# RECEIVED

#### AIR EMISSION TEST REPORT

NOV 09 2016

AIR QUALITY DIV.

AIR EMISSION TEST REPORT FOR THE

VERIFICATION OF AIR POLLUTANT EMISSIONS

FROM LANDFILL GAS FUELED INTERNAL

**COMBUSTION ENGINES** 

Report Date November 1, 2016

**Test Dates** October 4 - 5, 2016

**Facility Information** 

Title

North American Natural Resources Name

Venice Park Renewable Energy Facility

Street Address 9536 East Lennon Road

Lennon, Shiawassee, Michigan City, County

**Facility Permit Information** 

ROP No.: MI-ROP-N5910-2015 Facility SRN: N5910

**Testing Contractor** 

Company Derenzo Environmental Services

Mailing 39395 Schoolcraft Road Address

Livonia, MI 48150

(734) 464-3880 Phone

1608001 Project No.



MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

NOV 09 2016 AIR QUALITY DIVISION

# RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating Permit (ROP) program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as specified in Rule 213(3)(b)(li), and be made available to the Department of Environmental Quality, Air Quality Division upon

| Source Name North American Natural Res                                                                                                                                                                                                                                                     | ources / Venice Pa                                    | rk ፑቦም                         | County Shiawassee                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------|-----------------------------------------|
| Source Address 9536 East Lennon Road                                                                                                                                                                                                                                                       | Jacob , volitoe ra.                                   |                                |                                         |
| Source Address 9536 East Lemion Road                                                                                                                                                                                                                                                       |                                                       | City                           | Lennon                                  |
| AQD Source ID (SRN) N5910                                                                                                                                                                                                                                                                  | ROP No. N5910-2                                       | 015                            | ROP Section No. 02                      |
| Please check the appropriate box(es):                                                                                                                                                                                                                                                      |                                                       |                                |                                         |
| ☐ Annual Compliance Certification (Pursuant to                                                                                                                                                                                                                                             | Rule 213(4)(c))                                       |                                |                                         |
| Reporting period (provide inclusive dates): F  1. During the entire reporting period, this sourterm and condition of which is identified and incomethod(s) specified in the ROP.                                                                                                           |                                                       |                                |                                         |
| 2. During the entire reporting period this source<br>and condition of which is identified and included<br>report(s). The method used to determine con<br>otherwise indicated and described on the enclose.                                                                                 | I by this reference, EXCI<br>apliance for each term a | EPT for the deviation          | ns identified on the enclosed deviation |
| ☐ Semi-Annual (or More Frequent) Report Certi                                                                                                                                                                                                                                              | fication (Pursuant to F                               | Rule 213(3)(c))                |                                         |
| Reporting period (provide inclusive dates): F  1. During the entire reporting period, ALL more deviations from these requirements or any other controls.  2. During the entire reporting period, all monitor deviations from these requirements or any other enclosed deviation report(s). | r terms or conditions occ<br>oring and associated rec | curred.<br>ordkeeping requirer | nents in the ROP were met and no        |
| ☑ Other Report Certification                                                                                                                                                                                                                                                               |                                                       |                                |                                         |
|                                                                                                                                                                                                                                                                                            | ·                                                     |                                |                                         |
| and 10. The testing was conducted :                                                                                                                                                                                                                                                        | n accordance with                                     | the approved t                 | est plan                                |
| and the facility was operated in co                                                                                                                                                                                                                                                        | ompliance with the                                    | permit, at or                  | near                                    |
| maximum routine operating condition                                                                                                                                                                                                                                                        | s for the facility                                    | /•                             |                                         |
| certify that, based on information and belief formed supporting enclosures are true, accurate and complete                                                                                                                                                                                 |                                                       |                                | ·                                       |
| Richard Spranger Name-of Responsible Official (print or type)                                                                                                                                                                                                                              | Director<br>Title                                     | of Operations                  | (517) 719-1322<br>Phone Number          |
| trichand S V K                                                                                                                                                                                                                                                                             | THE                                                   |                                | 11-2-16                                 |
| Signature of Responsible Official                                                                                                                                                                                                                                                          |                                                       |                                | Date                                    |
| * Photocopy this form as needed.                                                                                                                                                                                                                                                           |                                                       |                                | EQP 5736 (Rev 11-04)                    |

# AIR EMISSION TEST REPORT FOR THE VERIFICATION OF AIR POLLUTANT EMISSIONS FROM LANDFILL GAS FUELED INTERNAL COMBUSTION ENGINES

# NORTH AMERICAN NATURAL RESOURCES AT THE VENICE PARK RDF

#### 1.0 <u>INTRODUCTION</u>

North American Natural Resources (NANR) operates gas-fired reciprocating internal combustion engine and electricity generator sets (RICE gensets) at the Venice Park Renewable Energy Facility in Lennon, Shiawassee County, Michigan. The RICE are fueled by landfill gas (LFG) that is recovered from the Venice Park RDF, which is owned and operated by Waste Management of Michigan. The recovered gas is transferred to NANR where it is treated and used as fuel in the RICE gensets.

The Michigan Department of Environmental Quality-Air Quality Division (MDEQ-AQD) has issued a combined Renewable Operating Permit (MI-ROP-N5910-2015) to the Venice Park RDF and NANR. The renewable electricity generation equipment owned and operated by NANR and specified in Section 2 of the ROP consists of:

- Four (4) Caterpillar (CAT®) Model No. G3516 LE RICE gensets identified as emission units EUNANRENGINE3 EUNANRENGINE6 (Flexible group ID FGENGINES3-6).
- Four (4) Caterpillar (CAT®) Model No. G3520C RICE gensets identified as emission units EUNANRENGINE7R, EUNANRENGINE8R, EUNANRENGINE9, and EUNANRENGINE10 (Flexible Group ID FGENGINE57R-10).

