Testing Solutions for a Better World

COMPLIANCE TEST REPORT FOR THE MITSUBISHI 501G, UNIT EU-TURBINEZ/EU-DB2 PREPARED FOR NEW COVERT GENERATING COMPANY, LLC

AT THE NEW COVERT GENERATING FACILITY COVERT, MICHIGAN AUGUST 9-11, 2013

Corporate Headquarters 1600 W Tacoma Street Broken Arrow, OK 74012

AIR HYGIENE, INC.

Remote Testing Offices Las Vegas, NV 89156 Ft. Worth, TX 76028 Humble, TX 77338 Shreveport, LA 71115 Miami, FL 33101 Philadelphia, PA 19136

(918) 307-8865 or (888) 461-8778 www.airhygiene.com

COMPLIANCE TEST REPORT FOR THE MITSUBISHI 501G, UNIT EU-TURBINE2/EU-DB2 PREPARED FOR NEW COVERT GENERATING COMPANY, LLC

AT THE NEW COVERT GENERATING FACILITY COVERT, MICHIGAN

Michigan Department of Environmental Quality Permit No: MI-ROP-N6767-2009b

AUGUST 9-11, 2013

Prepared and Reviewed by:

randu Sattvika

Pandu Sattvika, PE, QSTI, Regional Manager-Austin, TX

Michael Whisenhunt, QSTI, Test Manager

Ashwin Ravi, QSTI, Project Manager

194 of 576

195 of 576

.

Table of Contents

1.1 TEST PURPOSE AND OBJECTIVES 1.2 SUMMARY OF TEST PROGRAM 1.2.1 Participating Organizations 1.2.2 Industry 1.2.3 Air Permit and Federal Requirements 1.2.4 Plant Location 1.2.5 Equipment Tested 1.2.6 Emission Points 1.2.7 Pollutants Measured 1.2.8 Date of Emission Test 1.2.8 Date of Emission Test 2.0 SUMMARY OF TEST RESULTS	1
1.2.1 Participating Organizations 1.2.2 Industry 1.2.3 Air Permit and Federal Requirements 1.2.4 Plant Location 1.2.5 Equipment Tested 1.2.6 Emission Points 1.2.7 Pollutants Measured 1.2.8 Date of Emission Test 1.3 KEY PERSONNEL	_1
1.2.1 Participating Organizations 1.2.2 Industry 1.2.3 Air Permit and Federal Requirements 1.2.4 Plant Location 1.2.5 Equipment Tested 1.2.6 Emission Points 1.2.7 Pollutants Measured 1.2.8 Date of Emission Test 1.3 KEY PERSONNEL	_1
1.2.2 Industry	_1
1.2.4 Plant Location	_1
1.2.4 Plant Location	_1
1.2.5 Equipment Tested 1.2.6 Emission Points 1.2.7 Pollutants Measured 1.2.8 Date of Emission Test 1.3 KEY PERSONNEL	1
1.2.6 Emission Points 1.2.7 Pollutants Measured 1.2.8 Date of Emission Test 1.3 KEY PERSONNEL	_1
1.2.7 Foldulatis Measured	_1
1.2.6 Date of Emission Test 1.3 KEY PERSONNEL	_2
	_2
2.0 SUMMARY OF TEST RESULTS	_2
	2
3.0 SOURCE OPERATION	6
3.1 PROCESS DESCRIPTION	_6
3.2 SAMPLING LOCATION	_6
4.0 SAMPLING AND ANALYTICAL PROCEDURES	7
4.1 TEST METHODS	_7
4.2 INSTRUMENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS	7

AP

APPENDICES					
Appendix A	Test Results and Calculations				
Appendix B	Emission Data Records				
Appendix C	Calibration Gas Certificates				
Appendix D	Quality Assurance and Quality Control Data				
Appendix E	Fuel Analysis Record				
Appendix F	Stratification Test				

i

COMPLIANCE TEST REPORT Mitsubishi 501G, Unit EU-Turbine2/EU-DB2 New Covert Generating Company, LLC New Covert Generating Facility Covert, Michigan August 9-11, 2013

1.0 INTRODUCTION

Air Hygiene International, Inc. (Air Hygiene) has completed the emissions testing study for nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compounds (VOCs), ammonia (NH₃), formaldehyde (HCHO), and particulate matter less than or equal to 10 microns in diameter (PM_{10}) from the exhaust of the Mitsubishi 501G, Unit EU-Turbine2/EU-DB2 for New Covert Generating Company, LLC (New Covert) at the New Covert Generating Facility near Covert, Michigan. This report details the background, results, process description, and the sampling/analysis methodology of the stack sampling survey conducted on August 9-11, 2013.

