REVIEW AND CERTIFICATION

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	for lot	Date:	3/10/2023	
Name:	John Nestor	Title:	District Manager	

I have reviewed, technically and editorially, details, calculations, results, conclusions, and other appropriate written materials contained herein. I hereby certify that, to the best of my knowledge, the presented material is authentic, accurate, and conforms to the requirements of the Montrose Quality Management System and ASTM D7036-04.

TABLE OF CONTENTS

SEC	TION	PAGE
1.0	INTR	ODUCTION
	1.1	SUMMARY OF TEST PROGRAM
	1.2	KEY PERSONNEL
	2.1	PROCESS DESCRIPTION, OPERATION, AND CONTROL EQUIPMENT
	2.2	FLUE GAS SAMPLING LOCATION
	2.3	OPERATING CONDITIONS AND PROCESS DATA
3.0	SAM	PLING AND ANALYTICAL PROCEDURES
	3.1	TEST METHODS
		3.1.1 EPA Method 1
		3.1.2 EPA Method 2
		3.1.3 EPA Method 313
		3.1.4 EPA Method 413
		3.1.5 EPA Method 5/20214
		3.1.6 EPA Methods 3A and 7E15
		3.1.7 EPA Method 1716
		3.1.8 EPA Method 32016
	3.2	PROCESS TEST METHODS
4.0	TEST	T DISCUSSION AND RESULTS19
	4.1	FIELD TEST DEVIATIONS AND EXCEPTIONS
	4.2	PRESENTATION OF RESULTS
5.0	INTE	RNAL QA/QC ACTIVITIES
	5.1	QA/QC AUDITS
	5.2	QA/QC DISCUSSION
	5.3	QUALITY STATEMENT
LIS	TOF	APPENDICES
A	FIEL	D DATA AND CALCULATIONS
	A.1	Sampling Locations
	A.2	FGOXID2 Data Sheets
	A.3	Example Calculations
В	FACI	LITY PROCESS DATA
С	LABO	DRATORY ANALYSIS DATA
D	QUA	LITY ASSURANCE/QUALITY CONTROL 182
	D.1	Units and Abbreviations
	D.2	Manual Test Method QA/QC Data
	D.3	Accreditation Information/Certifications
E	REG	ULATORY INFORMATION
-		

LIST OF TABLES

I

l

1-1	SUMMARY OF TEST PROGRAM
1-2	SUMMARY OF AVERAGE COMPLIANCE RESULTS - FGFLOUR HAMMERMILL STACK
1-3	SUMMARY OF AVERAGE COMPLIANCE RESULTS - CE004 SCRUBBER STACK
1-4	SUMMARY OF AVERAGE COMPLIANCE RESULTS - TO and HRB CE010 Stack
1-5	SUMMARY OF AVERAGE COMPLIANCE RESULTS - RTO CE012 Stack THREE- BURNER CONDITION
1-6	SUMMARY OF AVERAGE COMPLIANCE RESULTS - RTO CE012 Stack TWO-BURNER CONDITION
1-3	TEST PERSONNEL AND OBSERVERS
2-1	SAMPLING LOCATION
4-1	TOTAL PM EMISSIONS RESULTS - FGFLOUR HAMMERMILL STACK
4-2	VOC EMISSIONS RESULTS - CE004 SCRUBBER STACK
4-3	PARTICULATE AND GASEOUS EMISSIONS RESULTS - CE010 TO AND HRB STACK
4-4	VOLATILE ORGANIC EMISSIONS RESULTS - CE010 TO AND HRB STACK
4-5	PARTICULATE AND GASEOUS EMISSIONS RESULTS - RTO CE012 STACK 3 BURNER CONDITION
4-6	SPECIATED VOLATILE ORGANIC EMISSIONS RESULTS - RTO CE012 STACK 3 BURNER CONDITION
4-7	PARTICULATE AND GASEOUS EMISSIONS RESULTS - RTO CE012 STACK 2 BURNER CONDITION
4-8	SPECIATED VOLATILE ORGANIC COMPOUND RESULTS - RTO CE012 STACK 2 BURNER CONDITION
LIST	T OF FIGURES
3-1	US EPA METHOD 5/202 SAMPLING TRAIN14
3-2	EPA METHODS 3A (O ₂ and CO2) and 7E SAMPLING TRAIN15
3-3	US EPA METHOD 17 SAMPLING TRAIN16
3-4	EPA Method 320 Sampling Train

1.0 INTRODUCTION

1.1 SUMMARY OF TEST PROGRAM

Poet Biorefining contracted Montrose Air Quality Services, LLC (Montrose) to perform a compliance emissions test program on the Hammermill Baghouse (FGFLOUR), Fermentation Scrubber (CE004), Thermal Oxidizer and associated Heat Recovery Boiler (CE010), and Regenerative Thermal Oxidizer (CE012) stack at the Poet Biorefining facility located in Caro, Michigan. The tests were conducted to satisfy the emissions testing requirements of the Renewable Operating Permit No. MI-ROP-N6996-2018a issued by the Michigan Department of Environment, Great Lakes, and Energy (EGLE).

The specific objectives were to:

 Measure the emissions of FPM as PM10/PM2.5 from the Hammermill Baghouses common stack

· Measure the emissions of total VOC and acetaldehyde from the Scrubber stack

 Measure the emissions of FPM, CPM, TPM as PM10/PM2.5, NOx, and total VOC from the TO&HRB

• Measure the emissions of FPM, CPM, TPM as PM10/PM2.5, NOx, and total VOC from the RTO stack during the three burner and two burner condition.

Conduct the test program with a focus on safety

Montrose performed the tests to measure the emission parameters listed in Table 1-1.

Test Date(s)	Unit ID/ Source Name	Activity/ Parameters	Test Methods	No. of Runs	Duration (Minutes)
1/10/2023	FGFLOUR	Velocity/Volumetric Flow Rate	EPA 1 & 2	3	60
1/10/2023	FGFLOUR	O ₂ , CO ₂	EPA 3	3	60
1/10/2023	FGFLOUR	Moisture	EPA 4	3	60
1/10/2023	FGFLOUR	Total PM10/PM2.5	EPA 17	3	60
1/10/2023	CE012 STACK	Velocity/Volumetric Flow Rate	EPA 1 & 2	3	60
1/10/2023	CE004 STACK	Moisture	EPA 320	3	60
1/10/2023	CE004 STACK	VOC	EPA 320	3	60
1/10/2023	CE004 STACK	Acetaldehyde	EPA 320	3	60

TABLE 1-1 SUMMARY OF TEST PROGRAM

1/11- 1/12/2023	CE012 STACK	Velocity/Volumetric Flow Rate	EPA 1 & 2	3	60
1/11- 1/12/2023	CE012 STACK	O ₂ , CO ₂	EPA 3	3	60
1/11- 1/12/2023	CE012 STACK	Moisture	EPA 4	3	60
1/11- 1/12/2023	CE012 STACK	Total PM ₁₀ /PM2.5	EPA 5/202	3	60
1/11- 1/12/2023	CE012 STACK	Oxides of Nitrogen	EPA 7E	3	60
1/11- 1/12/2023	CE012 STACK	VOC	EPA 320	3	60
1/11- 1/12/2023	CE010 STACK	Velocity/Volumetric Flow Rate	EPA 1 & 2	3	60
1/11- 1/12/2023	CE010 STACK	O ₂ , CO ₂	EPA 3	3	60
1/11- 1/12/2023	CE010 STACK	Moisture	EPA 4	3	60
1/11- 1/12/2023	CE010 STACK	Total PM ₁₀ /PM2.5	EPA 5/202	3	60
1/11- 1/12/2023	CE010 STACK	Oxides of Nitrogen	EPA 7E	3	60
1/11- 1/12/2023	CE010 STACK	VOC	EPA 320	3	60

To simplify this report, a list of Units and Abbreviations is included in Appendix D.1. Throughout this report, chemical nomenclature, acronyms, and reporting units are not defined. Please refer to the list for specific details.

This report presents the test results and supporting data, descriptions of the testing procedures, descriptions of the facility and sampling locations, and a summary of the quality assurance procedures used by Montrose. The average emission test results are summarized and compared to their respective permit limits in Table 1-2. Detailed results for individual test runs can be found in Section 4.0. All supporting data can be found in the appendices.

The testing was conducted by the Montrose personnel listed in Table 1-3. The tests were conducted according to the test plan (MW023AS-020558-PP-519) dated September 15, 2022 that was submitted to EGLE.

TABLE 1-2 SUMMARY OF AVERAGE COMPLIANCE RESULTS -FGFLOUR HAMMERMILL STACK JANUARY 10, 2023

Parameter/Units	Average Results	Emission Limits
Total PM _{2.5} Ib/hr*	0.082	0.93
Total PM ₁₀ lb/hr*	0.082	1.10
Total PM ₁ lb/1000 lb of gas	0.001	0.004

* The stack temperature was determined to be less than 85 °F. Particulate Matter less than 10 and less than 2.5 was determined by the gravimetric analysis of all filterable particulate matter captured by the USEPA Method 17 Train.

TABLE 1-3 SUMMARY OF AVERAGE COMPLIANCE RESULTS -CE004 SCRUBBER STACK JANUARY 10, 2023

Parameter/Units	Average Results	Emission Limits
Total VOCs		
Lb/hr**	6.85	19.66
Acetaldehyde		
Lb/hr	0.9	1.5

** Total VOC by FTIR includes acetaldehyde, acetic acid, acrolein, ethanol, ethyl acetate, formaldehyde, formic acid, 2-furaldehyde, methanol.

TABLE 1-4 SUMMARY OF AVERAGE COMPLIANCE RESULTS -TO and HRB CE010 Stack JANUARY 12, 2023

Parameter/Units	Average Results	Emission Limits
Total PM ₁₀ /PM _{2.5} Ib/hr*	3.84	4.00
NOx Ib/MMbtu	0.039	0.10
Total VOCs*** Lb/hr**	8.58	9.00
Total VOCs**** Lb/hr**	8.92	9.00

* Total Particulate Matter was determined by the summation of all filterable and condensable particulate matter captured by the USEPA Method 5/202 Train.

** Total VOC by FTIR includes acetaldehyde, acetic acid, acrolein, ethanol, ethyl acetate, formaldehyde,

formic acid, 2-furaldehyde, methanol. Methane was detected, but was not included as it is an exempt VOC. The VOC limit is based on the combined emissions from the CE012 and CE010 stack.

*** Total VOC Emission limits are a combined limit from both the CE010 and CE012 stack. CE012 was fired under two conditions. The presented emissions results are for the two-burner condition.

**** Total VOC Emission limits are a combined limit from both the CE010 and CE012 stack. CE012 was fired under two conditions. The presented emissions results are for the three-burner condition.

TABLE 1-5 SUMMARY OF AVERAGE COMPLIANCE RESULTS -RTO CE012 Stack THREE-BURNER CONDITION JANUARY 11, 2023

Parameter/Units	Average Results	Emission Limits
Total PM ₁₀ /PM _{2.5} lb/hr*	3.846	6.00
NOx Ib/MMbtu	0.059	0.10
Total VOCs*** Lb/hr**	8.92	9.00

* Total Particulate Matter was determined by the summation of all filterable and condensable particulate matter captured by the USEPA Method 5/202 Train.

** Total VOC by FTIR includes acetaldehyde, acetic acid, acrolein, ethanol, ethyl acetate, formaldehyde,

formic acid, 2-furaldehyde, methanol. Methane was detected, but was not included as it is an exempt VOC. The VOC limit is based on the combined emissions from the CE012 and CE010 stack.

*** Total VOC Emission limits are a combined limit from both the CE010 and CE012 stack. CE012 was fired under two conditions.

TABLE 1-6 SUMMARY OF AVERAGE COMPLIANCE RESULTS -RTO CE012 Stack TWO-BURNER CONDITION JANUARY 12, 2023

Parameter/Units	Average Results	Emission Limits
Total PM ₁₀ /PM _{2.5} lb/hr*	3.74	6.00
NOx Ib/MMbtu	0.06	0.10
Total VOCs*** Lb/hr**	8.58	9.00

* Total Particulate Matter was determined by the summation of all filterable and condensable particulate matter captured by the USEPA Method 5/202 Train.

** Total VOC by FTIR includes acetaldehyde, acetic acid, acrolein, ethanol, ethyl acetate, formaldehyde, formic acid, 2-furaldehyde, methanol. Methane was detected, but was not included as it is an exempt VOC.
*** Total VOC Emission limits are a combined limit from both the CE010 and CE012 stack. CE012 was fired under two conditions.

1.2 KEY PERSONNEL

A list of project participants is included below:

Facility Information

Source Location: POET Biorefinery

1551 Empire Drive Caro, MI 48723 Contact: Coryn Houser Role: EH&S Specialist Company: POET Biorefinery Email: Coryn.Houser@POET.com

Agency Information

Regulatory Agency: EGLE

Testing Company Information

Testing Firm: Montrose Air Quality Services, LLC

Contact:	John Nestor
Title:	District Manager
Telephone:	248-765-5032
Email:	jonestor@montrose-env.com

Laboratory Information

Laboratory:	Montrose Detroit
City, State:	Royal Oak, Michigan
Method:	EPA Method 17

Laboratory:	Montrose Elk Grove
City, State:	Elk Grove, Illinois
Method:	EPA Method 202

Test personnel and observers are summarized in Table 1-3.

Name	Affiliation	Role/Responsibility
John Nestor	Montrose	Field Project Manager, QI
Roy Zimmer	Montrose	Field Technician
Clayton Deronne	Montrose	Field Technician
Shane Rabideau	Montrose	Field Technician
Coryn Houser	Poet Biorefinery	Client Liaison
Tony Paul	Poet Biorefinery	Test Coordinator

TABLE 1-3 TEST PERSONNEL AND OBSERVERS

2.0 PLANT AND SAMPLING LOCATION DESCRIPTIONS

2.1 PROCESS DESCRIPTION, OPERATION, AND CONTROL EQUIPMENT

POET Biorefinery operates a dry mill corn processing plant that produces ethanol from grain product. The final products from the facility are ethanol and distillers' grain with soluble that are used for fuel and livestock feed respectively. Compliance testing was conducted on the following sources with associated control devices.

 FGFLOUR, consisting of five hammermill baghouses (EUHAMMERMILL1 – EUHAMMERMILL5) exhausting to a common stack

 CE004, a packed-bed wet scrubber serving the fermentation and distillation processes (FGFERM&DIST)

• CE012, a regenerative thermal oxidizer (EURTO) serving the dried distiller's grains with solubles (DDGS) dryers and centrifugation

 CE010, a thermal oxidizer and heat recovery boiler (EUTO&HRB) serving the DDGS dryers and centrifugation

2.2 FLUE GAS SAMPLING LOCATION

Information regarding the sampling location is presented in Table 2-1.

		Distance fro Disturb	m Nearest bance	
Sampling Location	Stack Inside Dimensions (in.)	Downstream EPA "B" (in./dia.)	Upstream EPA "A" (in./dia.)	Number of Traverse Points
FGFLOUR	54"	112 / 2.1	125 / 2.3	Isokinetic: 24 (12/port)
CE004	23.25"	72 / 3.1	14 / 0.6	Velocity: 16 (8/port)
CE010	79.25"	240 / 3.0	480 / 6.1	lsokinetic: 24 (12/port)
CE012	44"	404.3 / 8.9	960 / 10.5	lsokinetic: 16 (8/port)

TABLE 2-1 SAMPLING LOCATION

Sample location(s) were verified in the field to conform to EPA Method 1. Acceptable cyclonic flow conditions were confirmed prior to testing using EPA Method 1, Section 11.4. See Appendices A.1 and A.2 for more information.