Air emission compliance testing was performed pursuant to ROP No. MI-ROP-N5910-2015 and the federal Standards of Performance for Stationary Spark Ignition Internal Combustion Engines (the SI-RICE NSPS; 40 CFR Part 60 Subpart JJJJ) and to satisfy conditions of Stipulation for Entry of a Final Order by Consent (Consent Order AQD 30-2013).

The compliance testing was performed by Derenzo Environmental Services, a Michigan-based environmental consulting and testing company. Derenzo Environmental Services representatives Clay Gaffey and Andy Rusnak performed the field sampling October 4 – 5, 2016.

The exhaust gas sampling and analysis was performed using procedures specified in the Test Plan dated October 30, 2015 that was reviewed and approved by the Michigan Department of Environmental Quality (MDEQ). MDEQ representative Ms. Julie Brunner observed portions of the testing project.

North American Natural Resources at Venice Park RDF Air Emission Test Report November 1, 2016 Page 2

Questions regarding this emission test report should be directed to:

Andy Rusnak, QSTI Technical Manager Derenzo Environmental Services 4180 Keller Rd., Ste. B Holt, MI 48842 Ph: (517) 268-0043 Mr. Richard Spranger
Director of Operations
North American Natural Resources
300 N 5<sup>th</sup> Street, Suite 100
Ann Arbor, Michigan 48104
(517) 719-1322

# **Report Certification**

This test report was prepared by Derenzo Environmental Services based on field sampling data collected by Derenzo Environmental Services. Facility process data were collected and provided by NANR employees or representatives. This test report has been reviewed by NANR representatives and approved for submittal to the MDEQ.

I certify that the testing was conducted in accordance with the specified test methods and submitted test plan unless otherwise specified in this report. I believe the information provided in this report and its attachments are true, accurate, and complete.

Report Prepared By:

Andy Rusnak, QSTI Fechnical Manager

Derenzo Environmental Services

I certify that the facility and emission units were operated at maximum routine operating conditions for the test event. Based on information and belief formed after reasonable inquiry, the statements and information in this report are true, accurate and complete.

11-0-16

Responsible Official Certification:

Richard Spranger

Director of Operations

North American Natural Resources

November 1, 2016 Page 3

# 2.0 SOURCE AND SAMPLING LOCATION DESCRIPTION

# 2.1 General Process Description

Landfill gas (LFG) containing methane is generated in the Venice Park RDF from the anaerobic decomposition of disposed waste materials. The LFG is collected from both active and capped landfill cells using a system of wells (gas collection system). The collected LFG is transferred to the NANR LFG power station facility where it is treated and used as fuel for the eight (8) RICE. Each RICE is connected to an electricity generator that produces electricity that is transferred to the local utility.

# 2.2 Rated Capacities and Air Emission Controls

The CAT® Model No. G3516 LE RICE has a rated output of 1,148 brake-horsepower (bhp) and the connected generator has a rated electricity output of 800 kilowatts (kW). The engine is designed to fire low-pressure, lean fuel mixtures (e.g., LFG) and is equipped with an air-to-fuel ratio controller that adjusts the air-to-fuel ratio to maintain efficient fuel combustion.

The CAT® Model No. G3520C RICE has a rated output of 2,233 brake-horsepower (bhp) and the connected generator has a rated electricity output of 1,600 kilowatts (kW). The engine is designed to fire low-pressure, lean fuel mixtures (e.g., LFG) and is equipped with an air-to-fuel ratio controller that monitors engine performance parameters and automatically adjusts the air-to-fuel ratio and ignition timing to maintain efficient fuel combustion.

The engine/generator sets are not equipped with add-on emission control devices. Air pollutant emissions are minimized through the proper operation of the gas treatment system and efficient fuel combustion in the engines.

The fuel consumption rate is regulated automatically to maintain the heat input rate required to support engine operations and is dependent on the fuel heat value (methane content) of the treated LFG.

# 2.3 Sampling Locations

The RICE exhaust gas is directed through mufflers and is released to the atmosphere through dedicated vertical exhaust stacks with vertical release points. The four (4) CAT® Model G3516 LE RICE exhaust stacks are identical. The four (4) CAT® Model G3520C RICE exhaust stacks are identical.

The engine exhaust sampling ports for the CAT® Model G3516 LE engines (Engine Nos. 3-6) are located in the exhaust gas duct prior to the engine muffler and exhaust stack. The exhaust duct has an inner diameter of 10.0 inches. Each duct is equipped with two (2) sample ports, opposed 90°, that provide a sampling location 43.0 inches (4.3 duct diameters) upstream and 217

North American Natural Resources at Venice Park RDF Air Emission Test Report November 1, 2016 Page 4

inches (21.7 duct diameters) downstream from any flow disturbance and satisfies the USEPA Method 1 criteria for a representative sample location.

The engine exhaust sampling ports for the CAT® Model G3520C engines (Engine Nos. 7R, 8R, 9 and 10) are located in the exhaust gas duct prior to the engine muffler and exhaust stack. The exhaust duct has an inner diameter of 13.5 inches. Each duct is equipped with two (2) sample ports, opposed 90°, that provide a sampling location 60.0 inches (4.4 duct diameters) upstream and 88.0 inches (6.5 duct diameters) downstream from any flow disturbance and satisfies the USEPA Method 1 criteria for a representative sample location.

Individual traverse points were determined in accordance with USEPA Method 1.

Appendix 1 provides diagrams of the emission test sampling locations.

RECEIVED

NOV 0 9 2016

AIR QUALITY DIV.

# 3.0 SUMMARY OF TEST RESULTS AND OPERATING CONDITIONS

# 3.1 Purpose and Objective of the Tests

The conditions for FGENGINES7R-10 in ROP No. MI-ROP-N5910-2015 state:

... the permittee shall conduct an initial performance test for [the engines] within one year after startup of the engine and every 8760 hours of operation ... to demonstrate compliance with the emission limits in 40 CFR 60.4233(e) ... If a performance test is required, the performance test shall be conducted according to 40 CFR 60.4244.