1.1 TEST PURPOSE AND OBJECTIVES

The purpose of the testing was to conduct periodic compliance emission tests to document levels of selected pollutants at three operating loads [75%, 100% with duct burners (W/DB), and 100% without duct burners (W/O DB)]. The information will be used to confirm compliance with the Permit No: MI-ROP-N6767-2009b issued by the Michigan Department of Environmental Quality (MDEQ). The specific objective was to determine the emission concentration of NOx, CO, VOC, NH₃, PM₁₀, and HCHO from the exhaust of New Covert's Mitsubishi 501G, Unit EU-Turbine2/EU-DB2 at 75%, 100% W/DB and 100% W/O DB of total capacity.

1.2 SUMMARY OF TEST PROGRAM

The following list details pertinent information related to this specific project:

- 1.2.1 Participating Organizations
 - Michigan Department of Environmental Quality (MDEQ)
 - New Covert Generating Company, LLC (New Covert)
 - Air Hygiene
- 1.2.2 Industry
 - Electric Utility / Electric Services
- 1.2.3 Air Permit and Federal Requirements
 - Permit Number: MI-ROP-N6767-2009b
- 1.2.4 Plant Location
 - New Covert Generating Facility near Covert, Michigan
 - 26000 77th Street, Covert, Michigan 49043
- 1.2.5 Equipment Tested
 - Mitsubishi 501G, Unit EU-Turbine2/EU-DB2
- 1.2.6 Emission Points
 - Exhaust from the Mitsubishi 501G, Unit EU-Turbine2/EU-DB2
 - For all gases, one sample point in the exhaust duct from the Mitsubishi 501G, Unit EU-Turbine2/EU-DB2, determined after conducting a stratification test (refer to Appendix F)
 - For all wet chemistry testing, 24 sampling points in the exhaust duct from the Mitsubishi 501G, Unit EU-Turbine2/EU-DB2 (refer to Appendix A)

ĺ

- 1.2.7 Pollutants Measured
 - NOx
 - CO
 - VOC
 - NH₃
 - HCHO
 - PM₁₀
- 1.2.8 Date of Emission Test
 - August 9-11, 2013

1.3 KEY PERSONNEL

New Covert Generating Company, LLC: MDEQ: Air Hygiene: Air Hygiene: Air Hygiene: Air Hygiene: Air Hygiene:

Chris Head	269-764-3805
Tom Gasloli	517-335-4861
Ashwin Ravi	918-307-8865
Darin Grimes	918-307-8865
Patrick Iyonsi	918-307-8865
Aaron Blum	918-307-8865
Huy Nguyen	918-307-8865

2.0 SUMMARY OF TEST RESULTS

Results from the sampling conducted on New Covert's Mitsubishi 501G, Unit EU-Turbine2/EU-DB2 located at the New Covert Generating Facility on August 9-11, 2013 are summarized in the following tables and relate only to the items tested.

