes booth controls in the form of concentrators followed by thermal oxidation. The ovens exhaust directly to a thermal oxidizer. For the booths, the zones that use reciprocating bell applicators are routed to the control devices. The zones in the booth that use robotic bell applicators (formerly manual applicator zones) are exhausted to the atmosphere.

FCA evaluated whether additional emission reduction techniques are available for the currently uncontrolled portions of the topcoat operations at JNAP, consistent with the BACT analysis process. The existing portions of the uncontrolled booths include 612,000 cfm of air that would require control. FCA evaluated JNAP's current booth infrastructure system, seeking opportunities to recirculate the air and reduce the volume of air requiring abatement. Due, in part, to the fact that the existing system includes concrete tunnels that cannot be expanded or modified, it was determined that there is no opportunity to recirculate/reduce booth air flows. Therefore, the current thermal oxidizers were evaluated to determine if they could accommodate an increase in air flow, and it was confirmed that the capacity of the existing oxidizers could not accommodate the air from the uncontrolled zones. This analysis also confirmed that the cost to retrofit the existing systems and the associated production down time were substantially higher than the costs to install new stand-alone control devices (on the roof or on a pad). Therefore, this analysis is based upon the costs associated with the installation of a new concentrator and RTO.

The VOC emissions from the entire topcoat operation (BC/CC booths and ovens) over the last several years have ranged from 473 to 550 tons per year, and averages about 67.8% of the total plant wide value. Since there is no topcoat specific emission limit, the potential emissions from topcoat used in the BACT analysis were determined by taking 67.8% of the FPI limit of 1085.8 tpy, which is 736 tpy. Of that total, FCA has determined, based upon past test results, that a reduction of approximately 60% may be realized with a concentrator/RTO system. The concentrator will control 90% of the emissions and the RTO is expected to control 95% of the VOC emissions, which results in 442 tons controlled in the system.

FCA utilized the USEPA COSTAIR spreadsheets to determine the costs for the installation of new roof mounted concentrators and a new ground mounted RTO. As noted in the application, the annualized costs were based upon the following conservative metrics:

- 12 individual roof mounted concentrators (4 per coating line) in order to distribute load correctly and locate units near the respective coating line.
- Concentrators capable of 90% control and routed to the ground-mounted RTO
- Ductwork connecting the booths to the 12, individual roof-mounted concentrators and then from the concentrators to the new RTO.
- RTO installation will include a control room and a separate concrete pad for mounting
- RTO capable of 95% destruction efficiency
- VOC emissions available for control do not include those after controls on booths or flash/oven
- 20-year equipment life for RTO; 15-year life for concentrators

- RTO and concentrator annualized costs RTO: \$3,176,442 + CC: \$4,377,895
- Total cost = \$7,554,337/442 tons = \$17,091/ton

In order to determine the costs per ton of VOC removed for the combined concentrator/RTO system, FCA used cost sheets for each control device and then combined the \$/ton costs based upon a cost distribution. The Total Capital Investment costs were based upon plant-specific estimates provided by equipment and construction vendors.

FCA notes that there are currently no BACT cost sheets specific to the carousel style concentrator, so the analysis relied upon the costs for a bed-style carbon concentrator to estimate the costs. There are slight differences in the cost components for each, but the differences would not have a significant impact on the overall projected \$/ton value. Below is the distribution of costs for the specific system:

Description	Capital Cost (\$)	RTO-distribution (50/50)	Conc-distribution (50/50)
Engineering - Design	4,540,240	2,270,120	2,270,120
Contractor Activities	5,297,787	2,648,893.5	2,648,893.5
RTO	5,420,200	5,420,200	-
Concentrator	8,730,100	-	8,730,100
Concentrator Platform	6,097,875		6,097,875
Ductwork/Labor Booths to Concentrators: Concentrators to RTO (12 separate ducting systems)	10,990,103	5,495,051.5	5,495,051.5
Installation	13,410,455	6,705,227.5	6,705,227.5
		\$22,539,492.5	\$31,947,267.5

The above costs were incorporated into the BACT cost sheets included with the application and formed the basis for the total capital investment for each control device.