Poet Biorefining

2023 Compliance Source Test Report- 4 sources

2.3 **OPERATING CONDITIONS AND PROCESS DATA**

Emission tests were performed while the source/units and air pollution control devices were operating at the conditions required by the permit. The unit were tested while operating at normal conditions.

Plant personnel were responsible for establishing the test conditions and collecting all applicable unit-operating data. The process data that was provided is presented in Appendix B.

3.0 SAMPLING AND ANALYTICAL PROCEDURES

3.1 TEST METHODS

The test methods for this test program were presented previously in Table 1-1. Additional information regarding specific applications or modifications to standard procedures is presented below.

3.1.1 EPA Method 1, Sample and Velocity Traverses for Stationary Sources

EPA Method 1 is used to assure that representative measurements of volumetric flow rate are obtained by dividing the cross-section of the stack or duct into equal areas, and then locating a traverse point within each of the equal areas. Acceptable sample locations must be located at least two stack or duct equivalent diameters downstream from a flow disturbance and one-half equivalent diameter upstream from a flow disturbance.

The sample port and traverse point locations are detailed in Appendix A.

3.1.2 EPA Method 2, Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)

EPA Method 2 is used to measure the gas velocity using an S-type pitot tube connected to a pressure measurement device, and to measure the gas temperature using a calibrated thermocouple connected to a thermocouple indicator. Typically, Type S (Stausscheibe) pitot tubes conforming to the geometric specifications in the test method are used, along with an inclined manometer.

3.1.3 EPA Method 3, Gas Analysis for the Determination of Dry Molecular Weight

EPA Method 3 is used to calculate the dry molecular weight of the stack gas using one of three methods. The first choice is to measure the percent O₂ and CO₂ in the gas stream. A gas sample is extracted from a stack by one of the following methods: (1) single-point, grab sampling; (2) single-point, integrated sampling; or (3) multi-point, integrated sampling. The gas sample is analyzed for percent CO_2 and percent O_2 using either an Orsat or a Fyrite analyzer.

3.1.4 EPA Method 4, Determination of Moisture Content in Stack Gas

EPA Method 4 is a manual, non-isokinetic method used to measure the moisture content of gas streams. Gas is sampled at a constant sampling rate through a probe and impinger train. Moisture is removed using a series of pre-weighed impingers containing methodology-specific liquids and silica gel immersed in an ice water bath. The impingers are weighed after each run to determine the percent moisture.

The typical sampling system is detailed in Figure 3-1.

3.1.5 EPA Method 5/202, Determination of Total Particulate Matter Emissions from Stationary Sources

EPA Method 5/202 is a manual, isokinetic test method used to measure emissions of FPM and Condensable particulate matter (CPM). CPM and FPM are then summed together to determine a total PM emission rate less than 10 microns and 2.5 microns. Particulate matter is withdrawn isokinetically from the source and collected on a glass fiber filter maintained at 248 ±25 °F. The CPM is collected in dry impingers after filterable PM has been collected on a filter maintained as specified in either Method 5 of Appendix A-3 to 40 CFR 60, Method 17 of Appendix A-6 to 40 CFR 60, or Method 201A of Appendix M to 40 CFR 51. The organic and aqueous fractions of the impingers and an out-of-stack CPM filter are then taken to dryness and weighed. The total of the impinger fractions and the CPM filter represents the CPM. Compared to the version of Method 202 that was promulgated on December 17, 1991, this method eliminates the use of water as the collection media in impingers and includes the addition of a condenser followed by a water dropout impinger immediately after the final instack or heated filter. CPM is collected in the water dropout impinger, the modified Greenburg Smith impinger, and the CPM filter of the sampling train as described in this method. The impinger contents are purged with nitrogen immediately after sample collection to remove dissolved SO2 gases from the impinger The CPM filter is extracted with water and hexane. The impinger solution is then extracted with hexane. The organic and aqueous fractions are dried and the residues are weighed. The total of the aqueous and organic fractions represents the CPM. The potential artifacts from SO2 are reduced using a condenser and water dropout impinger to separate CPM from reactive gases. No water is added to the impingers prior to the start of sampling. To improve the collection efficiency of CPM, an additional filter (the "CPM filter") is placed between the second and third impingers.

The Typical Sampling System is detailed in Figure 3-1.

FIGURE 3-1 US EPA METHOD 5/202 SAMPLING TRAIN

3.1.6 EPA Methods 3A and 7E, Determination of Oxygen, Carbon Dioxide, and Nitrogen Oxides concentrations in Emissions from Stationary Source (Instrumental Analyzer Procedure)

Concentrations of O2, CO2, and NOx are measured simultaneously using EPA Methods 3A and 7E, which are instrumental test methods. Conditioned gas is sent to a series of analyzers to measure the gaseous emission concentrations. The performance requirements of the method must be met to validate the data.

Pertinent information regarding the performance of the method is presented below:

- Method Options:
- o A dry extractive sampling system is used to report emissions on a dry basis
- A paramagnetic analyzer is used to measure O2
- o A nondispersive infrared analyzer is used to measure CO2
- o A chemiluminescent analyzer is used to measure NOx.

The sampling system is detailed in Figure 3-2.

FIGURE 3-2 EPA METHODS 3A (O₂ and CO2) and 7E SAMPLING TRAIN

3.1.7 EPA Method 17, Determination of Particulate Matter Emissions from Stationary Sources

EPA Method 17 is a manual, isokinetic test method used to measure emissions of FPM. Particulate matter is withdrawn isokinetically from the source and collected on a glass fiber filter maintained at stack temperature. The PM mass is determined gravimetrically after the removal of uncombined water.

The typical sampling system is detailed in Figure 3-1.

FIGURE 3-3 US EPA METHOD 17 SAMPLING TRAIN

3.1.8 EPA Method 320, VOC and HAP Determination using FTIR Spectroscopy

Speciated VOC and HAP sampling was conducted using FTIR instrumentation following the principles of USEPA Method 320 and ASTM Method D6348-12.

An MKS Model MultiGas 2030 FTIR analyzer was used to measure the specific VOC and HAP compounds. The analyzer is composed of a mks 2030 FTIR spectrometer, a high optical throughput sampling cell, analysis software, and a quantitative spectral library. The analyzer collects high resolution spectra in the mid infrared spectral region (400 to 4,000 cm⁻¹), which are analyzed using the quantitative spectral library. This provides an accurate, highly sensitive measurement of gases and vapors.

As shown in Figure 3-3, the sample delivery system consisted of a stainless steel sampling probe, calibration tee assembly, Teflon sampling line, fast loop bypass pump, and sample manifold. The gas sample was continuously extracted from each source at approximately 6 liters per minute.

Independent calculations of optical path length were not performed because the instrument has a fixed path of 5.11 meters. A signal to noise ratio test (S/N) was performed using MKS software to verify instrument performance.

Performance parameters measured included signal to noise tests, noise equivalent absorbance (NEA), detector linearity, background spectra, potential interferents, and cell and system leakage.

Quality assurance procedures included baseline measurement with ultra high purity nitrogen, measurement of a calibration transfer standard (~ 100 ppm methane), direct analyte calibration measurements, and measurements to determine baseline shift. SF₆ was used as a tracer gas in the calibration gases to verify the sample delivery system integrity.

Figure 3-4 EPA METHOD 320 SAMPLING TRAIN

The general FTIR field sampling procedure was as follows:

PRE-TEST

- 1) Background spectrum
 - Evaluate diagnostics of the instrumentation
- Baseline (cylinder UHP-N₂ for zero check)
 - Determine the level of background noise
 - Observe spectrum for baseline tilt, i.e., indicates vibrations/perturbations affecting instrument
- 3) Calibration transfer standard (cylinder 100 ppm methane)

Poet Biorefining

2023 Compliance Source Test Report- 4 sources

- Determine level of response to evaluate the spectral response and stability of the instrument
- Create a field reference spectrum
- 4) Baseline evaluation
 - Note baseline flush/clean out FTIR sample cell
 - Observe spectrum for baseline tilt
- 5) Collection of spectra stack gas
 - Determine stack gas analyte concentrations
- 6) Measurement of analyte calibration gas
- 7) Perform dynamic spiking recovery study (recovery must be $0.7 \le R \le 1.3$)

TEST (REPEAT EACH RUN)

- 1) Baseline Determination
- 2) Measurement of dynamic spike
- 3) Collect sequential spectra of stack gas
- 4) Baseline Determination
- 5) Measurement of Calibration Transfer Standard

POST-TEST

- 1) Baseline Determination
- 2) Measurement of Calibration Transfer Standard (i.e. span check)
- 3) Measurement of analyte calibration gas (optional)

A post test manual validation determined that ammonia and methane were present in the effluent. FTIR spectra were reprocessed to include ammonia and methane.

3.2 PROCESS TEST METHODS

The test plan did not require that process samples be collected during this test program; therefore, no process sample data are presented in this test report.

4.0 TEST DISCUSSION AND RESULTS

4.1 FIELD TEST DEVIATIONS AND EXCEPTIONS

No field deviations or exceptions from the test plan or test methods occurred during this test program.

4.2 PRESENTATION OF RESULTS

The average results are compared to the permit limits in Table 1-2. The results of individual compliance test runs performed are presented in Tables 4-1 through 4-3. Emissions are reported in units consistent with those in the applicable regulations or requirements. Additional information is included in the appendices as presented in the Table of Contents.

Concentration values in Table 4-1 denoted with a '<' were measured to be below the minimum detection limit (MDL) of the applicable analytical method. Emissions denoted with a '<' in Table 4-1 were calculated utilizing the applicable MDL concentration value instead of the "as measured" concentration value.

TABLE 4-1 TOTAL PM EMISSIONS RESULTS -FGFLOUR HAMMERMILL STACK

Run Number	1	2	3	Average
Date	1/10/2023	1/10/2023	1/10/2023	-
Time	11:20-12:48	13:20-14:50	15:15-16:42	-
Flue Gas Parameters				
CO ₂ , % volume dry	0.0	0.0	0.0	0.0
O ₂ , % volume dry	20.9	20.9	20.9	20.9
flue gas temperature, °F	77.8	78.3	78.7	78.3
moisture content, % volume	1.08	2.13	2.23	1.81
Wet volumetric flow rate at actual conditions, acfm Wet	26,153	25,831	25,418	25,801
volumetric flow rate at standard conditions, scfm	25,714	25,378	24,953	25,348
Dry volumetric flow rate at standard conditions, dscfm	25,438	24,837	24,396	24,890
Total PM				
lb/hr	0.078	0.114	0.055	0.082
Total PM				
lb/1000 lb of gas	0.00068	0.00102	0.00050	0.00073

ł

1

1

TABLE 4-2 VOC EMISSIONS RESULTS -CE004 SCRUBBER STACK

	Date 1/10/2023		1	1/10/2023		1/10/2023			
	Start Time								
	End Time								
		Run 1		Run 2		Run 3		Average	
		Stack Condit	tions	_	_				
	Average Gas Temperature *F	58		60		60		59	
Effluent	Moisture, percent by volume	1.5		1.5		1.5		1.5	
Av	erage Effluent Pressure in. hg	0.5		0.5		0.5		0.5	
Effluer	nt Volumetric Flow Rate, acfm	8,493		8,923		8,953		8,790	
Effluent	Volumetric Flow Rate, dscfm	8,572		8,962		9,002		8,845	
Effluer	nt Volumetric Flow Rate, scfm	8,669		9,094		9,136		8,966	
		Acetaldehy	yde	6					
	ppmv wet	8.7		18.9		15.8		14.5	
	ppmv dry	8.8		19.2		16.0		14.7	
	lb/hr	0.52		1.18		0.99		0.90	
		Acetic Ac	id					_	
	ppmv wet <	10.8	<	10.9	<	9.8		10.5	
	ppmv dry <	10.9	<	11.0	<	10.0		10.7	
	lb/hr <	0.9	<	0.9	<	0.8		0.9	
		Acroleir	n						
	ppmv wet <	0.6	<	0.6	<	0.6	<	0.6	
	ppmv dry <	0.6	<	0.6	<	0.6	<	0.6	
	lb/hr <	0.0	<	0.0	<	0.0	<	0.0	
		Ethanol)						
	ppmv wet	18.4		21.4		25.9		21.9	
	ppmv dry	18.7		21.8		26.3		22.3	
	lb/hr	1.1		1.4		1.7		1.4	
		Ethyl Aceta	ate						
	ppmv wet	29.3		29.0	<	25.9		28.1	
	ppmv dry	29.7		29.5	<	26.3		28.5	
	lb/hr	3.5		3.6	<	3.3		3.5	
		Formaldeh	yde						
	ppmv wet	0.4		0.4		0.4		0.4	
	ppmv dry	0.4		0.5		0.4		0.4	
	lb/hr	0.0		0.0		0.0		0.0	
		Formic Ac	id						
	ppmv wet <	0.3	<	0.3	<	0.3	<	0.3	
	ppmv dry <	0.3	<	0.3	<	0.3	<	0.3	
	lb/hr <	0.0	<	0.0	<	0.0	<	0.0	
		2-Furaldeh	yde						
	ppmv wet <	0.6	<	0.6	<	0.6	<	0.6	
	ppmv dry <	0.6	<	0.6	<	0.6	<	0.6	
	lb/hr <	0.1	<	0.1	<	0.1	<	0.1	
		Methano	bl						
	ppmv wet <	0.8	<	0.8	<	0.8	<	0.8	
	ppmv dry <	0.8	<	0.8	<	0.8	<	0.8	
	lb/hr <	0.0	<	0.0	<	0.0	<	0.0	
		Total VOC	Cs						
	lb/hr <	6.21	<	7.34	<	6.99	<	6.85	

Run Number	1	2	3	Average
Date	1/12/2023	1/12/2023	1/12/2023	-
Time	14:30-15:39	16:12-17:22	18:05-19:15	-
Flue Gas Parameters				
CO ₂ , % volume dry	8.7	9.6	9.7	9.33
O ₂ , % volume dry	6.0	4.5	4.5	4.93
flue gas temperature, °F	524.2	528.4	527.5	526.7
moisture content. % volume*	45.92	43.54	43.81	44.42
Wet volumetric flow rate at actual conditions, acfm	95,880	97,705	94,505	96,030
Wet volumetric flow rate at	49,506	50,233	50,323	50,021
standard conditions, scfm				
Dry volumetric flow rate at standard conditions, dscfm	26,774	28,361	28,274	27,803
Filterable PM				
lb/hr	3.376	3.067	2.958	3.133
Condensable PM				
lb/hr	0.811	0.657	0.640	0.703
Total PM				
lb/hr*	4.187	3.725	3.599	3.837
NOx				
lb/mmBTU	0.044	0.037	0.035	0.039
VOC				
lb/hr**	< 5.92	< 5.66	< 5.38	< 5.66

TABLE 4-3 PARTICULATE AND GASEOUS EMISSIONS RESULTS -CE010 TO AND HRB STACK

* Total Particulate Matter was determined by the summation of all filterable and condensable particulate matter captured by the USEPA Method 5/202 Train.

** Total VOC by FTIR includes acetaldehyde, acetic acid, acrolein, ethanol, ethyl acetate, formaldehyde, formic acid, 2-furaldehyde, methanol. Methane was detected, but was not included as it is an exempt VOC.