TABLE 2.1 MITSUBISHI 501G, EU-TURBINE2/EU-DB2 75% LOAD DATA SUMMARY

Parameter	Run 1	Run 2	Run 3	Average	Permit Limits
Start Time (hh:mm:ss)	6:56:14	8:05:14	9:14:14	6:56:14	
End Time (hh:mm:ss)	7:55:44	9:04:44	10:13:44	10:13:44	
Run Duration (min / run)	60	60	60	60	
Bar. Pressure (in. Hg)	30.01	30.14	30.14	30.10	
Amb. Temp. (°F)	56	61	68	62	
Rel. Humidity (%)	96	86	63	82	
Spec. Humidity (Ib water / Ib air)	0.009126	0.009748	0.009111	0.009328	·
Turbine Fuel Flow (SCFH)	1,883,000	1,884,100	1,881,600	1,882,900	
Stack Flow (RM19) (SCFH)	45,654,863	44,408,601	44,931,170	44,998,211	
Stack Moisture (% Method 4)	8.7	8.2	8.3	8.4	
Heat Input (MMBtu/hr)	1,902.3	1,903.4	1,900.9	1,902.2	
Power Output (megawatts)	291.0	292.0	292.0	291.7	[
NOx (ppmvd)	2.62	1.46	1.89	1.99	
NOx (ppm@15%O₂)	2.05	1.11	1.46	1.54	2.5
NOx (lb/hr)	14.26	7.75	10.15	10.72	
NOx (Ib/MMBtu)	0.007	0.004	0.005	0.006	
CO (ppmvd)	0.24	0.25	0.27	0.25	
CO (ppm@15%O ₂)	0.19	0.19	0.21	0.20	
CO (lb/hr)	0.81	0.80	0.89	0.83	33.7
CO (Ib/MMBtu)	0.000	0.000	0.000	0.000	
THC (ppmvd)	3.02	3.56	4.34	3.64	
THC (lb/hr)	5.72	6.57	8.11	6.80	
THC (lb/MBtu)	0.003	0.003	0.004	0.004	
CH ₄ (ppmvd)	1.25	1.01	0.91	1.06	
Cr₄ (ppmvd) C₂H₀ (ppmvd)	0.31	0.32	0.32	0.32	
VOC (ppmvd)	1.46	2.23	3.12	2.27	
VOC (ppm@15%O ₂)	1.14	1.70	2.40	1.75	
VOC (lb/hr)	2.76	4.11	5.82	4.23	7.7
VOC (Ib/MMBtu)	0.001	0.002	0.003	0.002	
HCHO (ppmvd)	0.27	0.17	0.20	0.21	
HCHO (ppm@15%O₂)	0.21	0.13	0.16	0.17	
HCHO (lb/hr)	0.97	0.59	0.72	0.76	·
HCHO (ton/day) at 24 hr/day	0.01	0.01	0.01	0.01	.
HCHO (ton/year) at 8760 hr/year	4.23	2.56	3.13	3.31	8.1
HCHO (Ib/MMBtu)	0.001	0.000	0.000	0.000	
PM ₁₀ Run Start Time (hh:mm)	06:43	09:23	12:15	06:43	
PM ₁₀ Run End Time (hh:mm)	09:01	11:38	13:48	13:48	
Total PM_{10} (mg)	10.35	4.94	4.42	6.57	
Total PM ₁₀ (g/dscf)	1.04E-04	5.20E-05	4.48E-05	6.69E-05	
Total PM ₁₀ (gr/dscf)	1.60E-03	8.02E-04	6.91E-04	1.03E-03	
Total PM ₁₀ (kg/hr)	5.64	2.79	2.49	3.64	
Total PM_{10} (lb/hr)	12.43	6.15	5.49	8.02	33.8
Total PM ₁₀ (ton/year) at 8760 hr/year	54.43	26.92	24.04	35.13	
Total PM_{10} (lb/MMBtu)	0.005	0.003	0.002	0.003	
NH_3 (ppmvd)	2.42	2.42	2.43	2.43	
NH ₃ (ppm@15%O ₂)	1.89	1.84	1.88	1.87	10
NH ₃ (ppm@15%0 ₂) NH ₃ (lb/hr)	4.88	4.75	4.84	4.82	
	0.003	0.002	0.003	0.003	
NH ₃ (lb/MMBtu) O ₂ (%)	13.36	13.15	13.25	13.25	

TABLE 2.2 MITSUBISHI 501G, UNIT EU-TURBINE2/EU-DB2 100% W/O DB LOAD DATA SUMMARY

Parameter	Run 1	Run 2	Run 3	Average	Permit Limit
Start Time (hh:mm:ss)	7:30:14	8:39:14	9:48:14	7:30:14	
End Time (hh:mm:ss)	8:29:44	9:38:44	10:47:44	10:47:44	
Run Duration (min / run)	60	60	60	60	
Bar. Pressure (in. Hg)	30.07	30.01	30.01	30.03	
Amb. Temp. (°F)	64	67	71	67	·
Rel. Humidity (%)	91	75	61	76	
Spec. Humidity (Ib water / Ib air)	0.011524	0.010548	0.009828	0.010633	
Turbine Fuel Flow (SCFH)	2,191,500	2,187,100	2,182,900	2,187,167	
Stack Flow (RM19) (SCFH)	56,128,139	56,122,298	56,075,304	56,108,580	
Stack Molsture (% Method 4)	8.5	7.9	9.0	8.5	
Heat Input (MMBtu/hr)	2,213.3	2,208.8	2,204.6	2,208.9	
Power Output (megawatts)	340.0	339.0	339.0	339.3	
NOx (ppmvd)	2.64	2.30	2.17	2.37	
NOx (ppm@15%O₂)	2.19	1.91	1.80	1.97	2.5
NOX (lb/hr)	17.72	15.43	14.53	15.89	
NOX (Ib/MI) NOX (Ib/MMBtu)	0.008	0.007	0.007	0.007	
CO (ppmvd)	0.48	0.45	0.46	0.46	
CO (ppm@15%O₂)	0.40	0.37	0.38	0.38	
CO (lb/hr)	1.95	1.84	1.87	1.89	33.7
CO (Ib/MMBtu)	0.001	0.001	0.001	0.001	
THC (ppmvd)	2.33	4.01	2.79	3.04	
THC (lb/hr)	5.43	9.35	6.50	7.09	
THC (Ib/MBtu)	0.002	0.004	0.003	0.003	
	0.98	0.97	0.000	0.97	
CH₄ (ppmvd)	0.33	0.31	0.28	0.31	
C ₂ H ₆ (ppmvd)	1.01	2.73	1.55	1.76	
VOC (ppmvd)	0.84	2.73	1.28	1.46	
VOC (ppm@15%O₂)	2.35	6.37	3.60	4.11	7.7
VOC (lb/hr)	0.001	0.003	0.002	0.002	
	0.20	0.000	0.20	0.20	
HCHO (ppmvd)	0.20	0.21	0.20	0.17	
HCHO (ppm@15%O₂)	0.88	0.10	0.17	0.89	·
HCHO (lb/hr)		0.94	0.01	0.01	
HCHO (ton/day) at 24 hr/day	0.01			3.92	8.1
HCHO (ton/year) at 8760 hr/year	3.84	4.10	3.82 0.000	0.000	
HCHO (Ib/MMBtu)	0.000	0.000	12:04	0.000	
PM ₁₀ Run Start Time (hh:mm)	06:48			14:30	
PM _{to} Run End Time (hh:mm)	08:56	11:45	14:30	2.86	
Total PM ₁₀ (mg)	2.56	3.76	2.27	2.00 2.43E-05	
Total PM_{10} (g/dscf)	2.16E-05	3.22E-05	1.91E-05		
Total PM10 (gr/dscf)	3.33E-04	4.97E-04	2.95E-04	3.75E-04	
Total PM ₁₀ (kg/hr)	1.41	2.08	1.24	1.58	33.0
Total PM10 (Ib/hr)	3.11	4.59	2.73	3.48	33.8
Total PM ₁₀ (ton/year) at 8760 hr/year	13.63	20.11	11.94	15.23	
Total PM ₁₀ (Ib/MMBtu)	0.001	0.002	0.001	0.001	
NH ₃ (ppmvd)	2.49	2.31	2.34	2.38	
NH₃ (ppm@15%O₂)	2.06	1.91	1.94	1.97	10
NH₃ (lb/hr)	6.17	5.72	5.80	5.90	
NH₃ (lb/MMBtu)	0.003	0.003	0.003	0.003	
O ₂ (%)	13.77	13.78	13.7 <u>9</u>	13.78	

