

March 10, 2021

RECEIVED

Rob Dickman Michigan Department of Environment, Great Lakes, and Energy Air Quality Division - Cadillac District Office MAR 22 2071

AIR QUALITY DIVISION

Via Electronic Mail - DickmanR@michigan.gov

RE: WEXFORD COUNTY LANDFILL TIER 2 RESULTS MANTON, WEXFORD COUNTY, MICHIGAN ROP PERMIT NUMBER MI-ROP-N3862-2017 (WDS NO. 470336)

Dear Mr. Dickman:

Wexford County Landfill, LLC (WCL), conducted a Tier 2 evaluation of NMOC emissions in accordance with Title 40 of the Code of Federal Regulations, specifically 40 CFR 60.754(a)(2). The Tier 2 results indicate that the WCL will not emit NMOC at a rate of or greater than 50 megagrams per year (Mg/yr) as indicated in the attached NMOC calculations.

A Tier 2 Work Plan was submitted to the Michigan Department of Environment, Great Lakes, and Energy on April 28, 2020, revised September 28, 2020 and approved by EGLE on May 12, 2020.

1.0 REQUIREMENTS – NSPS WWW

The New Source Performance Standards (NSPS) for Municipal Solid Waste landfills were promulgated by the USEPA in March 1996 and apply to landfills that:

- accepted waste after May 30, 1991;
- have a maximum design capacity equal to or greater than 2.5 million megagrams (Mg) or
- 2.5 million cubic meters; and
- have potential annual NMOC emissions of 50 Mg or above.

Landfills exceeding these thresholds are required to meet the NSPS.

If the resulting NMOC mass emission rate predicted is less than 50 Mg/yr, a landfill gas collection system is not required, and the landfill must submit an annual estimate of the emission rate report as provided in 40 CFR 60.757(b)(1) and retest the site-specific NMOC concentration every 5 years. Previous Tier 2 sampling at the Site occurred April 6-8, 2011 and March 28-30, 2016.

2.0 BACKGROUND

WCL is a municipal solid waste landfill located in Wexford County, Michigan. The Landfill has an active LFG collection and control system (LFG-CCS) consisting of vertical and horizontal extraction wells connected to a vacuum that is applied from the blower unit of the landfill gas flare assembly (LFG Collection System). Approximately 39 of the 44 fill acres¹ are controlled by the LFG-CCS. The Landfill is subject to 40 CFR Part 60, Subparts A and WWW.

The previous Tier 2 sampling event and the LandGem model in March 2016 estimated a maximum NMOC emission rate of 31.04 Mg/yr.

3.0 FIELD ACTIVITIES

Tier 2 field sampling and analysis were performed in accordance with 40 CFR 60.754(a)(3), following EPS Reference Method 25C for NMOC and Method 3C for methane, carbon dioxide, nitrogen, and oxygen. Pescador conducted the site specific NMOC testing January 19-21, 2021. Six (6) borehole sample locations were drilled within the fill acres that are not controlled by the LFG CCS (approximately 2-acres): cells denoted as Cell G3 and the southern portion of Cell D/E. One of the borehole sample locations VP-6, was not able to be used. On the day of sampling, staff were unable to establish airflow at VP-6. It is possible that moisture accumulated in the tubing and froze prior to sample collection. The remaining fill acres were tested via sampling the landfill gas at the flare assembly.

Pescador staff conducted a LFG surface scan and collected twelve (12) samples over the course of the three day sampling event, compositing the samples into seven (7) SUMMA canisters for testing. Each sample composited used approximately similar pounds per square inch (psi) of pressure from the SUMMA canisters. The samples were then packed and sent to Enthalpy Analytical for laboratory testing. Copies of field notes, the chain of custody, and sample location map are included in Appendix A.

3.1 Surface Gas Monitoring

Prior to collecting the LFG samples, a Landtec GEM-2000 portable monitoring unit was used to scan and measure methane, carbon dioxide, and balance gas (assumed to be nitrogen) surface emission concentrations near the surface of the landfill unit. The surface scan was performed on January 19-20, 2021 by traversing the 44 acres controlled by the LFG CCS with the Landtec GEM-2000 held 4-6" from ground surface, recording measured detections. Staff traversed the field as depicted by the pre-defined grid on Figure 3 which was spaced at a distance of 100-feet. Results of the scan were used to ensure that the LFG-CCS was functioning.

