

AIR EMISSION TEST REPORT

Title: AIR EMISSION TEST REPORT FOR THE VERIFICATION OF AIR POLLUTANT EMISSIONS FROM LANDFILL GAS FUELED INTERNAL COMBUSTION ENGINES

Report Date: August 23, 2019

Test Date: July 30, 2019

Facility Information		
Name:	North American Natural Resources Venice Park Renewable Energy Facility	
Street Address:	9536 East Lennon Road	
City, County:	Lennon, Shiawassee	

Facility Permi	t Information		
ROP No.:	MI-ROP-N5910-2015a	Facility SRN :	N5910

Testing Contractor			
Company:	Impact Compliance & Testing, Inc.		
Mailing Address:	37660 Hills Tech Drive Farmington Hills, MI 48331		
Phone:	(734) 464-3880		
Project No.:	1900165		

TABLE OF CONTENTS

Page

1.0	INTRODUCTION	1
2.0	 SOURCE AND SAMPLING LOCATION DESCRIPTION 2.1 General Process Description 2.2 Rated Capacities and Air Emission Controls 2.3 Sampling Locations 	3 3 3 3
3.0	 SUMMARY OF TEST RESULTS AND OPERATING CONDITIONS. 3.1 Purpose and Objective of the Tests	4 4 5
4.0	 SAMPLING AND ANALYTICAL PROCEDURES. 4.1 Summary of Sampling Methods	6 6 7 7 8 8
5.0	QA/QC ACTIVITIES5.1 NOx Converter Efficiency Test5.2 Gas Divider Certification (USEPA Method 205)5.3 Instrumental Analyzer Interference Check5.4 Instrument Calibration and System Bias Checks5.5 Determination of Exhaust Gas Stratification5.6 Meter Box Calibrations5.7 Particulate Matter Recovery and Analysis5.8 Laboratory QA/QC Procedures	10 10 10 10 11 11 12 12
6.0	RESULTS6.1 Test Results and Allowable Emission Limits6.2 Variations from Normal Sampling Procedures or Operating Conditions	12 12 13

LIST OF TABLES

Tab	ble	Page
3.1	Average operating conditions during the test periods	5
3.2	Average measured emission rates for each engine (three-test average)	5
6.1	Measured exhaust gas conditions and air pollutant emission rates for Engine No. 7R (EUNANRENGINE7R)	14-15
6.2	Measured exhaust gas conditions and air pollutant emission rates for Engine No. 8R (EUNANRENGINE8R)	16-17

LIST OF APPENDICES

APPENDIX 1	SAMPLING DIAGRAMS
APPENDIX 2	OPERATING RECORDS
APPENDIX 3	FLOWRATE FIELD DATA SHEETS
APPENDIX 4	CO2, O2, CO, NOX, VOC, AND PM2.5/PM10 CALCULATIONS
APPENDIX 5	INSTRUMENTAL ANALYZER RAW DATA
APPENDIX 6	QA/QC RECORDS
APPENDIX 7	PM2.5/PM10 LABORATORY REPORT

AIR EMISSION TEST REPORT FOR THE VERIFICATION OF AIR POLLUTANT EMISSIONS FROM LANDFILL GAS FUELED INTERNAL COMBUSTION ENGINES

NORTH AMERICAN NATURAL RESOURCES AT THE VENICE PARK RDF

1.0 INTRODUCTION

North American Natural Resources (NANR) operates gas-fired reciprocating internal combustion engine and electricity generator sets (RICE gensets) at the Venice Park Renewable Energy Facility in Lennon, Shiawassee County, Michigan. The RICE are fueled by landfill gas (LFG) that is recovered from the Venice Park RDF, which is owned and operated by Waste Management of Michigan. The recovered gas is transferred to NANR where it is treated and used as fuel in the RICE gensets.

The Michigan Department of Environment, Great Lakes, and Energy-Air Quality Division (EGLE-AQD) has issued a combined Renewable Operating Permit (MI-ROP-N5910-2015a) and Permit to Install (MI-PTI-N5910-2015a) to the Venice Park RDF and NANR. The renewable electricity generation equipment owned and operated by NANR is specified in Section 2 of the RO Permit document.

- Within 180 days after commencement of initial startup, the permittee shall verify NOx, CO, VOC, PM10 and PM2.5 emission rates from EUNANRENGINE7R and EUNANRENGINE8R at maximum routine operating conditions, by testing at owner's expense, in accordance with Department requirements. The permittee must complete the testing once every five years, thereafter for FGENGINES7R-10.
- Except as provided in 40 CFR 60.4243(b), the permittee shall conduct an initial performance test for each engine in FGENGINES7R-10 within one year after startup of the engine and every 8760 hours of operation (as determined through the use of a non-resettable hour meter) or three years, whichever occurs first, to demonstrate compliance with the emission limits in 40 CFR 60.4233(e)

Air emission compliance testing was performed on EUNANRENGINE7R and 8R pursuant to ROP No. MI-ROP-N5910-2015a, PTI No. MI-PTI-N5910-2015a, and the federal Standards of Performance for Stationary Spark Ignition Internal Combustion Engines (the SI-RICE NSPS; 40 CFR Part 60 Subpart JJJJ).