TABLE 2.3 MITSUBISHI 501G, UNIT EU-TURBINE2/EU-DB2 100% W/DB LOAD DATA SUMMARY

Parameter	Run 1	Run 2	Run 3	Average	Permit Limits
Start Time (hh:mm:ss)	9:21:14	10:30:14	11:39:14	9:21:14	
End Time (hh:mm:ss)	10:20:44	11:29:44	12:38:44	12:38:44	
Run Duration (min / run)	60	60	60	60	
Bar. Pressure (in. Hg)	30.01	30.01	30.02	30.01	
Amb. Temp. (°F)	73	75	74	74	
Rel. Humidity (%)	51	45	55	50	
Spec. Humidity (lb water / lb air)	0.008777	0.008275	0.009802	0.008951	
Turbine Fuel Flow (SCFH)	2,320,200	2,227,200	2,392,400	2,313,267	
Stack Flow (RM19) (SCFH)	55,986,940	53,240,110	57,131,576	55,452,875	
Stack Moisture (% Method 4)	9.2	9.1	8.8	9.0	
Heat Input (MMBtu/hr)	2,349.2	2,255.0	2,422.3	2,342.2	
Power Output (megawatts)	351.0	348.0	362.0	353.7	
NOx (ppmvd)	2.67	2.67	2.67	2.67	
NOx (ppm@15%O₂)	2.08	2.06	2.06	2.06	2.5
NOx (lb/hr)	17.84	17.00	18.22	17.69	
NOx (lb/MMBtu)	0.008	0.008	0.008	0.008	
CO (ppmvd)	1.11	0.96	0.91	0.99	
CO (ppm@15%O ₂)	0.86	0.74	0.70	0.77	
CO (lb/hr)	4.50	3.71	3.79	4.00	33.7
CO (Ib/MMBtu)	0.002	0.002	0.002	0.002	
THC (ppmvd)	2.27	2.64	2.85	2.59	
THC (lb/hr)	5.29	5.84	6.77	5.97	
THC (Ib/MBtu)	0.002	0.003	0.003	0.003	
CH ₄ (ppmvd)	0.75	0.64	1.10	0.83	
C_2H_6 (ppmvd)	0.24	0.32	0.38	0.31	
VOC (ppmvd)	1.29	1.68	1.37	1.45	
VOC (ppm@15%O₂)	1.00	1.30	1.05	1.12	
VOC (lb/hr)	3.00	3.72	3.25	3.32	7.7
VOC (lb/MMBtu)	0.001	0.002	0.001	0.001	
HCHO (ppmvd)	0.20	0.23	0.25	0.23	
HCHO (ppm@15%O₂)	0.16	0.18	0.19	0.17	
HCHO (lb/hr)	0.88	0.95	1.10	0.97	
HCHO (ton/day) at 24 hr/day	0.01	0.01	0.01	0.01	
HCHO (ton/year) at 8760 hr/year	3.85	4.14	4.81	4.27	8.1
HCHO (lb/MMBtu)	0.000	0.000	0.000	0.000	
PM ₁₀ Run Start Time (hh:mm)	09:46	12:30	15:19	09:46	
PM ₁₀ Run End Time (hh:mm)	12:01	14:48	17:34	17:34	
Total PM ₁₀ (mg)	4.86	5.39	2.98	4.41	
Total PM ₁₀ (g/dscf)	4.17E-05	4.79E-05	2.67E-05	3.87E-05	
Total PM ₁₀ (gr/dscf)	6.44E-04	7.39E-04	4.11E-04	5.98E-04	
Total PM ₁₀ (kg/hr)	2.70	3.06	1.72	2.49	
Total PM ₁₀ (lb/hr)	5.96	6.75	3.79	5.50	33.8
Total PM ₁₀ (ton/year) at 8760 hr/year	26.09	29.58	16.58	24.08	
Total PM ₁₀ (lb/MMBtu)	0.002	0.003	0.001	0.002	
NH ₃ (ppmvd)	2.84	2.67	2.49	2.67	
NH_3 (ppm@15%O ₂)	2.21	2.06	1.92	2.06	10
NH_3 (lb/hr)	7.03	6.29	6.30	6.54	
NH ₃ (Ib/MMBtu)	0.003	0.003	0.003	0.003	
	13.31	13.24	13.23	13.26	

