

1.0 Introduction

Alliance Source Testing, LLC (AST) was retained by Panhandle Eastern Pipe Line (PEPL) to conduct compliance testing at the Howell, Michigan facility. Portions of the facility are subject to provisions of the 40 CFR Part 63 – National Emission Standards for Hazardous Air Pollutants from Natural Gas Storage facilities and the Michigan Department of Environmental, Great Lakes and Energy (EGLE) Air Permit No. PTI 72-20. Testing was conducted to determine the emission rate of benzene, toluene, ethylbenzene and xylene (BTEX) at the exhaust of one (1) Dehydration Unit. Testing also included volatile organic compound (VOC) leak detection and repair (LDAR) monitoring on the dehydration unit and contactor adsorber tower.

1.1 Source and Control System Description

The Howell Compressor Station is a natural gas gathering station where compressors and related auxiliary equipment are used for the agglomeration of natural gas in the production region

1.2 Project Team

Personnel involved in this project are identified in the following table.

Table 1-1	
Project Team	

Facility Personnel	Kristin Bollerman – PELP Scott Dibert – PELP
Regulatory Personnel	Mark Dziadosz – EGLE
AST Personnel	Tyler Branca Anthony Delfratte

1.3 Test Protocol & Notification

Testing was conducted in accordance with the test protocol submitted to EGLE by PEPL.

Summary of Results

2.0 Summary of Results

AST conducted compliance testing at the PELP facility in Howell, Michigan on December 16, 2021. Testing consisted of determining the emission rate of BTEX at the exhaust of one (1) Dehydration Unit. LDAR monitoring was also conducted on the contactor absorber tower and dehydration unit.

Tables 2-1 and 2-2 provide summaries of the emission testing results. This table also provides a summary of the process operating data collected during the testing. Any difference between the summary results listed in the following tables and the detailed results contained in appendices is due to rounding for presentation.

Run Number	Run 1	Run 2	Run 3	Average
Date	12/16/21	12/16/21	12/16/21	
Benzene Data *				
Emission Rate, lb/hr	9.1E-05	9.9E-05	9.0E-05	9.3E-05
Emission Rate, kg/hr	4.1E-05	4.5E-05	4.1E-05	4.2E-05
Toluene Data *				
Emission Rate, lb/hr	8.3E-05	9.0E-05	8.2E-05	8.5E-05
Emission Rate, kg/hr	3.8E-05	4.1E-05	3.7E-05	3.8E-05
Ethylbenzene Data *				
Emission Rate, lb/hr	8.61E-05	9.32E-05	8.48E-05	8.81E-05
Emission Rate, kg/hr	3.91E-05	4.23E-05	3.85E-05	3.99E-05
Xylene Data *				
Emission Rate, lb/hr	2.5E-04	2.7E-04	2.4E-04	2.5E-04
Emission Rate, kg/hr	1.1E-04	1.2E-04	1.1E-04	1.1E-04
Process Operating Data				
Combustion Zone Temperature, °F	917.2	904.1	905.4	908.9
Reboiler Temperature, °F	384.0	384.1	385.0	384.4
Fuel Flow, MMSCF	65	52	51	56

Table 2-1Summary of Results - BTEX

*All laboratory results were below the laboratory detection limits. The detection limits were used for calculations purposes.

Component Location at Facility	Component No.	Component Description	Identified leak(s) location details	Comments
Contactor Absorber Tower	LIT 100	Level transmitter/gauge	No	Upper tap out Lower tap out Highpoint vent Drain valve
Contactor Absorber Tower	LC 100	NA	No	Upper tap out Lower tap out Highpoint vent Drain valve
Contactor Absorber Tower	NA	Lower manway	No	Large Flange
Contactor Absorber Tower	NA	Upper manway	No	Large Flange
Contactor Absorber Tower	PSV 100	Pressure surge valve	No	NA
Contactor Absorber Tower	NA	Vapor to BTEX	No	NA
Contactor Absorber Tower	NA	BTEX offgas to burner	No	NA
Dehydration Unit	LC 201	Level control displacer	No	Upper tap out Lower tap out Drain valve
Dehydration Unit	LG 201	Level site glass	No	Upper tap out Lower tap out Highpoint vent Drain valve
Dehydration Unit	PSV 201	Pressure relief valve	No	Isolation Vent
Dehydration Unit	LIT 201	NA	No	Upper tap out Lower tap out
Dehydration Unit	LG 200	NA	No	Upper tap out Lower tap out Drain valve Highpoint vent
Dehydration Unit	NA	Fuel gas supply assembly	No	9 valves
Dehydration Unit	NA	Fuel gas control assembly	No	4 valves

Table 2-2 Summary of Results – LDAR

Testing Methodology

3.0 Testing Methodology

The emission testing program was conducted in accordance with the test methods listed in Table 3-1. Method descriptions are provided below while quality assurance/quality control data is provided in Appendix D.