Staff noted one detection of methane at a concentration of 0.01 ppm as marked on the Figure 3-Tier 2 LFG Surface Scan Map, a copy of which is included with the field notes in Appendix A.

¹ Fill acres – areas where waste has been in place for at least 2-years

3.2 Soil Sampling

Soil gas samples were collected through the use of a hydraulic push rig (Geoprobe[™]) operated by Shepler Well Drilling. The direct push rig drilled a 2-inch diameter borehole which housed the ¼-inch poly tubing well. Fitted with a 3/4-inch lotted Sintered Brass Filter for sample collection. The borehole was backfilled with a 1-foot thick sand filter pack overlain by Benseal Bentonite to the surface. Sampling locations VP-3 and VP-4 included waste younger than 2-years, placed over older waste. The other sample locations were in areas where the waste mass was older than 2-years placed. The borehole and sample depth for the sample locations was 5 feet below the surface grade as shown on the Vapor Point Logs included in Appendix B.

Prior to collecting the LFG samples from the boreholes, a Landtec GEM-2000 portable monitoring unit was used to measure methane, carbon dioxide, and balance gas (assumed to be nitrogen) concentrations as a check for any indication of air intrusion in the sample probe and potentially in the LFG sample collected. The concentrations were observed to be within the limits allowed under EPA Method 25C for NSPS Tier 2 testing.

Three (3) six-liter Summa canisters were used to collect eight (8) LFG samples (including the duplicate sample) from the boreholes drilled within the waste mass. Samples were collected in stainless steel Summa canisters partially filled with helium by the analytical laboratory. All steel canisters were leak-tested by the analytical laboratory to verify that the valve and collection port on each tank was not leaking. Each canister was used to collect composite samples of two to three samples per canister. The canisters were filled at a rate of approximately 500 milliliters per minute (ml/min) or less at each sample location. Equal volumes of LFG were collected at each location and included in a composite sample by evenly dividing the vacuum used in collecting samples. A copy of the field notes is provided in Appendix A.

3.3 LFG Sampling

Three (3) discrete samples were collected at the flare assembly. An additional sample was collected from the Cell A passive vent². The LFG CCS gas samples were collected at the header prior to the knockout pot and blower. A six-liter summa canister was used for each sample. Field sampling was conducted to assure the samples were valid (less than 5% oxygen and 20 % for balance gas). Landfill gas flow measurements were recorded prior to and directly after the collection of each canister. The samples were analyzed for oxygen and nitrogen following Method 3C to document suitability for Method 25C analysis of methane, carbon dioxide and NMOC.

4.0 LABORATORY RESULTS

LFG samples were packaged by the sampler and shipped to Enthalpy Analytical in Richmond, Virginia, for analysis by Method 25C and Method 3C (CFR, 2007 Appendix A). Pressurization of the Summa® canisters with helium was performed in the laboratory prior to analysis. The laboratory results are reported as total NMOC by volume as carbon and have been corrected for temperature and pressure as indicated by the dilution factor incorporated within the laboratory results. The laboratory results were also corrected for the moisture content and measured nitrogen content present in the samples as discussed in EPA Method 25C. The laboratory report for the Method 25C and 3C results is provided in Appendix C. A summary of the results is provided below in Table 1.

² Cell A is located underneath Cell F and cannot be tested using probe sampling methods. Therefore, Cell A was sampled from the passive vent riser pipe that was installed along the length of that cell.