North American Natural Resources at Venice Park RDF Air Emission Test Report

August 23, 2019 Page 2

The compliance testing was performed by Impact Compliance & Testing, Inc. (ICT), a Michigan-based environmental consulting and testing company. ICT representatives Tyler Wilson, Blake Beddow, Rob Harvey, and Tyler Harvey performed the field sampling July 30, 2019.

The exhaust gas sampling and analysis was performed using procedures specified in the Test Plan dated June 11, 2019 that was reviewed and approved by the EGLE-AQD. EGLE-AQD representatives Mr. Dave Patterson and Ms. Julie Brunner observed portions of the testing project.

Report Certification

This test report was prepared by Impact Compliance & Testing, Inc. based on field sampling data collected by Impact Compliance & Testing, Inc. Facility process data were collected and provided by NANR employees or representatives. This test report has been reviewed by NANR representatives and approved for submittal to the EGLE-AQD.

I certify that the testing was conducted in accordance with the specified test methods and submitted test plan unless otherwise specified in this report. I believe the information provided in this report and its attachments are true, accurate, and complete.

Report Prepared By:

Tyler J. Wilson Senior Project Manager Impact Compliance & Testing, Inc.

I certify that the facility and emission units were operated at maximum routine operating conditions for the test event. Based on information and belief formed after reasonable inquiry, the statements and information in this report are true, accurate and complete.

Responsible Official Certification:

Richard Spranger / Director of Operations North American Natural Resources

North American Natural Resources at Venice Park RDF Air Emission Test Report

2.0 SOURCE AND SAMPLING LOCATION DESCRIPTION

2.1 General Process Description

Landfill gas (LFG) containing methane is generated in the Venice Park RDF from the anaerobic decomposition of disposed waste materials. The LFG is collected from both active and capped landfill cells using a system of wells (gas collection system). The collected LFG is transferred to the NANR LFG power station facility where it is treated and used as fuel for six (6) RICE, two (2) of the CAT® Model G3516 RICE have been removed. Each RICE is connected to an electricity generator that produces electricity that is transferred to the local utility.

2.2 Rated Capacities and Air Emission Controls

The CAT® Model No. G3520C RICE has a rated output of 2,233 brake-horsepower (bhp) and the connected generator has a rated electricity output of 1,600 kilowatts (kW). The engine is designed to fire low-pressure, lean fuel mixtures (e.g., LFG) and is equipped with an air-to-fuel ratio controller that monitors engine performance parameters and automatically adjusts the air-to-fuel ratio and ignition timing to maintain efficient fuel combustion.

The engine/generator sets are not equipped with add-on emission control devices. Air pollutant emissions are minimized through the proper operation of the gas treatment system and efficient fuel combustion in the engines.

The fuel consumption rate is regulated automatically to maintain the heat input rate required to support engine operations and is dependent on the fuel heat value (methane content) of the treated LFG.

2.3 Sampling Locations

The RICE exhaust gas is directed through mufflers and is released to the atmosphere through dedicated vertical exhaust stacks with vertical release points. The four (4) CAT® Model G3520C RICE exhaust stacks are identical.

The engine exhaust sampling ports for the CAT® Model G3520C engines (Engine Nos. 7R, 8R, 9 and 10) are located in the exhaust gas duct prior to the engine muffler and exhaust stack. The exhaust duct has an inner diameter of 13.5 inches. Each duct is equipped with two (2) sample ports, opposed 90°, that provide a sampling location 60.0 inches (4.4 duct diameters) upstream and 88.0 inches (6.5 duct diameters) downstream from any flow disturbance and satisfies the USEPA Method 1 criteria for a representative sample location.

Individual traverse points were determined in accordance with USEPA Method 1.

Appendix 1 provides diagrams of the emission test sampling locations.

North American Natural Resources at Venice Park RDF August 23, 2019 Air Emission Test Report

Page 4

3.0 SUMMARY OF TEST RESULTS AND OPERATING CONDITIONS

3.1 **Purpose and Objective of the Tests**

The conditions for FGENGINES7R-10 in ROP No. MI-ROP-N5910-2015a and PTI No. MI-ROP-N5910-2015a state:

- Within 180 days after commencement of initial startup, the permittee shall verify NOx, CO, VOC, PM10 and PM2.5 emission rates from EUNANRENGINE7R and EUNANRENGINE8R at maximum routine operating conditions, by testing at owner's expense, in accordance with Department requirements. The permittee must complete the testing once every five years, thereafter for FGENGINES7R-10.
- Except as provided in 40 CFR 60.4243(b), the permittee shall conduct an initial performance test for each engine in FGENGINES7R-10 within one year after startup of the engine and every 8760 hours of operation (as determined through the use of a non-resettable hour meter) or three years, whichever occurs first, to demonstrate compliance with the emission limits in 40 CFR 60.4233(e)

Testing was performed to demonstrate compliance with the air pollutant emission limits specified in MI-ROP-N5910-2015a and MI-PTI-N5910-2015a for two (2) of the RICEgenerator sets in FGENGINES7R-10 (EUNANRENGINE7R and EUNANRENGINE8R).