A Stipulation for Entry of a Final Order by Consent (Consent Order) was issued to NANR on January 23, 2014. Paragraphs 10a and 10b of the Consent Order, Testing Requirements, states that Within 3 years of the effective date of this Consent Order, [NANR] shall verify formaldehyde emission rates from

- both engines EUNANRENGINE7R and EUNANRENGINE8R [and]
- one of the following engines: EUNANRENGINE3, EUNANRENGINE4, EUNANRENGINE5...in accordance with Department requirements.

Testing was performed to demonstrate compliance with the air pollutant emission limits specified in MI-ROP-N5910-2015 for the RICE-generator sets in FGENGINES3-6 and FGENGINES7R-10. The formaldehyde testing for Engine No. 5 satisfied the testing requirement in FGENGINES3-6, Condition V.2, which states that NANR must verify formaldehyde emission rates from one or more engines in FGENGINES3-6 once every 5 years. The formaldehyde emission testing on Engines 7R and 8R satisfied the testing requirements FGENGINES7R-10, Condition V.4, which states that NANR must verify formaldehyde emission rates from one or more engines in FGENGINES7R-10 once every 5 years.

#### 3.2 Operating Conditions During the Compliance Tests

The testing was performed while the NANR engine/generator sets were operated at maximum operating conditions (800 kW or 1,600 kW electricity output +/- 10%). NANR representatives provided the kW output in 15-minute increments for each test period.

Fuel flowrate, fuel methane content (%), fuel inlet pressure (psi) and the air to fuel ratio were also recorded by NANR representatives in 15-minute increments for each test period.

Appendix 2 provides operating records provided by NANR representatives for the test periods.

North American Natural Resources at Venice Park RDF Air Emission Test Report November 1, 2016 Page 6

Engine output (bhp) cannot be measured directly and was calculated based on the recorded electricity output, the calculated CAT® Model G3520C generator efficiency (96.1%), and the unit conversion factor for kW to horsepower (0.7457 kW/hp).

Engine output (bhp) = Electricity output (kW) / (0.961) / (0.7457 kW/hp)

Table 3.1 presents a summary of the average engine operating conditions during the test periods.

# 3.3 Summary of Air Pollutant Sampling Results

The gases exhausted from the sampled LFG fueled RICE (Engine Nos. 5, 7R, 8R and 10) were each sampled for three (3) one-hour test periods during the compliance testing performed October 4-5, 2016.

Table 3.2 presents the average measured emission rates for the engines (average of the three test periods for each engine).

Test results for each one hour sampling period and comparison to the permitted emission rates is presented in Section 6.0 of this report.

Table 3.1 Average engine operating conditions during the test periods

| Engine Parameter           | Engine No. 5 | Engine No. 7R | Engine No. 8R | Engine No. 10 |
|----------------------------|--------------|---------------|---------------|---------------|
| Generator output (kW)      | 806          | 1,605         | 1,607         | 1,606         |
| Engine output (bhp)        | -            | 2,239         | 2,243         | 2,241         |
| Engine LFG fuel use (scfm) | 300          | 571           | 569           | 574           |
| LFG methane content (%)    | 51.0         | 50.6          | 50.3          | 49.9          |
| Inlet fuel pressure (psi)  | -            | 18.0          | 18.0          | 17.9          |
| Air to fuel ratio          | 7.5          | 7.6           | 7.5           | 7.6           |

North American Natural Resources at Venice Park RDF Air Emission Test Report November 1, 2016 Page 7

Table 3.2 Average measured emission rates for each engine (three-test average)

|               | CO Emission Rates |            | NO <sub>x</sub> Emission<br>Rates |            |                          |            | Formaldehyde<br>Emission Rates | VOC Emission<br>Rates |
|---------------|-------------------|------------|-----------------------------------|------------|--------------------------|------------|--------------------------------|-----------------------|
| Emission Unit | (lb/hr)           | (g/bhp-hr) | (lb/hr)                           | (g/bhp-hr) | (lb/hr)                  | (g/bhp-hr) |                                |                       |
| Engine No. 5  | _                 |            | -                                 | -          | 0.66                     | -          |                                |                       |
| Engine No. 7R | 11.0              | 2.23       | 1.43                              | 0.29       | 1.92                     | 0.53       |                                |                       |
| Engine No. 8R | 11.1              | 2.24       | 1.62                              | 0.33       | 1.99                     | 0.52       |                                |                       |
| Engine No. 10 | 12.1              | 2.45       | 2.17                              | 0.44       | -                        | 0.13       |                                |                       |
| Permit Limit  | 16.3              | 3.3        | 2.97                              | 2.0        | 0.71 / 2.08 <sup>A</sup> | 0.63       |                                |                       |

Notes for Table No. 3.2:

A. Formaldehyde emission limit for Engine No. 5 is 0.71 lb/hr. Formaldehyde emission limit for Engine Nos. 7R and 8R is 2.08 lb/hr.

November 1, 2016 Page 8

# 4.0 <u>SAMPLING AND ANALYTICAL PROCEDURES</u>

A test protocol for the air emission testing was reviewed and approved by the MDEQ. This section provides a summary of the sampling and analytical procedures that were used during the NANR testing periods.

