COMPLIANCE TEST REPORT ANR STORAGE COMPANY-BLUE LAKE COMPRESSOR STATION Engines EU BLCMPR-B and EU BLCPMR-C

June 16, 2022

Prepared for:

TC Energy ANR Storage Company Blue Lake Compressor Station 10000 Pflum Road Mancelona, MI Kalkaska County Permit MI-ROP-B7198-2014a

Prepared by:

Environmental Quality Management, Inc. 1280 Arrowhead Court Suite 2 Crown Point, IN 46307 (219) 661-9900 www.eqm.com

PN: 050614.0099.048

July 2022

RECEIVED

AUG 1 1 2022

AIR QUALITY DIVISION

••

TC Energy ANR Blue Lake CS Project Number: 050614.0099.048

PREFACE

I, Karl Mast, do hereby certify that the source emissions testing conducted at TC Energy in Blue Lake, MI was performed in accordance with the procedures set forth by the United States Environmental Protection Agency, and that the data and results submitted within this report are an exact representation of the testing.

Karl Mast Test Supervisor

I, Karl Mast, do hereby attest that all work on this project was performed under my direct supervision, and that this report accurately and authentically presents the source emissions testing conducted at ANR's Blue Lake Compressor Station located in Blue Lake, MI.

Karl Mast Test Supervisor

AUG 1 1 2022

July 2022

AIR QUALITY DIVISION

SUMMARY

The compliance emissions testing program was performed on Units EU BLCMPR-B and EU BLCMPR-C in fulfillment of Michigan Department of Environmental Quality, Air Quality Division, permit no. MI-ROP-B7198-2014a, to 40 CFR Part 60, Subpart JJJJ requirement. The testing was performed utilizing USEPA Methods 1, 3A, 7E, 10, 18, 19 and 25A at the Exhaust Stack sampling locations. The results of the testing are detailed in the following tables. A summary of the test results is given below:

EU BLCMPR-B Test Summary Results								
Parameter	Run 1	Run 2	Run 3	Average	Limit	Pass/Fail		
NO _x lb/hr	15.2450	16.0606	16.3393	15.8816	26.4	PASS		
NO _x g/hpr-hr	1.2272	1.2942	1.3118	1.2777	2	PASS		
CO lb/hr	26.0011	24.5947	23.7850	24.7936	37.0	PASS		
CO g/hpr-hr	2.0930	1.9819	1.9095	1.9948	2.8	PASS		
VOC lb/hr	1.6514	1.5525	1.5960	1.6000	9.7	PASS		
VOC g/hpr-hr	0.1329	0.1251	0.1281	0.1287	0.73	PASS		

July 2022

EU BLCMPR-C Test Summary Results								
Parameter	Run 1	Run 2	Run 3	Average	Limit	Pass/Fail		
NO _x lb/hr	17.3404	17.9762	12.2997	15.8721	26.4	PASS		
NO _x g/hpr-hr	1.4713	1.5173	1.0413	1.3433	2	PASS		
CO lb/hr	25.0618	24.9420	29.1040	26.3693	37.0	PASS		
CO g/hpr-hr	2.1265	2.1053	2.4639	2.2319	2.8	PASS		
VOC lb/hr	1.1832	1.1906	1.1966	1.1901	9.7	PASS		
VOC g/hpr-hr	0.1004	0.1005	0.1013	0.1007	0.73	PASS		

TC Energy ANR Blue Lake CS Project Number: 050614.0099.048

CONTENTS

Prefac	e	ii
Summa	ary	iii-iv
	Introduction	
	Facility and Process Conditions	
	Test Procedures	
5	Quality Assurance Procedures	16
	Conclusions	

TABLES

1	EU BLCMPR-B Test Results Summary	2
2	EU BLCMPR-C Test Results Summary	
3	EU BLCMPR-B-Operating & Ambient Conditions	4
4	EU BLCMPR-B Emissions Concentrations, Calculated Mass Emissions,	
	Concentrations & Flows	5
5	EU BLCMPR-C-Operating & Ambient Conditions	6
6	EU BLCMPR-C Emissions Concentrations, Calculated Mass Emissions,	
	Concentrations & Flows	7
7	EU BLCMPR-B Process Data	8
8	EU BLCMPR-C Process Data	8
9	EU BLCMPR-B General Information	9
10	EU BLCMPR-C General Information	10