The results of all measured pollutant emissions were below the required limits. All testing was performed without any real or apparent errors. All testing was conducted according to the approved testing protocol.

3.0 SOURCE OPERATION

3.1 PROCESS DESCRIPTION

New Covert owns and operates the New Covert Generating Facility located at 26000 77th Street in Covert, Michigan. The facility consists of three natural gas-fired Mitsubishi 501G turbines with heat recovery steam generators (HRSGs), designated as Emission Unit EU-TURBINE1, EU-TURBINE2, and EU-TURBINE3. Each HRSG contains a duct burner, designated as Emission Unit EU-DB1, EU-DB2, and EU-DB3, to provide additional steam generating capability and increase the maximum power generating capability of the HRSG. Each duct burner is rated at approximately 256 million British thermal units per hour (MMBtu/hr) but were not operated, except for one of the three load conditions. Each turbine and duct burner set are equipped with dry low-NOx combustors, a selective catalytic reduction (SCR) system, and an oxidation catalyst to control nitrogen oxides (NOx) and carbon monoxide (CO) respectively.

3.2 SAMPLING LOCATION

The stack is circular and measures 22.1 feet (ft) (265 inches) in diameter at the test ports which are approximately 140 ft above grade level with an exit elevation of approximately 160 ft above grade level. The test ports are located approximately 85 ft (1020 inches) downstream and approximately 20 ft (240 inches) upstream from the nearest disturbances. All exhaust samples for gaseous emissions were continuously drawn from the exhaust system at the sample ports from a single point determined after conducting a stratification test (Appendix E). During the stratification test three points were traversed from each of the four ports. The probe was allowed to remain at a point for two times the system response time.

4.0 SAMPLING AND ANALYTICAL PROCEDURES

4.1 TEST METHODS

The emission test on the Mitsubishi 501G, Unit EU-Turbine2/EU-DB2 at the New Covert Generating Facility was performed following United States Environmental Protection Agency (EPA) methods described by the Code of Federal Regulations (CFR). Table 4.1 outlines the specific methods performed on August 9-11, 2013.

Pollutant or Parameter	Sampling Method	Analysis Method		
Sample Point Location	EPA Method 1	Equal Area Method		
Stack Flow Rate	EPA Method 2	S-Type Pitot Tube		
Molecular Weight (O ₂)	EPA Method 3a	Paramagnetic Cell		
Stack Moisture Content	EPA Method 4	Gravimetric Analysis		
Nitrogen Oxides	EPA Method 7e	Chemiluminescent Analyzer		
Carbon Monoxide	EPA Method 10	Nondispersive Infrared Analyzer		
Total Hydrocarbons	EPA Method 25a	Flame Ionization Detector		
Formaldehyde, Ammonia, Methane, Ethane	EPA Method 320	Fourier Transform Infrared		
Particulate Matter (PM ₁₀)	EPA Method 5/202	Total Filterable/Condensable		

TABLE 4.1 SUMMARY OF SAMPLING METHODS

4.2 INSTRUMENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS

The sampling and analysis procedures used during these tests conform with the methods outlined in the Code of Federal Regulations (CFR), Title 40, Part 60, Appendix A, Methods 1, 2, 3a, 4, 5/202, 7e, 10, 18/25a, and Method 320.