	Sample		Method 3 (% by V	C Results /olume)		Acceptable		d 25 C ults	
Sample Location	Date	Methane	Carbon Dioxide	Oxygen	Nitrogen	Sample for Estimation	NMOC` (ppm as C)	NMOC (ppm as C6)	Comments
Flare @ 13:23	1/19/2021	41.10	31.60	0.90	25.90	Yes	2,100.0	350.0	
Flare @ 15:15	1/19/2021	41.80	32.10	0.94	26.30	Yes	2,320.2	386.7	
Flare @ 8:53	1/20/2021	40.20	30.70	0.78	25.00	Yes	2,140.2	356.7	
Cell A Candy Cane 14:27	1/19/2021	<0.45	<0.45	20.50	73.80	No	51,100.2	8,516.7	Sample ruled as ambiant air and not indicative of LFG that may have been present
VP-1, VP-2 Composite	1/22/2021	31.70	26.30	9.60	34.50	Marginal	4,960.2	826.7	Elevated levels of Oxygen and Nitrogen due to the age of waste - filling has occurred on top of old waste within the last 3-years
VP-3, VP-4, VP-5 Composite	1/22/2021	17.40	11.90	16.00	57.30	Marginal	10,200.0	1,700.0	Elevated levels of Oxygen and Nitrogen due to the age of waste - filling has occurred in the area within the last 2-years. Sample results do not align with the duplicate taken at the same location
VP - Composite DUP	1/22/2021	28.20	20.00	12.20	43.00	Marginal	5,710.2	951.7	Elevated levels of Oxygen and Nitrogen due to the age of waste - filling has occurred in the area within the last 2-years

Table 1 - Laboratory Summary

Samples collected at locations VP-3, VP-4 and VP-5 was noted to have a mean NMOC concentration of 10,200 parts per million by volume (ppmv) as carbon. The reason for the high reading was unknown. The Duplicate was also taken from these three sample locations and was noted to have a mean NMOC concentration of 5,710 parts per million by volume (ppmv) as carbon. As a conservative assumption, the NMOC concentration from these sample locations was averaged between the two sample results and used in the calculation of the weighted average NMOC concentration for the site as discussed below.

A weighted average of the NMOC concentration (ppmv as carbon) for each sample was calculated. Results were within the acceptable range of data collected at landfills. This value was then divided by six to convert from ppmv NMOC as carbon to ppmv NMOC as hexane and used as the site-specific NMOC concentration.

Table 2 - Weighted Average Concer	ntrations
-----------------------------------	-----------

Sample Location	Coverage					
ent of generation of sectors due	(Acres)	Factor (1)	Average	Maximum	Average	Maximum ²
Landfill Gas Flare	44.13	0.89	364.5	386.7	324.1	343.9
VP-1, VP-2 Composite	2.23	0.05	826.7	826.7	37.2	37.2
VP-3, VP-4, VP-5 Composite/Duplicate ³	3.26	0.07	1325.9	1700.0	87.1	111.6
TOTAL WEIGHTED AVERAGE	anga banan nga Sinifika kang nga kana ng				448.4	492.7

Mr. Dickman, Air Quality - EGLE WCL Tier 2 Report

The average NMOC concentration at the site ranged from 356.7 to 1,700.0 parts per million-hexane (ppmh) for all samples analyzed except for sample location Cell A Candy Cane 14:27 as noted in the comments of Table 1. The weighted NMOC concentration was identified to be 454.9 ppmh on average and 503.1 ppmh using maximum detected concentrations for the samples. Both NMOC concentrations were used to evaluate NMOC emissions.

5.0 NMOC EMISSION RATE CALCULATION

A NMOC emission rate calculation was performed with the site-specific NMOC concentration. The calculation was performed using the USEPA LFG Emission Model Version 3.02 (LandGEM) (Clean Air Act [CAA] default values – k=0.02/year and L₀=170 m3/Mg), the site-specific NMOC concentration (433 ppmv), historical waste receipts for degradable solid waste, and the projected future waste acceptance rates for the WCL using the equation specified in 40 CFR 60.754 displayed below:

MNMOC =
$$\sum 2 \text{ k } L_{\circ} \text{ Mi} (e^{-kti}) (C_{NMOC}) (3.6 \text{ x} 10^{-9})$$

where:

MNMOC	= Total emission rate from landfill – (Mg/yr)
k	= Methane generation constant = 0.02/yr (representative of an arid climate.)
Lo	= Methane generation potential = 170 cubic meters per Megagram (m3/Mg)
Mi	= Mass of waste in the ith section – Mg
ti	= Age of the ith section of waste - years
CNMOC	= Site-specific NMOC concentration of 433 ppmv (as determined from sample analyses)

Based on the site-specific NMOC concentration, the LandGEM yielded an average NMOC emission rate of 35.81 Mg/yr for the year 2021. LandGEM results have been provided in Appendix D of this report. The NMOC emission rate calculation indicates that the WCL does not exceed 50 Mg/yr for 2021 and is not expected to exceed the 50 Mg/yr threshold limit value over the next five years as summarized below.