Table 3-1
Source Testing Methodology

Parameter	U.S. EPA Reference Test Methods	Notes/Remarks
Volumetric Flow Rate	1-2	Full Velocity Traverses
Oxygen/Carbon Dioxide	3/3A	Instrumental Analysis
Moisture Content	4	Gravimetric Analysis
Benzene, Toluene, Ethylbenzene & Xylene	18	Constant Rate Sampling
LDAR (Positive Pressure Sources)	21	Portable FID – Photovac MicroFID

3.1 U.S. EPA Reference Test Methods 1-2 – Volumetric Flow Rate

The sampling location and number of traverse (sampling) points were selected in accordance with U.S. EPA Reference Test Method 1. To determine the minimum number of traverse points, the upstream and downstream distances were equated into equivalent diameters and compared to Figure 1-2 in U.S. EPA Reference Test Method 1.

Full velocity traverses were conducted in accordance with U.S. EPA Reference Test Method 2 to determine the average stack gas velocity pressure, static pressure and temperature. The velocity and static pressure measurement system consisted of a pitot tube and inclined manometer. The stack gas temperature was measured with a K-type thermocouple and pyrometer.

Stack gas velocity pressure and temperature readings were recorded during each test run. The data collected was utilized to calculate the volumetric flow rate in accordance with U.S. EPA Reference Test Method 2.

3.2 U.S. EPA Reference Test Method 3A – Oxygen/Carbon Dioxide

The oxygen (O_2) and carbon dioxide (CO_2) testing was conducted in accordance with U.S. EPA Reference Test Method 3A. Data was collected online and reported in one-minute averages. The sampling system consisted of a stainless-steel probe, Teflon sample line(s), gas conditioning system and the identified gas analyzer. The gas conditioning system was a non-contact condenser used to remove moisture from the stack gas. If an unheated Teflon sample line was used, then a portable non-contact condenser was placed in the system directly after the probe. Otherwise, a heated Teflon sample line was used. The quality control measures are described in Section 3.6.

3.3 U.S. EPA Reference Test Method 4 – Moisture Content

The stack gas moisture content was determined in accordance with U.S. EPA Reference Test Method 4. The gas conditioning train consisted of a series of chilled impingers. Prior to testing, each impinger was filled with a known quantity of water or silica gel. Each impinger was analyzed gravimetrically before and after each test run on the same balance to determine the amount of moisture condensed.

3.4 U.S. EPA Reference Test Method 18 – BTEX

The BTEX testing was conducted in accordance with U.S. EPA Reference Test Method 18. The gas was withdrawn at a constant rate through a stainless probe, Teflon tubing, chilled midget impinger (moisture knockout), absorbent tubes, rotometer, critical orifice, and pump.

Two (2) identical sample trains, one labeled as spiked and one as unspiked, were used at each sampling location. The first tube in the spiked train was spiked with a known mass of BTEX prior to testing. The midget impinger and both tubes in the unspiked train were unspiked. The sampling system was pretest leak checked using the rotometer to verify the absence of flow. Three (3) spiked sample train were collected concurrently with the all three (3) of the un-spiked sample trains during each run to meet the method QA/QC requirements as U.S. EPA Reference test Method 18 Section 8.4.3. No posttest leak check is permitted for Method 18 adsorbent tubes. The sampling meter was also pre and post calibrated using a Dry-Cal flow meter.

Following the completion of each test run, the contents of the first and second impingers were measured and placed in a sample vial labelled as container 1. The first and second midget impingers and the connecting glassware were rinsed with DI water, and these rinses were added to the vial with zero headspace. Immediately following the recovery, container 1 was placed on ice. The contents of container 1 were analyzed for BTEX The two-section silica gel tube will be capped and labeled as tube 1 and placed on ice for shipment to the laboratory. The contents of the two-section silica gel tube were analyzed separately for breakthrough determination. The spiked sample train was recovered with the procedures described above. All the samples were kept on ice, sealed, zero-head spaced, labeled and shipped to the identified laboratory for analysis. Upon receiving the samples, the analytical lab analyzed them using gas chromatography / flame ionization detector (GC/FID) following the analytical procedures outlined in U.S. EPA Reference Test Method 18. The quality control measures are described in Section 3.7.

3.5 U.S. EPA Reference Test Method 21 – Positive Pressure Sources

Leaks from any positive pressure sources were determined using U.S. EPA Reference Test Method 21. The VOC detector was a Photovac MicroFID portable analyzer with a flame ionization detector. The instrument was calibrated prior to testing with ambient air and methane balanced air cylinder gas. The methane calibration gas concentration was approximately equal to the applicable leak definition (500 ppm as methane). Each source was evaluated by moving the instrument inlet probe along the potential leak area of each component. If a leak was detected, the area of leakage was monitored for two (2) times the instrument response time and the highest instrument reading recorded. If the instrument reading minus the background concentration was greater than the leak definition, then the source was considered leaking.

3.6 Quality Assurance/Quality Control – U.S. EPA Reference Test Method 3A

Cylinder calibration gases used met EPA Protocol 1 (+/- 2%) standards. Copies of all calibration gas certificates can be found in the Quality Assurance/Quality Control Appendix.

Low Level gas was introduced directly to the analyzer. After adjusting the analyzer to the Low-Level gas concentration and once the analyzer reading was stable, the analyzer value was recorded. This process was repeated for the High-Level gas. For the Calibration Error Test, Low, Mid, and High Level calibration gases were sequentially introduced directly to the analyzer. All values were within 2.0 percent of the Calibration Span or 0.5% absolute difference.