Figure 4.1 depicts the sample system used for the NOx, CO, THC, and O_2 tests. A stainless steel probe was inserted into the sample port of the stack to extract gas measurements from the emission stream at a single point in the stack determined after passing an initial stratification test. The gas sample was continuously pulled through the probe and transported, via heat-traced Teflon® tubing, to a heated head pump and into the FTIR then to a stainless steel minimum-contact condenser designed to dry the sample. Transportation of the sample, through Teflon® tubing, continued into the sample manifold within the mobile laboratory via a stainless steel/Teflon® diaphragm pump. From the manifold, the sample was partitioned to the NOx, CO, THC, and O_2 analyzers through rotameters that controlled the flow rate of the sample.

Figure 4.1 shows that the sample system was also equipped with a separate path through which a calibration gas could be delivered to the probe and back through the entire sampling system. This allowed for convenient performance of system bias checks as required by the testing methods.

All instruments were housed in an air-conditioned, trailer-mounted mobile laboratory. Gaseous calibration standards were provided in aluminum cylinders with the concentrations certified by the vendor. EPA Protocol No. 1 was used to determine the cylinder concentrations where applicable (i.e. NOx calibration gases).

Table 4.2 provides a description of the analyzers used for the instrument portion of the tests. All data from the continuous monitoring instruments were recorded on a Logic Beach Portable Data Logging System Hyperlogger which retrieves calibrated electronic data from each instrument every one second and reports an average of the collected data every 30 seconds. For target compounds measured with the Fourier transform infrared (FTIR) spectrometer, interferograms consisting of 27 co-added scans were recorded continuously during the test periods, and provided approximately 30-second average concentrations. Spectral data was analyzed by the MKS MG2000 software. Data records can be found in Appendix A and B of this report.

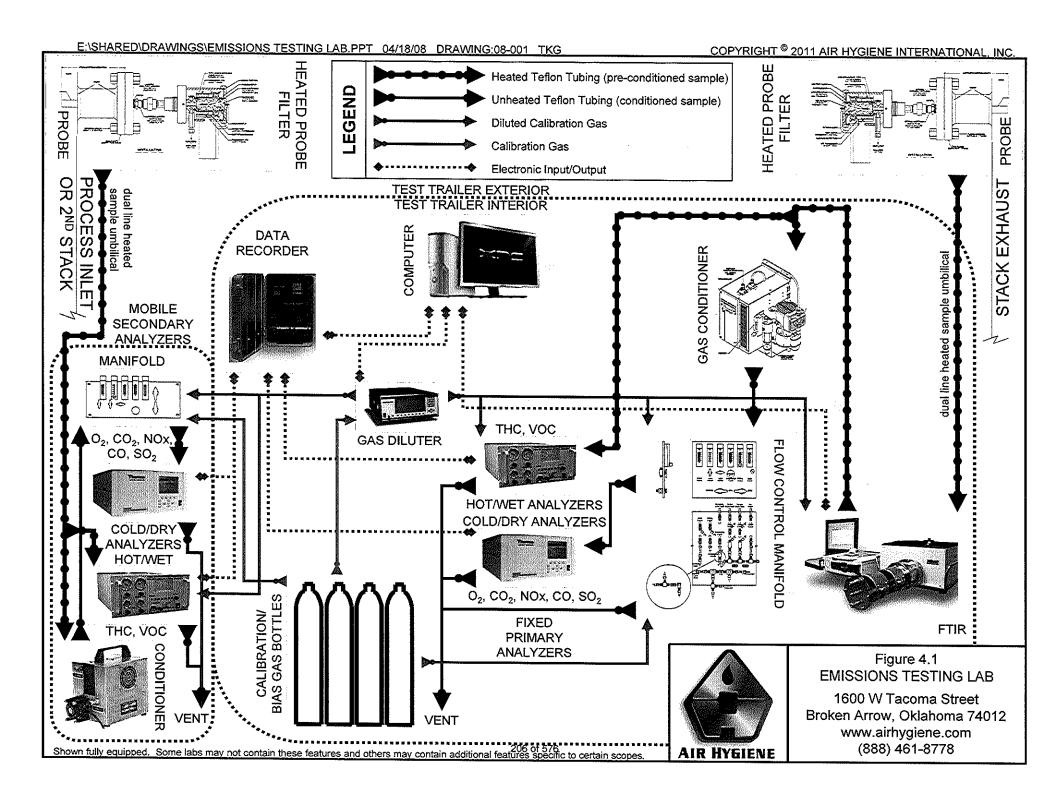
Figure 4.2 represents the sample system used for the wet chemistry tests (PM_{10}). A heated stainless steel probe with an inconel liner and stainless steel nozzle was inserted into the sample ports of the stack to extract gas measurements from the emission stream through a filter and glass impinger train. Flow rates are monitored with oil filled manometers and total sample volumes are measured with a dry gas meter.