Topcoat - Carbon Concentrator

Data Inputs			
Select the type of carbon adsorber system:	Fited-Bed Carbon Adsorber with Steam Regeneration		
For fixed-bed carbon adsorbers, provide the following information:			
Select the type of operation:	Continuous Operation	•	
Select the type of material used to fabricate the carbon adsorber vessels:	Stainless Steel, 304		
Select the orientation for the adsorber vessels:	Horizontal	▼	

Enter the design data for the proposed Fixed-Bed Carbon Adsorber with Steam Regeneration

Number of operating hours per year (Θ_s)	7,200	hours/year
Waste Gas Flow Rate (Q)	612,000	acfm (at atmospheric pressure and 77°F)
VOC Emission Rate (m _{voc})	153.889	lbs/hour

Required VOC removal efficiency (E)	90	percent
Superficial Bed Velocity (v _b)	75.00	ft/min
Estimated equipment life of adsorber vessels and auxiliary Equipment (n)	15	Years*
Estimated Carbon life (n)	5	Years
Total Number of carbon beds (N _{total})	3	Beds*
Number of carbon beds adsorbing VOC when system is operating (N_A)	2	Beds*
Total time for adsorption (Θ_A)	12	hours*
Total time for desorption (Θ_D)	5	hours*
Estimated Carbon Replacement Rate (CRR)	379	lbs/hour*

Enter the Characteristics of the VOC/HAP:

Name of VOC/HAP	Toluene	
Partial Pressure of Toluene in waste gas stream	0.0104	psia
Parameter "k" for Toluene	0.551	Note:
		Typical values of "k" and "m" for some common
Parameter "m" for Toluene	0.110	VOCs are shown in Table A.

Topcoat - Carbon Concentrator

Enter the cost data for the carbon adsorber:			
Desired dollar-year	2018		
CEPCI* for 2018	567.5 CEPCI value for 2018	390.6 1999	Ð
Annual Interest Rate (i)	5.5 percent (Current bank prime rate)		_

* CEPCI is the Chemical Engineering Plant Cost Index. The use of CEPCI in this spreadsheet is not an endorsement of the index for purpose of cost escalation or de-escalation, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Electricity (P _{elec})	\$0.0762 per kWh
Steam (P _s)	\$5.00 per 1,000 lbs*
Cooling Water (P _{cw})	\$3.55 per 1,000 gallons of water*
Operator Labor Rate	\$40.00 per hour
Maintenance Labor Rate	\$44.00 per hour
Carbon Cost (CC)	\$4.20 per lb
Re-Sale Value of Recovered VOC (P _{voc})	\$0.33 per lb*
Disposal/Treatment Cost for Recovered VOC (D _{voc})	\$0.00 per lb*
If known, enter any additional costs for site preparation and building construction	/modification:
Site Preparation (SP) =	\$0 * Default value. User should enter actual value, i
Buildings (Bldg) =	\$0 * Default value. User should enter actual value, i
Equipment Costs for auxiliary equipment (e.g., ductwork, dampers, and stack)	
(EC _{aux}) =	\$32,000 * Default value. User should enter actual value, i
Contingency Factor (CF)	10.0 percent*

Cost Estimate

		-	
	-	<u>ns</u>	T (S.
-	 	0.5	

Estimated capital costs for a Fixed-Bed Carbon Adsorber with Steam Regeneration with the following characteristics:

VOC Controlled/Recovered = Toluene

Adsorber Vessel Orientation = Horizontal

Operating Schedule = Continuous Operation

Total Capital Investment (TCI) (in 2018 dollars)		
Parameter	Equation	Cost
Costs for Each Carbon Adsorber Vessel (C _v) =	$271 \times F_m \times S^{0.778} =$	See TCI
Total Cost for All Carbon Adsorber Vessels and Carbo	n(5.82 x Q ^{-0.133} x [C _c + (N _A + N _D) x C _v] =	See TCI
Auxiliary Equipment (EC _{aux}) =	(Based on design costs or estimated using methods provided in Section 2)	See TCI
Total Purchased Equipment Costs for Carbon Adsorb	er = EC _{Adsorb} + EC _{aux} =	
Instrumentation =	0.10 × A =	See TCI
Sales taxes =	0.03 × A =	See TCI
Freight =	0.05 × A =	See TCI
	Total Purchased Equipment Costs (B) =	#VALUE!
Direct Installation Costs (in 2018 dollars)		
Parameter	Fauation	Cost
Foundations and Supports =	0.08 × B =	See TCI
Handling and Erection =	0.14 × B =	See TCI
Electrical =	0.04 × B =	See TCI
Piping =	0.02 × B =	See TCI
Insulation =	0.01 × B =	See TCI
Painting =	0.01 × B =	See TCI
Site Preparation (SP) =		See TCI
Buildings (Bldg) =		See TCI
	Total Direct Costs (DC) = B + (0.3 × B) + SP + Bldg =	50e TCI
		γŪ