APPENDICES

A – Field Data

- B Process Operating Data
- C Gas Certifications
- D CorrespondenceE Sample Calculations

1. INTRODUCTION

This report presents the results of the source emissions testing conducted by Environmental Quality Management, Inc. (EQM) for TC Energy's ANR (ANR) Blue Lake Compressor Station, near Mancelona, MI in fulfillment of Michigan Department of Environmental Quality, Air Quality Division, permit no. MI-ROP-B7198-2014a. The testing was performed utilizing USEPA Methods 1, 3A, 7E 18, 19 and 25A at the Exhaust Stack sampling location to demonstrate compliance under 40 CFR 60, Subpart JJJJ.

To ensure that compliance with the emission limits is maintained, the Air Compliance Team of TC Energy's ANR contracted Environmental Quality Management, Inc. (EQM) to perform source emissions testing on the Engine EU BLCMPR-A. The primary purpose of this testing program was to conduct emissions testing to determine compliance with the permit at ANR's gas compressor facility.

EQM's responsibility was to conduct and oversee the compliance testing for Nitrogen Oxide (NOx), Carbon Monoxide (CO), and Volitle Organic Compounds (VOC) emission rates and perform data reduction for conformance evaluation. ANR's responsibility was to maintain process operating parameters and to assist in providing process operating data per compliance test requirements.

The following report provides information pertaining to TC Energy's process operations, and Compliance testing. The Compliance testing conducted on EU BLCMPR-A (Unit A) was performed on June 16, 2022 from 8:15 A.M. to 5:49 P.M.

The following requirements were specific for the testing program:

- 1. Equipment calibrations performed and calibration data provided.
- 2. Three (3) sixty (60)-minute NOx, CO, O2, and VOC test runs performed at the Unit A pursuant to EPA, Title 40, Code of Federal Regulations, Part 60 (40 CFR 60), Appendix A.
- 3. Process operations conditions maintained within 10% rated load during the emissions testing periods.
- 4. All testing and analyses performed in accordance with current EPA test methodologies and analytical procedures for CO, NOx, O2 and VOC, emissions determinations.

The testing program was approved by and/or coordinated with Tyrah Lydia, TC Energy's ANR Storage. The emission testing was performed by Karl Mast, Project Manager, EQM, Zach Hill, Field Activitivies Lead, EQM, and Garrett Cox, Test Technician, EQM. The emission testing was observed by Jeremy Howe, BeckyRadulski, Daniel Droste and David Bowman, Michigan EGLE.

TC Energy ANR Blue Lake CS Project Number: 050614.0099.048

2. TEST RESULTS SUMMARY

The compliance testing was performed on Units B and C Engine system in accordance with the requirements of the Code of Federal Regulations, Title 40, Part 60, Appendix A, and the Permit MI-ROP-B7220-2017a requirements. A summary of the test results is given below:

Table 1. EU BLCMPR-B Test Summary Results								
Parameter	Run 1	Run 2	Run 3	Average	Limit	Pass/Fail		
NO _x lb/hr	15.2450	16.0606	16.3393	15.8816	26.4	PASS		
NO _x g/hpr-hr	1.2272	1.2942	1.3118	1.2777	2	PASS		
CO lb/hr	26.0011	24.5947	23.7850	24.7936	37.0	PASS		
CO g/hpr-hr	2.0930	1.9819	1.9095	1.9948	2.8	PASS		
VOC lb/hr	1.6514	1.5525	1.5960	1.6000	9.7	PASS		
VOC g/hpr-hr	0.1329	0.1251	0.1281	0.1287	0.73	PASS		