# 4.1 Summary of Sampling Methods

| USEPA Method 1                | Exhaust gas velocity measurement locations were determined based on the physical stack arrangement and requirements in USEPA Method 1                                                              |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| USEPA Method 2                | Exhaust gas velocity pressure was determined using a Type-S Pitot tube connected to a red oil incline manometer; temperature was measured using a K-type thermocouple connected to the Pitot tube. |
| USEPA Method 3A               | Exhaust gas O <sub>2</sub> and CO <sub>2</sub> content was determined using paramagnetic and infrared instrumental analyzer.                                                                       |
| USEPA Method 4                | Exhaust gas moisture was determined based on the water weight gain in chilled impingers.                                                                                                           |
| USEPA Method 7E               | Exhaust gas NOx concentration was determined using chemiluminescence instrumental analyzers.                                                                                                       |
| USEPA Method 10               | Exhaust gas CO concentration was measured using an infrared instrumental analyzer                                                                                                                  |
| USEPA Method 25A /<br>ALT-096 | Exhaust gas VOC (as NMHC) concentration was determined using a flame ionization analyzer equipped with methane separation column                                                                   |
| USEPA Method 320              | Exhaust gas formaldehyde and moisture content was determined using Fourier transform infrared spectroscopy (FTIR spectrometer)                                                                     |

# 4.2 Exhaust Gas Velocity Determination (USEPA Method 2)

The RICE exhaust stack gas velocities and volumetric flow rates were determined using USEPA Method 2 prior to and after each test. An S-type or standard Pitot tube connected to a red-oil manometer was used to determine velocity pressure at each traverse point across the stack cross section. Gas temperature was measured using a K-type thermocouple mounted to the Pitot tube. The Pitot tube and connective tubing were leak-checked prior to each traverse to verify the integrity of the measurement system.

North American Natural Resources at Venice Park RDF Air Emission Test Report November 1, 2016 Page 9

The absence of significant cyclonic flow for the exhaust configuration was verified using an S-type Pitot tube and oil manometer. The Pitot tube was positioned at each velocity traverse point with the planes of the face openings of the Pitot tube perpendicular to the stack cross-sectional plane. The Pitot tube was then rotated to determine the null angle (rotational angle as measured from the perpendicular, or reference, position at which the differential pressure is equal to zero).

Appendix 3 provides exhaust gas flowrate calculations and field data sheets.

#### 4.3 Exhaust Gas Molecular Weight Determination (USEPA Method 3A)

CO<sub>2</sub> and O<sub>2</sub> content in the RICE exhaust gas stream was measured continuously throughout each test period in accordance with USEPA Method 3A. The CO<sub>2</sub> content of the exhaust was monitored using a Servomex 1440D single beam single wavelength (SBSW) infrared gas analyzer. The O<sub>2</sub> content of the exhaust was monitored using a Servomex 1440D gas analyzer that uses a paramagnetic sensor.

During each sampling period, a continuous sample of the IC engine exhaust gas stream was extracted from the stack using a stainless steel probe connected to a Teflon® heated sample line. The sampled gas was conditioned by removing moisture prior to being introduced to the analyzers; therefore, measurement of O<sub>2</sub> and CO<sub>2</sub> concentrations correspond to standard dry gas conditions. Instrument response data were recorded using an ESC Model 8816 data acquisition system that monitored the analog output of the instrumental analyzers continuously and logged data as one-minute averages.

Prior to, and at the conclusion of each test, the instruments were calibrated using upscale calibration and zero gas to determine analyzer calibration error and system bias (described in Section 5.0 of this document). Sampling times were recorded on field data sheets.

Appendix 4 provides O<sub>2</sub> and CO<sub>2</sub> calculation sheets. Raw instrument response data are provided in Appendix 5.

#### 4.4 Exhaust Gas Moisture Content (USEPA Method 4)

Moisture content of the Engine No. 10 exhaust gas was determined in accordance with USEPA Method 4 using a chilled impinger sampling train. The moisture sampling was performed concurrently with the instrumental analyzer sampling. During each sampling period a gas sample was extracted at a constant rate from the source where moisture was removed from the sampled gas stream using impingers that were submersed in an ice bath. At the conclusion of each sampling period, the moisture gain in the impingers was determined gravimetrically by weighing each impinger to determine net weight gain.

North American Natural Resources at Venice Park RDF Air Emission Test Report November 1, 2016 Page 10

# 4.5 NO<sub>x</sub> and CO Concentration Measurements (USEPA Methods 7E and 10)

 $NO_X$  and CO pollutant concentrations in the RICE exhaust gas streams were determined using a Thermo Environmental Instruments, Inc. (TEI) Model 42c High Level chemiluminescence  $NO_X$  analyzer and a TEI Model 48i infrared CO analyzer.

Throughout each test period, a continuous sample of the engine exhaust gas was extracted from the stack using the Teflon® heated sample line and gas conditioning system and delivered to the instrumental analyzers. Instrument response for each analyzer was recorded on an ESC Model 8816 data acquisition system that logged data as one-minute averages. Prior to, and at the conclusion of each test, the instruments were calibrated using upscale calibration and zero gas to determine analyzer calibration error and system bias.

Appendix 4 provides CO and NO<sub>X</sub> calculation sheets. Raw instrument response data are provided in Appendix 5.

# 4.6 Measurement of Volatile Organic Compounds (USEPA Method 25A/ALT-096)

The VOC emission rate was determined by measuring the nonmethane hydrocarbon (NMHC) concentration in the engine exhaust gas. NMHC pollutant concentration was determined using a TEI Model 55i Methane / Nonmethane hydrocarbon analyzer. The TEI 55i analyzer contains an internal gas chromatograph column that separates methane from non-methane components. The concentration of NMHC in the sampled gas stream, after separation from methane, is determined relative to a propane standard using a flame ionization detector in accordance with USEPA Method 25A.

The USEPA Office of Air Quality Planning and Standards (OAQPS) has issued an alternate test method approving the use of the TEI 55i-series analyzer as an effective instrument for measuring NMOC from gas-fueled reciprocating internal combustion engines (RICE) in that it uses USEPA Method 25A and 18 (ALT-096).

Samples of the exhaust gas were delivered directly to the instrumental analyzer using the Teflon® heated sample line to prevent condensation. The sample to the NHMC analyzer was not conditioned to remove moisture. Therefore, VOC measurements correspond to standard conditions with no moisture correction (wet basis).

Prior to, and at the conclusion of each test, the instrument was calibrated using mid-range calibration (propane) and zero gas to determine analyzer calibration error and system bias (described in Section 5.0 of this document).