Year	Refuse in Place	NMOC -	average	NMOC - maximum		
Tear	(Mg)	(Mg/yr)	(m³/yr)	(Mg/yr)	(m³/yr)	
2021	4,090,050	35.81	9,989.47	38.64	10,778.47	
2022	4,295,540	37.69	10,515.94	40.67	11,346.52	
2023	4,501,030	39.51	11,021.76	42.63	11,892.29	
2024	4,706,520	41.25	11,507.75	44.51	12,416.67	
2025	4,912,010	42.92	11,974.69	46.31	12,920.48	
2026	5,117,500	44.53	12,423.31	48.05	13,404.54	
2027	5,322,990	46.08	12,854.35	49.72	13,869.62	
2028	5,528,480	47.56	13,268.48	51.32	14,316.46	
2029	5,733,970	48.99	13,666.37	52.86	14,745.78	
2030	5,939,460	50.36	14,048.67	54.33	15,158.27	

Table 3 - NMOC Predicted Emission Rate

Predicted NMOC generation rates will continue to be conducted annually. As required, if the landfill generates 50 Mg/yr or more NMOC, then it must comply with the control and reporting requirements under 40 CFR 60.752(b)(2).

6.0 CONCLUSION

The LandGEM model predicts an average NMOC generation of 35.81 Mg/yr and a maximum NMOC generation rate of 38.64 Mg/yr based on the Tier 2 data, both below the NSPS emission threshold of 50 Mg/yr. The LandGEM model further predict that the site will remain below the 50 Mg/yr threshold over the next five years. The year 2028 and 2030 is estimated to exceed this threshold based on the average and maximum NMOC generation rates, respectively. In the event that actual waste acceptance rates differ significantly than those estimated in this report, the Wexford County Landfill will recalculate the NMOC emission rate using the NMOC concentration determined in this report and actual waste acceptance.

The site remains in compliance with NSPS-WWW and an active landfill gas collection system is not required. To maintain this exemption, retesting must occur by January 19, 2026: within 5-years of this last test.

If you have any questions regarding this work plan, please contact me at 248-255-8280.

Sincerely;

Vicki R. Garon, P.E.

Encl.: Appendix A – Field Notes Appendix B – Vapor Point Logs Appendix C – Analytical Data Appendix D – LandGEM Results

cc: Mr. John Ozoga, EGLE - via Electronic Delivery (OzogaJ@michigan.gov)

March 10, 2021

Appendix A Field Notes

Wexfor Vapor	d Le Sam	and f	211		Tier 2 Field	Sample Log				JOB #	1-19.	2 2 3 5 5
	Pre-T	est Field F	lecults			Tank Samp	ling Record			Postal	Field I	Poculte
Sample No.					Start	Time 13:2	23	Stop	Time \3:43	1031-1		(esults
	CH4 [%]	CO ₂ [%]	0 ₂ (%)	Ambient Pressure*	Ambient Temp [°F]	Pressure (in. Hg)	Flow Rate (L/min)	Pressure (in. Hg)	Flow Rate (L/min)	CH4 [%]	CO ₂ (%)	0 ₂ (%)
FICVE		31.7	0.3	Bara 28.24	22° F	28" Hg	300ML	20 Hy	JOOML	40.9	32.2	0.5
	Has	65	Bal							#22	CO	Bal
	119	8	26.5							118	୪	26.3
				Time	14:27			Time	15:04			
Cell A Condy	0.0	0.1	21.4	28.25	22° F	30" Hg	400m4/	211 149	400mL/	al.	0	23.6
cane	5425	co	Bal				/	5		Has	CO	Bal
	0	3	78.5							0	2	76,3
				Time	15:15			Time	15.59			
Flare	41.3	32.4	.7		21°F	30" 49	300m4	20" lto	300m	140.7	32.2	0,5
	H2S	00	Bal			0	/	~		HzS	CO	Bal
	117	6	25.4							14	7	26.5
										i	, .	
	Sample No. Flove Cell 13:23 Cell 14 Condy Cane O 14:27	Sample No. Sample No. FIC VE UD.8 EI: 2: 2 EI: 2: 2 EI: 2 E	$\begin{array}{c c} & & & & \\ & & \\ & & \\ Sample No. \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

*For composite samples use a separate row to record field readings for each sample location.