Table 2. EU BLCMPR-C Test Summary Results									
Parameter	Run 1	Run 2	Run 3	Average	Limit	Pass/Fail			
NO _x lb/hr	17.3404	17.9762	12.2997	15.8721	26.4	PASS			
NO _x g/hpr-hr	1.4713	1.5173	1.0413	1.3433	2	PASS			
CO lb/hr	25.0618	24.9420	29.1040	26.3693	37.0	PASS			
CO g/hpr-hr	2.1265	2.1053	2.4639	2.2319	2.8	PASS			
VOC lb/hr	1.1832	1.1906	1.1966	1.1901	9.7	PASS			
VOC g/hpr-hr	0.1004	0.1005	0.1013	0.1007	0.73	PASS			

Based on the information provided above,Units B and C met the acceptance criteria during the course of the testing. A complete list of performance parameters for each test run that was performed at the stack sampling locations can be found in Tables 3-10.

Table 3 . Engine Operating and Ambient Conditions -Unit EU BLCMPR-B

Run	1	2	3	
Date	06/16/22	06/16/22	06/16/22	
Time	8:15	9:20	10:24	
Engine Operating Conditions	нร-нт	HS-HT	HS-HT	Averages
Unit Horsepower from Control Panel	5,635.0	5,629.0	5,650.0	5,638.0
Unit Speed (rpm)	321.0	322.0	323.0	322.0
Compressor Suction Pressure (PSIG)	702.0	701.0	700.0	701.0
Compressor Suction Temperature (°F)	56.0	56.0	57.0	56.3
Compressor Discharge Pressure (PSIG)	1200.0	1202.0	1203.0	1,201.7
Compressor Discharge Temperature (°F)	138.0	139.0	139.0	138.7
Compressor Flow (MMSCF/D)	103.0	101.0	97.0	100.3
% Load HP	93.9	93.8	94.2	94.0
% Load RPM	97.3	97.6	97.9	97.6
% Torque '	96.5	96.1	96.2	96.3
Heat Rate (BTU(LHV)/HP-hr)	6,922.8	6,890.3	6,881.3	6,898.1
Ambient Conditions				
Ambient Temperature (°F)	71.00	74.00	77.00	74.00
Barometric Pressure (psi)	13.96	13.96	13.95	13.96
Ambient Relative Humidity (%)	66.00	55.00	49.00	56.67
Absolute Humidity (grains/LB)	163.60	150,48	148.10	154.06