Į

I

I

I

I

I

I

I

Ī

TABLE 4-4 VOLATILE ORGANIC EMISSIONS RESULTS -CE010 TO AND HRB STACK

Start Time 14:30 16:15 18:20 End Time 15:33 17:18 19:23 Run 1 Run 2 Run 3 A Flue Gas Parameters Average Gas Temperature "F 524 528 528 Effluent Moisture, percent by volume 0.0 0.0 0.0 Average Effluent Pressure in. hg 28.8 28.8 29.8 Effluent Volumetric Flow Rate, acfm 95,880 97,705 94,505 52 Effluent Volumetric Flow Rate, dscfm 26,774 28,361 28,274 22 Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 50 Effluent Volumetric Flow Rate, dscfm 26,774 28,361 28,274 22 Effluent Volumetric Flow Rate, dscfm 0.5 0.6 0.6 0.5 0.6 ppmv wet 0.5 0.5 0.6 0.2 0.2 0.2 Acetic Acid	
End Time 15:33 17:18 19:23 Run 1 Run 2 Run 3 A Flue Gas Parameters Average Gas Temperature *F 524 528 528 Effluent Moisture, percent by volume 0.0 0.0 0.0 Average Effluent Pressure in. hg 28.8 28.8 29.8 Effluent Volumetric Flow Rate, acfm 95,880 97,705 94,505 9 Effluent Volumetric Flow Rate, dscfm 26,774 28,361 28,274 2 Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 9 Ppmv wet < 0.5	
Run 1 Run 2 Run 3 A Flue Gas Parameters Average Gas Temperature *F 524 528 528 Effluent Moisture, percent by volume 0.0 0.0 0.0 Average Effluent Pressure in. hg 28.8 28.8 29.8 Effluent Volumetric Flow Rate, acfm 95,880 97,705 94,505 95 Effluent Volumetric Flow Rate, dscfm 26,774 28,361 28,274 22 Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 5	
Flue Gas Parameters Average Gas Temperature *F 524 528 528 Effluent Moisture, percent by volume 0.0 0.0 0.0 Average Effluent Pressure in. hg 28.8 28.8 29.8 Effluent Volumetric Flow Rate, acfm 95,880 97,705 94,505 9 Effluent Volumetric Flow Rate, dscfm 26,774 28,361 28,274 2 Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 9 Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 9 Ppmv wet 0.5 0.5 0.6 0.5 <	verage
Average Gas Temperature *F 524 528 528 Effluent Moisture, percent by volume 0.0 0.0 0.0 Average Effluent Pressure in. hg 28.8 28.8 29.8 Effluent Volumetric Flow Rate, acfm 95,880 97,705 94,505 94 Effluent Volumetric Flow Rate, dscfm 26,774 28,361 28,274 22 Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 50 Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 50 Ppmv wet <	
Effluent Moisture, percent by volume 0.0 0.0 0.0 Average Effluent Pressure in. hg 28.8 28.8 29.8 Effluent Volumetric Flow Rate, acfm 95,880 97,705 94,505 94 Effluent Volumetric Flow Rate, dscfm 26,774 28,361 28,274 22 Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 50 Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 50 Ppmv wet <	527
Average Effluent Pressure in. hg 28.8 28.8 29.8 Effluent Volumetric Flow Rate, acfm 95,880 97,705 94,505 94 Effluent Volumetric Flow Rate, dscfm 26,774 28,361 28,274 28 Effluent Volumetric Flow Rate, dscfm 26,774 28,361 28,274 28 Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 50 Mathematic Flow Rate, scfm 49,506 50,233 50,323 50 Mathematic Flow Rate, scfm 49,506 50,233 50,323 50 Mathematic Flow Rate, scfm 49,506 50,233 50,323 50 Ppmv wet 0.5 0.5 0.6 0.5 0.6 Ib/hr 0.2 0.2 0.2 0.2 0.2	0.0
Effluent Volumetric Flow Rate, acfm 95,880 97,705 94,505 95,233 50,323 95 94,505 95 94,505 95 94,505 95 94,505 94,505 95 94,505 95 94,505 9,55 0,66 9 90,705 94,505 9,56 10,67 10,67 10,67 10,67 10,67 10,67 10,67 10,67 10,27	29.1
Effluent Volumetric Flow Rate, dscfm 26,774 28,361 28,274 2 Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 5 Acetaldehyde ppmv wet < 0.5	96,030
Effluent Volumetric Flow Rate, scfm 49,506 50,233 50,323 50 Acetaldehyde ppmv wet 0.5 0.5 0.6 ppmv dry 0.5 0.5 0.6 lb/hr 0.2 0.2 0.2 Acetic Acid	27,803
Acetaldehyde ppmv wet <	50,021
ppmv wet < 0.5 0.5 0.6 ppmv dry < 0.5 0.5 0.6 lb/hr < 0.2 0.2 0.2 Acetic Acid	
ppmv dry < 0.5 0.5 0.6 lb/hr < 0.2 0.2 0.2 Acetic Acid	0.5
lb/hr < 0.2 0.2 0.2 Acetic Acid	0.5
Acetic Acid	0.2
ppmv wet 0.9 1.0 0.7	0.8
ppmv dry 0.9 1.0 0.7	0.8
lb/hr 0.4 0.5 0.3	0.4
Acrolein	
ppmv wet 1.9 2.6 2.9	2.5
ppmv dry 1.9 2.6 2.9	2.5
lb/hr 0.8 1.1 1.3	1.1
Ethanol	
ppmv wet 7.5 6.0 6.1	6.5
ppmv dry 7.5 6.0 6.1	6.5
lb/hr 2.6 2.2 2.2	2.3
Ethyl Acetate	
ppmv wet 0.7 0.7 0.5	0.6
ppmv dry 0.7 0.7 0.5	0.6
lb/hr 0.5 0.5 0.4	0.4
Formaldehyde	
ppmv wet 1.7 0.4 < 0.4	0.9
ppmv dry 1.7 0.4 < 0.4	0.9
lb/hr 0.4 0.1 < 0.1	0.2
Formic Acid	
ppmv wet 0.8 0.5 0.4	0.5
ppmv dry 0.8 0.5 0.4	0.5
lb/hr 0.3 0.2 0.2	0.2
2-Furaldehyde	
ppmv wet < 0.8 1.1 < 0.8 <	0.9
ppmv dry < 0.8 1.1 < 0.8 <	0.9
lb/hr < 0.6 0.8 < 0.6 <	0.7
Methanol	
ppmv wet 0.7 < 0.5 < 0.5 <	0.6
ppmv dry 0.7 < 0.5 < 0.5 <	0.6
lb/hr 0.2 < 0.1 < 0.1 <	0.1
Total VOCs	
lb/hr < 5.92 < 5.66 < 5.38 <	and the second se

Run Number	1	2	3	Average
Date	1/11/2023	1/11/2023	1/11/2023	-
Time	10:10-11:28	12:20-13:24	14:15-15:23	
Flue Gas Parameters				
CO ₂ , % volume dry	5.70	5.80	5.90	5.80
O ₂ , % volume dry	11.10	11.10	11.10	11.10
flue gas temperature, °F	282.4	290.5	304.1	292.3
moisture content, % volume*	43.94	44.88	43.76	44.20
Wet volumetric flow rate at actual conditions, acfm	34,696	34,616	33,967	34,426
Wet volumetric flow rate at standard conditions, scfm	24,707	24,384	23,502	24,198
Dry volumetric flow rate at standard conditions, dscfm	13,850	13,440	13,217	13,502
Filterable PM lb/hr	0.593	0.089	0.096	0.259
Condensable PM lb/hr	2.579	3.958	4.222	3.586
Total PM lb/hr*	3.173	4.047	4.318	3.846
NO _x lb/mmBTU	0.059	0.059	0.059	0.059
VOC lb/hr**	< 3.45	< 3.16	< 3.18	< 3.26

TABLE 4-5 PARTICULATE AND GASEOUS EMISSIONS RESULTS -RTO CE012 STACK 3 BURNER CONDITION

* Total Particulate Matter was determined by the summation of all filterable and condensable particulate matter captured by the USEPA Method 5/202 Train.

** Total VOC by FTIR includes acetaldehyde, acetic acid, acrolein, ethanol, ethyl acetate, formaldehyde, formic acid, 2-furaldehyde, methanol. Methane was detected, but was not included as it is an exempt VOC.

1

TABLE 4-6 SPECIATED VOLATILE ORGANIC EMISSIONS RESULTS -RTO CE012 STACK 3 BURNER CONDITION

	Date	1/11/2023	1	1/11/2023		1/11/2023		
	Start Time	10:10		12:21		14:31		
	End Time	11:17		13:26		15:36		
		Run 1		Run 2		Run 3		Average
		Stack Condit	tions					
	Average Gas Temperature °F	282		290		304		292
	Effluent Moisture, percent by volume	45.6		45.4		45.5		45.5
	Average Effluent Pressure in. hg	29.96		29.96		29.96		29.96
	Effluent Volumetric Flow Rate, acfm	34,696		34,616		33,967		34,426
	Effluent Volumetric Flow Rate, dscfm	13,850		13,440		13,217		13,502
_	Effluent Volumetric Flow Rate, scfm	24,707		24,384		23,502		24,198
		Acetaldehy	/de					
	ppmv wet	3.2		2.6		3.3		3.0
	ppmv dry	5.9		4.7		6.0		5.5
	lb/hr	0.54		0.43		0.53		0.50
		Acetic Ac	id					
	ppmv wet	1.4		1.4		1.3		1.3
	ppmv dry	2.5		2.5		2.4		2.5
	lb/hr	0.32		0.32		0.28		0.31
		Acroleir	1					
	ppmv wet <	0.5	<	0.5	<	0.5	<	0.5
	ppmv dry <	0.9	<	0.9	<	0.9	<	0.9
	lb/hr <	0.11	<	0.11	<	0.10	<	0.11
		Ethanol						
	ppmv wet	7.8		7.6		7.6		7.6
	ppmv dry	14.3		13.9		13.9		14.0
	lb/hr	1.38		1.33		1.28		1.33
		Ethyl Aceta	ate					
	ppmv wet	0.5		0.5		0.5		0.5
	ppmv dry	0.8		0.8		0.9		0.8
	lb/hr	0.15		0.15		0.15		0.15
		Formaldeh	yde					
	ppmv wet	0.6		0.6		0.6		0.6
	ppmv dry	1.1		1.1		1.0		1.1
	lb/hr	0.07		0.07		0.06		0.07
		Formic Ac	id			×		
	ppmv wet	0.5		0.5		0.4		0.5
	ppmv dry	1.0		0.9		0.8		0.9
	lb/hr	0.10		0.08		0.07		0.08
		2-Furaldeh	yde					
	ppmv wet	2.0		1.7		1.9		1.9
	ppmv dry	3.6		3.1		3.4		3.4
	lb/hr	0.73		0.63		0.65		0.67
		Methano	bl					
	ppmv wet <	0.4	<	0.4	<	0.4	<	0.4
	ppmv dry <	0.7	<	0.7	<	0.7	<	0.7
	lb/hr <	0.05	<	0.05	<	0.05	<	0.05
		Tatal						
		lotal voc	_5					

Run Number	1	2	3	Average
Date	1/11/2023	1/12/2023	1/12/2023	-
Time	16:20-17:24	8:25-9:29	10:05-11:12	-
Flue Gas Parameters				
CO ₂ , % volume dry O ₂ , % volume dry flue gas temperature, °F moisture content, % volume* Wet volumetric flow rate at actual conditions, acfm	5.90 11.40 291.6 42.42 33,728	5.20 12.00 292.8 43.96 32,942	5.20 12.10 266.8 43.03 31,887	5.43 11.83 283.7 43.14 32,853
Wet volumetric flow rate at standard conditions, scfm	23,678	23,003	23,066	23,249
Dry volumetric flow rate at standard conditions, dscfm	13,635	12,891	13,141	13,222
Filterable PM lb/hr	0.0870	0.082	0.031	0.067
Condensable PM lb/hr	4.265	3.235	3.519	3.673
Total PM lb/hr*	4.352	3.317	3.550	3.740
NO _x Ib/mmBTU	0.061	0.060	0.061	0.061
VOC lb/hr**	< 2.88	< 3.22	< 2.67	< 2.93

TABLE 4-7 PARTICULATE AND GASEOUS EMISSIONS RESULTS -RTO CE012 STACK 2 BURNER CONDITION

* Total Particulate Matter was determined by the summation of all filterable and condensable particulate matter captured by the USEPA Method 5/202 Train.

** Total VOC by FTIR includes acetaldehyde, acetic acid, acrolein, ethanol, ethyl acetate, formaldehyde,

formic acid, 2-furaldehyde, methanol. Methane was detected, but was not included as it is an exempt VOC.

TABLE 4-8 SPECIATED VOLATILE ORGANIC COMPOUND RESULTS -RTO CE012 STACK 2 BURNER CONDITION

Date	1/11/2023		1/12/2023		1/12/2023		
Start Time	16:20		8:51		10:38		
End Time	17:27		9:46		11:38		
	Run 1		Run 2		Run 3		Average
	Stack Conditi	ons					
Average Gas Temperature °F	291		292		267		283
Effluent Moisture, percent by volume	45.4		45.7		45.5		45.5
Average Effluent Pressure in. hg	29.89		29.78		29.78		29.82
Effluent Volumetric Flow Rate, acfm	33,728		32,942		31,887		32,853
Effluent Volumetric Flow Rate, dscfm	13,635		12,891		13,141		13,222
Effluent Volumetric Flow Rate, scfm	23,678		23,003		23,066		23,249
	Acetaldehy	de					
ppmv wet	2.8		1.4		2.4		2.2
ppmv dry	5.1		2.6		4.4		4.0
lb/hr	0.45		0.22		0.38		0.35
	Acetic Aci	d					_
ppmv wet <	1.4	<	1.9	<	1.7		1.7
ppmv dry <	2.6	<	3.6	<	3.0		3.1
lb/hr <	0.31	<	0.42	<	0.36		0.36
	Acrolein						
ppmv wet <	0.5	<	0.5	<	0.5	<	0.5
ppmv dry <	0.9	<	0.9	<	0.9	<	0.9
lb/hr <	0.10	<	0.10	<	0.10	<	0.10
	Ethanol						
ppmv wet	6.7		8.2		7.1		7.3
ppmy dry	12.3		15.2		13.0		13.5
lb/hr	1.14		1.36		1.17		1.22
	Ethyl Aceta	te					
ppmv wet	0.4		1.0		0.5		0.6
ppmy dry	0.8		1.8		0.9		1.2
lb/hr	0.14		0.30		0.16		0.20
	Formaldehy	/de					
ppmy wet	0.6		0.5		0.5		0.6
ppmy dry	1.1		1.0		1.0		1.0
lb/hr	0.07		0.06		0.06		0.06
	Formic Ac	id			_		
ppmy wet	0.5		0.5		0.6		0.5
ppmy dry	1.0		0.8		1.1		1.0
lb/hr	0.09		0.08		0.10		0.09
	2-Furaldeh	vde					
ppmy wet	1.5		1.8		0.9		1.4
ppmy dry	2.8		3.4		1.6		2.6
lb/hr	0.54		0.64		0.31		0.49
	Methano	ol					
nomy wet <	0.4	<	0.4	<	0.4	<	0.4
ppinv wet <	0.7	<	0.7	<	0.7	<	0.7
ppinvary <	0.05	<	0.05	<	0.05	<	0.05
	Total VO	Te .	0.00	-			
	2 99		3 22		2.67	<	2.93
ID/nr <	2.00	-	3.22	-	2.07	-	2.00

5.0 INTERNAL QA/QC ACTIVITIES

5.1 QA/QC AUDITS

The meter box and sampling train(s) used during sampling performed within the requirements of their respective methods. All post-test leak checks, minimum metered volumes, minimum sample durations, and percent isokinetics met the applicable QA/QC criteria.