Appendix 4 provides VOC calculation sheets. Raw instrument response data for the NMHC analyzer is provided in Appendix 5.

North American Natural Resources at Venice Park RDF Air Emission Test Report November 1, 2016 Page 11

# 4.7 Determination of Moisture and Formaldehyde Emissions (USEPA Method 320)

The concentration of moisture and formaldehyde in the Engine Nos. 5, 7R and 8R exhaust gas was determined by Extractive Fourier Transform Infrared (FTIR) by Prism Analytical Technologies. A heated stainless steel probe, equipped with a heated particulate filter, and heated transfer line was used to deliver a sample of the stack gas to the FTIR. Analysis of the stack gas was performed by a MKS Multi-Gas 2030 FTIR spectrometer. Data was collected at 0.5 cm<sup>-1</sup> resolution.

Appendix 4 provides formaldehyde calculation sheets. The formaldehyde laboratory report is provided in Appendix 6.

North American Natural Resources at Venice Park RDF Air Emission Test Report November 1, 2016 Page 12

# 5.0 QA/QC ACTIVITIES

#### 5.1 NO<sub>x</sub> Converter Efficiency Test

The  $NO_2$  – NO conversion efficiency of the Model 42c analyzer was verified prior to the testing program. A USEPA Protocol 1 certified concentration of  $NO_2$  was injected directly into the analyzer, following the initial three-point calibration, to verify the analyzer's conversion efficiency. The analyzer's  $NO_2$  – NO converter uses a catalyst at high temperatures to convert the  $NO_2$  to NO for measurement. The conversion efficiency of the analyzer is deemed acceptable if the measured  $NO_2$  concentration is within 90% of the expected value.

The  $NO_2$  – NO conversion efficiency test satisfied the USEPA Method 7E criteria (measured  $NO_2$  concentration was 96.3% of the expected value, i.e., within 10% of the expected value as required by Method 7E).

#### 5.2 Gas Divider Certification (USEPA Method 205)

A STEC Model SGD-710C 10-step gas divider was used to obtain appropriate calibration span gases. The ten-step STEC gas divider was NIST certified (within the last 12 months) with a primary flow standard in accordance with Method 205. When cut with an appropriate zero gas, the ten-step STEC gas divider delivered calibration gas values ranging from 0% to 100% (in 10% step increments) of the USEPA Protocol 1 calibration gas that was introduced into the system. The field evaluation procedures presented in Section 3.2 of Method 205 were followed prior to use of gas divider. The field evaluation yielded no errors greater than 2% of the triplicate measured average and no errors greater than 2% from the expected values.

# 5.3 Instrumental Analyzer Interference Check

The instrumental analyzers used to measure NO<sub>X</sub>, CO, O<sub>2</sub> and CO<sub>2</sub> have had an interference response test preformed prior to their use in the field (July 26, 2006, June 12, 2014 and April 19, 2016), pursuant to the interference response test procedures specified in USEPA Method 7E. The appropriate interference test gases (i.e., gases that would be encountered in the exhaust gas stream) were introduced into each analyzer, separately and as a mixture with the analyte that each analyzer is designed to measure. All of analyzers exhibited a composite deviation of less than 2.5% of the span for all measured interferent gases. No major analytical components of the analyzers have been replaced since performing the original interference tests.

# 5.4 Instrument Calibration and System Bias Checks

At the beginning of each day of the testing program, initial three-point instrument calibrations were performed for the NO<sub>x</sub>, CO, CO<sub>2</sub> and O<sub>2</sub> analyzers by injecting calibration gas directly into the inlet sample port for each instrument. System bias checks were performed prior to and at the conclusion of each sampling period by introducing the upscale calibration gas and zero gas into the sampling system (at the base of the stainless steel sampling probe prior to the particulate

North American Natural Resources at Venice Park RDF Air Emission Test Report

November 1, 2016 Page 13

filter and Teflon® heated sample line) and determining the instrument response against the initial instrument calibration readings.

At the beginning of each test day, appropriate high-range, mid-range, and low-range span gases followed by a zero gas were introduced to the NMHC analyzer, in series at a tee connection, which is installed between the sample probe and the particulate filter, through a poppet check valve. After each one hour test period, mid-range and zero gases were re-introduced in series at the tee connection in the sampling system to check against the method's performance specifications for calibration drift and zero drift error.

The instruments were calibrated with USEPA Protocol 1 certified concentrations of CO<sub>2</sub>, O<sub>2</sub>, NO<sub>x</sub>, and CO in nitrogen and zeroed using hydrocarbon free nitrogen. The NMHC (VOC) instrument was calibrated with USEPA Protocol 1 certified concentrations of propane in air and zeroed using hydrocarbon-free air. A STEC Model SGD-710C ten-step gas divider was used to obtain intermediate calibration gas concentrations as needed.

#### 5.5 Determination of Exhaust Gas Stratification

A stratification test was performed for each RICE exhaust stack. The stainless steel sample probe was positioned at sample points correlating to 16.7, 50.0 (centroid) and 83.3% of each stack diameter. Pollutant concentration data were recorded at each sample point for a minimum of twice the maximum system response time.

The recorded concentration data for each RICE exhaust stack indicated that the measured NO<sub>x</sub>, CO, O<sub>2</sub> and CO<sub>2</sub> concentrations did not vary by more than 5% of the mean across each stack diameter. Therefore, the RICE exhaust gas was considered to be unstratified and the compliance test sampling was performed at a single sampling location within the RICE exhaust stack.

#### 5.6 FTIR QA/QC Activities

A calibration transfer standard (CTS), ethylene standard, was analyzed before and after each test run. The ethylene was passed through the entire system (system purge) to verify the sampling system response and to ensure that the sampling system was leak-free at the stack location. Nitrogen was also passed through the sampling system to ensure the system is free of contaminants.