Run	1	2	3	
Date	06/16/22	06/16/22	06/16/22	
Time	8:15	9:20	10:24	
Emissions Concentrations & Calculated Mass Emissions				
NO _x ppm (BIAS Corrected)	91.22	98.38	101.42	97.01
NO _X g/BHP-HR	1.2272	1.2942	1.3118	1.2777
NO _X LB/HR	15.2450	16.0606	16,3393	15.8816
NO _X (ppm @ 15% O ₂)	95.9355	101.6536	103.1686	100.2526
NOx LB/MMBTU	3,5313E-01	3.7418E-01	3.7976E-01	3.6902E-01
NO _X Tons/Year	66.7730	70.3454	71.5662	69,5615
NO _x LB/SCF Fuel	3.666E-04	3.884E-04	3.942E-04	3.83E-04
NO _X LB/MMSCF Fuel	3.6658E+02	3.8843E+02	3.9422E+02	3.8308E+02
CO ppm (BIAS Corrected)	255.59	247.50	242.54	248.54
CO g/BHP-HR	2.0930	1.9819	1.9095	1.9948
CO LB/HR	26.0011	24,5947	23.7850	24.7936
CO LB/MMBTU **	6.0229E-01	5.7301E-01	5.5281E-01	5.7604E-01
CO (ppm @ 15% O ₂)	268.8023	255.7356	246.7217	257.0865
CO Tons/Year	113.8847	107.7246	104.1785	108.5959
CO LB/MMSCF Fuel	6.2523E+02	5.9483E+02	5.7387E+02	5.9798E+02
THC ppm	735.19	726.33	720.03	7.272E+02
Non-Methane/Non-Ethane VOC's ppmvd (As Propane)	16.1719	15.2914	15.6818	15.7151
VOC (ppm @ 15% O ₂)	17.0079	15.8003	15.9522	16.2534
Method 18 CH4 PPM Bag Samples	692.11	685,60	678,20	685.30
VOC Moisture, % volume	11.20	11.21	11.09	11.17
VOC LB/HR (As Propane)**-Using Method 25A Measured THC	1.6514	1.5525	1.5960	1.6000
VOC g/BHP-hr (As Propane)**-Using Method 25A Measured THC	0.1329	0.1251	0.1281	0.1287
VOC LB/MMBTU	3.8253E-02	3.6170E-02	3.7094E-02	3.7172E-02
VOC LB/MMSCF Fuel	3.9710E+01	3.7548E+01	3.8507E+01	3.8588E+01
% O2 (BIAS Corrected)	15.29	15.19	15.10	15.19
Calculated Flows				
Fuel Flow - (SCFM)	694.5000	690,5000	692.1667	692.3889
Fuel Flow - (SCFH)	41670.00	41430.00	41530.00	41543.3333
Fuel Flow (LB/HR)	1865.1380	1854.3957	1858.8717	1859,4684
Fuel Flow (MMcf/hr)	4.1670E-02	4.1430E-02	4.1530E-02	4.1543E-02
Exhaust Flow (LB/HR)	86,730.8271	84,898.0221	83,812.5820	85,147.1437
Exhaust Flow (SCFM)	23,915.2890	23,420.2525	23,164.9073	23,500.1496
Air Flow (WSCFM)	22,426.3307	21,910.2802	21,625.4621	21,987.3576
Exhaust Flow Method 19 (scfm)	23,281.4650	22,741.9914	22,443.1392	22,822.1985
Fuel Flow Measurements				
Fuel Flow From Screen(MSCFH)	41.67	41.43	41.53	41.54
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION	Run 1	Run 2	Run 3	

Table 4. Emissions Concentrations, CalculatedMass Emissions, Concentrations & Flows -Unit EU BLCMPR-B

Run	1	2	3	
Date	06/16/22	06/16/22	06/16/22	
Time	12:05	13:09	16:50	
Engine Operating Conditions	HS-HT	HS-HT	HS-HT	Averages
Unit Horsepower from Control Panel	5,346.0	5,374.0	5,358.0	5,359.3
Unit Speed (rpm)	322.0	322.0	320.0	321.3
Compressor Suction Pressure (PSIG)	700.0	701.0	697.0	699,3
Compressor Suction Temperature ("F)	54.0	54.0	54.0	54.0
Compressor Discharge Pressure (PSIG)	1166.0	1168.0	1147.0	1,160.3
Compressor Discharge Temperature (°F)	141.0	142.0	141.0	141,3
Compressor Flow (MMSCF/D)	105.5	104.1	101.9	103.8
% Load HP	89.1	89.6	89.3	89.3
% Load RPM	97.6	97.6	97.0	97.4
% Torque	91.3	91.8	92.1	91.7
Heat Rate (BTU(LHV)/HP-hr)	7,395.1	7,393.2	7,500.9	7,429.7
Ambient Conditions				
Ambient Temperature (°F)	81.00	83.00	77.00	80.33
Barometric Pressure (psi)	13.93	13.92	13.92	13.92
Ambient Relative Humidity (%)	43.00	40.00	43.00	42.00
Absolute Humidity (grains/LB)	148.43	147.39	129.74	141.85