High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe and the time required for the analyzer reading to reach 95 percent or 0.5% (whichever was less restrictive) of the gas

2021-2950

concentration was recorded. The analyzer reading was observed until it reached a stable value, and this value was recorded. Next, Low Level gas was introduced at the probe and the time required for the analyzer reading to decrease to a value within 5.0 percent or 0.5% (whichever was less restrictive) was recorded. If the Low-Level gas was zero gas, the response was 0.5% or 5.0 percent of the upscale gas concentration (whichever was less restrictive). The analyzer reading was observed until it reached a stable value and this value was recorded. The measurement system response time and initial system bias were determined from these data. The System Bias was within 5.0 percent of the Calibration Span or 0.5% absolute difference.

High or Mid Level gas (whichever was closer to the stack gas concentration) was introduced at the probe. After the analyzer response was stable, the value was recorded. Next, Low Level gas was introduced at the probe, and the analyzer value recorded once it reached a stable response. The System Bias was within 5.0 percent of the Calibration Span or 0.5% absolute difference or the data was invalidated and the Calibration Error Test and System Bias were repeated.

Drift between pre- and post-run System Bias was within 3 percent of the Calibration Span or 0.5% absolute difference. If the drift exceeded 3 percent or 0.5%, the Calibration Error Test and System Bias were repeated.

To determine the number of sampling points, a gas stratification check was conducted prior to initiating testing. The pollutant concentrations were measured at three points (16.7, 50.0 and 83.3 percent of the measurement line). Each traverse point was sampled for a minimum of twice the system response time.

If the pollutant concentration at each traverse point did not differ more than 5 percent or 0.3% (whichever was less restrictive) of the average pollutant concentration, then single point sampling was conducted during the test runs. If the pollutant concentration did not meet these specifications but differed less than 10 percent or 0.5% from the average concentration, then three (3) point sampling was conducted (stacks less than 7.8 feet in diameter - 16.7, 50.0 and 83.3 percent of the measurement line; stacks greater than 7.8 feet in diameter - 0.4, 1.0, and 2.0 meters from the stack wall). If the pollutant concentration differed by more than 10 percent or 0.5% from the average concentration, then sampling was conducted at a minimum of twelve (12) traverse points. Copies of stratification check data can be found in the Quality Assurance/Quality Control Appendix.

A Data Acquisition System with battery backup was used to record the instrument response in one (1) minute averages. The data was continuously stored as a *.CSV file in Excel format on the hard drive of a computer. At the completion of testing, the data was also saved to the AST server. All data was reviewed by the Field Team Leader before leaving the facility. Once arriving at AST's office, all written and electronic data was relinquished to the report coordinator and then a final review was performed by the Project Manager.

3.7 Quality Assurance/Quality Control – U.S. EPA Reference Test Method 18

A leak check before each sampling run was performed. The probe inlet was plugged, and a sample pump was turned on to pull a vacuum of at least 10-inch Hg or the highest vacuum experienced during the sampling run. A leakage rate in excess of 2 percent of the average sampling is acceptable. After the completion of the leak check, the probe inlet plug was released carefully before turning off the sample pump.

Initial dry gas meter reading and barometric pressure were recorded before starting each sampling run. The sampling began with the tip of the nozzle/probe assembly positioned close to the centroid of exhaust stack. Once the sample pump is started the sample flow was adjusted to a constant flow rate approximately 400 cc/min. The midget

impinger train was kept cold to maintain the temperature of the gases leaving the last impinger at 68°F or less. After the completion of the sampling run a posttest leak check was not performed.

BTEX spike recovery was checked using the procedures outlined in U.S. EPA Method 18 Section 8.4.3. During all three of the sampling runs, two identical trains were setup and collected, with one of the trains spiked with a known concentration of BTEX. The known concentration was targeted between 40 to 60 percent of the mass expected to be collected in the native/unspiked sample train. The spiked samples were transported to the laboratory with all the other unspiked/native samples and analyzed following the procedures outlined in U.S. EPA Method 18 Section 11.0. The impinger contents and absorbents from the two trains were analyzed utilizing identical analytical procedures and instrumentation. The fraction of spiked BTEX recovered was determined by combining the amount recovered in the impinger and in the absorbent tube, using equations in U.S. EPA Method 18 Section 12.9. Recovery values for all the spiked samples were between the method allowable criteria of 70 to 130 percent as stated in U.S. EPA Method 18 Section 8.4.3.