**Specify units Comments:

PROJECT	Wexford Vapor	Lan Sa	d S.II m plr	(-	Tier 2 Field :	Sample Log				SHEET JOB N DATE SAMPLED BY	20	f 2 0-21
SUBJECT			•		-		Tank Samp	ling Record					
Tank No.	Sample No.	Pre-T	est Field R	lesults		Start	Time 8:5	3	9:03 Stop	Time	Post-Test Field Results		
		CH₄ {%}	CO ₂ (%)	O ₂ (%)	Ambient Pressure*	Ambient Temp [°F]	Pressure (in. Hg)	Flow Rate (L/min)	Pressure (in, Hg)	Flow Rate (L/min)	CH4 (%)	CO ₂ (%)	0 ₂ (%)
Serial 4 37859	414re @ 8:53	41.5	31.6	0.3	28.32	16° F	28" Hy	300m(/_	20"Hy	300 mL/m.	41.4	31.7	0.4
		45	0	Bal			7				425	Cυ	391
		119	5	26.5						Ann	117	8	26,6
										1478.0.			
												-	
										•			
a Plant and a Country of Country of													

**Specify units

Comments:

SMITH GARONER

	1	Canistar # 37814	
Flave @ 1	5:15 Date	1-19-21	RE GET
		-	Purge Target
	Andre Franziska andre andre Alfrederik andre	Purge 30 ML/Ft	

Time	Notes
15:10	Use gen to take vapor readings
15:12	Use gen to take vapor readings I used syringe to purge 240 ML from
	line and manifold
15:15	Start sumple 28" Hy 300ML/Min
15:59	Stop sample 19" Hg 300ml/min Manifold 20" Hg 42° F
	Marifold 20" Ha 42° F
	\sim
16:00	His temp 19°F wind 9 MPH from west
L	
	ļ
PID Reading	O2 LEL VOC Co
`	

Canistar # 18163 Flare @ 13:23

Date 1-19-21 '狎-

Purge Target 240 ML

Purge 30 ML/Ft

R E GEI

Time	Notes							
13:10	I used syringe to purge 240 ML from line							
	and manifold							
	Air temp warmer near flare							
	Air temp warmer neur flave Approp 27° @ flave 22° other greas							
	Wind approx 7 MPH From west							
13: 23	Start sample 28" Hy							
	Stort sample 28" Hy Flave manifold 20" Hy 414°F							
13:29	22" Hy 300 ML/min VFlow							
13:32	al He 200 ML/Min Flow							
13:34	20" Mg Stop sample							
PID Reading	O2 LEL VOC Co							

Canistur # 37859

Flave @ 8:53

VP- Date 1-20-21

Purge Target

Purge 30 ML/Ft

Time				Notes				
8:46	Start	GEM	۸					
8:49	Man,	R11	Press	ure 2	O" HO	2		
Man	lem	P9)	° F					
8:51	Houke	1 00	frank	(and	PUN	sed	24	OMC from
	line	and	man; 1	212	, (4		
8:53	Start	Sin	Ple					
	Wind	17	MPH	Fruit	n u	es!-		
	A.v.	temp	16°F					
	28"1	+ 300	mc/m	hin				
9:03	Stop	Samp	ole	2014 419	Sa	mp	95	Mansfold
	Vacu	um f.	sr fl	ave.				
			······································					
								······
	1	······						
PID Reading	02	LEL	VOC	Co				
	1							
,					•			^

Cell A	Conister# 3780	9 RE
Candy Can	ne	GEJ
\@-	Date 1-19-21	

Purge Target

Purge 30 ML/Ft

Time	Notes
14:20	I put ziplach berg over vent inlet and used
	duct tape to seal.
14:22	
-	I took readings with gem meter. No vapor was purged from candy cone
	before sampling or gen readings Gen was hooked up approx 1.5 minutes Stort sample 30" Ha flow 400 Mc/min 20" Ha 400 Mc/min
	Gen was hooked up approx 1.5 minutes
14:27	Start sample 30" Ha Alow 400 Mc/min
14:49	20" Hg 400 ML/min
15:04	2" Hg 400 ML/min end sample
· · · · · · · · · · · · · · · · · · ·	
PID Reading	O2 LEL VOC Co