Table 5 . Engine Operating and Ambient Conditions -Unit EU BLCMPR-C

TC Energy ANR Blue Lake CS Project Number: 050614.0099.048

Run	1	2	3	
Date	06/16/22	06/16/22	06/16/22	
Time	12:05	13:09	16:50	
Emissions Concentrations & Calculated Mass Emissions				
NO _x ppm (BIAS Corrected)	109.50	112.20	74.62	98.77
NO _X g/BHP-HR	1.4713	1.5173	1.0413	1.3433
NO _X LB/HR	17.3404	17.9762	12.2997	15.8721
NO _X (ppm @ 15% O ₂)	107.6750	111.0705	75.1294	97.9583
NOx LB/MMBTU	3,9635E-01	4.0884E-01	2.7655E-01	3.6058E-01
NO _X Tons/Year	75.9511	78.7358	53,8727	69.5199
NO _X LB/SCF Fuel	4.114E-04	4.244E-04	2.871E-04	3.74E-04
NO _X LB/MMSCF Fuel	4.1144E+02	4.2442E+02	2.8708E+02	3.7431E+02
CO ppm (BIAS Corrected)	259,99	255.75	290.07	268.60
CO g/BHP-HR	2.1265	2.1053	2.4639	2.2319
CO LB/HR	25,0618	24.9420	29.1040	26,3693
CO LB/MMBTU **	5.7283E-01	5.6727E-01	6.5438E-01	5.9816E-01
CO (ppm @ 15% O ₂)	255.6568	253.1753	292.0500	266.9607
CO Tons/Year	109.7709	109,2460	127.4755	115.4975
CO LB/MMSCF Fuel	5.9465E+02	5.8888E+02	6.7930E+02	6.2094E+02
THC ppm	622.16	627.04	631.27	6.268E+02
Non-Methane/Non-Ethane VOC's ppmvd (As Propane)	11.4336	11.4477	11.3741	11.4185
VOC (ppm @ 15% O ₂)	11.2431	11.3324	11.4518	11.3424
Method 18 CH4 PPM Bag Samples	591.20	596.20	601.00	596.13
VOC Moisture, % volume	9.74	10.20	11.29	10.41
VOC LB/HR (As Propane)**-Using Method 25A Measured THC	1.1832	1.1906	1.1966	1.1901
VOC g/BHP-hr (As Propane)**-Using Method 25A Measured THC	0.1004	0.1005	0.1013	0.1007
VOC LB/MMBTU	2.7045E-02	2.7078E-02	2.6904E-02	2.7009E-02
VOC LB/MMSCF Fuel	2.8075E+01	2.8110E+01	2.7929E+01	2.8038E+01
% O2 (BIAS Corrected)	14.90	14.94	15.04	14.96
Calculated Flows	A			
Fuel Flow - (SCFM)	703,8333	707.3333	715.5000	708.8889
Fuel Flow - (SCFH)	42230.00	42440.00	42930.00	42533.3333
Fuel Flow (LB/HR)	1890.2035	1899.6030	1921.5353	1903.7806
Fuel Flow (MMcf/hr)	4.2230E-02	4.2440E-02	4.2930E-02	4.2533E-02
Exhaust Flow (LB/HR)	82,550.1118	83,361.0309	86,166.0645	84,025.7357
Exhaust Flow (SCFM)	22,766.4090	23,010.8914	23,616.3955	23,131.2320
Air Flow (WSCFM)	21,263.4361	21,511.3158	22,127.6494	21,634.1338
Exhaust Flow Method 19 (scfm)	22,060.7105	22,319.2081	22,962.1705	22,447.3630
Fuel Flow Measurements				
Fuel Flow From Screen(MSCFH)	42.23	42.44	42.93	42.53
** BASED ON RUEL SPECIFIC DRY F-FACTOR CALCULATION	Run 1	Run 2	Run 3	1
* BASED ON CARBON BALANCE (STOICH. + 02) - A/F IS TOTAL MASS RATIO				

Table 6. Emissions Concentrations, CalculatedMass Emissions, Concentrations & Flows -Unit EU BLCMPR-C

TC Energy ANR Blue Lake CS Project Number: 050614.0099.048

3. FACILITY AND PROCESS DESCRIPTION

TC Energy's ANR Blue Lake Compressor Station is located in Maneclona, MI and operates a natural gas fired compressor station. The plant is located at 10000 Pflum Road, Mancelona, MI, which is located in Kalkaska County.