Appendix A

 $\left(\right)$

Location Energy Transfer - Howell, MI Source Dehydration Unit Project No. 2021-2950 Run No. 1 Parameter(s) VFR Meter Pressure (Pm), in. Hg $Pm = Pb + \frac{\Delta H}{13.6}$ where, $\begin{array}{c|c} Pb & 28.62 & = barometric pressure, in. Hg \\ \Delta H & 1.000 & = pressure differential of orifice, in H_2O \\ Pm & 28.69 & = in. Hg \end{array}$ Absolute Stack Gas Pressure (Ps), in. Hg $Ps = Pb \div \frac{Pg}{13.6}$ where, $\begin{array}{c|c} Pb & 28.62 & = barometric pressure, in. Hg \\ \hline Pg & -0.28 & = static pressure, in. H_2O \\ \hline Ps & 28.60 & = in. Hg \end{array}$ Standard Meter Volume (Vmstd), dscf Vmstd = _______ Tm where, $\begin{array}{ccc} Y & 1.029 & = meter correction factor \\ Vm & 31.790 & = meter volume, cf \\ Pm & 28.69 & = absolute meter pressure, in. Hg \\ Tm & 521.5 & = absolute meter temperature, ^R \\ Vmstd & 31.741 & = dscf \end{array}$ Standard Wet Volume (Vwstd), scf $Vwstd = 0.04716 \times Vlc$ where, Vlc 116.6 = Volume of H2O collected, ml Vwstd 5.499 = sef Moisture Fraction (BWSsat), dimensionless (theoretical at saturated conditions) $BW'Ssat = \frac{10}{P_s} \frac{6.37 \cdot \left(\frac{2,927}{T_s + 365}\right)}{P_s}$ where, $Ts = \frac{879.4}{P_s} = \text{stack temperature, °F}$ $Ps = \frac{28.6}{437.4} = \text{dimensionless}$ Moisture Fraction (BWS), dimensionless Vwstd $BWS = \frac{1}{(Vwstd + Vmstd)}$ Vwstd_____ Vmer4 where,
 Vwstd
 5.499
 = standard wet volume, scf

 Vmstd
 31.741
 = standard meter volume, dscf

 BWS
 0.148
 = dimensionless
 Moisture Fraction (BWS), dimensionless BWS = BWSmsd unless BWSsat < BWSmsd where,
 BWSsat
 437.373 0.148
 = moisture fraction (theoretical at saturated conditions)

 BWSmad
 0.148
 = moisture fraction (measured)

 BWS
 0.148
 =
 Molecular Weight (DRY) (Md), lb/lb-mole $Md = (0.44 \times \% CO_{2}) + (0.32 \times \% O_{2}) + (0.28 (100 - \% CO_{2} - \% O_{2}))$ where. $\begin{array}{ccc} CO2 & 10.1 &= \mbox{carbon dioxide concentration, \%} \\ O2 & 3.5 &= \mbox{oxygen concentration, \%} \\ Md & 29.76 &= \mbox{lb/lb mol} \end{array}$

Molecular Weight (WET) (Ms), lb/lb-mole

where,

Ms = Md (1 - BWS) + 18.015 (BWS)

 Md
 29.76
 = molecular weight (DRY), lb/b mol

 BWS
 0.148
 = molecular weight (DRY), lb/b mol

 Ms
 28.03
 = lb/lb mol

	rgy Transfer - Howe ordration Unit	 	******	
Project No. 202	1-2950			
Run No. 1				
arameter(s) VFI	3			

Average Velocity (Vs), ft/sec

 $Vs = 85.49 \times Cp \times (\Delta P^{-1/2}) avg \times \sqrt{\frac{Ts}{Ps \times Ms}}$ where,

Average Stack Gas Flow at Stack Conditions (Qa), acfm

 $Qa = 60 \times V_S \times A_S$

where,

Vs_	25.5	stack gas velocity, ft/sec
As	0.66	= cross-sectional area of stack, ft2
Qa	1,008	= acfm

Average Stack Gas Flow at Standard Conditions (Qs), dscfm

 $Qsd = 17.636 \text{ x } Qa \text{ x } (1 \text{ - BWS}) \text{ x } \frac{Ps}{Ts}$

where,

.....

Dry Gas Meter Calibration Check (Yqa), dimensionless

$$Yqa = \frac{\Gamma \cdot \left(\frac{\Theta}{l^{2}a} - \sqrt{\frac{0.0319 \times D\pi \times 29}{4 M \ @} \sqrt{\Delta H} \ mg}\right)}{\frac{1}{13.6} \times Md} \sqrt{\Delta H} \quad mg.$$

$$Yqa = \frac{\Gamma \cdot \left(\frac{\Theta}{l^{2}a} - \frac{J H \ mg}{l^{2} \sqrt{L}}\right) \times Md}{\Gamma}$$

$$Y = \frac{\Gamma \cdot \left(\frac{\Theta}{l^{2}a} - \frac{J H \ mg}{l^{2} \sqrt{L}}\right)}{\Gamma} \times Md$$

where,

Y_	1.029	= meter correction factor, dimensionless
----	-------	--

Θ

Vm_____ Tm____

ΔH@ Pb

 1.029
 = meter correction factor, dimensionless

 60
 = run time, min.

 31.79
 = total meter volume, def

 351.5
 = absolute meter temperature, °R

 1.778
 = orifice meter calibration coefficient, in. H₂O

 28.62
 = barometric pressure, in. Hg

 1.000
 = average pressure differential of orifice, in H₂O

 29.76
 = molecular weight (DR Y), lb/lb mol

ΔH avg Md (Δ H)^{1/2}
 1.000
 = average squareroot pressure differential of orifice, (in. H₂O)^{1/2}

 -3.4
 = dimensionless
 Yqa

Appendix B

Location Energy Transfer - Howell, MI Source Dehydration Unit Project No. 2021-2950

Parameter(s): Benzene, Toluene, Ethylbenzene, Xylene (BTEX)