Three test runs of approximately 60 minutes each were conducted on the Mitsubishi 501G, Unit EU-Turbine2/EU-DB2 for NOx, CO, VOC, NH_3 , HCHO and O_2 . The stack gas analysis for O2 concentrations was performed in accordance with procedures set forth in EPA Method 3a. The O2 analyzer uses a paramagnetic cell detector. EPA Method 4 was used for Moisture calculations.

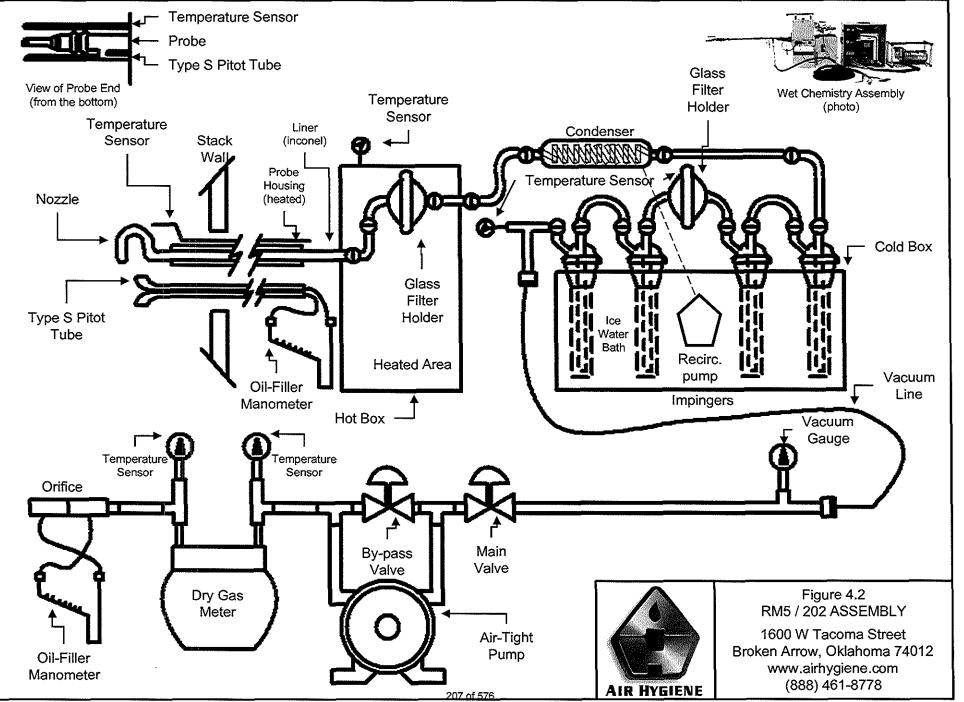
VOC emission concentrations were quantified in accordance with principles set forth in EPA Method 25a. A VIG 210 was used for this purpose. The VIG 210 includes both a conventional total hydrocarbon (THC) analyzer and an automated gas chromatograph (GC) for determining VOCs. For this specific testing, just the THC analyzer was used in conjunction with FTIR to determine VOC concentration.

EPA Method 7e was used to determine concentrations of NOx. A chemiluminescent analyzer was used to determine the nitrogen oxides concentration in the gas stream. A NO₂ in nitrogen certified gas cylinder was used to verify at least a 90 percent NO₂ conversion on the day of the test.

CO emission concentrations were quantified in accordance with procedures set forth in EPA Method 10. A continuous nondispersive infrared (NDIR) analyzer was used for this purpose.


An MKS Instruments - MultiGasTM Fourier Transform Infrared (FTIR) spectrometer, or equivalent, was used for HCHO, NH₃, methane and ethane analysis per EPA Method 320. The FTIR spectrometer spectral resolution was 0.5 cm-1. The system employed a silicon carbide infrared source at 1200°C, a helium neon reference laser, beam splitters, potassium bromide (KBr) cell window, front-surface optical transfer mirrors, and multi-pass absorption cells. MCT detectors were used and cooled with liquid nitrogen in order to maintain a constant temperature of 77 Kelvin. The approximately 5.11-meter multi-pass path cells incorporated aspheric, aberration-correcting mirrors to increase the optical throughput and the detection sensitivity. Transducers and thermocouples were connected directly to the insulated sample cells that provide the pressure and temperatures of the sample streams. During testing, the temperature of the absorption cells was set at 191°C. Elevated temperature prevented gas condensation within the cell and minimized compound adhesion to the cell walls and mirrors. The volume of the absorption cell was 0.5 liters, so at a sample gas flow rate of 4.0 liters per minute, the sample gas in the cell is refreshed approximately four times each minute. Interferograms consisting of 28 co-added scans were recorded continuously during the test periods, and provided approximately 30-second average concentrations.