5.2 QA/QC DISCUSSION

All QA/QC criteria were met during this test program.

5.3 QUALITY STATEMENT

The meter box and sampling train used during sampling performed within the requirements of the test method. All post-test leak checks, minimum metered volumes, minimum sample durations, and percent isokinetics met the applicable QA/QC criteria.

EPA Methods 3A and 7E calibration audits were all within the measurement system performance specifications for the calibration drift checks, system calibration bias checks, and calibration error checks.

EPA Method 5 analytical QA/QC results are included in the laboratory report. The method QA/QC criteria were met. An EPA Method 5 reagent blank was analyzed. The maximum allowable amount that can be subtracted is 0.001% of the weight of the acetone used. The blank did not exceed the maximum residue allowed.

EPA Method 202 analytical QA/QC results are included in the laboratory report. The method QA/QC criteria were me. An EPA Method 202 Field Train Recovery Blank (FTRB) was collected. The maximum allowable amount that can be subtracted is 0.002 g (2.0 mg). For this project, the FTRB had a mass of 1.95 mg which was subtracted from each sample run CPM mass value.

The EPA Method 320 performance parameters measured included signal to noise tests, noise equivalent absorbance (NEA), detector linearity, background spectra, potential interferents, and cell and system leakage. Quality assurance procedures included baseline measurement with ultra-high purity nitrogen, measurement of a calibration transfer standard (~100 ppm ethylene), direct analyte calibration measurements, and measurements to determine baseline shift. SF6 was also used as a tracer gas in the calibration gases to verify the sample delivery system integrity. A dynamic matrix spike was performed using acetaldehyde, methanol, and SF6 as a tracer gas. The method QA/QC criteria were met.

ŀ

C

l

(Å

Nitrogen Oxide Emission Rate, Ib/MMBtu

$E_{NOx} = \frac{(C_d)(A)}{(385.)}$	$\frac{MW}{3\times 10^6} (CC)$	$\left(\frac{100}{O_2}\right)$					
E _{NOx}	= 0	Fc	= 0				
Cd	= 31	CO ₂	= 8.6666				
MW	= 46.01						
Where:							
ENOX	= nitrogen	oxides er	mission rate, (lb/MMBtu)				
Cd	= nitrogen	oxides co	oncentration, corrected for drift (ppmdv)				
MW	= molecula	ar weight	of nitrogen oxide (lb/lb-mole)				
Fc	= carbon b	based fue	factor (scf/MMBtu)				
CO ₂	= carbon d	dioxide co	ntent of the gas stream (%)				
385.3	= volume	occupied	by one pound of gas at standard conditions (dscf/lbmole)				
100	= conversion factor (%)						
10 ⁶	= conversi	ion factor	(ppm)				

Nitrogen Oxide Emission Rate, Ib/hr

$E_{NOx} = \frac{(C_d)}{2}$	$\frac{(MW)(60)(Q_a)}{(385.3\times10^6)}$	(lstd)	
ENOX	= #DIV/0!	MW	= 46.01
Cd	= 31	Qdstd	= #DIV/0!
Where:			
ENOX	= nitrogen o	oxides er	mission rate (lb/hr)
Cd	= nitrogen d	oxides co	oncentration, corrected for drift (ppmdv)
MW	= molecular	weight	of nitrogen oxide (lb/lb-mole)
Qdstd	= volumetri	c flow rat	te of the dry gas stream at standard conditions (dscfm)
60	= conversio	n factor	(min/hr)
385.3	= volume o	ccupied	by one pound of gas at standard conditions (dscf/lbmole)
106			

10° = conversion factor (ppm)

Nitrogen Oxides Concentration Corrected for Oxygen

$$C_{7\%O_2} = C_d \, \frac{(20.9 - 7)}{(20.9 - O_2)}$$

 $C_{7\%O2}$ = 42.682 C_d = 31 O_2 = 5.96

Where:

C7%02	= nitrogen oxides concentration corrected for oxygen (ppmdv@7%)
Cd	= nitrogen oxides concentration, corrected for analyzer drift (ppmdv)
O ₂	= oxygen content of the gas stream (%)
20.9	= oxygen content of ambient air (%)
0	= oxygen content for correction (%)

Nitrogen Oxide Emission Rate, Ib/MMBtu

$E_{NOx} = \frac{\left(C_{d}\right)}{\left(385\right)}$	$\frac{(MW)(Fd)(20.9)}{(3\times10^6)(20.9-O_2)}$		
ENOX	= 0.0444 F _d $= 8,710$		
Cd	$= 31$ $O_2 = 5.96$		
MW	= 46.01		
Where:			
ENOX	= nitrogen oxides emission rate (lb/MMBtu)		
Cd	= nitrogen oxides concentration, corrected for drift (ppmdv)		
MW	= molecular weight of nitrogen oxide (lb/lb-mole)		
Fd	= oxygen based fuel factor (scf/MMBtu)		
02	= oxygen content of the gas stream (%)		
20.9	= oxygen content of ambient air (%)		
385.3	= volume occupied by one pound of gas at standard conditions (dscf/lbmole)		
1 - 6			

 10^6 = conversion factor (ppm)

Poet Ethanol Caro TO HRB Gaseous Data

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left(1 - \frac{B_{ws}}{100} \right)$$

Qdstd	= #DIV/0!
Q _{std}	= #DIV/0!
Bws	= #DIV/0!

Where:

ł

Qdstd	= volumetric flow rate of the dry gas stream at standard conditions (dscfm)
Q _{std}	= volumetric flow rate of the gas stream at standard conditions (scfm)
Bws	= moisture content of the gas stream (%)
100	= conversion factor (%)

Nitrogen Oxides Concentration, Corrected for Analyzer Drift⁴

$C_d = \left(C - \left(C - \left(C - C \right) \right) \right)$	$\frac{c_{0i} + c_{0f}}{2} \bigg) \Bigg) \Bigg(\frac{c_{si}}{(c_{si})} \Bigg) \Bigg(\frac{c_{si}}{(c_{si})} \Bigg) \Bigg) \Bigg(\frac{c_{si}}{(c_{si})} \Bigg) \Bigg) \Bigg(\frac{c_{si}}{(c_{si})} \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg) \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg) \Bigg(\frac{c_{0i}}{(c_{si})} \Bigg) \Bigg(\frac{c_{0i}}{(c_$	$\left(\frac{+c_{sf}}{2}\right)$	$\frac{c_a}{-\left(\frac{c_{0i}+c_{0f}}{2}\right)}$
Cd	= 31	Ca	= 50.23
C	= 31	Csi	= -0.19821
Coi	= -0.0816	Csf	= 50
Cof	= 51		
Where:			

Cd	= nitrogen oxides concentration, corrected for analyzer drift (ppmdv)
C	= nitrogen oxides concentration (ppmdv)
Coi	= initial zero calibration value (ppm)
Cof	= final zero calibration value (ppm)
Ca	= actual span gas value (ppm)
Csi	= initial span calibration value (ppm)
Csf	= final span calibration value (ppm)

⁴Calculations for LIST OTHER COMPOUNDS are performed in a similar manner

RECEIVED

OCT 09 2023

AIR QUALITY DIVISION

Volumetric Flow of Gas Stream - Actual Conditions

$$Q_a = 60(V_s)(A_s)$$

 $Q_a = \#DIV/0!$ $V_s = \#DIV/0!$ $A_s = 0.00$

Where:

Qa	= volumetric flow rate of the gas stream at actual conditions (acfm)
Vs	= average velocity of the gas stream (ft/sec)
As	= area of sample location (ft ²)
60	= conversion factor (sec/min)

Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_{a})(P_{a})}{(T_{s} + 460)}$$

Q _{std}	= #DIV/0!	Pa	= 0.00
Qa	= #DIV/0!	Ts	= #DIV/0!

Where:

Q _{std}	= volumetric flow rate of the gas stream at standard conditions (scfm)
Qa	= volumetric flow rate of the gas stream at actual conditions (acfm)
Pa	= average stack temperature (°F)
Ts	= stack pressure absolute (in. Hg)
17.64	= ratio of standard temperature over standard pressure (°R/in. Hg)
460	= conversion (°F to °R)

Molecular Weight of Wet Gas Stream

$$\mathbf{M}_{s} = \left(\mathbf{M}_{d} \times \left(1 - \frac{\mathbf{B}_{ws}}{100}\right)\right) + \left(18 \times \frac{\mathbf{B}_{ws}}{100}\right)$$

Ms	= #DIV/0!
M _d	= 29.62
Bws	= #DIV/0!

Where:

1

l

1

I

ł

I

ł

l

ł

Ms	= molecular weight of the wet gas stream (lb/lb-mole)
Md	= molecular weight of the dry gas stream (lb/lb-mole)
Bws	= moisture content of the gas stream (%)
18	= molecular weight of water (lb/lb-mole)
100	= conversion factor (%)

Velocity of Gas Stream

$$V_{s} = 85.49 (C_{p}) \left(\sqrt{\Delta P} \right) \sqrt{\frac{(T_{s} + 460)}{(M_{s})(P_{a})}}$$

Vs	= #DIV/0!	Ts	= #DIV/0!
Cp	= 0.00	Ms	= #DIV/0!
VΔP	= #DIV/0!	Pa	= 0.00

Where:

Vs	= average velocity of the gas stream (ft/sec)
Cp	= pitot tube coefficient (dimensionless)
VAP	= average square root of velocity pressures (in. H ₂ O) ^{1/2}
Ts	= average stack temperature (°F)
Ms	= molecular weight of the wet gas stream (lb/lb-mole)
Pa	= stack pressure absolute (in. Hg)
85.49	= pitot tube constant (ft/sec)([(lb/lb-mole)(in. Hg)]/[(°R)(in. H ₂ O)]) ^{1/2}
460	= conversion (°F to °R)

Poet Ethanol Caro TO HRB Gaseous Data

Percent Moisture²

$$\mathbf{B}_{ws} = 100 \times \left[\frac{\mathbf{V}_{w(std)}}{\left(\mathbf{V}_{m(std)} + \mathbf{V}_{w(std)} \right)} \right]$$

Bws	= #DIV/0!
V _{w(std)}	= 0.00
V _{m(std)}	= #DIV/0!

Where:

Bws	= moisture content of the gas stream (%)
V _{w(std)}	= volume of gas collected at standard conditions (scf)
V _{m(std)}	= volume of water vapor at standard conditions (scf)
100	= conversion factor (%)

Molecular Weight of Dry Gas Stream³

$M_d =$	$\left(44 \times \frac{CO_2}{100}\right)$	+(32×	$\left(\frac{O_2}{100}\right) +$	$\left(28 \times \frac{N_2}{100}\right)$
	(100)	-	100)	(100)

Md	= 29.62	02	= 5.96
CO ₂	= 8.6666	N ₂	= 85.38

Where:

Md	= molecular weight of the dry gas stream (lb/lb-mole)
CO2	= carbon dioxide content of the gas stream (%)
44	= molecular weight of carbon dioxide (lb/lb-mole)
02	= oxygen content of the gas stream (%)
32	= molecular weight of oxygen (%)
N ₂	= nitrogen content of the gas stream (%)
28	= molecular weight of nitrogen (lb/lb-mole)

²The moisture saturation point was used if it was exceeded by the measured moisture content ³The remainder of the gas stream after subtractiong CO_2 and O_2 is assumed to be nitrogen

Poet Ethanol Caro TO HRB Gaseous Data

1

1

Volume of Dry Gas Collected Corrected to Standard Conditions

$$V_{m(std)} = \frac{17.64 (V_m) (Y_d) \left(P_b + \frac{\Delta H}{13.6} \right)}{(T_m + 460)}$$

V _{m(std)}	= #DIV/0!	Pb	= 0.00
Vm	= 0.00	ΔΗ	= #DIV/0!
Yd	= 0	Tm	= #DIV/0!

Where:

V _{m(std)}	= volume of gas collected at standard conditions (scf)
Vm	= volume of gas sampled at meter conditions (ft ³)
Yd	= gas meter correction factor (dimensionless)
Pb	= barometric pressure (in. Hg)
ΔΗ	= average sample pressure (in. H ₂ O)
Tm	= average gas meter temperature (°F)
13.6	= conversion factor (in. $H_2O/in. Hg$)
17.64	= ratio of standard temperature over standard pressure (°R/in. Hg)
460	= conversion (°F to °R)

Volume of Water Vapor Collected Corrected to Standard Conditions

$$V_{w(std)} = 0.04715 \times V_{wc} + 0.04715 \times V_{wsg}$$

V _{w(std)}	= 0.00
Vwc	= 0
V _{wsg}	= 0

Where:

V _{w(std)}	= volume of water vapor at standard conditions (scf)
Vwc	= weight of liquid collected (g)
V _{wsg}	= weight gain of silica gel (g)
0.04715	= volume occupied by one gram of water at standard conditions (ft ³ /g)

Sample Calculations TO & HRB

Area of Sample Location

$$\mathbf{A}_{s} = \left(\pi\right) \left(\frac{d_{s}}{2 \times 12}\right)^{2}$$

$$\begin{array}{ll} A_{s} & = 0.00 \\ d_{s} & = 0 \end{array}$$

Where:

As	= area of sample location (ft ²)
ds	= diameter of sample location (in)
12	= conversion factor (in/ft)
2	= conversion factor (diameter to radius)

Stack Pressure Absolute

$$P_a = P_b + \frac{P_s}{13.6}$$

$$P_a = 0.00$$

 $P_b = 0.00$
 $P_s = 0$

Where:

= stack pressure absolute (in. Hg)
= barometric pressure (in. Hg)
= static pressure (in. H ₂ O)
= conversion factor (in. H ₂ O/in. Hg)

Isokinetic Calculations

Percent isokinetic of sampling rate (%)

 $\%I = (P_{std} / T_{std}) * (T_{savg} / P_s) * [V_{mstd} / (v_s * M_{fd} * \theta) * (\pi * (D_n / 2)^2 / 144)] * (100 / 60)$

%1 = (29.92 / 527.7) * (983.878 / 28.805) * (58.530 / (46.6500 * 0.541 * 60.0 * 3.141593 * (0.472 / 2) ^ 2) / 144)

%1 = 102.7 %

Method 5 Calculations

Filterable PM total catch weight (mg)

mg_{quan} = 55.80 mg

Filterable PM concentration (grains/dscf)

Cgrcm = 0.0154322 * mgguan / Vmstd

Carcm = 0.0154322 * 55.80 / 58.530

 $C_{arcm} = 0.0147 \text{ gr/ft}^3$

Filterable PM mass emission rate (lb/hr)

EMR_{tbhr} = (mg_{quan} / V_{mstd}) * Q_{sd} * (60 / 453592) EMR_{tbhr} = 55.80 / 58.530 * 26,774.1 * (60 / 453592) EMR_{tbhr} = 3.376 lb/hr

Note: The results calculated on this page may differ slightly from the results presented in the final report. This differen attributed to "significant digit round-off errors" common when comparing computer spreadsheets results with those a using a calculator.