PROJECT SUBJECT	Vexford Vapor	9 lar Sam	9 Q.	· {	Co	Tier 2 Field mposite		I VP-	2		SHEET JOB # DATE SAMPLED BY				
Tank No.	Sample No.	Pre-Test Field Results		esults	Tank Sampling Record 9,56 Start Time \0;0(Stop Time										
Taink NO.	Sample Ho.	CH4 [%]	CO ₇ (%)	0 ₂ (%)	Ambient Pressure*	Ambient Temp [°F]	Pressure (in. Hg)	Flow Rate (L/min)	Pressure (in. Hg)	Flow Rate (L/min)	CH4 [%]	$\begin{bmatrix} - & -2 & -2 & -2 \\ \hline & & & \\ \hline \\$	0 ₂ (%)		
31011	VP-1	61.8	41.8	0.0	28.31	13°E	28"ikg	400 mc/m.	15 144	400 ML	61.9	41.8	0.0		
		Has	CO	Bal					J		425	(0	Bal		
		> 500 PP	22	\geq	\sim	~~	~~~~		$\sim\sim$	h. >	>500	20	>		
	hn	-n	~~	\sim	10:24				10:37		h	~`~	W		
3 1011	VP-2	55.9	44.1	0.0	28.31	13°, F	15" Hg	400ml	2"Hq	400mc/	55.5	44.5	0.0		
		HIS	(0	Bal							HzS	CO	Bul		
		10	22	0.0							9	25	0.0		

**Specify units Comments:

Werford Landfill VP-3 Composite VP-5 Tier 2 Field Sample Log VP-3 VP-4 - VP Duplicate VP-5

SHEET 204 JOB # DATE 1-22-SAMPLED BY

Tank No, Sa					· Tank Sampling Record							Post-Test Field Results CH ₄ (%) CO ₂ (%) O ₂ (%)	
	Sample No.	Pre-Test Field Results			10:52	. Start	11:03 Stop	Post-rest Field Results					
		CH4 (%)	CO ₂ (%)	0 ₂ (%)	Ambient Pressure*	Ambient Temp (°F)	Pressure (in. Hg)	Flow Rate (L/min)	Pressure (in. Hg)	Flow Rate (L/min)	CH4 (%)	CO ₂ (%)	02 (%)
20589	VP-3	57.9	41.2	0.0	28.38	13° F	28" Hg	400mc/m.	19" Hg	400 MC/	ļ		
		HJS	60	Bal					0				
	2	>500	20	.8									
					11:05				11:15				
20573 VP-	VP-3				28.38	13°F	30" Hg	400m/	20" Hg	400MU	58,0	41:7	0.0
							Ũ		5		Has	co	Bal
										>	- 500	19	0.2
an make di sana an		and and a statement											
												•	

**Specify units Comments:

PROJECT SUBJECT

	VP-3 VP-4 Composite
Wesford Landfill	UP-5 Tier 2 Field Sample Log
Vapor Simple	UP-3 UP-4. UP- (umposite UP-5

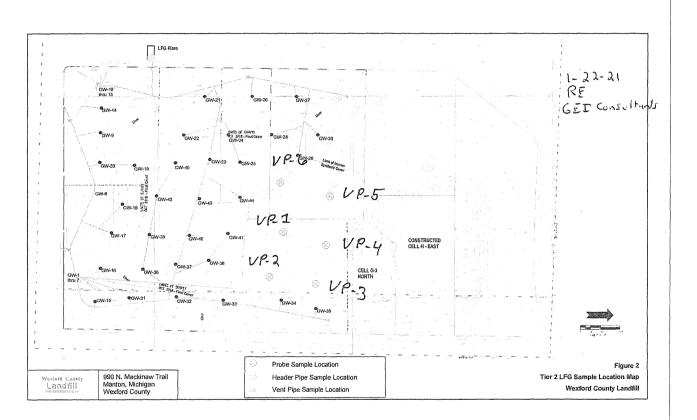
SHEET <u>3 6 F 4</u> JOB II DATE <u>1 - 22 - 2</u> SAMPLED BY 1-22-2

