Interpoll Laboratories, Inc. 4500 Ball Road N.E. Circle Pines, Minnesota 55014-1819

> TEL: (763) 786-6020 FAX: (763) 786-7854

RESULTS OF THE SEPTEMBER 2-3, 2015 AIR EMISSION COMPLIANCE TESTING AT THE LOUISIANA PACIFIC SIDING PLANT IN NEWBERRY, MICHIGAN

Submitted to:

LOUISIANA-PACIFIC CORPORATION

7299 North C.R.403 Newberry, Michigan 49868

Attention:

Matthew Hieshetter Plant Environmental Manager

Reviewed by:

Exhitadt

Kathleen Eickstadt Coordinator

Report Number 15-34574 September 30, 2015 KE/kce

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY

AIR QUALITY DIVISION

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Renewable Operating Permit (ROP) program must be certified by a responsible official. Additional information regarding the reports and documentation listed below must be kept on file for at least 5 years, as specified in Rule 213(3)(b)(ii), and be made available to the Department of Environmental Quality, Air Quality Division upon request.

Source Name Louis	iana-Pacific				County Luce	
Source Address	N County Road 40	City	Newberry	<u> </u>		
AQD Source ID (SRN)	N0780	ROP No.	MI-ROP-N0780- 2011		ROP Section No.	NA
Please check the appropr	iate box(es):					
Reporting period (pro	 vide inclusive dates): re reporting period, this : of which is identified an 	From source was in com d included by this	To pliance with ALL terms reference. The method	s and cou d(s) used	nditions contained in to determine comp	the ROP, each liance is/are the
method(s) specifier 2. During the ent term and condition deviation report(s). unless otherwise in	d in the ROP. ire reporting period this of which is identified a The method used to d indicated and described o	source was in co and included by th etermine compliar on the enclosed de	mpliance with all terms is reference, EXCEPT ice for each term and o viation report(s).	s and co for the c condition	nditions contained ir deviations identified is the method spec	n the ROP, each on the enclosed ified in the ROP,
Semi-Annual (or M	ore Frequent) Report (Certification (Pur	suant to Rule 213(3)(c))		
Reporting period (pr 1. During the entin deviations from the 2. During the entir deviations from the enclosed deviation	ovide inclusive dates): re reporting period, ALL se requirements or any re reporting period, all m se requirements or any report(s).	From monitoring and as other terms or con onitoring and asso other terms or con	To soclated recordkeepin ditions occurred. ciated recordkeeping r ditions occurred, EXCI	g require equirem EPT for t	ements in the ROP wents in the ROP wents in the ROP wents he deviations identifi	ere met and no e met and no ed on the
Other Report Certifi	cation					
Reporting period (pro Additional monitoring September 2 nd and 3	vide inclusive dates): reports or other applical rd compliance stack testing	From ble documents req EUPRESS	To uired by the ROP are a		as described:	
certify that, based on in supporting enclosures are Kurt ChamberTain	formation and belief fo true, accurate and com	rmed after reason plete	able inquiry, the state Plant Manager	ments a	nd information in th 906-29	is report and the

Name of Responsible Official (print or type) Title Phone Number 1600015 am Signature of Responsible Official Date

* Photocopy this form as needed.

EQP 5736 (Rev 11-04)

RECEIVED

OCT 2 0 2015

AIR QUALITY DIV.

1 INTRODUCTION

On September 2-3, 2015, Interpoll Laboratories personnel conducted Air Emission tests at the Louisiana Pacific Corporation (LP) OSB Plant Located in Newberry, Michigan on the following sources:

Source	Methods
Press Vents	MDI, Formaldehyde, Methanol

On-site testing was performed by Chris Warneke, Jimmy Kingsbury, Scott Fjelsta and Andrew Strong. Coordination between testing activities and plant operation was provided by Matt Hieshetter of LP. The tests were witnessed by Joel Asher and Tom Gasloli, both members of the Michigan Department of Environmental Quality.

MDI concentrations were determined in accordance with OTM-14. One field blank train was performed. This method employs collection of MDI with 1,2-PP in toluene reagent, with analysis by HPLC.