001AS-

MONTROSE

USPEA Method 5/202 Nomenclature and Sample Calculations

 $v_s = 85.49 * Cp * (SQ\Delta P_{avg}) * (T_{savg} / (P_s * M_s))^{0.5}$

v_s = 85.49 * 0.84 * (0.5479) * (983.88 / (28.805 * 24.298)) * 0.5

v_s = 46.65 ft/sec

Wet volumetric flue gas flow rate at actual conditions (acfm)

 $Q_{aw} = v_s * A * 60 \text{ sec/min}$ $Q_{aw} = 46.650 * 34.255 * 60$ $Q_{aw} = 95,880 \text{ ft}^3/\text{min}$

Wet volumetric flue gas flow rate at standard conditions (scfm)

Dry volumetric flue gas flow rate at standard conditions (dscfm)

 $Q_{sd} = M_{fd} * v_s * A * (T_{std} / T_{savg}) * (P_s / P_{std}) * 60 \text{ sec/min}$ $Q_{sd} = 0.541 * 46.6500 * 34.2552 * (527.7 / 983.878) * (28.805 / 29.92) * 60$ $Q_{sd} = 26,774 \text{ ft}^3/\text{min}$

Percent Excess Air

Volume of water vapor at standard conditions (68 °F, scf)

 $V_{wstd} = (0.04716 \text{ ft}^3/\text{g}) * \text{Vic}$

$$V_{wstd} = (0.04716 * 1,053.7)$$

 $V_{wstd} = 49.7 \text{ ft}^3$

Percent moisture by volume as measured in flue gas

%H₂O (Measured) = 100 * [V_{wstd} / (V_{wstd} + V_{mstd})]

%H₂O (Measured) = 100 * (49.692 / (49.692 + 58.530))

%H₂O (Measured) = 45.92

%H₂O (Saturated) = (100 / P_{sam}) * 10 ^ (6.6911 - (3144 / (T_{savg} + 390.86 - 460)))

%H₂O (Saturated) = (100 / 28.804853) * 10 ^ (6.6911 - (3144 / (983.878333 + 390.86 - 460)))

%H₂O (Saturated) = 6232.84

%H₂O = 45.92

Absolute flue gas pressure

 $P_{s} = P_{sam} + (Pg / 13.6)$

 $P_s = 28.76 + (0.61 / 13.6)$

P_s = 28.80 in. Hg

Dry mole fraction of flue gas (dimensionless)

 $M_{fd} = 1 - (\%H_2O / 100)$ $M_{fd} = 1 - (45.92 / 100)$ $M_{fd} = 0.541$

Dry molecular weight of flue gas (lb/lb-mole)

 $M_{d} = [(\%CO_{2} / 100) * 44.0] + [(\%O_{2} / 100) * 32.0] + [((100 - \%CO_{2} - \%O_{2}) / 100) * 28.0]$

 $M_{d} = ((8.70/100) * 44.0) + ((6.00/100) * 32.0) + (((100 - 8.70 - 6.00)/100) * 28.0)$

M_d = 29.63 lb/lb-mole

M_d = 29.63

Wet molecular weight of flue gas (lb/lb-mole)

 $M_s = M_d * M_{fd} + (H_2OF_{wt} * (\%H_2O / 100))$

 $M_s = 29.632 * 0.541 + 18.02 * (45.92 / 100)$

M_s = 24.30 lb/lb-mole

Average flue gas velocity (ft/sec)

MONTROSE ENVIRONMENTAL

USPEA Method 5/202 Nomenclature and Sample Calculations

Customer	POET Care	0	P	roject Number		PROJ-020558
Computed By	1		C	alculation Date		
Run Number						
Constants						
CO ₂ F _{wt}	= 44.0	in wg= 0.073529	$NO_2F_{wt} = 4$	6.01	HCIF _{wt} =	36.46
O ₂ F _{wt}	= 32.0	gr= 0.00014286	COF _{wt} = 2	8.01	SO ₂ F _{wt} =	64.06
CON ₂ F _{wt}	= 28.0	MMBtu= 1000000 Btu	H2SO4Fwt= 9	8.08	Cl ₂ F _{wt} =	70.91
H ₂ OF _{wt}	= 18.015	CF _{wt} = 12.011	T _{std} = 5	27.67	P _{std} =	29.92
ArFwt	= 39.95	PF _{wt} = 44.0962				
Stack Variables						
pitot tube coefficient	t (dimensionle	ess)		0	.84	Ср
barometric pressure	, inHg			28	3.84	Pbar
elevation difference	between gro	und level and meter box, f	t	8	30	Ebox
elevation difference	between gro	und level and sampling po	orts, ft	8	30	Esam
gamma, dry gas me	ter calibration	n factor (dimensionless)		0.9	930	γ
net run time, minute	S			6	0.0	θ
total mass of liquid	collected in in	mpingers, g		10	53.7	Vic
percent CO ₂ by volu	me, dry basi	s, dimensionless, %		8	.70	%CO2
percent O2 by volun	ne, dry basis,	dimensionless, %		6	.00	%O ₂
percent CO by volu	me, dry basis	, dimensionless, %		0	.00	%CO
percent N ₂ by volume, dry basis, dimensionless, %				85	5.30	%N ₂
stack cross-sectional area, ft ²				34.	2552	A
flue gas static pressure, inH ₂ O				0	.61	Pg
average absolute flue gas temperature, 459.67°R+tsavg °F, R			, R	98	3.88	Tsavg
average square root ΔP , inH ₂ O				0	.55	SQDPavg
average pressure differential of orifice meter, in. wg				3	.42	ΔΗ
dry gas meter temperature, 459.67°R+tsavg °F, R				51	6.96	Tm
volume of metered gas sample, dry actual cubic feet, ft ³				59	9.56	Vm
sampling nozzle diameter, in.				0.	472	Dn

Calculated Stack Variables

Barometric pressure at sampling location NOTE: Barometric pressure recorded at ground level

 $P_{sam} = P_{bar} - [(E_{sam} / 100 \text{ ft}) * 0.1 \text{ in. Hg}]$ $P_{sam} = 28.84 - ((80.0 / 100) * 0.1)$ $P_{sam} = 28.76 \text{ in. Hg}$

Volume of dry gas sampled at standard conditions (dscf)

$$V_{mstd} = \gamma * Vm * [P_{bar} - ([(E_{box} / 100 \text{ ft}) * 0.1 \text{ in. Hg}] + (\Delta H / 13.6)) / P_{std}] * (T_{std} / T_m)$$

$$V_{mstd} = 0.9930 * 59.555 * ((28.84 - ((80.0 / 100) * 0.1) + (3.4167 / 13.6)) / 29.92) * (527.7 / 516.962)$$

$$V_{mstd} = 58.530 \text{ ft}^3$$

I

I

l

Nitrogen Oxide Emission Rate, Ib/MMBtu

$E_{NOx} = \frac{(C_d)(N)}{(385.2)}$	$(W)(F_c)(1)$ $3 \times 10^6)(CC)$	$\frac{00}{2}$	
ENOX	= 0	Fc	= 0
Cd	= 26	CO ₂	= 5.89843
MW	= 46.01		
Where:			
ENOX	= nitrogen	oxides er	mission rate, (Ib/MMBtu)
Cd	= nitrogen oxides concentration, corrected for drift (ppmdv)		
MW	= molecular weight of nitrogen oxide (lb/lb-mole)		
Fc	= carbon based fuel factor (scf/MMBtu)		
CO ₂	= carbon dioxide content of the gas stream (%)		
385.3	= volume occupied by one pound of gas at standard conditions (dscf/lbmole)		
100	= conversion factor (%)		
10 ⁶	= conversion	on factor	(ppm)

Nitrogen Oxide Emission Rate, Ib/hr

$E_{NOx} = \frac{(C_d)}{(C_d)}$	$\frac{)(MW)(60)(Q_a}{(385.3\times10^6)}$	dstd)	
ENOX	= #DIV/0!	MW	= 46.01
Cd	= 26	Qdstd	= #DIV/0!
Where:			
ENOX	= nitrogen (oxides er	mission rate (lb/hr)
Cd	= nitrogen oxides concentration, corrected for drift (ppmdv)		
MW	= molecula	r weight	of nitrogen oxide (lb/lb-mole)

- Q_{dstd} = volumetric flow rate of the dry gas stream at standard conditions (dscfm)
- 60 = conversion factor (min/hr)
- 385.3 = volume occupied by one pound of gas at standard conditions (dscf/lbmole)
- 10^6 = conversion factor (ppm)

Nitrogen Oxides Concentration Corrected for Oxygen

$$C_{7\%O_2} = C_d \frac{(20.9 - 7)}{(20.9 - O_2)}$$
$$C_{7\%O2} = 58.283$$
$$C_d = 26$$

= 11.41

Where:

02

C7%02	= nitrogen oxides concentration corrected for oxygen (ppmdv@7%)
Cd	= nitrogen oxides concentration, corrected for analyzer drift (ppmdv)
O2	= oxygen content of the gas stream (%)
20.9	= oxygen content of ambient air (%)
0	= oxygen content for correction (%)

Nitrogen Oxide Emission Rate, Ib/MMBtu

$E_{NOx} = \frac{\left(C_{d}\right)}{\left(385\right)}$	$\frac{(MW)(Fd)(20.9)}{.3\times10^6}(20.9-O_2)$		
ENOX	= 0.0606 F _d $= 8,710$		
Cd	$= 26$ $O_2 = 11.41$		
MW	= 46.01		
Where:			
ENOX	= nitrogen oxides emission rate (lb/MMBtu)		
Cd	= nitrogen oxides concentration, corrected for drift (ppmdv)		
MW	= molecular weight of nitrogen oxide (lb/lb-mole)		
Fd	= oxygen based fuel factor (scf/MMBtu)		
02	= oxygen content of the gas stream (%)		
20.9	= oxygen content of ambient air (%)		
385.3	= volume occupied by one pound of gas at standard conditions (dscf/lbmole)		
1.06			

 10^6 = conversion factor (ppm)

1

ł

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left(1 - \frac{B_{ws}}{100} \right)$$

Qdstd	= #DIV/0!
Q _{std}	= #DIV/0!
Bws	= #DIV/0!

Where:

Qdstd	= volumetric flow rate of the dry gas stream at standard conditions (dscfm)
Q _{std}	= volumetric flow rate of the gas stream at standard conditions (scfm)
Bws	= moisture content of the gas stream (%)
100	= conversion factor (%)

Nitrogen Oxides Concentration, Corrected for Analyzer Drift⁴

$C_d = \left(C - \left(\right) \right)$	$\frac{c_{0i} + c_{0f}}{2} \bigg) \Bigg \frac{\left(\frac{c_{si}}{c_{si}}\right)}{\left(\frac{c_{si}}{c_{si}}\right)} \Big \frac{c_{0i} + c_{0f}}{c_{si}} \Big \frac{c_{0f}}{c_{si}} \Big c$	$\left(\frac{+c_{sf}}{2}\right)$	$-\left(\frac{c_a}{\left(\frac{c_{0i}+c_{0f}}{2}\right)}\right)$
Cd	= 26	Ca	= 50.23
C	= 27	Csi	= -0.28042
Coi	= -0.3889	Csf	= 52
Cof	= 52		
Whore:			

Where:

(ppmdv)

⁴Calculations for LIST OTHER COMPOUNDS are performed in a similar manner

Volumetric Flow of Gas Stream - Actual Conditions

$$Q_a = 60(V_s)(A_s)$$

 $Q_a = \#DIV/0!$ $V_s = \#DIV/0!$ $A_s = 0.00$

Where:

Qa	= volumetric flow rate of the gas stream at actual conditions (acfm)
Vs	= average velocity of the gas stream (ft/sec)
As	= area of sample location (ft ²)
60	= conversion factor (sec/min)

Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_a)(P_a)}{(T_s + 460)}$$

Q _{std}	= #DIV/0!	Pa	= 0.00
Qa	= #DIV/0!	Ts	= #DIV/0!

Qstd	= volumetric flow rate of the gas stream at standard conditions (scfm)
Qa	= volumetric flow rate of the gas stream at actual conditions (acfm)
Pa	= average stack temperature (°F)
Ts	= stack pressure absolute (in. Hg)
17.64	= ratio of standard temperature over standard pressure (°R/in. Hg)
460	= conversion (°F to °R)

.

ALC:N

l

ł

Molecular Weight of Wet Gas Stream

$$\mathbf{M}_{s} = \left(\mathbf{M}_{d} \times \left(1 - \frac{\mathbf{B}_{ws}}{100}\right)\right) + \left(18 \times \frac{\mathbf{B}_{ws}}{100}\right)$$

100

Ms	= #DIV/0!
Md	= 29.40
Bws	= #DIV/0!

Where:

= molecular weight of the wet gas stream (lb/lb-mole)
= molecular weight of the dry gas stream (lb/lb-mole)
= moisture content of the gas stream (%)
= molecular weight of water (lb/lb-mole)
= conversion factor (%)

Velocity of Gas Stream

$$V_{s} = 85.49 (C_{p}) \left(\sqrt{\Delta P} \right) \sqrt{\frac{(T_{s} + 460)}{(M_{s})(P_{a})}}$$

Vs	= #DIV/0!	Ts	= #DIV/0!
Cp	= 0.00	Ms	= #DIV/0!
VΔP	= #DIV/0!	Pa	= 0.00

Vs	= average velocity of the gas stream (ft/sec)
Cp	= pitot tube coefficient (dimensionless)
VAP	= average square root of velocity pressures (in. H ₂ O) ^{1/2}
Ts	= average stack temperature (°F)
Ms	= molecular weight of the wet gas stream (lb/lb-mole)
Pa	= stack pressure absolute (in. Hg)
85.49	= pitot tube constant (ft/sec)([(lb/lb-mole)(in. Hg)]/[(°R)(in. H ₂ O)]) ^{1/2}
460	= conversion (°F to °R)

Percent Moisture²

$$\mathbf{B}_{ws} = 100 \times \left[\frac{\mathbf{V}_{w(std)}}{\left(\mathbf{V}_{m(std)} + \mathbf{V}_{w(std)} \right)} \right]$$

Bws	= #DIV/0!
V _{w(std)}	= 0.00
V _{m(std)}	= #DIV/0!

Where:

Bws	= moisture content of the gas stream (%)
V _{w(std)}	= volume of gas collected at standard conditions (scf)
V _{m(std)}	= volume of water vapor at standard conditions (scf)
100	= conversion factor (%)

Molecular Weight of Dry Gas Stream³

$M_{i} =$	$\left(44 \times \frac{CO_2}{2}\right)$	$+\left(32\times\frac{O_2}{2}\right)$	$+\left(28\times\frac{N_2}{N_2}\right)$
a	100	100	100

M _d	= 29.40	O ₂	= 11.41
CO ₂	= 5.8984	N ₂	= 82.69

Where:

Md	= molecular weight of the dry gas stream (lb/lb-mole)
CO ₂	= carbon dioxide content of the gas stream (%)
44	= molecular weight of carbon dioxide (lb/lb-mole)
02	= oxygen content of the gas stream (%)
32	= molecular weight of oxygen (%)
N ₂	= nitrogen content of the gas stream (%)
28	= molecular weight of nitrogen (lb/lb-mole)

 $^2 \mbox{The moisture saturation point was used if it was exceeded by the measured moisture content <math display="inline">^3 \mbox{The remainder of the gas stream after subtractiong CO_2 and O_2 is assumed to be nitrogen$

1

1

8

1

Volume of Dry Gas Collected Corrected to Standard Conditions

$$V_{m(std)} = \frac{17.64 (V_m) (Y_d) \left(P_b + \frac{\Delta H}{13.6} \right)}{(T_m + 460)}$$

V _{m(std)}	= #DIV/0!	Pb	= 0.00
Vm	= 0.00	ΔH	= #DIV/0!
Yd	= 0	Tm	= #DIV/0!