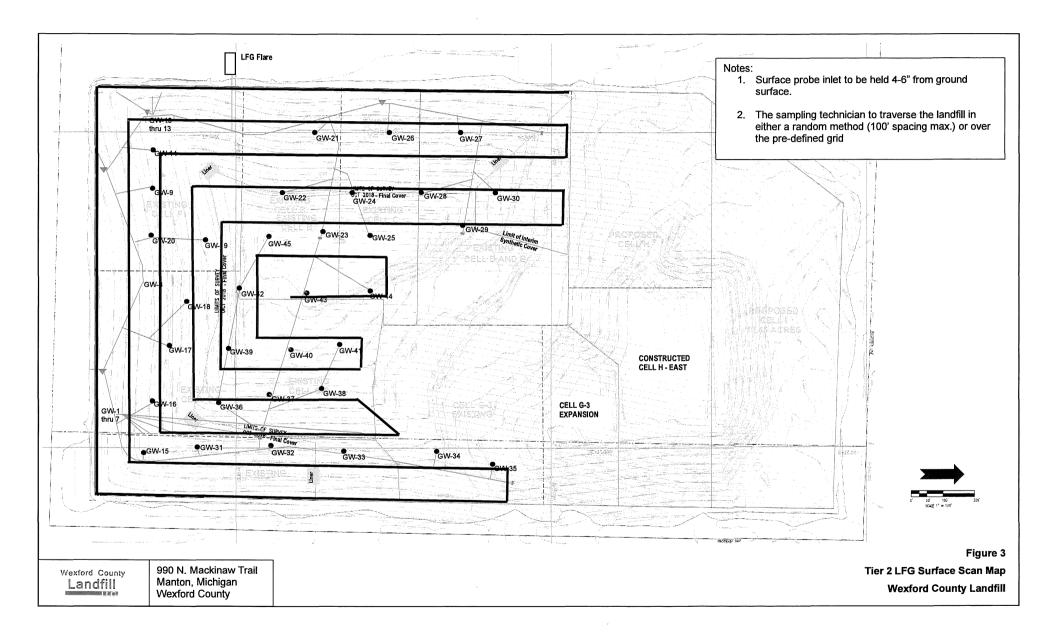
Tank No. Sa							Tank Sam	pling Record			Dent Tret Field D		
	Sample No.	Pre-Test Field Results		esuts	11:23	Star	11:3 Stop Time		- Post-Test Field Results				
		CH4 [%]	CO ₂ [%]	O ₂ (%)	Ambient Pressure*	Ambient Temp [°F]	Pressure (in. Hg)	Flow Rate [L/min]	Pressure (in. Hg)	Flow Rate (L/min)	CH4 [%]	CO ₂ (%)	0 ₂ (%)
20589	VP. 4	55.5	44.7	0,0	28.39	13°F	19"Hg	400 ML/	10"149	300 ML/m.	1		
		Has	(0	Bal									
		13	14	0.0									
						11:33			11:43				
20573 VP-	VP-4				28.39	13° F	20 Hq	400MC/m.L	11" Hg	400 ML/	55.4	44.6	<
											HZZ	CO	Bal
											10	14	0.0

**Specify units Comments:

PROJECT

SUBJECT


Werford Land Fill Vapor Sample	VP-3 VP-5 Tier 2 Field Sample Log VP-3 VP-4 VP-5	SHEET 4074 JOB # DATE - 2.2-21 SAMPLED BY


					Tank Sampling Record							Post-Test Field Resul			
Tank No.	Sample No.	Pre-Test Field Results			11:58 Start Time			12:07 Sto	Post-Test Field Results						
		CH4 (%)	CO ₂ (%)	O ₂ (%)	Ambient Pressure*	Ambient Temp ["F]	Pressure (in. Hg)	Flow Rate [L/min]	Pressure (in. Hg)	Flow Rate (L/min)	CH4 (%)	CO ₂ (%)	02 [%]		
20589	VP-5	60.3	38,0	0.0	28.39	13° F	10``Hq	400 ml/m	1"Hg	300M4					
		Has	0	Berl			U		Ŭ						
		8	9	1.7											
					12:12				12:22						
20573	VP-5				28.39	13° F	11°H9	400mC/m	1"Hg	200ML/min		38.2	<		
							~				Has	CÒ	Bal		
											7	7	1.8		
and defined to any out of the first of the															

					and an										

**Specify units Comments:

PROJECT

SUBJECT

Mr. Dickman, Air Quality - EGLE WCL Tier 2 Report

March 10, 2021

Appendix B Vapor Point Logs