Total Capital Investment (TCI) =	$DC + IC + C = (1.28 \times B) + SP + Bldg. + C =$		\$31,947,268	in 2018 dollars
Contingency Cost (C) =	CF(IC+DC)=		See TCI	
		Total Indirect Costs (IC) =	See TCI	
Performance test =	0.01 × B =		See TCI	
Start-up =	0.02 × B =		See TCI	
Contractor fees =	0.10 × B =		See TCI	
Construction and field expenses =	0.05 × B =		See TCI	
Engineering =	0.10 × B =		See TCI	
Parameter	Equation		Cost	
Total Indirect Installation Costs (in 2018 dollars)				

Cost Estimate

Annual Costs

Direct Annual Costs		
Parameter	Equation	Cost
Annual Electricity Cost =	$Q_{Elec} \times P_{elec} =$	\$72,825
Annual Steam Cost (C _s) =	$3.50 \times m_{voc} \times \Theta_s \times P_s =$	\$19,390
Annual Cooling Water Cost (C _{cs}) =	$3.43 \times C_s/P_s \times P_{wc} =$	\$47,220
Operating Labor Costs:	Operator = 0.5 hours/shift × Labor Rate × (Operating hours/8 hours/shift)	\$18,000
	Supervisor = 15% of Operator	\$2,700
Maintenance Costs:	Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift)	\$19,800
	Materials = 100% of maintenance labor	\$19,800
Carbon Replacement Costs:	Labor = $CRF_{carbon} \times (Labor Rate \times M_c)/CRR =$	\$452
	Carbon = CRF _{carbon} x CC x M _c x 1.08 =	\$17,648

Direct Annual Costs (DAC) =

\$217,835 in 2018 dollars

in 2018 dollars

in 2018 dollars

\$4,489,136

\$4,377,895

Indirect Annual Costs		
Parameter	Equation	Cost
Overhead	= 60% of sum of operator, supervisor, maintenance labor Plus maintenance materials	\$36,180
Administrative Charges	= 2% of TCI	\$638,945
Property Taxes	= 1% of TCI	\$319,473
Insurance	= 1% of TCI	\$319,473
Capital Recovery	= $CRF_{Adsorber} \times (TCI - [(1.08 \times CC \times M_c) + (LR \times M_c/CRR)] =$	\$3,175,065

Indirect Annual Costs (IAC) =

Total Annual Cost (TAC) =

Recovered Solvent Credit/Disposal Costs

Disposal Cost Parameter VOC Disposal/Treatment Costs (<i>Disposal _{cost}</i>)	Equation = $m_{voc} \times \Theta_s \times D_{voc} \times E =$	Cost \$0	
VOC Recovery Credit			
Parameter	Equation	Cost	
Annual Recovery Credit for Condensate (RC)	$= m_{voc} \times \Theta_s \times P_{voc} \times E =$	\$329,076	

DAC + IAC + C + Disposal_{Cost} - RC =
Cost Effectiveness				
Cost Effectiveness				
Parameter	Equation	Cost		
Total Annual Cost =	TAC =	\$4,377,895	per year in 2018 dollars	
Annual Quantity of VOC Removed/Recovered =	$W_{voc} = m_{voc} \times \Theta_s \times E =$	465.3	tons/year	
Cost Effectiveness =	Total Annual Cost (TAC) / Annual Quantity of VOC Removed/Recovered =	\$9,409.57	per ton of pollutants removed/recovered in 2018 dollars	

516.96

\$7,554,337 \$17,091.26 \$/ton destroyed (combined with Topcoat RTO cost)

Topcoat - RTO

	Data Inputs		
elect the type of oxidizer	Regenerative Thermal Oxidizer		
nter the following information for your emission source:			
		1	

Composition of inlet Gas Stream					
Pollutant Name	Concentration (ppmv)	Lower Explosive Limit (LEL) (ppmv)*	Heat of Combustion (Btu/scf)	Molecular Weight	
Toluene**	100.2	11,000	4,274	92.13	

Note: The lower explosion limit (LEL), heat of combustion and molecular weight for some commonly used VOC/HAP are provided in the table below.