3.2 **Operating Conditions During the Compliance Tests**

The testing was performed while the NANR engine/generator sets were operated at maximum operating conditions (1.600 kW electricity output +/- 10%). NANR representatives provided the kW output in 15-minute increments for each test period.

Fuel flowrate and fuel methane content (%) were also recorded by NANR representatives in 15-minute increments for each test period.

Appendix 2 provides operating records provided by NANR representatives for the test periods.

Engine output (bhp) cannot be measured directly and was calculated based on the recorded electricity output, the calculated CAT® Model G3520C generator efficiency (96.1%), and the unit conversion factor for kW to horsepower (0.7457 kW/hp).

Engine output (bhp) = Electricity output (kW) / (0.961) / (0.7457 kW/hp)

Table 3.1 presents a summary of the average engine operating conditions during the test periods.

North American Natural Resources at Venice Park RDF Air Emission Test Report

August 23, 2019 Page 5

3.3 Summary of Air Pollutant Sampling Results

The gases exhausted from the sampled LFG fueled RICE (Engine Nos. 7R and 8R) were each sampled for three (3) one-hour test periods during the compliance testing performed July 30, 2019.

Table 3.2 presents the average measured emission rates for the engines (average of the three test periods for each engine).

Test results for each one-hour sampling period and comparison to the permitted emission rates is presented in Section 6.0 of this report.

Table 3.1	Average engine	onerating o	onditions	during th	na tast nariads
	Average engine	operating c	Jonations	uunng u	le lest perious

Engine Parameter	Engine No. 7R	Engine No. 8R
Generator output (kW)	1,527	1,582
Engine output (bhp)	2,130	2,208
Engine LFG fuel use (scfm)	583	587
LFG methane content (%)	49.8	50.0

 Table 3.2
 Average measured emission rates for each engine (three-test average)

		Emission Rates	NO _x Emission Rates		VOC Emission Rates	PM2.5/PM10 Emission Rates
Emission Unit	(lb/hr)	(g/bhp-hr)	(lb/hr)	(g/bhp-hr)	(g/bhp-hr)	(lb/hr)
Engine No. 7R	11.5	2.44	1.86	0.40	0.15	0.39
Engine No. 8R	10.9	2.23	1.84	0.38	0.16	0.38
Permit Limit	16.30	3.30	2.97	2.0	0.63	0.74

North American Natural Resources at Venice Park RDF Air Emission Test Report August 23, 2019 Page 6

4.0 SAMPLING AND ANALYTICAL PROCEDURES

A Stack Test Protocol for the air emission testing was reviewed and approved by the EGLE-AQD. This section provides a summary of the sampling and analytical procedures that were used during the NANR testing periods.

4.1 Summary of Sampling Methods

USEPA Method 1	Exhaust gas velocity measurement locations were determined based on the physical stack arrangement and requirements in USEPA Method 1.
USEPA Method 2	Exhaust gas velocity pressure was determined using a Type-S Pitot tube connected to a red oil incline manometer; temperature was measured using a K-type thermocouple connected to the Pitot tube.
USEPA Method 3A	Exhaust gas O_2 and CO_2 content was determined using paramagnetic and infrared instrumental analyzer.
USEPA Method 4	Exhaust gas moisture was determined based on the water weight gain in chilled impingers.
USEPA Method 7E	Exhaust gas NOx concentration was determined using chemiluminescence instrumental analyzers.
USEPA Method 10	Exhaust gas CO concentration was measured using an infrared instrumental analyzer.
USEPA Method 5	Exhaust gas filterable particulate matter concentration using isokinetic sampling.
USEPA Method 202	Exhaust gas condensable particulate matter concentration using isokinetic sampling.

4.2 Exhaust Gas Velocity Determination (USEPA Method 2)

The RICE exhaust stack gas velocities and volumetric flow rates were determined using USEPA Method 2 during the isokinetic sampling periods. An initial velocity measurement was performed for each engine in order to assess the appropriate nozzle size and isokinetic sampling rate.

An S-type Pitot tube connected to a red-oil manometer was used to determine velocity pressure at each traverse point across the stack cross section. Gas temperature was measured using a K-type thermocouple mounted to the Pitot tube. The Pitot tube and

North American Natural Resources at Venice Park RDF Air Emission Test Report August 23, 2019 Page 7

connective tubing were periodically leak-checked to verify the integrity of the measurement system.

Appendix 3 provides exhaust gas flowrate field data sheets (isokinetic PM2.5/PM10).