Where:

V _{m(std)}	= volume of gas collected at standard conditions (scf)
Vm	= volume of gas sampled at meter conditions (ft ³)
Yd	= gas meter correction factor (dimensionless)
Pb	= barometric pressure (in. Hg)
ΔH	= average sample pressure (in. H ₂ O)
Tm	= average gas meter temperature (°F)
13.6	= conversion factor (in. H ₂ O/in. Hg)
17.64	= ratio of standard temperature over standard pressure (°R/in. Hg)
460	= conversion (°F to °R)

Volume of Water Vapor Collected Corrected to Standard Conditions

$$V_{w(std)} = 0.04715 \times V_{wc} + 0.04715 \times V_{wsg}$$

V _{w(std)}	= 0.00
Vwc	= 0
V _{wsg}	= 0

V _{w(std)}	= volume of water vapor at standard conditions (scf)
Vwc	= weight of liquid collected (g)
V _{wsg}	= weight gain of silica gel (g)
0.04715	 volume occupied by one gram of water at standard conditions (ft³/g)

Sample Calculations

Sample Calculations

Area of Sample Location

$$\mathbf{A}_{s} = \left(\pi\right) \left(\frac{d_{s}}{2 \times 12}\right)^{2}$$

 $\begin{array}{ll} \mathsf{A}_{\mathsf{s}} & = 0.00 \\ \mathsf{d}_{\mathsf{s}} & = 0 \end{array}$

Where:

As	= area of sample location (ft ²)
ds	= diameter of sample location (in)
12	= conversion factor (in/ft)
2	= conversion factor (diameter to radius)

Stack Pressure Absolute

$$P_a = P_b + \frac{P_s}{13.6}$$

Pa	= 0.00
Pb	= 0.00
Ps	= 0

Pa	= stack pressure absolute (in. Hg)
Pb	= barometric pressure (in. Hg)
Ps	= static pressure (in. H ₂ O)
13.6	= conversion factor (in. H ₂ O/in. Hg)

Isokinetic Calculations

Percent isokinetic of sampling rate (%)

$$\% I = (P_{std} / T_{std}) * (T_{savg} / P_s) * [V_{mstd} / (v_s * M_{td} * \theta) * (\pi * (D_n / 2)^2 / 144)] * (100 / 60)$$

$$\% I = (29.92 / 527.7) * (751.253 / 29.905) * (46.608 / (53.2369 * 0.576 * 60.0 * 3.141593 * (0.326 / 2) ^ 2) / 144)$$

$$\% I = 103.8 \%$$

Method 5 Calculations

Filterable PM total catch weight (mg)

mg_{guan} = 2.25 mg

Filterable PM concentration (grains/dscf)

Cgrcm = 0.0154322 * mgquan / Vmstd

Cgrcm = 0.0154322 * 2.25 / 46.608

 $C_{grcm} = 0.0007 \text{ gr/ft}^3$

Filterable PM mass emission rate (lb/hr)

EMR_{ibhr} = (mg_{quan} / V_{mstd}) * Q_{sd} * (60 / 453592) EMR_{ibhr} = 2.25 / 46.608 * 13,634.7 * (60 / 453592) EMR_{ibhr} = 0.087 lb/hr

Note: The results calculated on this page may differ slightly from the results presented in the final report. This differen attributed to "significant digit round-off errors" common when comparing computer spreadsheets results with those a using a calculator.

001AS-

Method Nomenclature and Sample Calculations

$$v_{s} = 85.49 * Cp * (SQ \Delta P_{avg}) * (T_{savg} / (P_{s} * M_{s}))^{0.5}$$

v_s = 85.49 * 0.84 * (0.7332) * (751.25 / (29.905 * 24.571)) ^ 0.5

v_s = 53.24 ft/sec

Wet volumetric flue gas flow rate at actual conditions (acfm)

 $Q_{aw} = v_s * A * 60 \text{ sec/min}$ $Q_{aw} = 53.237 * 10.559 * 60$ $Q_{aw} = 33,728 \text{ ft}^3/\text{min}$

Wet volumetric flue gas flow rate at standard conditions (scfm)

$$\begin{aligned} & \mathsf{Q}_{\mathsf{sdw}} = \mathsf{v}_{\mathsf{s}} * \mathsf{A} * (\mathsf{T}_{\mathsf{std}} / \mathsf{T}_{\mathsf{savg}}) * (\mathsf{P}_{\mathsf{s}} / \mathsf{P}_{\mathsf{std}}) * 60 \; \mathsf{sec/min} \\ & \mathsf{Q}_{\mathsf{sdw}} = 53.237 * 10.559 * \; (527.7 / 751.253) * \; (29.905 / 29.92) * 60 \\ & \mathsf{Q}_{\mathsf{sdw}} = & 23,678 \; \mathrm{ft}^3/\mathrm{min} \end{aligned}$$

Dry volumetric flue gas flow rate at standard conditions (dscfm)

 $Q_{sd} = M_{fd} * v_s * A * (T_{std} / T_{savg}) * (P_s / P_{std}) * 60 \text{ sec/min}$ $Q_{sd} = 0.576 * 53.2369 * 10.5592 * (527.7 / 751.253) * (29.905 / 29.92) * 60$ $Q_{sd} = 13,635 \text{ ft}^3/\text{min}$

Percent Excess Air

%EA = [%O₂ - (0.5) * %CO]/[0.264 * (100 - %CO₂ - %O₂) - (%O₂ - 0.5 * %CO)] %EA = ((11.40 - (0.5) * 0.00)/(0.264 * (100 - 5.90 - 11.40) - (11.40 - 0.5 * 0.00))) * 100 %EA = 109.27 %

Volume of water vapor at standard conditions (68 °F, scf)

 $V_{wstd} = (0.04716 \text{ ft}^3/\text{g}) * \text{VIc}$ $V_{wstd} = (0.04716 * 728.0)$ $V_{wstd} = 34.3 \text{ ft}^3$

Percent moisture by volume as measured in flue gas

%H₂O (Measured) = 100 * [V_{wstd} / (V_{wstd} + V_{mstd})]

%H₂O (Measured) = 100 * (34.332 / (34.332 + 46.608))

%H₂O (Measured) = 42.42

%H₂O (Saturated) = (100 / P_{sam}) * 10 ^ (6.6911 - (3144 / (T_{savg} + 390.86 - 460)))

%H₂O (Saturated) = (100 / 29.904706) * 10 ^ (6.6911 - (3144 / (751.253333 + 390.86 - 460)))

%H₂O (Saturated) = 403.88

%H₂O = 42.42

Absolute flue gas pressure

 $P_s = P_{sam} + (Pg / 13.6)$ $P_s = 29.89 + (0.20 / 13.6)$

P_s = 29.90 in. Hg

Dry mole fraction of flue gas (dimensionless)

 $M_{fd} = 1 - (\%H_2O / 100)$ $M_{fd} = 1 - (42.42 / 100)$ $M_{fd} = 0.576$

Dry molecular weight of flue gas (lb/lb-mole)

$$\begin{split} M_{d} &= \left[\left(\%CO_{2} / 100\right) * 44.0\right] + \left[\left(\%O_{2} / 100\right) * 32.0\right] + \left[\left(\left(100 - \%CO_{2} - \%O_{2}\right) / 100\right) * 28.0\right] \\ M_{d} &= \left(\left(5.90 / 100\right) * 44.0\right) + \left(\left(11.40 / 100\right) * 32.0\right) + \left(\left((100 - 5.90 - 11.40) / 100\right) * 28.0\right) \\ M_{d} &= 29.40 \text{ lb/lb-mole} \end{split}$$

M_d = 29.40

Wet molecular weight of flue gas (lb/lb-mole)

 $M_s = M_d * M_{fd} + (H_2OF_{wt} * (\%H_2O / 100))$

 $M_s = 29.400 * 0.576 + 18.02 * (42.42 / 100)$

M_s = 24.57 lb/lb-mole

Average flue gas velocity (ft/sec)

Method Nomenclature and Sample Calculations

Customer Computed By	POET Car	0	Project No Calculatio	Project Number Calculation Date	
Run Number	1				
Constants					
CC	$D_2F_{wt} = 44.0$	in wg= 0.073529	NO ₂ F _{wt} = 46.01	HCIFwt	= 36.46
($D_2F_{wt} = 32.0$	gr= 0.00014286	COF _{wt} = 28.01	SO ₂ F _{wt}	= 64.06
CO	$N_2F_{wt} = 28.0$	MMBtu= 1000000 Btu	H ₂ SO ₄ F _{wt} = 98.08	Cl ₂ F _{wt}	= 70.91
H ₂	OF _{wt} = 18.015	CF _{wt} = 12.011	T _{std} = 527.67	Pstd	= 29.92
	ArF _{wt} = 39.95	PF _{wt} = 44.0962			
Stack Variable	es				
pitot tube coeff	ficient (dimension	less)		0.84	Cp
barometric pre	ssure, inHg	,		29.95	Pbar
elevation differ	ence between gro	ound level and meter box, f	t	5	Ebox
elevation differ	ence between gro	ound level and sampling po	orts, ft	60	Esam
gamma, dry ga	s meter calibratio	on factor (dimensionless)		0.9830	Ŷ
net run time, m	ninutes			60.0	θ
total mass of li	quid collected in i	mpingers, g		728.0	VIc
percent CO ₂ by	y volume, dry bas	is, dimensionless, %		5.90	%CO2
percent O2 by	volume, dry basis	, dimensionless, %		11.40	%O ₂
percent CO by	volume, dry basis	s, dimensionless, %		0.00	%CO
percent N ₂ by	volume, dry basis	, dimensionless, %		82.70	%N2
stack cross-se	ctional area, ft ²			10.5592	A
flue gas static	pressure, inH ₂ O			0.20	Pg
average absolu	ute flue gas tempe	erature, 459.67°R+tsavg °F	, R	751.25	Tsavg
average square root ΔP , inH ₂ O				0.73	SQDPavg
average press	ure differential of	orifice meter, in. wg		1.88	ΔΗ
dry gas meter	temperature, 459.	.67°R+tsavg °F, R		525.17	Tm
volume of met	ered gas sample,	dry actual cubic feet, ft3		46.93	Vm
sampling nozz	le diameter, in.			0.326	Dn

Calculated Stack Variables

Barometric pressure at sampling location

NOTE: Barometric pressure recorded at ground level

P_{sam} = P_{bar} - [(E_{sam} / 100 ft)*0.1 in. Hg] P_{sam} = 29.95 - ((60.0 / 100)*0.1) P_{sam} = 29.89 in. Hg

Volume of dry gas sampled at standard conditions (dscf)

$$V_{mstd} = \gamma * Vm * [P_{bar} - ([(E_{box} / 100 \text{ ft}) * 0.1 \text{ in. Hg}] + (\Delta H / 13.6)) / P_{std}] * (T_{std} / T_m)$$

$$V_{mstd} = 0.9830 * 46.933 * ((29.95 - ((5.0 / 100) * 0.1) + (1.8833 / 13.6)) / 29.92) * (527.7 / 525.170)$$

$$V_{mstd} = 46.608 \text{ ft}^3$$

Nitrogen Oxide Emission Rate, Ib/MMBtu

I

I

I

F

1

$E_{NOx} = \frac{(C_d)}{(385)}$	$\frac{MW}{(F_c)(10)}$	<u>0)</u>)		
E _{NOx}	= 0	Fc	= 0	
C _d MW	= 27 = 46.01	CO2	= 5.74072	
Where:				
ENOX	= nitrogen or	xides er	mission rate, (lb/MMBtu)	
Cd	= nitrogen or	xides co	oncentration, corrected for drift (ppmdv)	
MW	= molecular weight of nitrogen oxide (lb/lb-mole)			
Fc	= carbon bas	sed fue	l factor (scf/MMBtu)	
CO ₂	= carbon dio	xide co	ntent of the gas stream (%)	
385.3	= volume occupied by one pound of gas at standard conditions (dscf/lbmole)			
100	= conversior	n factor	(%)	
10 ⁶	= conversior	n factor	(ppm)	

Nitrogen Oxide Emission Rate, Ib/hr

$E_{NOx} = \frac{(C_d)}{(C_d)}$	$\frac{(MW)(60)(Q_a)}{(385.3\times10^6)}$	(dstd)	
ENOX	= #DIV/0!	MW	= 46.01
Cd	= 27	Qdstd	= #DIV/0!
Where:			
ENOX	= nitrogen o	oxides er	mission rate (lb/hr)
Cd	= nitrogen (oxides co	oncentration, corrected for drift (ppmdv)
MW	= molecula	r weight	of nitrogen oxide (lb/lb-mole)

Qdstd	= volumetric flow rate of the dry gas stream at standard conditions (dscfm)
60	= conversion factor (min/hr)
385.3	= volume occupied by one pound of gas at standard conditions (dscf/lbmole)
10 ⁶	= conversion factor (ppm)

Nitrogen Oxides Concentration Corrected for Oxygen

$$C_{7\%O_2} = C_d \frac{(20.9 - 7)}{(20.9 - O_2)}$$

$$C_{7\%O2}$$
 = 56.778
 C_d = 27
 O_2 = 11.11

Where:

= nitrogen oxides concentration corrected for oxygen (ppmdv@7%)
= nitrogen oxides concentration, corrected for analyzer drift (ppmdv)
= oxygen content of the gas stream (%)
= oxygen content of ambient air (%)
= oxygen content for correction (%)

Nitrogen Oxide Emission Rate, Ib/MMBtu

$E_{NOx} = \frac{\left(C_{d}\right)}{\left(385\right)}$	$\frac{(MW)(Fd)(20.9)}{3\times10^6}(20.9-O_2)$		
ENOX	= 0.0591 F _d $= 8,710$		
Cd	= 27 O ₂ = 11.11		
MW	= 46.01		
Where:			
ENOX	= nitrogen oxides emission rate (lb/MMBtu)		
Cd	= nitrogen oxides concentration, corrected for drift (ppmdv)		
MW	= molecular weight of nitrogen oxide (lb/lb-mole)		
Fd	= oxygen based fuel factor (scf/MMBtu)		
O ₂	= oxygen content of the gas stream (%)		
20.9	= oxygen content of ambient air (%)		
385.3	= volume occupied by one pound of gas at standard conditions (dscf/lbmole)		
10 ⁶	= conversion factor (ppm)		

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left(1 - \frac{B_{ws}}{100} \right)$$

Qdstd	= #DIV/0!
Qstd	= #DIV/0!
Bws	= #DIV/0!