Run Number		Run 1	Run 2	Run 3	Average
Date		12/16/21	12/16/21	12/16/21	
Start Time		10:25	12:17	14:24	
Stop Time		11:25	13:17	15:24	
	Input D	ata			
Volumetric Flow Rate, dscfm	(Qs)	324	357	335	339
Moisture Fraction	(BWS)	0.148	0.148	0.147	0.148
Standard Meter Volume, L	(Vmstd)	32.381	32.975	33.995	33.117
Standard Meter Volume, ft ³	(Vmstd)	1.143	<u>1.1</u> 64	1.200	1.169
	Lab Da	ita			
Benzene Mass, ug	M(C6H6)	2.44	2.44	2.44	2.4
Toluene Mass, ug	M(C7H8)	2.21	2.21	2.21	2.2
Ethylbenzene Mass, ug	M(C8H10)	2.30	2.30	2.30	2.300
Xylene Mass, ug	M(C8H10)	6.58	6.58	6.58	6.58
	Emissions Cal	culations			
Benzene Concentration, ppmvd	C(C6H6)	0.023	0.023	0.022	0.023
Benzene Emission Rate, lb/hr	ER(C6H6)	9.1E-05	9.9E-05	9.0E-05	9.3E-05
Benzene Emission Rate, kg/hr	ER(CH4)	4.1E-05	4.5E-05	4.1E-05	4.2E-05
Toluene Concentration, ppmvd	C(C7H8)	0.018	0.017	0.017	0.017
Toluene Emission Rate, lb/hr	ER(C2H6)	8.3E-05	9.0E-05	8.2E-05	8.5E-05
Toluene Emission Rate, kg/hr	ER(C2H6)	3.8E-05	4.1E-05	3.7E-05	3.8E-05
Ethylbenzene Concentration, ppmvd	C(C8H10)	0.016	0.016	0.015	0.016
Ethylbenzene Emission Rate, lb/hr	ER(C3H8)	8.61E-05	9.32E-05	8.48E-05	8.81E-05
Ethylbenzene Emission Rate, kg/hr	ER(C3H8)	3.91E-05	4.23E-05	3.85E-05	3.99E-05
Xylene Concentration, ppmvd	C(C8H10)	0.046	0.045	0.044	0.045
Xylene Emission Rate, lb/hr	ER(C4H10)	2.5E-04	2.7E-04	2.4E-04	2.5E-04
Xylene Emission Rate, kg/hr	ER(C4H10)	1.1E-04	1.2E-04	1.1E-04	1.1E-04

Location Energy Transfer - Howell, MI

Source Dehydration Unit Project No. 2021-2950

Run Number		Run 1	Run 2	Run 3	Average
Date		12/16/21	12/16/21	12/16/21	
Start Time		10:25	12:17	14:24	
Stop Time		11:25	13:17	15:24	
	Calculated Data - Outlet				
O ₂ Concentration, % dry	C _{O2}	3.52	4.26	3.51	3.76
CO ₂ Concentration, % dry	C _{CO2}	10.13	9.77	10.25	10.05

ell, MI

12/16/21 Time Unit	O2 - Outlet	
Unit	0. 0.4.4	
		CO2 - Outle
Status	% dry Valid	% dry Valid
	v anu	vanu
10:25	13.09	4.51
10:26	3.98	9,98
10:27	4.78	9.46
10:28 10:29	4.91 6.55	9.48 8.53
10:29	14,35	3.86
10:31	20,59	0.21
10:32	15.45	3.18
10:33	5.46	9.10
10:34	3.69	10.20
10:35	3.47	10.18
10:36 10:37	3.99 4.02	9,90 9,88
10:38	3.79	10.00
10:39	4.58	9.57
10:40	4.01	9.90
10:41	3.89	9.97
10:42	3,30	10.24
10:43	2,90	10.55
10:44 10:45	2.12 1.27	10.96 11.50
10:46	1.53	11.30
10:47	2.22	10.95
10:48	2.18	10.97
10:49	1.49	11.31
10:50	2.56	10.82
10:51	1.35	11.35
10:52 10:53	0.60 1.66	11.75 11.27
10:54	2.20	10.92
10:55	0.87	11.64
10:56	0.39	11.75
10:57	0.68	11.62
10:58	0.93	11.60
10:59 11:00	1.03 0.77	11.51 11.71
11:01	0.93	11.64
11:02	0.48	11.67
11:03	0.44	11.72
11:04	0.69	11.65
11:05 11:06	2.00 1.42	11.00 11.29
11:07	0.81	11.70
11:08	1.64	11.27
11:09	0.86	11.63
11:10	1.45	11.33
11:11	1.04	11.48
11:12	0.93	11.58
11:13 11:14	0.48 2.07	11.74 10.98
11:14	1.46	11.44
11:16	1.62	11.24
11:17	1.67	11.25
11:18	2.08	10.97
11:19	2.56	10.81
11:20	6.46 7.92	8.44 7.52
11:21	7.37	7.93
11:22	7.03	8,06
11:24	6.89	8.15
Parameter	O2 - Outlet	CO1 - Outle
Uncorrected Run Average (Cobs)	3.5	10.1
Cal Gas Concentration (C _{MA}) Pretest System Zero Response	11.0	11.0 0.00
Posttest System Zero Response	0.00	0.00
Average Zero Response (Co)	0.0	0.0
Pretest System Cal Response	10.98	11.03
Posttest System Cal Response	10.97	11.06
Average Cal Response (CM)	11.0	11.0