4.3 Exhaust Gas Molecular Weight Determination (USEPA Method 3A)

 CO_2 and O_2 content in the RICE exhaust gas stream was measured continuously throughout each test period in accordance with USEPA Method 3A. The CO_2 content of the exhaust was monitored using a Servomex single beam single wavelength (SBSW) infrared gas analyzer. The O_2 content of the exhaust was monitored using a Servomex gas analyzer that uses a paramagnetic sensor.

During each sampling period, a continuous sample of the IC engine exhaust gas stream was extracted from the stack using a stainless steel probe connected to a Teflon® heated sample line. The sampled gas was conditioned by removing moisture prior to being introduced to the analyzers; therefore, measurement of O_2 and CO_2 concentrations correspond to standard dry gas conditions. Instrument response data were recorded using an ESC Model 8816 data acquisition system that monitored the analog output of the instrumental analyzers continuously and logged data as one-minute averages.

Prior to, and at the conclusion of each test, the instruments were calibrated using upscale calibration and zero gas to determine analyzer calibration error and system bias (described in Section 5.0 of this document). Sampling times were recorded on field data sheets.

Appendix 4 provides O_2 and CO_2 calculation sheets. Raw instrument response data are provided in Appendix 5.

4.4 Exhaust Gas Moisture Content (USEPA Method 4)

Moisture content of the RICE exhaust gas stream was determined in accordance with USEPA Method 4 as a component of the particulate matter sampling train. The moisture sampling was performed concurrently with the instrumental analyzer sampling. During each sampling period, a gas sample was extracted at a constant rate from the source where moisture was removed from the sampled gas stream using a knockout impinger and impingers that were submersed in an ice bath. At the conclusion of each sampling period, the moisture gain in the impingers was determined gravimetrically by weighing each impinger to determine net weight gain.

Appendix 3 provides exhaust gas moisture gain field data sheets (isokinetic PM2.5/PM10).

4.5 NO_x and CO Concentration Measurements (USEPA Methods 7E and 10)

 NO_X and CO pollutant concentrations in the RICE exhaust gas streams were determined using a Thermo Environmental Instruments, Inc. (TEI) Model 42c High Level chemiluminescence NO_X analyzer and a TEI Model 48i infrared CO analyzer.

North American Natural Resources at Venice Park RDF Air Emission Test Report August 23, 2019 Page 8

Throughout each test period, a continuous sample of the engine exhaust gas was extracted from the stack using the Teflon® heated sample line and gas conditioning system and delivered to the instrumental analyzers. Instrument response for each analyzer was recorded on an ESC Model 8816 data acquisition system that logged data as one-minute averages. Prior to, and at the conclusion of each test, the instruments were calibrated using upscale calibration and zero gas to determine analyzer calibration error and system bias.

Appendix 4 provides CO and NO_X calculation sheets. Raw instrument response data are provided in Appendix 5.

4.6 Measurement of Volatile Organic Compounds (USEPA Method 25A/ALT-096)

The VOC emission rate was determined by measuring the nonmethane hydrocarbon (NMHC) concentration in the engine exhaust gas. NMHC pollutant concentration was determined using a TEI Model 55i Methane / Nonmethane hydrocarbon analyzer. The TEI 55i analyzer contains an internal gas chromatograph column that separates methane from non-methane components. The concentration of NMHC in the sampled gas stream, after separation from methane, is determined relative to a propane standard using a flame ionization detector in accordance with USEPA Method 25A.

The USEPA Office of Air Quality Planning and Standards (OAQPS) has issued an alternate test method approving the use of the TEI 55i-series analyzer as an effective instrument for measuring NMOC from gas-fueled reciprocating internal combustion engines (RICE) in that it uses USEPA Method 25A and 18 (ALT-096).

Samples of the exhaust gas were delivered directly to the instrumental analyzer using the Teflon® heated sample line to prevent condensation. The sample to the NHMC analyzer was not conditioned to remove moisture. Therefore, VOC measurements correspond to standard conditions with no moisture correction (wet basis).

Prior to, and at the conclusion of each test, the instrument was calibrated using mid-range calibration (propane) and zero gas to determine analyzer calibration error and system bias (described in Section 5.0 of this document).

Appendix 4 provides VOC calculation sheets. Raw instrument response data for the NMHC analyzer is provided in Appendix 5.

4.7 Measurement of Particulate Matter Emissions (USEPA Method 5/202)

The conditions of MI-ROP-N5910-2015a and MI-PTI-N5910-2015a specify PM2.5/PM10 emission limits for the RICE generators sets. The testing was performed using a combined filterable and condensable particulate matter (PM) sampling train. The filterable and condensable fractions were added to calculate total PM2.5/PM10 emissions (i.e., all filterable and condensable PM emissions were assumed to be in the PM2.5/PM10 size range).