Enter the design data for the proposed oxidizer:

Number of operating hours/year	7,200	hours/year
Inlet volumetric flow rate(Q_{wi}) at 77°F and 1 atm.	61,200	scfm
Inlet volumetric flow rate(Q _{wi}) (actual conditions)	61,200	acfm
Pressure drop (ΔP)	23	inches of water*
Motor/Fan Efficiency (ε)	60	percent*
Inlet Waste Gas Temperature (T _{wi})	100	°F*
Operating Temperature (T _{fi})	1,450	°F
Destruction and Removal Efficiency (DRE)	95.0	percent
Estimated Equipment Life	20	Years*
Heat Loss (ŋ)	1	percent*

Enter the cost data:

Desired dollar-year	2018		
CEPCI* for 2018	603.1	Enter the CEPCI value for 2018	541.7 2016 CEPC
Annual Interest Rate (i)	4.25	Percent	
Electricity (Cost _{elect})	0.0762	\$/kWh	
Natural Gas Fuel Cost (Cost _{fuel})	0.00605	\$/scf	
Operator Labor Rate	\$40.00	per hour	
Maintenance Labor rate	\$44.00	per hour	
Contingency Factor (CF)	10.0	Percent	

* CEPCI is the Chemical Engineering Plant Cost Escalation/De-escalation Index. The use of CEPCI in this spreadsheet is not an endorsement of the index for purposes of cost escalation or de-escalation, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Percent Energy Recovery (HR) = 0 percent

▼

	Direct Costs		
	Total Purchased equipment costs (in 2018 dollars)		
Incinerator + auxiliary equipment ^a (A) =			
Equipment Costs (EC) for Regenerative Oxidizer	=[2.664 x 100,000 + (13.98 x Qtot)] x (2018 CEPI/2016 CEPCI) =	See TCI	in 2018 dollars
Instrumentation ^b =	0.10 × A =	See TCI	
Sales taxes =	0.03 × A =	See TCI	
Freight =	0.05 × A =	See TCI	
	Total Purchased equipment costs (B) =	\$1,250,553	3 in 2018 dollars
Footnotes			
a - Auxiliary equipment includes equipment (e.g., duct work) r	normally not included with unit furnished by incinerator vendor		
b - Includes the instrumentation and controls furnished by the	incinerator vendor.		
	Direct installation Costs (in 2018 dollars)		
Foundations and Supports =	0.08 × B =	See TCI	
Handlong and Errection =	0.14 × B =	See TCI	
Electrical =	0.04 × B =	See TCI	
Piping =	0.02 × B =	See TCI	
Insulation for Ductwork =	0.01 × B =	See TCI	
Painting =	0.01 × B =	See TCI	
Site Preparation (SP) =		See TCI	
Buildings (Bldg) =		See TCI	
	Total Direct Installaton Costs =	See TCI	
Total Direct Costs (DC) =	Total Purchase Equipment Costs (B) + Total Direct Installation Costs =	See TCI	in 2018 dollars
	lotal indirect installation Costs (in 2018 dollars)		
Engineering -	0 10 × B -		
Construction and field expenses -	0.15 × B -		
Contractor fees -	0.03 × 0 =		
Start-up -	0.10 × B -		
Start-up -	0.02 × B -	See TCI	
	0.01 ^ D -	See TCI	
	Total Indirect Costs (IC) -	See TCI	
	i otal indirect costs (ic) =	See ICI	
Continency Cost (C) -			
Total Capital Investment =	DC + IC +C =	\$22,539,49	2 in 2018 dollars
		, <u>, , , , , , , , , , , , , , , , , , </u>	