Location: Energy Transfer - Howell, MI

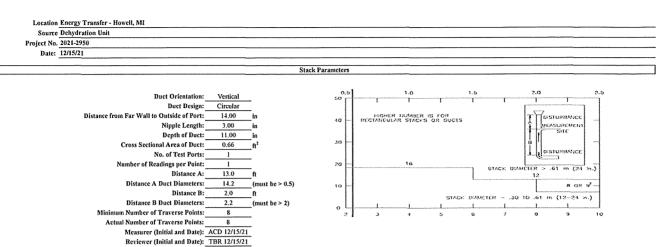
Source: Dehydration Unit		
ect No.: 2021-2950		
Date: 12/16/21		
		~ ~ ~
Time	O2 - Outlet	CO2 - Outles
Unit	% dry	% dry
Status	Valid	Valid
10.17		
12:17	3.44	10.20
12:18	3.50	10.27
12:19	4.09	9.83
12:20	4.93	9.37
12:21	4.46	9.65
12:22	5.30	9.13
12:23	4.48	9.65
12:24	3.89	10.00
12:25	3.71	10.08
12:26	3.45	10,19
12:27	4.33	9,72
12:28	4.08	9.79
12:29	4.65	9.44
12:30	3.72	10.07
12:31	3.71	10.05
12:32	3.74	10,12
12:33	3.99	9.88
12:34	5.10	9.24
12:35	4.44	9.71
12:36	4.29	9.74
12:37	4.31	9,83
12:38	4.93	9,39
12:39	5.37	9,10
12:40	4.42	9.77
12:41	3.67	10.06
12:42	4.36	9.69
12:43	3.12	10.47
12:44	3.27	10.42
12:45	3,30	10.37
12:46	4.75	9,52
12:47	6.80	8.27
12:48	6.07	8.67
12:49	4.44	9.63
12:50	4.34	9.81
12:50	3.92	9,93
12:52	4.02	9,91
12:52	3.98	9,99
12:55	5.37	9.99
12:55		9.42
	4.90	
12:56	4.43	9.54
12:57	3.34	10.29
12:58	3.21	10.44
12:59	3.20	10.35
13:00	3.51	10.22
13:01	3.74	10.13
13:02	3.93	9.94
13:03	5,79	8.79
13:04	5.59	9.05
13:05	4.71	9.45
13:06	4.02	9.87
13:07	3.61	10.14
13:08	3.73	10.05
13:09	4.85	9.39
13:10	4.22	9.82
13:11	3.47	10,30
13:12	3.79	10.13
13:13	4.39	9.74
13:14	5,18	9.16
13:15	3.93	9.94
13:16	3,79	10.13
Parameter	O2 - Outlet	CO2 - Outlet
Uncorrected Run Average (Cob)	4.3	9.8
Cal Gas Concentration (C _{MA})	11.0	11.0
Pretest System Zero Response	0.00	0.00
Posttest System Zero Response	0.00	0.00
Average Zero Response (Co)	0.0	0.0
Pretest System Cal Response	10.97	11.06
Posttest System Cal Response	10.96	11.02
Average Cal Response (C _M)	11.0	11.0
Corrected Run Average (Corr)	4.3	9.8

Location: Energy Transfer - Howell, MI

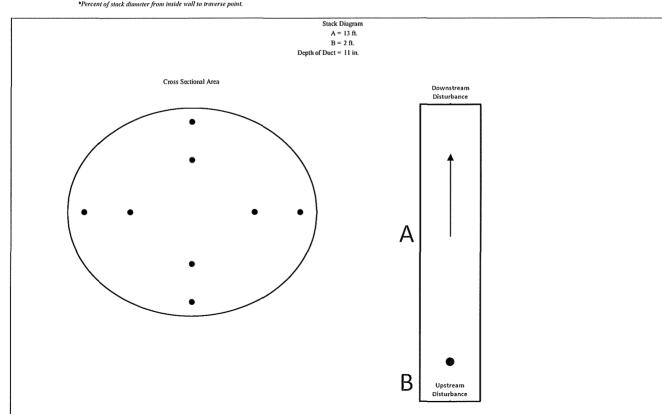
Source	e: Dehydration Unit

Project No Date

Time	O2 - Outlet	CO2 - Outle
Unit Status	% dry Valid	% dry Valid
otatus	vand	vanu
14:24	3.96	9,98
14:25	4.01	9.96
14:26	4.40	9.71
14:27	4.15	9.88
14:28 14:29	3.46	10.24 10.14
	3.74 3.80	10.14
14:30 14:31	3.50	10.04
14:32	3.18	10.30
14:33	2.81	10.69
14:34	2.78	10.67
14:35	3.28	10.33
14:36	3.19	10.42
14:37	2.77	10.62
14:38	3.10	10.53
14:39	2.91	10.51
14:40	2.64	10.75
14:41	2.75	10.63
14:42	2.88	10.67
14:43	3.33	10.35
14:44	3.54	10.20
14:45	3.94	9.85
14:46	2.80	10.71
14:47	2.52	10.90
14:48	3.59	10.16
14:49	2.91	10.62
14:50	4.12	9.81
14:51	4.07	9.90
14:52	2.87	10.59
14:53 14:54	2.73 3.22	10.80 10.43
14:54	4.43	9.62
14:55	4.79	9.51
14:57	4.45	9.62
14:58	3.95	9,98
14:59	4.67	9.52
15:00	4,40	9.76
15:01	5.47	9.07
15:02	4.18	9.90
15:03	4.27	9.84
15:04	3.45	10.25
15:05	3.25	10.44
15:06	3.42	10.25
15:07	3.31	10,38
15:08	3.07	10.56
15:09	2.96	10.61
15:10	2.50	10.89
15:11	3.06	10.54
15:12	4.39	9.66
15:13	3.95 4.45	10.07 9.75
15:14 15:15	4.45 5.29	9,75 9,08
15:15	2.61	10.82
15:17	3.03	10.82
15:17	3.91	9.95
15:18	3.02	10.67
15:20	2.61	10.69
15:21	2.60	10.77
15:22	2.73	10.79
15:23	3.01	10.59
Parameter	O2 - Outlet	CO2 - Outle
Uncorrected Run Average (Cobs)	3.5	10.3
Cal Gas Concentration (C _{MA})	11.0	11.0
Pretest System Zero Response	0.00	0.02
Posttest System Zero Response	0.00	0.01
Average Zero Response (Co)	0.0	0.0
Pretest System Cal Response	10.96	11.02
Posttest System Cal Response	10.97 11.0	11.05 11.0
Average Cal Response (C _M)		