Analyte spiking with acetaldehyde was performed to verify the ability of the sampling system to quantitatively deliver a sample containing the compound of interest from the base of the probe to the FTIR and assured the ability of the FTIR to quantify that compound in the presence of effluent gas. The spike target dilution ratio was 1:10 (1 part cal gas; 9 parts stack gas).

As part of the data validation procedure, reference spectra were manually fit to that of the sample spectra and a concentration was determined. The reference spectra were scaled to match the peak amplitude of the sample, thus providing a scale factor. The scale factor multiplied by the reference

North American Natural Resources at Venice Park RDF Air Emission Test Report November 1, 2016 Page 14

spectra concentration was used to determine the concentration value for the sample spectra. Sample pressure and temperature corrections were then applied to compute the final sample concentration. The manually-calculated results were then compared with the software-generated results. The software used multi-point calibration curves to quantify each spectrum.

#### 5.7 Meter Box Calibrations

The Nutech Model 2010 sampling console, which was used for exhaust gas moisture content sampling, was calibrated prior to and after the testing program. This calibration uses the critical orifice calibration technique presented in USEPA Method 5. The metering console calibration exhibited no data outside the acceptable ranges presented in USEPA Method 5.

The digital pyrometer in the Nutech metering consoles were calibrated using a NIST traceable Omega® Model CL 23A temperature calibrator.

Appendix 7 presents test equipment quality assurance data ( $NO_2 - NO$  conversion efficiency test data, instrument calibration and system bias check records, calibration gas and gas divider certifications, interference test results, meter box calibration records, Pitot tube calibration records and stratification checks).

North American Natural Resources at Venice Park RDF Air Emission Test Report November 1, 2016 Page 15

#### 6.0 RESULTS

# 6.1 Test Results and Allowable Emission Limits

Engine operating data and air pollutant emission measurement results for each one hour test period are presented in Tables 6.1 through 6.4.

The measured formaldehyde emission rate for Engine No. 5 is less than the allowable limit specified in ROP No. MI-ROP-N5910-2015 for FGENGINES3-6:

• 0.71 lb/hr.

The measured air pollutant concentrations and emission rates for Engine Nos. 7R, 8R and 10 are less than the allowable limits specified in ROP No. MI-ROP-N5910-2015 for FGENGINES7R-10:

- 2.97 lb/hr and 2.0 g/bhp-hr for NO<sub>X</sub>;
- 16.3 lb/hr and 3.3 g/bhp-hr for CO;
- 0.63 g/bhp-hr for VOC (includes formaldehyde emissions); and
- 2.08 lb/hr for formaldehyde.

#### 6.2 Variations from Normal Sampling Procedures or Operating Conditions

The testing for all pollutants was performed in accordance with USEPA methods and the approved test protocol. The engine-generator sets were operated within 10% of maximum output (800 kW or 1,600 kW generator output) and no variations from normal operating conditions occurred during the engine test periods.

Table 6.1 Measured exhaust gas conditions and formaldehyde air pollutant emission rate for Engine No. 5 (EUNANRENGINE5)

| Test No.                        | 1         | 2         | 3         |                                         |
|---------------------------------|-----------|-----------|-----------|-----------------------------------------|
| Test date                       | 10/5/16   | 10/5/16   | 10/5/16   | Three Test                              |
| Test period (24-hr clock)       | 1328-1428 | 1441-1541 | 1557-1657 | Average                                 |
|                                 |           |           |           |                                         |
| Fuel flowrate (scfm)            | 300       | 300       | 300       | 300                                     |
| Generator output (kW)           | 808       | 810       | 800       | 806                                     |
| LFG methane content (%)         | 50.8      | 51.1      | 51.1      | 51.0                                    |
| Air to fuel ratio               | 7.5       | 7.5       | 7.5       | 7.5                                     |
|                                 |           |           |           |                                         |
| Exhaust Gas Composition         |           |           |           |                                         |
| CO <sub>2</sub> content (% vol) | 13.3      | 12.4      | 12.4      | 12.7                                    |
| O <sub>2</sub> content (% vol)  | 6.21      | 7.14      | 7.24      | 6.86                                    |
| Moisture (% vol)                | 14.1      | 13.4      | 13.4      | 13.6                                    |
| •                               |           |           |           | *************************************** |
| Exhaust gas temperature (°F)    | 671       | 672       | 664       | 667                                     |
| Exhaust gas flowrate (dscfm)    | 2,113     | 2,169     | 2,232     | 2,172                                   |
| Exhaust gas flowrate (scfm)     | 2,450     | 2,504     | 2,577     | 2,513                                   |
|                                 |           |           |           |                                         |
| <u>Formaldehyde</u>             |           |           |           |                                         |
| Formaldehyde conc. (ppmv)       | 54.6      | 57.6      | 56.8      | 56.3                                    |
| Formaldehyde emissions (lb/hr)  | 0.63      | 0.68      | 0.69      | 0.66                                    |
| Permitted emissions (lb/hr)     | -         | -         | -         | 0.71                                    |
|                                 |           |           |           |                                         |

North American Natural Resources at Venice Park RDF Air Emission Test Report

Table 6.2 Measured exhaust gas conditions and NO<sub>x</sub>, CO, VOC and formaldehyde air pollutant emission rates for Engine No. 7R (EUNANRENGINE7R)