North American Natural Resources at Venice Park RDF Air Emission Test Report

4.7.1 Filterable Particulate Matter Sample Train (USEPA Method 5)

Filterable PM was determined using USEPA Method 5. RICE exhaust gas was withdrawn from the exhaust stack at an isokinetic sampling rate using an appropriately-sized stainless steel sample nozzle and heated probe with stainless steel liner. The collected exhaust gas was passed through a pre-tared glass fiber filter that was housed in an independent heated filter box. The back half of the filter housing was connected to the condensable PM impinger train with a length of Teflon line (due to the exhaust sampling locations, the impinger train could not be directly connected to the filter box).

4.7.2 <u>Condensable Particulate Matter Sample Train (USEPA Method 202)</u>

Condensable PM (CPM) concentrations were measured in accordance with USEPA Method 202. Following the Method 5 filter assembly, the sample gas travelled through the Teflon connecting line to the impinger train which consisted of a condenser, a knock-out impinger, a standard Greenberg-Smith (G-S) impinger (dry), a Teflon-coated CPM filter (with exhaust thermocouple), a modified G-S impinger containing 100 milliliters of deionized water, and a modified G-S impinger containing a known amount of indicating silica gel.

The CPM components of the Method 202 sampling train (dry knockout impinger and dry GS impinger) were placed in a tempered water bath and a pump was used to circulate water through the condenser. Crushed ice was used to maintain the temperature of the bath such that the CPM filter outlet temperature remained between 65 and 85°F. Crushed ice was placed around the last two impingers to chill the gas to below 68°F.

4.7.3 Sample Recovery and Analysis (USEPA Method 5/202)

At the conclusion of each one-hour test period, the sample train was leak-checked and disassembled. The sample nozzle, stainless steel probe liner, and filter holder were brushed and rinsed with acetone. The recovered particulate filter and acetone rinses were stored in sealed containers and picked up by Enthalpy Analytical, Inc. (Durham, North Carolina) for gravimetric measurements.

The impingers were transported to the recovery area where they were weighed. The exhaust gas contained significant amounts of moisture. Therefore, prior to recovery, the CPM portion of the sample train underwent the nitrogen purge step of Method 202. The Teflon connecting line and glassware (between the particulate filter and CPM filter) were rinsed with DI water, acetone, and hexane in accordance with the Method 202 sample recovery procedures. The CPM filter and recovered rinses were clearly and uniquely labeled and transferred to Enthalpy Analytical, Inc. for analysis.

Diluent gas content (Method $3A O_2$ and CO_2) measurements were performed with each of the PM2.5/PM10 isokinetic sampling periods.

Appendix 4 provides PM/PM10 calculation sheets. The PM2.5/PM10 laboratory report is provided in Appendix 7.

North American Natural Resources at Venice Park RDF Air Emission Test Report August 23, 2019 Page 10

5.0 QA/QC ACTIVITIES

5.1 NO_x Converter Efficiency Test

The NO₂ – NO conversion efficiency of the Model 42c analyzer was verified prior to the testing program. A USEPA Protocol 1 certified concentration of NO₂ was injected directly into the analyzer, following the initial three-point calibration, to verify the analyzer's conversion efficiency. The analyzer's NO₂ – NO converter uses a catalyst at high temperatures to convert the NO₂ to NO for measurement. The conversion efficiency of the analyzer is deemed acceptable if the measured NO_X concentration is greater than or equal to 90% of the expected value.

The $NO_2 - NO$ conversion efficiency test satisfied the USEPA Method 7E criteria (measured NO_X concentration was greater than 90% of the expected value as required by Method 7E).

5.2 Gas Divider Certification (USEPA Method 205)

A STEC Model SGD-710C 10-step gas divider was used to obtain appropriate calibration span gases. The ten-step STEC gas divider was NIST certified (within the last 12 months) with a primary flow standard in accordance with Method 205. When cut with an appropriate zero gas, the ten-step STEC gas divider delivered calibration gas values ranging from 0% to 100% (in 10% step increments) of the USEPA Protocol 1 calibration gas that was introduced into the system. The field evaluation procedures presented in Section 3.2 of Method 205 were followed prior to use of gas divider. The field evaluation yielded no errors greater than 2% of the triplicate measured average and no errors greater than 2% from the expected values.

5.3 Instrumental Analyzer Interference Check

The instrumental analyzers used to measure NO_X , CO, O_2 and CO_2 have had an interference response test preformed prior to their use in the field pursuant to the interference response test procedures specified in USEPA Method 7E. The appropriate interference test gases (i.e., gases that would be encountered in the exhaust gas stream) were introduced into each analyzer, separately and as a mixture with the analyte that each analyzer is designed to measure. All of analyzers exhibited a composite deviation of less than 2.5% of the span for all measured interferent gases. No major analytical components of the analyzers have been replaced since performing the original interference tests.