Both formaldehyde and methanol were sampled using EPA Method 320 (FTIR). The online gas analysis was performed using an MKS MultiGas 2030 FTIR based analyzer that has a fixed gas cell path length of 5.11 meters and a detector that requires to be cooled by the use of liquid nitrogen. The number of scans was increased so that an average reading was recorded every 30 seconds instead of the standard 60 seconds. This was done in order to better capture the emissions at each sample point (24 in total, see flow determination for sample points). The gas was transported to the FTIR analyzer through a heat traced Teflon line originating from the manifold system described above. Three one-hour runs were conducted to show compliance. Prior to and following sampling the system was leak-checked and found to be acceptable. The Method 320 Data is contained in Appendix E. For the QA portion of EPA Method 320, the calibration transfer standard procedure was performed using a gas cylinder containing propane. For the dynamic spike requirement, this was performed according to the guidelines spelled out in EPA Method 320 and utilized a compressed gas cylinder with certified quantities of acetaldehyde (HAP) and sulfur hexafluoride. This data can be found in appendix F.

2 SUMMARY AND DISCUSSION

The results of the compliance tests are summarized in the following tables. An overview of all results is presented below:

PARAMETER	LIMIT ¹	MEASURED
CONDITION 1 EAST PRESS VENT MDI		
(LB/HR)	0.53	0.029
Kormaldenyde (LB/HR)	3.1	0.79
Methanol (LB/HR)	N/A	0.64
WEST PRESS VENT MDI		
(LB/HR)	0.53	0.044
Formaldehyde	3.1	0.77
Methanol (LB/HR)	N/A	0.52
CONDITION 2 EAST PRESS VENT		
(LB/HR)	0.53	0.035
Formaldehyde (LB/HR)	3.1	0.73
Methanol (LB/HR)	N/A	0.64
WEST PRESS VENT MDI		
(LB/HR)	0.53	0.031
Formaldenyde(LB/HR)	3.1	0.67
Methanol (LB/HR)	N/A	0.49

¹ Combined limits for both No.1 and No.2 Press Vents.

PARAMETER	LIMIT ²	MEASURED
CONDITION 3 EAST PRESS VENT MDI		
(LB/HR)	0.53	0.031
Formaldehyde (LB/HR)	3.1	0.60
Methanol	N/A	0.58
WEST PRESS VENT		
(LB/HR)	0.53	0.040
Formaldehyde	3.1	0.49
Wethanoi (LB/HR)	N/A	0.50

Due to the configuration of each of the press vents and the test port locations, it was determined that the best approach for sampling both sources was to sample at a total of twenty-four (24) points. The same sample points and dwell times (2.5 minutes) were used for all sampling systems being used. At the completion of Test 3-Run 3 (West Press Vent) for MDI, it was found that the leak rate check through the sampling system (0.05 cfm) exceeded the maximum allowable leak rate of 0.02 cfm. This was discussed onsite and it was decided to proceed without having to repeat the sample run. No other difficulties were encountered in the field or in the laboratory evaluation of the samples. On the basis of these facts and a complete review of the data and results, it is our opinion that the concentrations and emission rates reported herein are accurate and closely reflect the actual values which existed at the time the tests were performed.

² Combined limits for both No.1 and No.2 Press Vents.