Where:

I

I

ł

= volumetric flow rate of the dry gas stream at standard conditions (dscfm)
= volumetric flow rate of the gas stream at standard conditions (scfm)
= moisture content of the gas stream (%)
= conversion factor (%)

Nitrogen Oxides Concentration, Corrected for Analyzer Drift⁴

$C_d = \left(C - \left(\right) \right)$	$\frac{c_{0i} + c_{0f}}{2} \bigg) \Bigg \left(\frac{c_{si}}{(c_{si})} \right) \Big \left(\frac{c_{si}}{(c$	$\left(\frac{1}{1+c_{sf}}\right)^{-1}$	$-\left(\frac{c_{0i}+c_{0f}}{2}\right)$
Cd	= 27	Ca	= 50.23
C	= 27	Csi	= 0.16049
Coi	= 0.0407	Csf	= 51
Cof	= 51		
M/h a mar			

Where:

Cd	= nitrogen oxides concentration, corrected for analyzer drift (ppmdv)
С	= nitrogen oxides concentration (ppmdv)
Coi	= initial zero calibration value (ppm)
Cof	= final zero calibration value (ppm)
Ca	= actual span gas value (ppm)
Csi	 initial span calibration value (ppm)
Csf	= final span calibration value (ppm)

⁴Calculations for LIST OTHER COMPOUNDS are performed in a similar manner

Volumetric Flow of Gas Stream - Actual Conditions

$$Q_a = 60(V_s)(A_s)$$

 $Q_a = \#DIV/0!$ $V_s = \#DIV/0!$ $A_s = 0.00$

Where:

Qa	= volumetric flow rate of the gas stream at actual conditions (acfm)
Vs	= average velocity of the gas stream (ft/sec)
As	= area of sample location (ft ²)
60	= conversion factor (sec/min)

Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_{a})(P_{a})}{(T_{s} + 460)}$$

Qstd	= #DIV/0!	Pa	= 0.00
Qa	= #DIV/0!	Ts	= #DIV/0!

Qstd	= volumetric flow rate of the gas stream at standard conditions (scfm)
Qa	= volumetric flow rate of the gas stream at actual conditions (acfm)
Pa	= average stack temperature (°F)
Ts	= stack pressure absolute (in. Hg)
17.64	= ratio of standard temperature over standard pressure (°R/in. Hg)
460	= conversion (°F to °R)

Molecular Weight of Wet Gas Stream

$$\mathbf{M}_{s} = \left(\mathbf{M}_{d} \times \left(1 - \frac{\mathbf{B}_{ws}}{100}\right)\right) + \left(18 \times \frac{\mathbf{B}_{ws}}{100}\right)$$

Ms	= #DIV/0!
Md	= 29.36
Bws	= #DIV/0!

Where:

1

= molecular weight of the wet gas stream (lb/lb-mole)
= molecular weight of the dry gas stream (lb/lb-mole)
= moisture content of the gas stream (%)
= molecular weight of water (lb/lb-mole)
= conversion factor (%)

Velocity of Gas Stream

$$V_{s} = 85.49 (C_{p}) \left(\sqrt{\Delta P} \right) \sqrt{\frac{(T_{s} + 460)}{(M_{s})(P_{a})}}$$

Vs	= #DIV/0!	Ts	= #DIV/0!
Cp	= 0.00	Ms	= #DIV/0!
VAP	= #DIV/0!	Pa	= 0.00

Vs	= average velocity of the gas stream (ft/sec)
C	= pitot tube coefficient (dimensionless)
VAP	= average square root of velocity pressures (in. H ₂ O) ^{1/2}
Ts	= average stack temperature (°F)
Ms	= molecular weight of the wet gas stream (lb/lb-mole)
Pa	= stack pressure absolute (in. Hg)
85.49	= pitot tube constant (ft/sec)([(lb/lb-mole)(in. Hg)]/[(°R)(in. H ₂ O)]) 1/2
460	= conversion (°F to °R)

Percent Moisture²

$$\mathbf{B}_{ws} = 100 \times \left[\frac{\mathbf{V}_{w(std)}}{\left(\mathbf{V}_{m(std)} + \mathbf{V}_{w(std)} \right)} \right]$$

Bws	= #DIV/0!
V _{w(std)}	= 0.00
V _{m(std)}	= #DIV/0!

Where:

Bws	= moisture content of the gas stream (%)
V _{w(std)}	= volume of gas collected at standard conditions (scf)
V _{m(std)}	= volume of water vapor at standard conditions (scf)
100	= conversion factor (%)

Molecular Weight of Dry Gas Stream³

$M_d =$	$\left(44 \times \frac{C}{10}\right)$	$\left(\frac{O_2}{O_2}\right) + \left(\frac{O_2}{O_2}\right)$	$32 \times \frac{O_2}{100}$	+(28)	$\times \frac{N_2}{100}$
	(1		100		100)

Md	= 29.36	O ₂	= 11.11
CO ₂	= 5.7407	N ₂	= 83.15

Where:

Md	= molecular weight of the dry gas stream (lb/lb-mole)
CO ₂	= carbon dioxide content of the gas stream (%)
44	= molecular weight of carbon dioxide (lb/lb-mole)
O ₂	= oxygen content of the gas stream (%)
32	= molecular weight of oxygen (%)
N ₂	= nitrogen content of the gas stream (%)
28	= molecular weight of nitrogen (lb/lb-mole)

²The moisture saturation point was used if it was exceeded by the measured moisture content ³The remainder of the gas stream after subtractiong CO_2 and O_2 is assumed to be nitrogen

Volume of Dry Gas Collected Corrected to Standard Conditions

$$V_{m(std)} = \frac{17.64 (V_m) (Y_d) (P_b + \frac{\Delta H}{13.6})}{(T_m + 460)}$$

V _{m(std)}	= #DIV/0!	Pb	= 0.00
Vm	= 0.00	ΔΗ	= #DIV/0!
Yd	= 0	Tm	= #DIV/0!

Where:

Ī

I

1

V _{m(std)}	= volume of gas collected at standard conditions (scf)
Vm	= volume of gas sampled at meter conditions (ft ³)
Yd	= gas meter correction factor (dimensionless)
Pb	= barometric pressure (in. Hg)
ΔΗ	= average sample pressure (in. H ₂ O)
Tm	= average gas meter temperature (°F)
13.6	= conversion factor (in. H ₂ O/in. Hg)
17.64	= ratio of standard temperature over standard pressure (°R/in. Hg)
460	= conversion (°F to °R)

Volume of Water Vapor Collected Corrected to Standard Conditions

V	-0.047	15×V	± 0.047	$15 \times V$
w(std)	- 0.047	1JA WC	+0.0+/	1JAV wsg

V _{w(std)}	= 0.00		
Vwc	= 0		
Vwsa	= 0		

V _{w(std)}	= volume of water vapor at standard conditions (scf)
Vwc	= weight of liquid collected (g)
V _{wsg}	= weight gain of silica gel (g)
0.04715	 volume occupied by one gram of water at standard conditions (ft³/g)

Sample Calculations

Area of Sample Location

$$\mathbf{A}_{s} = \left(\pi\right) \left(\frac{d_{s}}{2 \times 12}\right)^{2}$$

$$\begin{array}{ll} A_{s} & = 0.00 \\ d_{s} & = 0 \end{array}$$

Where:

As	= area of sample location (ft ²)
ds	= diameter of sample location (in)
12	= conversion factor (in/ft)
2	= conversion factor (diameter to radius)

Stack Pressure Absolute

$$P_a = P_b + \frac{P_s}{13.6}$$

Pa	= 0.00
Pb	= 0.00
Ps	= 0

Pa	= stack pressure absolute (in. Hg)
Pb	= barometric pressure (in. Hg)
Ps	= static pressure (in. H ₂ O)
13.6	= conversion factor (in. H ₂ O/in. Hg)

Isokinetic Calculations

Percent isokinetic of sampling rate (%)

 $\%I = (P_{std} / T_{std}) * (T_{savg} / P_s) * [V_{mstd} / (v_s * M_{fd} * \theta) * (\pi * (D_n / 2)^2 / 144)] * (100 / 60)$

%I = (29.92 / 527.7) * (742.087 / 29.964) * (48.333 / (54.7638 * 0.561 * 60.0 * 3.141593 * (0.326 / 2) ^ 2) / 144)

%1 = 106.0 %

Method 5 Calculations

Filterable PM total catch weight (mg)

mg_{quan} = 15.65 mg

Filterable PM concentration (grains/dscf)

Cgrcm = 0.0154322 * mgguan / Vmstd

 $C_{arcm} = 0.0050 \text{ gr/ft}^3$

Filterable PM mass emission rate (lb/hr)

EMR_{tbhr} = (mg_{quan} / V_{mstd}) * Q_{sd} * (60 / 453592) EMR_{tbhr} = 15.65 / 48.333 * 13,849.9 * (60 / 453592) EMR_{tbhr} = 0.593 lb/hr

Note: The results calculated on this page may differ slightly from the results presented in the final report. This differen attributed to "significant digit round-off errors" common when comparing computer spreadsheets results with those a using a calculator.

001AS-

MONTROSE

USEPA Method 5 Nomenclature and Sample Calculations

 $v_s = 85.49 * Cp * (SQ\Delta P_{avg}) * (T_{savg} / (P_s * M_s))^{0.5}$

v_s = 85.49 * 0.84 * (0.7565) * (742.09 / (29.964 * 24.372)) ^ 0.5

v_s = 54.76 ft/sec

Wet volumetric flue gas flow rate at actual conditions (acfm)

 $Q_{aw} = v_s * A * 60 \text{ sec/min}$ $Q_{aw} = 54.764 * 10.559 * 60$ $Q_{aw} = 34,696 \text{ ft}^3/\text{min}$

Wet volumetric flue gas flow rate at standard conditions (scfm)

$$\begin{aligned} & Q_{sdw} = v_s * A * (T_{std} / T_{savg}) * (P_s / P_{std}) * 60 \text{ sec/min} \\ & Q_{sdw} = 54.764 * 10.559 * (527.7 / 742.087) * (29.964 / 29.92) * 60 \\ & Q_{sdw} = 24,707 \text{ ft}^3/\text{min} \end{aligned}$$

Dry volumetric flue gas flow rate at standard conditions (dscfm)

 $Q_{sd} = M_{fd} * v_s * A * (T_{std} / T_{savg}) * (P_s / P_{std}) * 60 \text{ sec/min}$ $Q_{sd} = 0.561 * 54.7638 * 10.5592 * (527.7 / 742.087) * (29.964 / 29.92) * 60$ $Q_{sd} = 13,850 \text{ ft}^3/\text{min}$

Percent Excess Air

%EA = [%O₂ - (0.5) * %CO]/[0.264 * (100 - %CO₂ - %O₂) - (%O₂ - 0.5 * %CO)] %EA = ((11.10 - (0.5) * 0.00) / (0.264 * (100 - 5.70 - 11.10) - (11.10 - 0.5 * 0.00))) * 100 %EA = 102.16 %

USEPA Method 5 Nomenclature and Sample Calculations

Volume of water vapor at standard conditions (68 °F, scf)

 $V_{wstd} = (0.04716 \text{ ft}^3/\text{g}) * \text{Vlc}$ $V_{wstd} = (0.04716 * 803.4)$ $V_{wstd} = 37.9 \text{ ft}^3$

Percent moisture by volume as measured in flue gas

 H_2O (Measured) = 100 * [V_{wstd} / (V_{wstd} + V_{mstd})]

%H₂O (Measured) = 100 * (37.888 / (37.888 + 48.333))

%H₂O (Measured) = 43.94

%H₂O (Saturated) = (100 / P_{sam})* 10 ^ (6.6911 - (3144 / (T_{savg} + 390.86 - 460)))

%H2O (Saturated) = (100 / 29.963529) * 10 ^ (6.6911 - (3144 / (742.086667 + 390.86 - 460)))

%H₂O (Saturated) = 348.83

%H₂O = 43.94

Absolute flue gas pressure

 $P_s = P_{sam} + (Pg / 13.6)$ $P_s = 29.89 + (1.00 / 13.6)$ $P_s = 29.96$ in. Hg

Dry mole fraction of flue gas (dimensionless)

 $M_{fd} = 1 - (\%H_2O / 100)$ $M_{fd} = 1 - (43.94 / 100)$ $M_{fd} = 0.561$

Dry molecular weight of flue gas (lb/lb-mole)

 $M_{d} = [(\%CO_{2}/100)*44.0] + [(\%O_{2}/100)*32.0] + [((100 - \%CO_{2} - \%O_{2})/100)*28.0]$

 $\mathsf{M}_{\mathsf{d}} = ((5.70 \, / \, 100) \, * \, 44.0) \, + ((11.10 \, / \, 100) \, * \, 32.0) \, + (((100 - 5.70 - 11.10) \, / \, 100) \, * \, 28.0)$

M_d = 29.36 lb/lb-mole

M_d = 29.36

Wet molecular weight of flue gas (lb/lb-mole)

 $M_s = M_d * M_{fd} + (H_2OF_{wt} * (\%H_2O / 100))$

M_s = 29.356 * 0.561 + 18.02 * (43.94 / 100)

M_s = 24.37 lb/lb-mole

Average flue gas velocity (ft/sec)

RECEIVED

OCT 09 2023

AIR QUALITY DIVISION

MONTROSE ENVIRONMENTAL

USEPA Method 5 Nomenclature and Sample Calculations

Customer Computed By Run Number	POET Caro		Project Number Calculation Date		PROJ-020558	
Constants						
CO ₂ F _w = O ₂ F _w = CON ₂ F _w = H ₂ OF _w = ArF _w =	= 44.0 = 32.0 = 28.0 = 18.015 = 39.95	in wg= 0.073529 gr= 0.00014286 MMBtu= 1000000 Btu CF _{wt} = 12.011 PF _{wt} = 44.0962	$NO_2F_{wt} = 2$ $COF_{wt} = 2$ $H_2SO_4F_{wt} = 5$ $T_{std} = 5$	46.01 28.01 98.08 527.67	$\begin{array}{l} \text{HCIF}_{\text{wt}} = \\ \text{SO}_2\text{F}_{\text{wt}} = \\ \text{CI}_2\text{F}_{\text{wt}} = \\ \text{P}_{\text{std}} = \end{array}$	36.46 64.06 70.91 29.92
Stack Variables						
pitot tube coefficient (dimensionless) barometric pressure, inHg elevation difference between ground level and meter box, f elevation difference between ground level and sampling po gamma, dry gas meter calibration factor (dimensionless) net run time, minutes total mass of liquid collected in impingers, g		t rts, ft	2	0.84 29.95 5 60 .9830 60.0 303.4 5.70	Cp Pbar Ebox Esam γ θ Vlc %CO2	
percent O ₂ by volume, dry basis, dimensionless, %					11.10	%O ₂
percent CO by volume, dry basis, dimensionless, % percent N ₂ by volume, dry basis, dimensionless, % stack cross-sectional area, ft ² flue gas static pressure, inH ₂ O			10	0.00 33.20 0.5592 1.00	%CO %N₂ A	
average absolute flue gas temperature, 459.67°R+tsavg °F average square root $\Delta P,$ inH2O		, R	7	42.09 0.76	Tsavg SQDPavg	
average pressure differential of orifice meter, in. wg dry gas meter temperature, 459.67°R+tsavg °F, R volume of metered gas sample, dry actual cubic feet, ft ³			5	2.02 16.34 47.84	ΔH Tm Vm	
sampling nozzle diameter, in.			(0.326	Dn	

Calculated Stack Variables

Barometric pressure at sampling location NOTE: Barometric pressure recorded at ground level