5.4 Instrument Calibration and System Bias Checks

At the beginning of each day of the testing program, initial three-point instrument calibrations were performed for the NO_x , CO, CO_2 and O_2 analyzers by injecting calibration gas directly into the inlet sample port for each instrument. System bias checks were performed prior to and at the conclusion of each sampling period by introducing the upscale calibration gas and zero gas into the sampling system (at the base of the stainless steel sampling probe prior to the particulate filter and Teflon® heated sample line) and determining the instrument response against the initial instrument calibration readings.

North American Natural Resources at Venice Park RDF Air Emission Test Report August 23, 2019 Page 11

At the beginning of each test day, appropriate high-range, mid-range, and low-range span gases followed by a zero gas were introduced to the NMHC analyzer, in series at a tee connection, which is installed between the sample probe and the particulate filter, through a poppet check valve. After each one-hour test period, mid-range and zero gases were re-introduced in series at the tee connection in the sampling system to check against the method's performance specifications for calibration drift and zero drift error.

The instruments were calibrated with USEPA Protocol 1 certified concentrations of CO_2 , O_2 , NO_x , and CO in nitrogen and zeroed using hydrocarbon free nitrogen. The NMHC (VOC) instrument was calibrated with USEPA Protocol 1 certified concentrations of propane in air and zeroed using hydrocarbon-free air. A STEC Model SGD-710C ten-step gas divider was used to obtain intermediate calibration gas concentrations as needed.

5.5 Determination of Exhaust Gas Stratification

A stratification test was performed for each RICE exhaust stack. The stainless steel sample probe was positioned at sample points correlating to 16.7, 50.0 (centroid) and 83.3% of each stack diameter. Pollutant concentration data were recorded at each sample point for a minimum of twice the maximum system response time.

The recorded concentration data for each RICE exhaust stack indicated that the measured NO_x, CO, O₂ and CO₂ concentrations did not vary by more than 5% of the mean across each stack diameter. Therefore, the RICE exhaust gas was considered to be unstratified and the compliance test sampling was performed at a single sampling location within the RICE exhaust stack.

5.6 Meter Box Calibrations

The Nutech Model 2010 sampling console, which was used for the particulate matter and exhaust gas moisture content sampling, was calibrated prior to and after the testing program. This calibration uses the critical orifice calibration technique presented in USEPA Method 5. The metering console calibration exhibited no data outside the acceptable ranges presented in USEPA Method 5.

The digital pyrometer in the Nutech metering consoles were calibrated using a NIST traceable Omega® Model CL 23A temperature calibrator.

Appendix 6 presents test equipment quality assurance data ($NO_2 - NO$ conversion efficiency test data; instrument calibration and system bias check records; calibration gas and gas divider certifications; interference test results; meter box, Pitot tube, probe, nozzle, scale, and barometer calibration records; stratification checks).

North American Natural Resources at Venice Park RDF Air Emission Test Report August 23, 2019 Page 12

5.7 Particulate Matter Recovery and Analysis

All recovered particulate matter samples were stored and picked up in pre-rinsed glass sample bottles with Teflon® lined caps. The liquid level on each bottle was marked with a permanent marker prior to pick-up and the caps were secured closed with tape. Samples of the reagents used in the test event (200 milliliters each of deionized high-purity water, acetone and hexane) were picked up by a laboratory representative for analysis to verify that the reagents used to recover the samples have low particulate matter residues.

The glassware used in the condensable PM impinger trains was washed and rinsed prior to use in accordance with the procedures of USEPA Method 202. The glassware was not baked prior to use; therefore, ICT used the field train proof blank option provided in USEPA Method 202. Analysis of the collected field train proof blank rinses (sample train rinse performed prior to use) indicated a total of 1.14 milligrams (mg) of recovered PM from the sample train. In addition, a field train recovery proof blank was performed following the second sampling period. Analysis of the field train recovery proof blank resulted in 2.57 mg of recovered PM from the sample train. The reported condensable PM test results were blank-corrected according to the method (USEPA Method 202 allows a blank correction of up to 2 mg).

5.8 Laboratory QA/QC Procedures

The particulate matter analyses were conducted by a qualified third-party laboratory according to the appropriate QA/QC procedures specified in the USEPA Methods 5 and 202 and are included in the final report provided by Enthalpy Analytical.

6.0 <u>RESULTS</u>

6.1 Test Results and Allowable Emission Limits

Engine operating data and air pollutant emission measurement results for each one-hour test period are presented in Tables 6.1 through 6.2.

The measured air pollutant concentrations and emission rates for Engine Nos. 7R and 8R are less than the allowable limits specified in ROP No. MI-ROP-N5910-2015a and PTI No. MI-PTI-N5910-2015a for FGENGINES7R-10:

- 0.63 grams per brake horsepower hour (g/bhp-hr) for VOC;
- 0.74 pounds per hour (lb/hr) for PM2.5/PM10;
- 2.97 lb/hr and 2.0 g/bhp-hr for NO_X; and
- 16.30 lb/hr and 3.30 g/bhp-hr for CO.