| Test No.                                                | 1           | 2           | 3            |                               |
|---------------------------------------------------------|-------------|-------------|--------------|-------------------------------|
| Test date                                               | 10/5/16     | 10/5/16     | 10/5/16      | Three Test                    |
| Test period (24-hr clock)                               | 859-959     | 1027-1127   | 1151-1251    | Average                       |
|                                                         |             |             |              |                               |
| Fuel flowrate (scfm)                                    | 571         | 571         | 571          | 571                           |
| Generator output (kW)                                   | 1,603       | 1,606       | 1,606        | 1,605                         |
| Engine output (bhp)                                     | 2,237       | 2,241       | 2,241        | 2,239                         |
| LFG methane content (%)                                 | 50.5        | 50.6        | 50.8         | 50.6                          |
| Fuel inlet pressure (psi)                               | 18.0        | 18.0        | 18.0         | 18.0                          |
| Air to fuel ratio                                       | 7.7         | 7.6         | 7.6          | 7.6                           |
|                                                         |             |             |              |                               |
| Exhaust Gas Composition                                 |             |             |              |                               |
| CO <sub>2</sub> content (% vol)                         | 11.8        | 11.9        | 11.8         | 11.8                          |
| O <sub>2</sub> content (% vol)                          | 7.90        | 7.79        | 7.85         | 7.85                          |
| Moisture (% vol)                                        | 12.7        | 12.8        | 12.9         | 12.8                          |
|                                                         |             |             |              |                               |
| Exhaust gas temperature (°F)                            | 938         | 922         | 924          | 931                           |
| Exhaust gas flowrate (dscfm)                            | 4,593       | 4,625       | 4,612        | 4,602                         |
| Exhaust gas flowrate (scfm)                             | 5,264       | 5,307       | 5,295        | 5,279                         |
|                                                         |             |             |              | телента ф <sub>орган</sub> ия |
| Nitrogen Oxides                                         | 440         | 40.5        | 10.1         | 40.0                          |
| NO <sub>x</sub> conc. (ppmvd)                           | 44.8        | 42.5        | 42.4         | 43.2                          |
| NO <sub>x</sub> emissions (lb/hr)                       | 1.48        | 1.41        | 1.40         | 1.43                          |
| Permitted emissions (lb/hr)                             | -           |             | -            | 2.97                          |
| NO <sub>x</sub> emissions (g/bhp*hr)                    | 0.30        | 0.29        | 0.28         | 0.29                          |
| Permitted emissions (g/bhp*hr)                          | -           | =           | -            | 2.0                           |
| Code and March 11-                                      |             |             |              |                               |
| Carbon Monoxide                                         | 549         | 547         | 546          | 547                           |
| CO conc. (ppmvd)                                        | 349<br>11.0 | 347<br>11.0 | 11.0         | 11.0                          |
| CO emissions (lb/hr)                                    |             |             |              | •                             |
| Permitted emissions (lb/hr)                             | 2.23        | 2.23        | 2.23         | 16.3<br>2.23                  |
| CO emissions (g/bhp*hr)                                 | 2.23        | 2,23        | 2.23         | 3.30                          |
| Permitted emissions (g/bhp*hr)                          | -           | -           | -            | 3.30                          |
| Volatile Organic Compounds                              |             |             |              | }                             |
| VOC conc. (ppmv)                                        | 18.8        | 19.3        | 19.2         | 19.1                          |
| VOC cone. (pphrv) VOC emissions (g/bhp*hr) <sup>1</sup> | 0.52        | 0.53        | 0.53         | 0.53                          |
| Permitted emissions (g/bhp*hr)                          | 0.52        | 0.55        | 0.55<br>-    | 0.63                          |
| 1 chilited chilosions (group in)                        | ~           | -           | <del>-</del> | 0.03                          |
|                                                         |             |             |              | . 1                           |

North American Natural Resources at Venice Park RDF Air Emission Test Report November 1, 2016 Page 18

Table 6.2 Continued.

| Test No.                               | 1       | 2         | 3         |            |
|----------------------------------------|---------|-----------|-----------|------------|
| Test date                              | 10/5/16 | 10/5/16   | 10/5/16   | Three Test |
| Test period (24-hr clock)              | 859-959 | 1027-1127 | 1151-1251 | Average    |
| Formaldehyde Formaldehyde conc. (ppmv) | 77.0    | 77.9      | 78.0      | 77.6       |
| Formaldehyde emissions (lb/hr)         | 1.90    | 1.93      | 1.93      | 1.92       |
| Permitted emissions (lb/hr)            | -       |           | -         | 2.08       |

# Notes for Table 6.2:

1. Presented value is the sum of the measured VOC emission rate (g/bhp-hr) and measured formaldehyde emission rate (g/bhp-hr).

North American Natural Resources at Venice Park RDF Air Emission Test Report

Table 6.3 Measured exhaust gas conditions and NOx, CO, VOC and formaldehyde air pollutant emission rates for Engine No. 8R (EUNANRENGINE8R)

| Test No.                              | 1         | 2         | 3         |            |
|---------------------------------------|-----------|-----------|-----------|------------|
| Test date                             | 10/4/16   | 10/4/16   | 10/4/16   | Three Test |
| Test period (24-hr clock)             | 1313-1413 | 1441-1541 | 1604-1704 | Average    |
|                                       |           |           |           |            |
| Fuel flowrate (scfm)                  | 570       | 569       | 569       | 569        |
| Generator output (kW)                 | 1,607     | 1,609     | 1,607     | 1,607      |
| Engine output (bhp)                   | 2,242     | 2,245     | 2,242     | 2,243      |
| LFG methane content (%)               | 50.1      | 50.3      | 50.4      | 50.3       |
| Fuel inlet pressure (psi)             | 18.0      | 18.0      | 18.0      | 18.0       |
| Air to fuel ratio                     | 7.5       | 7.6       | 7.6       | 7.5        |
| Exhaust Gas Composition               |           |           |           |            |
| CO <sub>2</sub> content (% vol)       | 11.7      | 11.9      | 11.9      | 11.9       |
| O <sub>2</sub> content (% vol)        | 7.93      | 7.96      | 8.00      | 7.96       |
| Moisture (% vol)                      | 13.0      | 12.9      | 12.7      | 12.9       |
| Exhaust gas temperature (°F)          | 928       | 928       | 928       | 928        |
| Exhaust gas flowrate (dscfm)          | 4,613     | 4,562     | 4,570     | 4,592      |
| Exhaust gas flowrate (scfm)           | 5,300     | 5,231     | 5,235     | 5,267      |
| Nitrogen Oxides                       |           |           |           |            |
| NO <sub>x</sub> conc. (ppmvd)         | 50.7      | 49.0      | 48.4      | 49.4       |
| NO <sub>X</sub> emissions (lb/hr)     | 1.68      | 1.60      | 1.59      | 1.62       |
| Permitted emissions (lb/hr)           | -         | _         | -         | 2,97       |
| NO <sub>x</sub> emissions (g/bhp*hr)  | 0.34      | 0.32      | 0.32      | 0.33       |
| Permitted emissions (g/bhp*hr)        | -         | -         | -         | 2.0        |
| Carbon Monoxide                       |           |           |           |            |
| CO conc. (ppmvd)                      | 555       | 554       | 553       | 554        |
| CO emissions (lb/hr)                  | 11.2      | 11.0      | 11.0      | 11.1       |
| Permitted emissions (lb/hr)           | -         | _         |           | 16.3       |
| CO emissions (g/bhp*hr)               | 2.26      | 2.23      | 2.23      | 2.24       |
| Permitted emissions (g/bhp*hr)        | -         | _         | -         | 3.30       |
| Volatile Organic Compounds            |           |           |           |            |
| VOC conc. (ppmv)                      | 16.8      | 16.9      | 16.7      | 16.8       |
| VOC emissions (g/bhp*hr) <sup>1</sup> | 0.53      | 0.52      | 0.52      | 0.52       |
| Permitted emissions (g/bhp*hr)        |           | _         | -         | 0.63       |