	Run 1	Run 2	Run 3	Average
	09-02-15	09-02-15	09-02-15	· · · · · · · · · · ·
(Hrs)	0800 / 0904	1000 / 1102	1145 / 1247	
(ACFM)	87,903	91,420	87,786	89,036
(DSCFM)	79,294	81,912	78,315	79,840
(°F)	78	82	83	81
(%v/v)	0.94	1.34	1.78	1.35
(%v/v, dry)				
	0.03	0.03	0.03	0.03
	20.90	20.90	20.90	20.90
	79.07	79.07	79.07	79.07
(%)	99.3	100.2	100.3	99.9
(DSCF)	34.70	36.18	34.60	35.16
(ug)	81.0	95.9	110.0	95.6
(gr/dscf)	0.0000360	0.0000409	0.0000490	0.0000420
(ppm,d)	0.00792	0.00900	0.01079	0.00924
(LB/HR)	0.0245	0.0287	0.03293	0.0287
(g/sec)	0.003084	0.003618	0.004149	0.003617
	(Hrs) (ACFM) (DSCFM) (°F) (%v/v) (%v/v, dry) (%v/v, dry) (%) (gr/dscf) (ppm,d) (LB/HR) (g/sec)	Run 1 09-02-15 (Hrs) 0800 / 0904 (ACFM) 87,903 (DSCFM) 79,294 (°F) 78 (%v/v) 0.94 (%v/v, dry) 0.03 (%v/v, dry) 0.03 (%v/v) 99.3 (DSCF) 34.70 (ug) 81.0 (gr/dscf) 0.0000360 (ppm,d) 0.0245 (g/sec) 0.03084	Run 1 Run 2 09-02-15 09-02-15 (Hrs) 0800 / 0904 1000 / 1102 (ACFM) 87,903 91,420 (DSCFM) 79,294 81,912 (°F) 78 82 (%v/v) 0.94 1.34 (%v/v, dry) 0.03 0.03 20.90 20.90 20.90 79.07 79.07 (%) 99.3 100.2 (%) 99.3 100.2 (DSCF) 34.70 36.18 (ug) 81.0 95.9 (gr/dscf) 0.0000360 0.0000409 (ppm,d) 0.0245 0.0287 (g/sec) 0.03084 0.003618	Run 1Run 2Run 309-02-1509-02-1509-02-15(Hrs)0800 / 09041000 / 11021145 / 1247(ACFM)87,90391,42087,786(DSCFM)79,29481,91278,315(°F)788283(%v/v)0.941.341.78(%v/v, dry)0.030.030.0320.9020.9020.9079.0779.0779.07(%)99.3100.2100.3(gr/dscf)0.0003600.00004090.0000490(ppm,d)0.007920.009000.01079(LB/HR)0.02450.02870.03293(g/sec)0.0030840.0036180.004149

4

Test 1 Summary of the September 2, 2015 MDI Emission Compliance Test on the East Press Stack at the LP facility located in Newberry, Michigan.

ς.

· ·

, v

Test

2

7

Summary of the Results of the September 2, 2015, Method 320 (HAP's) Emission Test on the East Press Vent at the LP facility located in Newberry, Michigan.

.

						1
	ltem .		Run 1	Run 2	Run 3	Average
Date of test			09-02-15	09-02-15	09-02-15	
Time runs were done		(Hrs)	0800 / 0904	1000 / 1102	1145 / 1247	
Volumetric Flow					· ·	
	Actual Standard	(ACFM) (DSCFM)	87,903 79,294	91,420 81,912	87,786 78,315	89,036 79,840
Gas Temperature		(°F)	78	82	83	81
Gas Composition	Carbon Dioxide Oxygen Nitrogen	(%v/v, dry)	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07
Formaldehyde	Concentration	(ppm, d) (1 유 (니무)	2.03	2.22	2.01	2.09
	Emission Rate		0.70	0.00	0.14	
Methanol	Concentration . Emission Rate	(ppm, d) (LB /HR)	1.74 0.69	1.56 0.64	1.54 0.60	1.61 0.64

ltem		Run 1	Run 2	Run 3	Average
Date of test		09-02-15	09-02-15	09-02-15	•
Time runs were done	(Hrs)	0800 / 0906	1000 / 1104	1145 / 1247	
Volumetric Flow					
Actual	(ACFM)	104,389	104,090	100,244	102,907
Standard	(DSCFM)	93,988	92,928	89,117	92,011
Gas Temperature	(°F)	84	86	86	85
Moisture Content	(%v/v)	1.85	1.97	1.94	1.92
Gas Composition	(%v/v, dry)				
Carbon Dioxide		0.03	0.03	0.03	0,03
Oxygen		20.90	20.90	20.90	20.90
Nitrogen		79.07	79.07	79.07	79.07
Isokinetic Variation	(%)	99.1	99.9	99.7	99.6
MDI Results					5 1
Sample Volume	(DSCF)	40.01	39.88	38.18	39.35
Total Micrograms in Sample	(ug)	172.0	126.7	124.5	141.1
Concentration	(gr/dscf)	0.0000663	0.0000490	0.0000503	0.0000552
Concentration	(ppm.d)	0.01459	0.01078	0.01107	0.01215
Emission Rate	(LB/HR)	0.0534	0.0390	0.03843	0.0436
Emission Rate	(g/sec)	0.006733	0.004919	0.004842	0.005498