 $P_{sam} = P_{bar} - [(E_{sam} / 100 \text{ ft}) * 0.1 \text{ in. Hg}]$

$$P_{sam} = 29.95 - ((60.0 / 100) * 0.1)$$

P_{sam} = 29.89 in. Hg

Volume of dry gas sampled at standard conditions (dscf)

$$V_{mstd} = \gamma * Vm * [P_{bar} - ([(E_{box} / 100 \text{ ft}) * 0.1 \text{ in. Hg}] + (\Delta H / 13.6)) / P_{std}] * (T_{std} / T_m)$$

$$V_{mstd} = 0.9830 * 47.836 * ((29.95 - ((5.0 / 100) * 0.1) + (2.0167 / 13.6)) / 29.92) * (527.7 / 516.337)$$

$$V_{mstd} = 48.333 \text{ ft}^3$$

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left(1 - \frac{B_{ws}}{100} \right)$$

Qdstd	= 8,572
Q _{std}	= 8,699
Bws	= 1.5

Where:

Qdstd	= volumetric flow rate of the dry gas stream at standard conditions (dscfm)
Qstd	= volumetric flow rate of the gas stream at standard conditions (scfm)
Bws	= moisture content of the gas stream (%)
100	= conversion factor (%)

Poet Caro CO2 Scrubber

Volumetric Flow of Gas Stream - Actual Conditions

 $Q_a = 60(V_s)(A_s)$

 $Q_a = 8,493$ $V_s = 45.0554$ $A_s = 3.14$

Where:

Qa	= volumetric flow rate of the gas stream at actual conditions (acfm)
Vs	= average velocity of the gas stream (ft/sec)
As	= area of sample location (ft ²)
60	= conversion factor (sec/min)

Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_{a})(P_{a})}{(T_{s} + 460)}$$

Q _{std}	= 8,699	Pa	= 30.06
Qa	= 8,493	Ts	= 58

Q _{std}	= volumetric flow rate of the gas stream at standard conditions (scfm)
Qa	= volumetric flow rate of the gas stream at actual conditions (acfm)
Pa	= average stack temperature (°F)
Ts	= stack pressure absolute (in. Hg)
17.64	= ratio of standard temperature over standard pressure (°R/in. Hg)
460	= conversion (°F to °R)

Î

1

ł

Molecular Weight of Wet Gas Stream

$$\mathbf{M}_{s} = \left(\mathbf{M}_{d} \times \left(1 - \frac{\mathbf{B}_{ws}}{100}\right)\right) + \left(18 \times \frac{\mathbf{B}_{ws}}{100}\right)$$

Ms	= 43.45
Md	= 43.84
Bws	= 1.5

Where:

Ms	= molecular weight of the wet gas stream (lb/lb-mole)
Md	= molecular weight of the dry gas stream (lb/lb-mole)
B _{ws}	= moisture content of the gas stream (%)
18	= molecular weight of water (lb/lb-mole)
100	= conversion factor (%)

Velocity of Gas Stream

$$V_{s} = 85.49 (C_{p}) \left(\sqrt{\Delta P} \right) \sqrt{\frac{(T_{s} + 460)}{(M_{s})(P_{a})}}$$

Vs	= 45.0554	Ts	= 58
Cp	= 0.84	Ms	= 43.45
VAP	= 0.9966	Pa	= 30.06

Vs	= average velocity of the gas stream (ft/sec)
Cp	= pitot tube coefficient (dimensionless)
VAP	= average square root of velocity pressures (in. H ₂ O) ^{1/2}
Ts	= average stack temperature (°F)
Ms	= molecular weight of the wet gas stream (lb/lb-mole)
Pa	= stack pressure absolute (in. Hg)
85.49	= pitot tube constant (ft/sec)([(lb/lb-mole)(in. Hg)]/[(°R)(in. H ₂ O)]) ^{1/2}
460	= conversion (°F to °R)

Poet Caro CO2 Scrubber

Percent Moisture²

$$\mathbf{B}_{ws} = 100 \times \left[\frac{\mathbf{V}_{w(std)}}{\left(\mathbf{V}_{m(std)} + \mathbf{V}_{w(std)} \right)} \right]$$

Bws	= 1.50
V _{w(std)}	= 0.00
V _{m(std)}	= #DIV/0!

Where:

Bws	= moisture content of the gas stream (%)
V _{w(std)}	= volume of gas collected at standard conditions (scf)
V _{m(std)}	= volume of water vapor at standard conditions (scf)
100	= conversion factor (%)

Molecular Weight of Dry Gas Stream³

$M_d =$	$\left(44 \times \frac{CO_2}{100}\right)$	+	$\left(32 \times \frac{O_2}{100}\right)$	+($\left(28 \times \frac{N_2}{100}\right)$
	100		100)		100)

Md	= 43.84	O ₂	= 0.00
CO2	= 99	N ₂	= 1.00

Where:

Md	= molecular weight of the dry gas stream (lb/lb-mole)
CO ₂	= carbon dioxide content of the gas stream (%)
44	= molecular weight of carbon dioxide (lb/lb-mole)
O ₂	= oxygen content of the gas stream (%)
32	= molecular weight of oxygen (%)
N ₂	= nitrogen content of the gas stream (%)
28	= molecular weight of nitrogen (lb/lb-mole)

²The moisture saturation point was used if it is exceeded by the measured moisture content ³The remainder of the gas stream after removing CO_2 and O_2 is assumed to be nitrogen

Poet Caro

l

1

CO2 Scrubber

Volume of Dry Gas Collected Corrected to Standard Conditions

$$V_{m(std)} = \frac{17.64 (V_m) (Y_d) \left(P_b + \frac{\Delta H}{13.6} \right)}{(T_m + 460)}$$

V _{m(std)}	= #DIV/0!	Pb	= 30.02
Vm	= 0.00	ΔΗ	= #DIV/0!
Yd	= 0.993	Tm	= #DIV/0!

Where:

V _{m(std)}	= volume of gas collected at standard conditions (scf)
Vm	= volume of gas sampled at meter conditions (ft ³)
Yd	= gas meter correction factor (dimensionless)
Pb	= barometric pressure (in. Hg)
ΔH	= average sample pressure (in. H ₂ O)
T _m	= average gas meter temperature (°F)
13.6	= conversion factor (in. H ₂ O/in. Hg)
17.64	= ratio of standard temperature over standard pressure (°R/in. Hg)
460	= conversion (°F to °R)

Volume of Water Vapor Collected Corrected to Standard Conditions

V _{w(std)}	= 0.047	$15 \times V_{wc}$	+0.047	$15 \times V_{wsg}$
W(Sta)		WL		wsg

V _{w(std)}	= 0.00
Vwc	= 0
Vwsq	= 0

V _{w(std)}	= volume of water vapor at standard conditions (scf)
Vwc	= weight of liquid collected (g)
V _{wsg}	= weight gain of silica gel (g)
0.04715	= volume occupied by one gram of water at standard conditions (ft ³ /g)

Sample Calculations CO2 Scrubber Run 1

Area of Sample Location

$$\mathbf{A}_{s} = \left(\pi\right) \left(\frac{d_{s}}{2 \times 12}\right)^{2}$$

$$A_{s} = 3.14$$

 $d_{s} = 24$

Where:

As	= area of sample location (ft ²)		
ds	= diameter of sample location (in)		
12	= conversion factor (in/ft)		
2	= conversion factor (diameter to radius)		

Stack Pressure Absolute

$$P_a = P_b + \frac{P_s}{13.6}$$

Pa	= 30.06
Pb	= 30.02
Ps	= 0.5

Pa	= stack pressure absolute (in. Hg)
Pb	= barometric pressure (in. Hg)
Ps	= static pressure (in. H ₂ O)
13.6	= conversion factor (in. H ₂ O/in. Hg)

MONTROSE

USEPA Method Method 17 Nomenclature and Sample Calculations

Isokinetic Calculations

Percent isokinetic of sampling rate (%)

 $\%I = (P_{std} / T_{std}) * (T_{savg} / P_{s}) * [V_{mstd} / (v_{s} * M_{fd} * \theta) * (\pi * (D_{n} / 2)^{2} / 144)] * (100 / 60)$

%I = (29.92 / 527.7) * (537.503 / 29.966) * (69.410 / (27.4066 * 0.989 * 84.0 * 3.141593 * (0.308 / 2) ^ 2) / 144)

%1 = 99.9 %

Method 5 Calculations

Filterable PM total catch weight (mg)

mg_{quan} = 1.60 mg

Filterable PM concentration (grains/dscf)

 $C_{grcm} = 0.0004 \text{ gr/ft}^3$

Filterable PM mass emission rate (lb/hr)

EMR_{ibhr} = (mg_{quan} / V_{mstd}) * Q_{sd} * (60 / 453592) EMR_{ibhr} = 1.60 / 69.410 * 25,437.6 * (60 / 453592) EMR_{ibhr} = 0.078 lb/hr

Note: The results calculated on this page may differ slightly from the results presented in the final report. This differen attributed to "significant digit round-off errors" common when comparing computer spreadsheets results with those a using a calculator.

001AS-

USEPA Method Method 17 Nomenclature and Sample Calculations

$$v_s = 85.49 * Cp * (SQ\Delta P_{avg}) * (T_{savg} / (P_s * M_s))^{0.5}$$

v_s = 27.41 ft/sec

Wet volumetric flue gas flow rate at actual conditions (acfm)

 $Q_{aw} = v_s * A * 60 \text{ sec/min}$ $Q_{aw} = 27.407 * 15.904 * 60$ $Q_{aw} = 26,153 \text{ ft}^3/\text{min}$

Wet volumetric flue gas flow rate at standard conditions (scfm)

$$\begin{aligned} & Q_{sdw} = v_s * A * (T_{std} / T_{savg}) * (P_s / P_{std}) * 60 \text{ sec/min} \\ & Q_{sdw} = 27.407 * 15.904 * (527.7 / 537.503) * (29.966 / 29.92) * 60 \\ & Q_{sdw} = 25,714 \text{ ft}^3/\text{min} \end{aligned}$$

Dry volumetric flue gas flow rate at standard conditions (dscfm)

 $Q_{sd} = M_{fd} * v_s * A * (T_{std} / T_{savg}) * (P_s / P_{std}) * 60 \text{ sec/min}$ $Q_{sd} = 0.989 * 27.4066 * 15.9043 * (527.7 / 537.503) * (29.966 / 29.92) * 60$ $Q_{sd} = 25,438 \text{ ft}^3/\text{min}$

Percent Excess Air

%EA = ######## %

USEPA Method Method 17 Nomenclature and Sample Calculations

Volume of water vapor at standard conditions (68 °F, scf)

 $V_{wstd} = (0.04716 \text{ ft}^3/\text{g}) * \text{Vic}$ $V_{wstd} = (0.04716 * 16.0)$ $V_{wstd} = 0.8 \text{ ft}^3$

Percent moisture by volume as measured in flue gas

%H₂O (Measured) = 100 * [V_{wstd} / (V_{wstd} + V_{mstd})]

%H₂O (Measured) = 100 * (0.755 / (0.755 + 69.410))

%H₂O (Measured) = 1.08

 H_2O (Saturated) = (100 / P_{sam}) * 10 ^ (6.6911 - (3144 / (T_{savg} + 390.86 - 460)))

%H2O (Saturated) = (100 / 29.966176) * 10 ^ (6.6911 - (3144 / (537.503333 + 390.86 - 460)))

%H₂O (Saturated) = 3.18

 $%H_2O = 1.08$

Absolute flue gas pressure

 $P_s = P_{sam} + (Pg / 13.6)$ $P_s = 29.98 + (-0.12 / 13.6)$

P_s = 29.97 in. Hg

Dry mole fraction of flue gas (dimensionless)

 $M_{fd} = 1 - (\%H_2O / 100)$ $M_{fd} = 1 - (1.08 / 100)$ $M_{fd} = 0.989$

Dry molecular weight of flue gas (lb/lb-mole)

 $M_{d} = [(\%CO_{2}/100)*44.0] + [(\%O_{2}/100)*32.0] + [((100-\%CO_{2}-\%O_{2})/100)*28.0]$

 $M_d = ((0.00 / 100) * 44.0) + ((20.90 / 100) * 32.0) + (((100 - 0.00 - 20.90) / 100) * 28.0)$

M_d = 28.84 lb/lb-mole

M_d = 28.84

Wet molecular weight of flue gas (lb/lb-mole)

 $M_s = M_d * M_{fd} + (H_2OF_{wt} * (\%H_2O / 100))$

 $M_s = 28.836 * 0.989 + 18.02 * (1.08 / 100)$

M_s = 28.72 lb/lb-mole

Average flue gas velocity (ft/sec)

USEPA Method Method 17 Nomenclature and Sample Calculations

Customer Poet Caro		Project Number		PROJ-020558	
Computed By	JSN		Calculation Date		2/12/2023
Run Number	1				
Constants					
CO ₂ F	wt= 44.0	in wg= 0.073529	$NO_2F_{wt} = 46.01$	HCIF	= 36.46
O ₂ F	wt= 32.0	gr= 0.00014286	COF _{wt} = 28.01	SO2F	= 64.06
CON ₂ F	-wt= 28.0	MMBtu= 1000000 Btu	H2SO4Fwt= 98.08	Cl ₂ F	= 70.91
H ₂ OF	-wt= 18.015	CF _{wt} = 12.011	T _{std} = 527.67	Pste	= 29.92
Ar	wt= 39.95	PF _{wt} = 44.0962	400		
Stack Variables					
pitot tube coefficie	ent (dimension	less)		0.84	Ср
barometric pressu	ure, inHg			30.02	Pbar
elevation differen	ce between gro	ound level and meter box, f	t	5	Ebox
elevation differen	ce between gro	ound level and sampling po	orts, ft	45	Esam
gamma, dry gas r	neter calibratio	on factor (dimensionless)		0.9830	γ
net run time, minu	utes			84.0	θ
total mass of liqui	d collected in i	mpingers, g		16.0	Vic
percent CO ₂ by v	olume, dry bas	is, dimensionless, %		0.00	%CO2
percent O2 by vol	ume, dry basis	, dimensionless, %		20.90	%O ₂
percent CO by volume, dry basis, dimensionless, %				0.00	%CO
percent N ₂ by volume, dry basis, dimensionless, %			79.10	%N ₂	
stack cross-sectional area, ft ²			15.9043	A	
flue gas static pressure, inH ₂ O			-0.12	Pg	
average absolute flue gas temperature, 459.67°R+tsavg °F, R			537.50	Tsavg	
average square root ΔP , inH ₂ O				0.48	SQDPavg
average pressure differential of orifice meter, in. wg			2.06	ΔΗ	
dry gas meter temperature, 459.67°R+tsavg °F, R				519.21	Tm
volume of metered gas sample, dry actual cubic feet, ft3				68.91	Vm
sampling nozzle diameter, in.			0.308	Dn	

Calculated Stack Variables

Barometric pressure at sampling location NOTE: Barometric pressure recorded at ground level

$$P_{sam} = P_{bar} - [(E_{sam} / 100 \text{ ft}) * 0.1 \text{ in. Hg}]$$

$$P_{sam} = 30.02 - ((45.0 / 100) * 0.1)$$

$$P_{sam} = 29.98 \text{ in. Hg}$$

Volume of dry gas sampled at standard conditions (dscf)

$$V_{mstd} = \gamma * Vm * [P_{bar} - ([(E_{box} / 100 \text{ ft}) * 0.1 \text{ in. Hg}] + (\Delta H / 13.6)) / P_{std}] * (T_{std} / T_m)$$

$$V_{mstd} = 0.9830 * 68.910 * ((30.02 - ((5.0 / 100) * 0.1) + (2.0625 / 13.6)) / 29.92) * (527.7 / 519.212)$$

$$V_{mstd} = 69.410 \text{ ft}^3$$