Results from the FTIR analysis of methane and ethane were subtracted from the total hydrocarbon (THC) concentrations determined in a standard flame ionization detector (FID) type analyzer, calibrated and monitored per EPA Method 25a.


Three PM runs of approximately 120 minutes were conducted on the exhaust of New Covert's Mitsubishi 501G, Unit EU-Turbine2/EU-DB2 at 75%, 100% W/DB and 100% W/O DB of total capacity.

Parameter	Manufacturer and Model	Range	Sensitivity	Detection Principle	
NOx	THERMO 42C	User may select up to 5,000 ppm	0.1 ppm	Thermal reduction of NO_2 to NO . Chemiluminescence of reaction of NO with O_3 . Detection by PMT. Inherently linear for listed ranges.	
со	THERMO 48C	User may select up to 10,000 ppm	0.1 ppm	Infrared absorption, gas filter correlation detector, microprocessor based linearization.	
O ₂	SERVOMEX 1440	0-25%	0.1%	Paramagnetic cell, inherently linear	
HCHO, NH₃, CH₄, C₂H ₆	MKS 2030	User may select from Multiple ranges	0.1 ppm	Fourier Transform Infrared Spectrometer – FTIR	
THC/VOC	VIG 210	User may select up to 10,000 ppm	0.1 ppm	GC Column and Flame lonization Detector	

TABLE 4.2 ANALYTICAL INSTRUMENTATION

COPYRIGHT © 2009 AIR HYGIENE INTERNATIONAL, INC.

APPENDIX A

TEST RESULTS AND CALCULATIONS

Contract Contraction

ntan Ara

TABLE A.1: EMISSIONS TESTING SCHEDULE

Unit	Load	Test Type	Run	Date	Start	Stop	Time Sync
EU-Turbine2/EU-D92	100% W/Db	Stratification Test	1	08/09/13	8:37:44	9:16:44	CST
EU-Turbine2/EU-D82	100% W/Db	Preliminaries	2-100% W-DB-V1	08/09/13	8:33:00	9:01:00	CST
EU-Turbine2/EU-D82	100% W/Db	Compliance	1-1	08/09/13	9:21:14	10:20:44	CST
EU-Turbine2/EU-DB2	100% W/Db	Compliance	1-2	08/09/13	10:30:14	11:29:44	CST
EU-Turbine2/EU-DB2	100% W/Db	Compliance	1-3	08/09/13	11:39:14	12:38:44	CST
EU-Turbine2/EU-DB2	100% W/Db	Particulates	2-100% W-DB-1	08/09/13	9:46:00	12:01:00	CST
EU-Turbine2/EU-DB2	100% W/Db	Particulates	2-100% W-DB-2	08/09/13	12:30:14	14:48:00	CST
EU-Turbine2/EU-DB2	100% W/Db	Particulates	2-100% W-DB-3	08/09/13	15:19:00	17:34:00	CST
EU-Turbine2/EU-DB2	100% W/O Db	Compliance	1-1	08/10/13	7:30:14	8:29:44	CST
EU-Turbine2/EU-DB2	100% W/O Db	Compliance	1-2	08/10/13	8:39:14	9:38:44	CST
EU-Turbine2/EU-D82	100% W/O Db	Compliance	1-3	08/10/13	9:48:14	10:47:44	CST
EU-Turbine2/EU-DB2	100% W/O Db	Particulates	2-100% W/O DB-1	08/10/13	6:48:00	8:56:00	CST
EU-Turbine2/EU-DB2	100% W/O Db	Particulates	2-100% W/O DB-2	08/10/13	9:33:00	11:45:00	CST
EU-Turbine2/EU-DB2	100% W/O Db	Particulates	2-100% W/O DB-3	08/10/13	12:04:00	14:30:00	CST
EU-Turbine2/EU-DB2	75%	Compliance	1-1	08/11/13	6:56:14	7:55:44	CST
EU-Turbine2/EU-DB2	75%	Compliance	1-2	08/11/13	8:05:14	9:04:44	CST
EU-Turbine2/EU-DB2	75%	Compliance	1-3	08/11/13	9:14:14	10:13:44	CST
EU-Turbine2/EU-D82	75%	Particulates	2-75%-1	08/11/13	6:43:00	9:01:00	CST
EU-Turbine2/EU-DB2	75%	Particulates	2-75%-2	08/11/13	9:23:00	11:38:00	CST
EU-Turbine2/EU-DB2	75%	Particulates	2-75%-3	08/11/13	12:15:00	13:48:00	CST

RECEIVED

OCT 2 3 2013 AIR QUALITY DIV.

TEST RESULTS AND CALCULATIONS

NOx, CO, THC/VOC, CO₂, and O₂ Data

RECEIVED

CRX 2 S Toto

MIG YTLINUD FIA