RECEIVED

FEB 1 1 2022


AIR QUALITY DIVISION

Alliance source testing

Method 1 Data

							CIRCULA	AR DUCT							
					LOCATION (Traverse	% of	Distance	Distand from
	Number of traverse points on a diameter											Point	Diameter	from inside	outside
	2	3	1	5	6	7	8	9	10	11	12			wall	port
1	14.6		6.7		4.4		3.2		2.6		2.1	1	6.7	0.74	3.74
2	85.4		25.0		14.6		10.5		8,2		6.7	2	25.0	2.75	5.75
3			75.0		29.6		19.4	••	14.6		11.8	3	75.0	8.25	11.25
4			93.3	-	70,4		32.3		22.6		17.7	4	93.3	10.26	13.26
5	1	••			85.4		67.7		34.2		25.0	5	••		
6					95.6	-	80.6		65,8		35.6	6			
7				-			89,5		77.4		64.4	7			
8				-			96.8		85.4		75.0	8			
9									91.8		82.3	9			
10									97.4		88.2	10			
11									-		93.3	11			
12									-		97.9	12			

24 of 210

Cyclonic Flow Check

Location Energy Transfer - Howell, MI

Source Dehydration Unit

Project No. 2021-2950

Date 12/15/21

Sample Point	Angle (ΔP=0)						
1	0						
2	0						
3	0						
4	2						
5	2						
6	1						
7	1						
8	0						
9	1						
10	1						
11	0						
12	1						
13	1						
14	2						
15	2						
16	0						
Average	0.9						

Location Energy Transfer - Howell, MI

Escation _	8.	izon en, mit	· · · · · · · · · · · · · · · · · · ·	and the second se				-
Source D	ehydration Unit							-
Project No. 20	021-2950							-
· · · · · · · · · · · · · · · · · · ·				T				n
	Run No.		1 6/21	2				
	Date			12/16		12/1		
	Status			VAI	LID	VA		
	Start Time	10	:40	12:	25	14		
	Stop Time			12:	32	15	:00	
	Leak Check Γraverse Point A1 2 3 4 B1 2 3 4 A1 (ΔP) ^{1/2}		155	Pa	SS	Pa		
Traverse Point		ΔP (in. WC)	Ts (°F)	ΔP (in. WC)	Ts (°F)	ΔP (in, WC)	Ts (°F)	
Al		0.06	858	0.07	838	0.06	843	
2		0.06	900	0.07	875	0.07	897	
3		0.08	940	0.09	713	0.09	939	
4		0.10	797	0.09	585	0.10	805	
B1		0.06	805	0.09	785	0.07	822	
2		0.06	895	0.09	836	0.07	889	
3		0.09	970	0.09	866	0.09	910	
4		0.10	870	0.09	678	0.09	802	
								Average
Square Root of ΔP , (in. WC) ^{1/2}	(ΔP) ^{1/2}	0.274		0.290		0.282		0.282
Average ΔP, in. WC	(ΔP)	0.	08	0.0	8	0.08		0.08
Pitot Tube Coefficient	(Cp)	0.8	340	0.840		0.840		0.840
Barometric Pressure, in. Hg	(Pb)	28.	.62	28.62		28.62		28.62
Static Pressure, in. WC	(Pg)	-0.	28	-0.25		-0.27		-0.27
Stack Pressure, in. Hg	(Ps)	28.	.60	28.60		28.60		28.60
Average Temperature, °F	(Ts)	87	9.4	772	2.0	86	3.4	838.3
Average Temperature, °R	re Root of ΔP, (in. WC) ^{1/2} (ΔP) ^{1/2} Average ΔP, in. WC (ΔP) Pitot Tube Coefficient (Cp) rometric Pressure, in. Hg (Pb) Static Pressure, in. Hg (Pg) Stack Pressure, in. Hg (Ps) Average Temperature, °F (Ts) Average Temperature, °R (Ts) assured Moisture Fraction (BWSmsd) re Fraction @ Saturation (BWSsat) Moisture Fraction (BWS) O2 Concentration, % (O2)		9.0	123	1.7	132	1297.9	
Measured Moisture Fraction	(BWSmsd)	0.1	48	0.1	48	0,1	47	0.147
Moisture Fraction @ Saturation	(BWSsat)	437.	.373	266.	736	408	.530	370.880
Moisture Fraction	(BWS)	0.1	48	0.14	48	0.1	.47	0.147
O2 Concentration, %	(O2)	3.	.5	4.:	3	3	.5	3.8
CO2 Concentration, %	(CO2)	10	0.1	9.	8	10	0.3	10.1
Molecuar Weight, lb/lb-mole (dry)	(Md)	29.	.76	29.	73	29	.78	29.76
Molecuar Weight, lb/lb-mole (wet)	(Ms)	28.	.03	28.0	00	28.	.06	28.03
Velocity, ft/sec	(Vs)	25	5.5	25.	8	26	.0	25.8
VFR at stack conditions, acfm	(Qa)	1,0	08	1,02	23	1,0	29	1,020
VFR at standard conditions, scfh	(Qsw)	22,7	791	25,1	37	23,	541	23,823
VFR at standard conditions, scfm	(Qsw)	38	30	41	9	39	92	397
FR at standard conditions, dscfm	(Qsd)	32	24	35	7	33	35	339