North American Natural Resources at Venice Park RDFAugust 23, 2019Air Emission Test ReportPage 13

6.2 Variations from Normal Sampling Procedures or Operating Conditions

The engine-generator sets were operated within 10% of maximum output (1,600 kW generator output) during the engine test periods.

There were multiple engine shutdowns during emissions testing of Engine No. 7R. Following each engine shutdown, testing was resumed (after the engine was brought back up to load) following data collection of in-stack pollutant concentrations for at least twice the maximum system response time. At least 60-minutes of data were collected for each of the three (3) 1-hour tests for Engine No. 7R. EGLE-AQD representative Mr. Dave Patterson approved this procedure.

North American Natural Resources at Venice Park RDF Air Emission Test Report August 23, 2019 Page 14

Test No.	1	2	3	
Test date	7/30/19	7/30/19	7/30/19	Three Test
Test period (24-hr clock)	815-1026	1155-1406	1450-1607	Average
Fuel flowrate (scfm)	581	585	583	583
Generator output (kW)	1,515	1,532	1,533	1,527
Engine output (bhp)	2,114	2,138	2,139	2,130
LFG methane content (%)	49.6	49.8	50.1	49.8
Exhaust Gas Composition				
CO ₂ content (% vol)	11.0	10.9	10.8	10.9
O ₂ content (% vol)	8.75	8.90	8.99	8.88
Moisture (% vol)	13.0	12.6	12.4	12.6
		- / -		
Exhaust gas temperature (°F)	914	912	919	915
Exhaust gas flowrate (dscfm)	3,990	4,061	3,940	3,997
Exhaust gas flowrate (scfm)	4,584	4,645	4,495	4,575
Nitrogen Oxides	a a (o (=		
NO _x conc. (ppmvd)	69.4	64.7	60.6	64.9
NO _x emissions (lb/hr)	1.99	1.88	1.71	1.86
Permitted emissions (lb/hr)	-	-	-	2.97
NO_X emissions (g/bhp*hr)	0.43	0.40	0.36	0.40
Permitted emissions (g/bhp*hr)	-	-	-	2.0
Carbon Manavida				
<u>Carbon Monoxide</u> CO conc. (ppmvd)	686	656	632	658
CO emissions (lb/hr)	12.0	11.6	10.9	11.5
Permitted emissions (lb/hr)	-	11.0	-	16.3
. ,	- 2.56	- 2.46	2.30	2.44
CO emissions (g/bhp*hr) Permitted emissions (g/bhp*hr)	2.56	2.40	2.30	2.44 3.30
Fernilled emissions (g/brip m)	-	-	-	3.30
Volatile Organic Compounds				
VOC conc. (ppmv)	21.7	22.2	21.9	21.9
VOC emissions (g/bhp*hr)	0.15	0.15	0.14	0.15
Permitted emissions (g/bhp*hr)	-	-	-	0.63

Table 6.1 Measured exhaust gas conditions and air pollutant emission rates Engine No. 7R (EUNANRENGINE7R)

North American Natural Resources at Venice Park RDF Air Emission Test Report August 23, 2019 Page 15

Table 6.1	Measured exhaust gas conditions and air pollutant emission rates
	Engine No. 7R (EUNANRENGINE7R) [Continued]

Test No.	1	2	3	
Test date	7/30/19	7/30/19	7/30/19	Three Test
Test period (24-hr clock)	815-1026	1155-1406	1450-1607	Average
<u>Particulate Matter</u> Sampled volume (dscf)	43.1	42.9	43.5	43.2
Filterable catch (mg)	13.2	3.48	43.5 6.75	43.2 7.82
Condensable catch (mg)	21.6	24.0	21.7	22.4
Total PM2.5/PM10 catch (mg)	34.8	27.5	28.5	30.3
PM2.5/PM10 emissions (lb/hr)	0.45	0.37	0.37	0.39
Permitted emissions (lb/hr)	-	-	-	0.74

North American Natural Resources at Venice Park RDF Air Emission Test Report August 23, 2019 Page 16