Cost Estimate Direct Annual Costs = Fan Power Consumption × Operating Hours/year × Electricity Price = \$150,592 Annual Electricity Cost Annual Fuel Costs for Natural Gas = Cost_{fuel} × Fuel Usage Rate × 60 min/hr × Operating hours/year \$235,894 **Operating Labor** Operator = 0.5hours/shift × Labor Rate × (Operating hours/8 hours/shift) \$36,000 Supervisor = 15% of Operator \$5,400 Maintenance Costs Labor = 0.5 hours/shift × Labor Rate × (Operating Hours/8 hours/shift) \$39,600 Materials = 100% of maintenance labor \$39,600 Direct Annual Costs (DC) = \$507,086 in 2018 dollars Indirect Annual Costs = 60% of sum of operating, supervisor, maintenance labor and maintenance Overhead materials \$72,360 Administrative Charges = 2% of TCI \$450,790 Property Taxes = 1% of TCI \$225,395 = 1% of TCI \$225,395 Insurance **Capital Recovery** = CRF[TCI-1.08(cat. Cost)] \$1,695,417 Indirect Annual Costs (IC) = \$2,669,357 in 2018 dollars Total Annual Cost = DC + IC = \$3,176,442 in 2018 dollars **Cost Effectiveness** Cost Effectiveness = (Total Annual Cost)/(Annual Quantity of VOC/HAP Pollutants Destroyed) Total Annual Cost (TAC) = \$3,176,442 per year in 2018 dollars VOC/HAP Pollutants Destroyed = 442.0 tons/year Cost Effectiveness = \$7,187 per ton of pollutants removed in 2018 dollars

Total Uncontrolled VOC (tpy) =

465.3 see Carbon Concentrator Cost Sheet

E-Coat RTO

Data Inputs					
Select the type of oxidizer	Regenerative Thermal Oxidizer				
Enter the following information for	your emission source:				
	Composition of Inle	: Gas Stream			
Pollutant Name	Concentration (ppmv)	Lower Explosive Limit (LEL) (ppmv)*	Heat of Combustion (Btu/scf)	Molecular Weight	Note: The lower explosion limit (LEL), heat of combustion and molecular weight for some commonly used VOC/HAP are provided in the table below.
Toluene**	100.	2 11,000	4,274	92.13	

Enter the design data for the proposed oxidizer:

Number of operating hours/year	7,200	hours/year
Inlet volumetric flow rate(Q_{wi}) at 77°F and 1 atm.	14,600	scfm
Inlet volumetric flow rate(Q _{wi}) (actual conditions)	14,600	acfm
Pressure drop (ΔP)	19	inches of water
Motor/Fan Efficiency (ε)	60	percent*
Inlet Waste Gas Temperature (T _{wi})	70	°F
Operating Temperature (T _{fi})	1,450	°F
Destruction and Removal Efficiency (DRE)	95.0	percent
Estimated Equipment Life	20	Years*
Heat Loss (ŋ)	1	percent*

Enter the cost data:

Desired dollar-year CEPCI* for 2018 Annual Interest Rate (i) Electricity (Cost_{elect}) Natural Gas Fuel Cost (Cost_{fuel}) Operator Labor Rate Maintenance Labor rate Contingency Factor (CF)

2018			
603.1	Enter the CEPCI value for 2018	541.7 2016 CEPCI	
4.25	Percent		
0.0762	2 \$/kWh - Detroit Specific costs for industrial electricity		
0.00605	\$/scf - Detroit Costs - Oct 2019 industrial		
\$40.00	per hour		
\$44.00	per hour		
10.0	Percent		

* CEPCI is the Chemical Engineering Plant Cost Escalation/De-escalation Index. The use of CEPCI in this spreadsheet is not an endorsement of the index for purposes of cost escalation or de-escalation, but is there merely to allow for availability of a well-known cost index to spreadsheet users. Use of other well-known cost indexes (e.g., M&S) is acceptable.

Percent Energy Recovery (HR) = 0 percent

-

	Direct Costs	
	Total Purchased equipment costs (in 2018 dollars)	
Incinerator + auxiliary equipment ^a (A) =		
Equipment Costs (EC) for Regenerative Oxidizer	=[2.664 x 100,000 + (13.98 x Qtot)] x (2018 CEPI/2016 CEPCI) =	\$524,401 in 2018 dollars
Instrumentation ^b =	0.10 × A =	\$52,440
Sales taxes =	0.03 × A =	\$15,732
Freight =	0.05 × A =	\$26,220
	Total Purchased equipment costs (B) =	\$618,793 in 2018 dollars

Footnotes

a - Auxiliary equipment includes equipment (e.g., duct work) normally not included with unit furnished by incinerator vendor

b - Includes the instrumentation and controls furnished by the incinerator vendor.