Test 3 Summary of the September 2, 2015, MDI Emission Compliance Test on the West Press Vent Stack at the LP facility located in Newberry, Michigan.

-

Test

4

÷.

Summary of the Results of the September 2, 2015, Method 320 (HAP's) Emission Test on the West Press Vent at the LP facility located in Newberry, Michigan.

	ltem		Run 1	Run 2	Run 3	Average
Date of test			09-02-15	09-02-15	09-02-15	
Time runs were done		(Hrs)	0800 / 0900	1000 / 1100	1145 / 1247	
Volumetric Flow						
	Actual Standard	(ACFM) (DSCFM)	104,389 93,988	104,090 - 92,928	. 100,244 89,117	102,908 92,011
Gas Temperature		(°F)	84	86	. 86	85
Gas Composition	Carbon Dioxide Oxygen Nitrogen	(%v/v, dry)	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07
Formaldehyde	Concentration	(ppm_d.)	1 9 9	1.76	1 75	1 79
	Emission Rate	(LB /HR)	0.81	0.77	0.74	0.77
Methanol						
	Concentration Emission Rate	(ppm, d) (LB /HR)	1.24 0.58	1.05 0.49	1.10 0.49	1.13 0.52

 ∞

ltem	· · ·	Run 1	Run 2	Run 3	Average
Date of test	··· ·	09-02-15	09-02-15	09-02-15	
Time runs were done	(Hrs)	1325 / 1428	1515 / 1616	1650 / 1752	
Volumetric Flow					
Actual	(ACFM)	85,118	88,124	83,143	85,462
Standard	(DSCFM)	76,232	78,327	74,677	76,412
Gas Temperature	(°F)	84	84	84	84
Moisture Content	(%v/v)	1.21	1.13	0.82	1.05
Gas Composition	(%v/v, dry)				
Carbon Dioxide		0.03	0.03	0.03	0.03
Oxygen		20.90	20.90	20.90	20.90
Nitrogen		79.07	79.07	79.07	79.07
Isokinetic Variation	(%)	100.1	99.9	99.9	100.0
MDI Results					
Sample Volume	(DSCF)	33.62	37.07	35.35	35.35
Total Micrograms in Sample	(ug)	89.7	132.0	151.0	124.2
Concentration	(gr/dscf)	0.0000412	0.0000549	0.0000659	0.0000540
Concentration	(ppm,d)	0.00906	0.01208	0.01450	0.01188
Emission Rate	(LB/HR)	0.0269	0.0369	0.04218	0.0353
Emission Rate	(g/sec)	0.003389	0.004647	0.005314	0.004450
Concentration Emission Rate Emission Rate	(ppm,d) (LB/HR) (g/sec)	0.00906 0.0269 0.003389	0.01208 0.0369 0.004647	0.01450 0.04218 0.005314	0.01188 0.0353 0.004450

Test 5 Summary of the September 2, 2015 MDI Emission Compliance Test on the East Press Stack at the LP facility Located in Newberry, MI.

	ltem		Run 1	Run 2	Run 3	Average
Date of test			09-02-15	09-02-15	.09-02-15	
Time runs were done		(Hrs)	1325 / 1428	1515 / 1616	1650 / 1752	
Volumetric Flow	Actual Standard	(ACFM) (DSCFM)	85,118 76,232	88,124 78,327	83,143 74,677	85,462 76,412
Gas Temperature		(°F)	84	84	84	84
Gas Composition	Carbon Dioxide Oxygen Nitrogen	⊙ (%v/v, dry)	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07
Formaldehyde	Concentration Emission Rate	(ppm, d) (LB /HR)	2.05 0.74	2.09 0.77	1.91 0.67	2.02 0.73
Methanol	Concentration Emission Rate	(ppm, d) (LB /HR)	1.95 0.74	1.57 0.61	1.51 0.56	1.68 0.64

6 Summary of the Results of the September 2, 2015, Method 320 (HAP's) Emission Test on the East Press Vent at the LP facility located in Newberry, Michigan.