Test No.	1	2	3	
Test date	7/30/19	7/30/19	7/30/19	Three Test
Test period (24-hr clock)	1740-1847	1927-2032	2113-2220	Average
Fuel flowrate (scfm)	589	586	587	587
Generator output (kW)	1,583	1,582	1,582	1,582
Engine output (bhp)	2,208	2,207	2,207	2,208
LFG methane content (%)	50.6	50.0	49.5	50.0
Exhaust Gas Composition				
CO ₂ content (% vol)	10.9	11.1	11.2	11.0
O ₂ content (% vol)	8.85	8.63	8.53	8.67
Moisture (% vol)	12.0	12.7	13.1	12.6
		- / -		
Exhaust gas temperature (°F)	891	918	926	912
Exhaust gas flowrate (dscfm)	4,354	4,438	4,313	4,368
Exhaust gas flowrate (scfm)	4,945	5,084	4,963	4,998
Nitrogen Oxides				
NO _X conc. (ppmvd)	64.2	57.9	54.2	58.8
NO _x emissions (lb/hr)	2.01	1.84	1.68	1.84
Permitted emissions (lb/hr)	-	-	-	2.97
NO _x emissions (g/bhp*hr)	0.41	0.38	0.34	0.38
Permitted emissions (g/bhp*hr)	-	-		2.0
<u>Carbon Monoxide</u>				
CO conc. (ppmvd)	577	566	566	569
CO emissions (lb/hr)	11.0	11.0	10.7	10.9
Permitted emissions (lb/hr)	-	-	-	16.3
CO emissions (g/bhp*hr)	2.25	2.25	2.19	2.23
Permitted emissions (g/bhp*hr)	-	-	-	3.30
Volatile Organic Compounds				
VOC conc. (ppmv)	23.9	22.4	22.4	22.9
VOC emissions (g/bhp*hr)	0.17	0.16	0.16	0.16
Permitted emissions (g/bhp*hr)	-	-	-	0.63

Table 6.2 Measured exhaust gas conditions and air pollutant emission rates for Engine No. 8R (EUNANRENGINE8R)

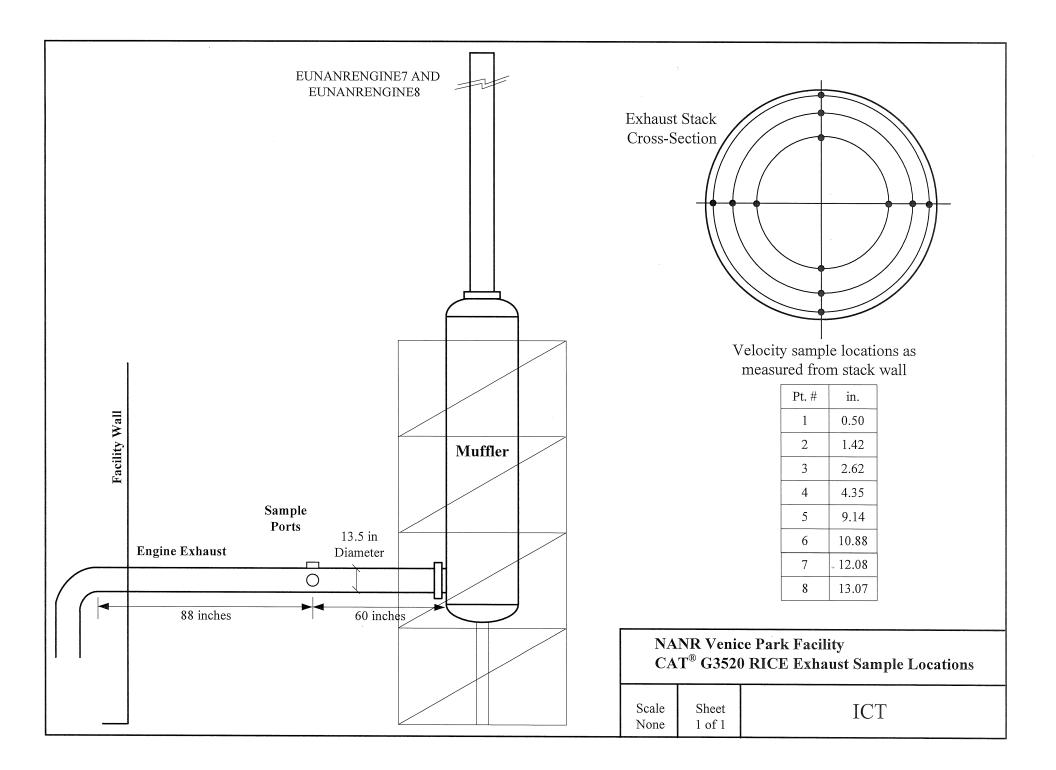

North American Natural Resources at Venice Park RDF Air Emission Test Report August 23, 2019 Page 17

Table 6.2	Measured exhaust gas conditions and air pollutant emission rates for
	Engine No. 8R (EUNANRENGINE8R) [Continued]

Test No.	1	2	3	
Test date	7/30/19	7/30/19	7/30/19	Three Test
Test period (24-hr clock)	1740-1847	1927-2032	2113-2220	Average
Particulate Matter	47.6	40.0	47.2	47.0
Sampled volume (dscf)	47.6 4.39	48.8 5.57	47.3	47.9 5.01
Filterable catch (mg)			5.06	
Condensable catch (mg)	22.1	25.1	26.0	24.4
Total PM2.5/PM10 catch (mg)	26.5	30.7	31.1	29.4
PM2.5/PM10 emissions (lb/hr)	0.35	0.40	0.40	0.38
Permitted emissions (lb/hr)	-	-	-	0.74

APPENDIX 1

• Figure 1-A – IC Engine Nos. 7R and 8R Sample Port Diagram