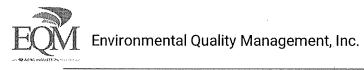
The Umit EU BLCMPR-A is a natural gas-fired, 6,000, HP 2-stroke lean burn Dresser Rand TCVD-12 compressor engine. More specifically, the engines are used to compress natural gas into the storage reservoir during injection, and into the pipeline during withdrawal. The following tables provide a summary of the production rates for the Unit A during the tests:

Table 7. EU BLCMPR-B Process Data									
Parameter	Run 1	Run 2	Run 3	Average	Rated	% Load			
Horsepower	5,635.0	5,629.0	5,650.0	5,638.0	6,000	94.0			
RPM	321.0	322.0	323.0	322.0	330	97.6			

Table 8. EU BLCMPR-C Process Data									
Parameter	Run 1	Run 2	Run 3	Average	Rated	% Load			
Horsepower	5,346.0	5,374.0	5,358.0	5,359.3	6,000	89.3			
RPM	322.0	322.0	320.0	321.3	330	97.4			

Genera	l Information	
		2
Date;	16-Jun-22	Permi Limits
Company:	TC Energy	
Station:	Blue Lakes	
Station	Dide Lakes	
Unit:	В	IPGB- CARLES A PART OF THE COMPANY
		Limits are actually listed as average values
Engine Type:	DRESSER RAND	
Bore:	<u>18</u> in.	Number of Cylinders: 10
Stroke:	20 in.	Trace Fort Toxag The Part 25 100
Rated RPM:	330 RPM	Rod Length: 45 in.
	KIM	Routengui. 45in.
Rated BHP:	6000 BHP	2 or 4 Stroke ?: 2
Fuel G	as Analysis	Fuel Meter Type
Constituent	Mole Percent	Enter Type from List Below 2
Nitsease [0.520	
Nitrogen Carbon Dioxide	0.539	Orifice Meter (upstream pressure tap): 1 Orifice Meter (downstream pressure tap): 2
Methane	94.257	Electronic Flow Meter (EFM): 3
Ethane	4.429	Venturi (Nozzle) Meter: 4
Propane	0.121	Roots Meter w/ Accumulator: 5
I-Butane	0.005	
N-Butane	0.003	Pipe I.D.: 3.068
I-Pentane	0.003	
N-Pentane	0.000	Orifice I.D.; 1.5
Hexane +	0.000	
	0.001	
Total	100.000	

Table 9. EU BLCMPR-B General Information


RECEIVED

AUG 1 1 2022

July 2022

9

AIR QUALITY DIVISION

General	Information	
Date:	16-Jun-22	É ermit Limits
a. [TO D	
Company:	TC Energy	
Station:	Blue Lakes	
		VOC. 1 873 87
Unit:	. <u>C</u>	HI2STS MARINE MARINE AND A MARINE A
	DDEGGES S () S	Limits are actually listed as average valu
Engine Type:	DRESSER RAND	
1		
hais Suiteri		
Bore:	18 in.	Number of Cylinders: 10
Stroke:	in.	All Mark Start I way
Rated RPM:	- 330 RPM	Rod Length: 45 in.
Kaleu Ki Mi.	KI WI	Kou Lengur. 45 In.
Rated BHP:	6000 BHP	2 or 4 Stroke ?: 2
FuelG	as Analysis	Fuel Meter Type
Constituent	Mole Percent	Enter Type from List Below 2
· · · · ·		
Nitrogen	0.539	Orifice Meter (upstream pressure tap): 1
Carbon Dioxide	0.645	Orifice Meter (downstream pressure tap): 2
Methane	94.257	Electronic Flow Meter (EFM): 3
Ethane	4.429	Venturi (Nozzle) Meter: 4
Propane	0.121	Roots Meter w/ Accumulator: 5
I-Butane	0.005	
N-Butane	0.003	Pipe I.D.: 3.068
I-Pentane	0.001	
N-Pentane	0.000	Orifice I.D.: 1.5
Hexane +	0.001	
_		
Total	100.000	