Test

۱,

;

ltem		Run 1	Run 2	Run 3	Average
Date of test		09-02-15	09-02-15	09-02-15	
Time runs were done	(Hrs)	1325 / 1428	1315 / 1616	1650 / 1752	
Volumetric Flow					
Actual	(ACFM)	99,039	100,524	100,975	100,179
Standard	(DSCFM)	87,797	89,810	88,654	88,754
Gas Temperature	(°F)	87	86	86	86
Moisture Content	(%v/v)	1.60	1.21	0.86	1.23
Gas Composition	(%v/v, dry)				
Carbon Dioxide		0.03	0.03	0.03	0.03
Oxygen		20.90	20.90	20.90	20.90
Nitrogen		79.07	79.07	79.07	79.07
Isokinetic Variation	(%)	99.7	99.6	99.6	99.6
MDI Results					
Sample Volume	(DSCF)	37.60	38.44	37.92	37.99
Total Micrograms in Sample	(ug)	102.6	90.9	105.4	99.6
Concentration	(gr/dscf)	0.0000421	0.0000365	0.0000429	0.0000405
Concentration	(ppm,d)	0.00926	0.00803	0.00943	0.00891
Emission Rate	(LB/HR)	0.0317	0.0281	0.03258	0.0308
Emission Rate	(g/sec)	0.003992	0.003539	0.004106	0.003879

Test 7 Summary of the September 2, 2015, MDI Emission Compliance Test on the West Press Vent Stack at the LP facility located in Newberry, Michigan.

Test

8 Summary of the Results of the September 2, 2015, Method 320 (HAP's) Emission Test on the West Press Vent at the LP facility located in Newberry, Michigan.

· · · · · · · · · · · · · · · · · · ·	item	·····	Run 1	Run 2	Run 3	Average
Date of test	······································		09-02-15	09-02-15	09-02-15	
Time runs were done		(Hrs)	1325 / 1428	1515 / 1616	1650 / 1752	
Volumetric Flow			,	•		
· .	Actual Standard	(ACFM) (DSCFM)	99,039 87,797	100,524 87,810	· 100,975 88,654	100,179 88,087
Gas Temperature		(°F)	87	86	86	86
Moisture Content	:	(%v/v)	. 2.80	2.71	2.56	2.69
Gas Composition	: Carbon Dioxide Oxygen Nitrogen	(%v/v, dry)	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07
Formaldehyde	0	/	1.00			4.00
	Emission Rate	(ppm, d·) (LB /HR)	1.38 .0.57	1.64 0.68	0.75	0.67
Methanol	Concentration Emission Rate	(ppm, d) (LB /HR)	1.16 0.51	1.05 0.46	1.12 0.49	1.11 0.49

Item		Run 1	Run 2	Run 3	Average
Date of test		09-03-15	09-03-15	09-03-15	
Time runs were done	(Hrs)	0750 / 0851	0925 / 1026	1105 / 1206	
Volumetric Flow Actual Standard	(ACFM) (DSCFM)	89,375 81,226	83,158 75,131	83,549 75,170	85,361 77,176
Gas Temperature	(°F)	75	79	81	78
Moisture Content	(%v/v)	0.98	1.07	0.87	0.97
Gas Composition Carbon Dioxide Oxygen Nitrogen	(%v/v, dry)	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07
Isokinetic Variation	(%)	99.7	100.4	99.9	100.0
MDI Results					
Sample Volume Total Micrograms in Sample Concentration Concentration Emission Rate Emission Rate	(DSCF) (ug) (gr/dscf) (ppm,d) (LB/HR) (g/sec)	38.39 129.8 0.0000522 0.01147 0.0363 0.004576	35.77 96.4 0.0000416 0.00915 0.0268 0.003374	35.58 106.8 0.0000463 0.01019 0.02984 0.003760	36.58 111.0 0.0000467 0.01027 0.0310 0.003903

5

Test 9 Summary of the September 3, 2015 MDI Emission Compliance Test on the East Press Stack at the LP facility located in Newberry, Michigan.