Location	Energy Trai	nsfer - How	ell, Ml														
	Dehydration	u Unit															
Project No.															····	·····	
Parameter(s): Console Type	Meter Box																
Run No.				1					2					3			
Date				12/16/21					12/16/21					12/16/21			
Status				VALID					VALIÐ					VALID			
Start Time		1		10:25					12:17					14:24			
End Time				11:25					13:17					15:24			
Run Time, min	(0)			60					60			60					
Meter ID				T13A					Unit 5					Unit 5			
Meter Correction Factor	(Y)			1,029					1.013					1.013			
Orifice Calibration Value	(AH @)			1,778					1.648					1.648			
Max Vacuum, in. Hg				2					3 0,000					3 0,000			
Post Leak Check, ft3/min (at max vac.) Meter Volume, ft3				0,000					0.000					0.000			
0				0.000					392.290					425,720			
5				2,541					392.290					423.720			
10				5.101					393.070					427.770			
15		1		7.880					400.300					433.510			
20				10,610					403.000		1			436.380			
25				12,960					405.910					439,250			
30				14,730					408.640					442.120			
35 .		1		17,570					411.430					444.990			
40				20,410					414.200					447,860			
45		1		23,160					416.890					450,730			
50				26,040					419.620					453.600			
55				29.080					422.330					456.470			
60				31,790					425.600					459.340			
Total Meter Volume, ft3	(Vm)			31,790					33.310					33.620			
Temperature, °F		Meter	Probe	Filter	Vacuum		Meter	Probe	Filter	Vacuum			Probe	Filter			
0		60	-		2	59	59			3	60	62	-		3	52	
5		62		-	2	50	60			3	53	62			3	52	
10		60			2	49	62			3	52	63			3	50	
15 20		60 61			2	49 51	62 63			3	50 50	64			3	48 47	
20		61				51	63			3	50	65 65			3	47	
30		62			2	53	63			3	51	66			3	47	
35		62		-	2	53	63			3	51	67			3	47	
40		62			2	54	63			3	51	67			3	50	
45		63			2	54	64			3	52	67			3	50	
50		63			2	54	64			3	52	67			3	50	
55		64			2	55	64			3	53	67			3	51	
60		64		-	2	55	64			3	53	67			3	51	
Average Temperature, °F	(Tm)	62			2	53	63			3	52	65			3	50	
Average Temperature, °R	(Tm)	522					522					525					
Minimum Temperature, °F		60			2	49	59			3	50	62			3	47	
Maximum Temperature, °F		64		<u> </u>	2	59	64			3	60	67			3	52	
Barometeric Pressure, in. Hg	(Pb)			28,62					28.62					28.62			
Meter Orifice Pressure , in. WC	(ΔH)			1,000					1.000					1.000			
Meter Pressure, in. Hg	(Pm)			28.69					28.69					28.69			
Standard Meter Volume, ft3	(Vmstd)			31,741					32,693					32.828			
Analysis Type		н		Gravimetrie		100.0	H		Gravimetri		2.0			Gravimetri		102.2	
Impinger 1, Pre/Post Test, g Impinger 2, Pre/Post Test, g		н		703.0	812.8 761.6	109.8 2.7	H. H.		858.6 578.4	854,7 579,5	-3.9		20 20	812.8 761.6	915.1 771.3	102.3 9.7	
Impinger 2, Pre/Post Test, g		En En		649.7	649.8	0.1	En		730.8	736.2	1.1 5,4	En		649.8	649.2	-0.6	
Impinger 3, Pre/Post Test, g		Sil		859,5	649.8 863.5	4.0	Sil		730.8	865,3	5.4 117.9	Sil		649.8 863.5	871.6	-0.6	
Volume Water Collected, mL	(Vic)			116.6	003,2	v	31	a	120.5					119.5	0/1.0		
Standard Water Volume, ft	(Vwstd)			5,499					5.683					5.636			
Moisture Fraction Measured	(BWS)			0.148					0.148					0.147			
Gas Molecular Weight, lb/lb-mole (dry)	(Md)			29,76					29.73					29.78			
DGM Calibration Check Value	(Yqa)			-3.4					-4.2					-3.5]	