Table 10. EU BLCMPR-C General Information

4. TEST PROCEDURES

EQM and EQM's affiliates and subcontractors use current U.S. EPA accepted testing methodologies in their Air Quality Programs as listed in the U.S. Code of Federal Regulations, Title 40, Part 60, Appendix A. For this testing program, the following specific methodologies were utilized:

- U.S. EPA Method 3A Determination of Oxygen and Carbon Dioxide Concentrations in Emissions From Stationary Sources (Instrumental Analyzer Procedure)
- U.S. EPA Method 7E Determination of Nitrogen Oxide Concentrations in Emissions From Stationary Sources (Instrumental Analyzer Procedure)
- U.S. EPA Method 10 Determination of Carbon Monoxide Concentrations in Emissions From Stationary Sources (Instrumental Analyzer Procedure)
- U.S. EPA Method 19– Determination of Volumetric Flow Rate From Stationary Sources
- U.S. EPA Method 18- Determination of VOC Emissions From Stationary Sources (Instrumental Analyzer Procedure)
- U.S. EPA Method 25A Determination of VOC Emissions From Stationary Sources (Instrumental Analyzer Procedure)

USEPA Methods 3A, 4, 7E, 10, 18 and 25A were performed at the Exhaust Stack sampling location by continuously extracting a gas sample from the stack through a single point stainless steel sample probe. The extracted sample was pulled through a series of filters to remove any particulate matter. Directly after the probe, the sample was conditioned by a series of refrigeration dryers to remove moisture from the gas stream. After the refrigeration dryers, the sample was transported through a Teflon® line to the analyzers. The flow of the stack gas sample was regulated at a constant rate to minimize drift.

At the start of the day, each monitor was checked for calibration error by introducing zero, midrange and high-range EPA Protocol 1 gases to the measurement system at a point upstream of the analyzers. In this report, the calibration error test is referred to as instrument calibration. The gas was injected into the sampling valve located at the outlet of the sampling probe. The bias test was conducted before and after each consecutive test run by introducing zero and upscale calibration gases for each monitor. The upscale calibration gases used for each monitor were the high calibration gases.

Measurement System Performance Specifications were as follows:

- Analyzer Calibration Error Less than +/- 2% of the span of the zero, mid-range and high-range calibration gases.
- Sampling System Bias Less than +/-5% of the span for the zero, mid-range and high-range calibration gases.
- Zero Drift Less than +/-3% of the span over the period of each test run.
- Calibration Drift Less than +/-3% of the span over the period of each set of runs.

July 2022

Calculations that were used in this testing event for the Unit A are as follows:

Calibration Correction

$$C_{GAS} = \left(C_R - C_O\right) \frac{C_{MA}}{C_M - C_O}$$

Where:

CGAS:Corrected flue gas concentration (ppmvd)CR:Flue gas concentration (ppmvd)Co:Average of initial and final zero checks (ppmvd)CM:Average of initial and final span checks (ppmvd)CMA:Actual concentration of span gas (ppmvd)

EPA F-Factor

$$F_{d} = \frac{\left[\left(3.64 \cdot H_{W1\%} \cdot 100 \right) + \left(1.53 \cdot C_{W1\%} \cdot 100 \right) \right]}{\frac{GCV}{\rho_{FuelGas}}} \cdot 10^{6} + \frac{\left[\left(0.14 \cdot N_{2W1\%} \cdot 100 \right) - \left(0.46 \cdot O_{2W1\%} \cdot 100 \right) \right]}{\frac{GCV}{\rho_{FuelGas}}} \cdot 10^{6}$$

Where:

F _d :	Fuel specific F-factor, dscf/MMBtu
H _{Wt%} :	Hydrogen weight percent
C _{W1%} :	Carbon weight percent
N _{2Wt%} :	Nitrogen weight percent
O _{2Wt%} :	Oxygen weight percent
GCV:	Heating value of the fuel, BTU/dscf
PFuel Gas	Density of the fuel gas, lb/scf