Test	10	Summary of the Results of the September 3, 2015, Method 320 (HAP's) Emission Test on the
		East Press Vent at the LP facility located in Newberry, Michigan.

	Item		Run 1	Run 2	Run 3	Average
Date of test		· ·	09-03-15	09-03-15	09-03-15	
Time runs were done		(Hrs)	0750 / 0851	0925 / 1026	1105 / 1206	
Volumetric Flow	Actual Standard	(ACFM) (DSCFM)	89,375 81,226	83,158 75,131	83,549 75,170	85,361 77,176
Gas Temperature		(°F)	75	79	81	78
Gas Composition	Carbon Dioxide Oxygen Nitrogen	(%v/v, dry)	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07
Formaldehyde	Concentration Emission Rate	(ppm, d) (LB /HR)	1.82 0.70	1.62 0.57	1.50 0.53	1.64 0.60
Methanoi .	- Concentration Emission Rate	(ppm, d) (LB /HR)	. 1.53 0.62	1.49 0.56	1.50 0.56	1.51 0.58

Item		Run 1	Run 2	Run 3	Average
Date of test		09-03-15	09-03-15	09-03-15	
Time runs were done	(Hrs)	0750 / 0852	0925 / 1026	1105 / 1206	
Volumetric Flow			1		
Actual	(ACFM)	101,717	98,335	100,046	100,033
Standard	(DSCFM)	90,427	88,078	88,731	89,079
Gas Temperature	(°F)	76	79	. 85	80
Moisture Content	(%v/v)	1.67	0.63	1.57	1.29
Gas Composition	(%v/v, dry)				
Carbon Dioxide		0.03	0.03	0.03	0.03
Oxygen		20.90	20.90	20.90	20.90
Nitrogen		79.07	79.07	79.07	79.07
Isokinetic Variation	. (%)	99.9	98.9	100.6	99.8
MDI Results					
Sample Volume	(DSCF)	38.81	37.44	38.37	38.21
Total Micrograms in Sample	(ug)	137.6	157.3	96.5	130.5
Concentration	(gr/dscf)	0.0000547	0.0000648	0.0000388	0.0000528
Concentration	(ppm,d)	0.01203	0.01426	0.00854	0.01161
Emission Rate	(LB/HR)	0.0424	0.0489	0.02951	0.0403
Emission Rate	(g/sec)	0.005342	0.006166	0.003718	0.005075

Test 11 Summary of the September 3, 2015, MDI Emission Compliance Test on the West Press Vent Stack at the LP facility in Newberry, Michigan.

Loct

.

12

L

Summary of the Results of the September 3, 2015, Method 320 (HAP's) Emission Test on the West Press Vent at the LP facility located in Newberry, Michigan.

	ltem	· · ·	Run 1	Run 2	Run 3	Average
Date of test	i -	·	09-03-15	09-03-15	09-03-15	
Time runs were done		(Hrs)	0750 / 0852	0925 / 1026	1108 / 1208	
Volumetric Flow						
	Actual Standard	(ACFM) (DSCFM)	101,717 90,427	98,335 88,078	100,046 88,731	100,033 89,079
Gas Temperature		(°F)	76	79	85	80
Moisture Content		(%v/v)	2.17	2.30	2.27	2.25
Gas Composition	Carbon Dioxide Oxygen Nitrogen	(%v/v, dry)	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07	0.03 20.90 79.07
Formaldehyde	Concentration Emission Rate	(ppm, d) (LB /HR)	1.24 0.53	1.15 0.48	1.11 0.46	1.17 0.49
Methanol	Concentration Emission Rate	(ppm, d) (LB /HR)	1.12 0.50	1.11 0.49	1.14 0.50	1.12 0.50

۰.