North American Natural Resources at Venice Park RDF Air Emission Test Report

November 1, 2016 Page 20

Table 6.3 Continued.

| Test No. Test date                                                                                | 1<br>10/4/16 | 2<br>10/4/16 | 3<br>10/4/16      | Three Test           |
|---------------------------------------------------------------------------------------------------|--------------|--------------|-------------------|----------------------|
| Test period (24-hr clock)                                                                         | 1313-1413    | 1441-1541    | 1604-1704         | Average              |
| Formaldehyde Formaldehyde conc. (ppmv) Formaldehyde emissions (lb/hr) Permitted emissions (lb/hr) | 81.8<br>2.03 | 81.0<br>1.98 | 79.9<br>1.96<br>- | 80.9<br>1.99<br>2.08 |

# Notes for Table 6.3:

1. Presented value is the sum of the measured VOC emission rate (g/bhp-hr) and measured formaldehyde emission rate (g/bhp-hr).

North American Natural Resources at Venice Park RDF Air Emission Test Report

Table 6.4 Measured exhaust gas conditions and NOx, CO, VOC and formaldehyde air pollutant emission rates for Engine No. 10 (EUNANRENGINE10)

| Test No.                             | 1            | 2         | 3         |            |
|--------------------------------------|--------------|-----------|-----------|------------|
| Test date                            | 10/4/16      | 10/4/16   | 10/4/16   | Three Test |
| Test period (24-hr clock)            | 848-948      | 1013-1113 | 1135-1235 | Average    |
|                                      |              |           |           |            |
| Fuel flowrate (scfm)                 | 577          | 574       | 570       | 574        |
| Generator output (kW)                | 1,605        | 1,607     | 1,604     | 1,606      |
| Engine output (bhp)                  | 2,240        | 2,243     | 2,239     | 2,241      |
| LFG methane content (%)              | 49.8         | 49.8      | 50.0      | 49.9       |
| Fuel inlet pressure (psi)            | 17.8         | 17.8      | 18.0      | 17.9       |
| Air to fuel ratio                    | 7.6          | 7.6       | 7.6       | 7.6        |
| Exhaust Gas Composition              |              |           |           |            |
| CO <sub>2</sub> content (% vol)      | 11.8         | 11.8      | 11.8      | 11.8       |
| O <sub>2</sub> content (% vol)       | 7.80         | 7.77      | 7.87      | 7.81       |
| Moisture (% vol)                     | 13.4         | 13.0      | 11.9      | 12.8       |
| Exhaust gas temperature (°F)         | 970          | 958       | 940       | 955        |
| Exhaust gas flowrate (dscfm)         | 4,359        | 4,441     | 4,407     | 4,383      |
| Exhaust gas flowrate (scfm)          | 5,023        | 5,075     | 5,005     | 5,014      |
| Exiliant gas no wrate (seini)        | 3,023        | 2,072     | 2,002     | 3,011      |
| Nitrogen Oxides                      |              |           |           |            |
| NO <sub>x</sub> conc. (ppmvd)        | 68.4         | 68.2      | 69.4      | 68.7       |
| NO <sub>x</sub> emissions (lb/hr)    | 2.14         | 2.17      | 2.19      | 2.17       |
| Permitted emissions (lb/hr)          | -            | -         | -         | 2.97       |
| NO <sub>x</sub> emissions (g/bhp*hr) | 0.43         | 0.44      | 0.44      | 0.44       |
| Permitted emissions (g/bhp*hr)       | -            | -         | <u></u>   | 2.0        |
| Carbon Monoxide                      |              |           |           |            |
| CO conc. (ppmvd)                     | 632          | 632       | 629       | 631        |
| CO emissions (lb/hr)                 | 12.0         | 12.2      | 12.1      | 12,1       |
| Permitted emissions (lb/hr)          | <del>-</del> | _         | _         | 16.3       |
| CO emissions (g/bhp*hr)              | 2.44         | 2.48      | 2.45      | 2.45       |
| Permitted emissions (g/bhp*hr)       | -            | =         | <u>-</u>  | 3.30       |
| Volatile Organic Compounds           |              |           |           |            |
| VOC conc. (ppmv)                     | 17.4         | 17.7      | 18.7      | 17.9       |
| VOC emissions (g/bhp*hr)             | 0.12         | 0.12      | 0.13      | 0.13       |
| Permitted emissions (g/bhp*hr)       | -            | -         | -         | 0.63       |
| 1 office officerous (g. only in)     |              |           |           | 0.05       |