	Direct Installation	n Costs (in 2018 dollars)		
Foundations and Supports =	0.08 × B =		\$49,503	
Handlong and Errection =	0.14 × B =		\$86,631	
Electrical =	0.04 × B =		\$24,752	
Piping =	0.02 × B =		\$12,376	
Insulation for Ductwork =	0.01 × B =		\$6,188	
Painting =	0.01 × B =		\$6,188	
Site Preparation (SP) =			\$0	
Buildings (Bldg) =			\$0	
		Total Direct Installaton Costs =	\$185,638	
Total Direct Costs (DC) =	Total Purchase E	quipment Costs (B) + Total Direct Installation Costs =	\$804,430 in 20	L8 dollars
	Total Indirect Installa	tion Costs (in 2018 dollars)		
Engineering =	0.10 × B =		\$61,879	
Construction and field expenses =	0.05 × B =		\$30,940	
Contractor fees =	0.10 × B =		\$61,879	
Start-up =	0.02 × B =		\$12,376	
Performance test =	0.01 × B =		\$6,188	
		Total Indirect Costs (IC) =	\$173,262	
Continency Cost (C) -			\$07.760	
Total Conital Investment -			\$97,709	
Total Capital Investment =	DC + IC +C =		\$1,075,462 in 20	Lo dollars

	Direct Annual Costs	
Annual Electricity Cost	= Fan Power Consumption × Operating Hours/year × El	lectricity Price = \$29,678
Annual Fuel Costs for Natural Gas	= Cost _{fuel} × Fuel Usage Rate × 60 min/hr × Operating hc	ours/year \$94,367
Operating Labor	Operator = 0.5hours/shift × Labor Rate × (Operating hc	ours/8 hours/shift) \$18,000
	Supervisor = 15% of Operator	\$2,700
Maintenance Costs	Labor = 0.5 hours/shift × Labor Rate × (Operating Hour	rs/8 hours/shift) \$19,800
	Materials = 100% of maintenance labor	\$19,800
Direct Annual Costs (DC) =		\$184.344 in 2018 dollars
	Indirect Annual Costs	
	= 60% of sum of operating, supervisor, maintenance la	abor and maintenance
Overhead	materials	\$36,180
Administrative Charges	= 2% of TCI	\$21,509
Property Taxes	= 1% of TCI	\$10,755
Insurance	= 1% of TCI	\$10,755
Capital Recovery	= CRF[TCI-1.08(cat. Cost)]	\$80,896
Indirect Annual Costs (IC) =		\$160,095 in 2018 dollars
Total Annual Cost =	DC + IC =	\$344,439 in 2018 dollars
	Cost Effectiveness	
	Cost Effectiveness = (Total Annual Cost)/(Annual Quantity of VOC/HA	P Pollutants Destroyed)
Iotal Annual Cost (IAC) =		\$344,439 per year in 2018 dollars
V()(`/UAD Dollutante Destroyed -		JE 2 tons/waar

VOC/HAP Pollutants Destroyed =25.3 tons/yearCost Effectiveness =\$13,630 per ton of pollutants removed in 2018 dollarsTotal Uncontrolled VOC (tpy) =26.6

APPENDIX I

NESHAP SURFACE COATING OF AUTOMOBILES AND LIGHT DUTY TRUCK -RECONSTRUCTION ANALYSIS

The following provides the detailed cost analysis related to the MACT Reconstruction Demonstration in 40 CFR 63.3082.

JNAP estimated costs to construct an entirely new paint facility similar to the existing three coating line system as follows:

- Paint Building/Paint Mix \$147 Million
- Paint Process/Conveyors <u>\$467 Million</u>
- Total Cost Estimate \$ 614 Million

The costs associated with the proposed sustainment activities and changes to the paint shop (e.g., tutone, rapid repair, etc.) are provided below:

- Paint Shop Sustainment \$186.8 Million
- Paint Shop New Equipment (tutone, etc.) <u>\$87.1 Million</u>
- Total Cost Estimate \$273.9 Million

Based upon the above, the cost demonstration includes a comparison on a percentage basis as follows:

\$273.9 Million/\$614 Million = 44.6%