NOx Mass Emissions Calculations g/bhr/hr

$$NOx_{\frac{g}{bhn-hr}} = C_d \times F_d \times \frac{20.9}{20.9 - \%O_2} \times Q_h \times \frac{GCV}{10^6} \times \frac{453.6}{Bhp}$$

Where:

$C_{d:}$	Pollutant concentration, lb/scf
F_{d} :	Fuel specific F-factor, dscf/MMBtu
Q_h :	Fuel flow, scf/hr
%0 ₂ :	Oxygen concentration in percent, measured on a dry basis
GCV:	Upper dry heating value of fuel, Btu/dscf

NOx Mass Emission Calculations lb/hr

$$NOx_{lb} = C_d \times F_d \times \frac{20.9}{20.9 - \%O_2} \times Q_h \times \frac{GCV}{10^6}$$

Where:

C_d: Pollutant concentration, lb/scf

 F_{d} Fuel specific F-factor, dscf/MMBtu

 Q_h : Fuel flow, scf/hr

%O₂: Oxygen concentration in percent, measured on a dry basis

GCV: Upper dry heating value of fuel, Btu/dscf

NO_x Corrected to 15% O₂

$$Em = NO_X\left(\frac{5.9}{20.9 - \%O_2}\right)$$

EQM

Environmental Quality Management, Inc.

Where:

- E_{m:} Pollutant concentration corrected to 15% O₂, ppm
- NO_x: Pollutant concentration, ppm
- %O2: Oxygen concentration in percent, measured on a dry basis

NO Interference Response

$$INO = \left[\left(\frac{R_{NO-NO2}}{C_{NO2G}} \times \frac{C_{NO2S}}{C_{NOxS}} \right) \right] \times 100$$

Where:

I _{NO} :	NO interference response (%)
R _{NO-NO2} :	NO response to NO2 span gas (ppm NO)
C _{NO2G} .:	Concentration of NO_2 span gas (ppm NO2)
C _{NO2S} .:	Concentration of NO ₂ in stack gas (ppm NO ₂)
C _{NOxS} :	Concentration of NO _x in stack gas (ppm NO _x)

CO Mass Emissions Calculations lb/hr

$$CO_{\frac{g}{bhp-hr}} = C_d \times F_d \times \frac{20.9}{20.9 - \%O_2} \times Q_h \times \frac{GCV}{10^6}$$

Where:

Cd: Pollutant concentration, lb/scf

F_d: Fuel specific F-factor, dscf/MMBtu

 Q_h : Fuel flow, scf/hr

%O₂: Oxygen concentration in percent, measured on a dry basis

GCV: Upper dry heating value of fuel, Btu/dscf

CO Mass Emissions Calculations g/bhp/hr

$$CO_{\frac{g}{bhp-hr}} = C_d \times F_d \times \frac{20.9}{20.9 - \%O_2} \times Q_h \times \frac{GCV}{10^6} \times \frac{453.6}{BHP}$$

Where:

Cd:	Pollutant concentration, lb/scf
F _d :	Fuel specific F-factor, dscf/MMBtu
Qh:	Fuel flow, scf/hr
%O2:	Oxygen concentration in percent, measured on a dry basis
GCV:	Upper dry heating value of fuel, Btu/dscf

VOC ppm

$$VOC_{ppmvd} = \frac{THC_{ppmvw} - \frac{1}{3}CH_{4ppmvd} - \frac{2}{3}C_{2}H_{6ppmvd}}{1 - \left(\frac{\%H_{2}O}{100}\right)}$$

Where:

Cd:	Pollutant concentration, lb/scf
F _d :	Fuel specific F-factor, dscf/MMBtu
Qh:	Fuel flow, scf/hr
%O2:	Oxygen concentration in percent, measured on a dry basis
GCV:	Upper dry heating value of fuel, Btu/dscf

VOC Mass Emissions Calculations lb/hr

$$VOC_{\frac{g}{bhp-hr}} = C_d \times F_d \times \frac{20.9}{20.9 - \%O_2} \times Q_h \times \frac{GCV}{10^6}$$

Where:

<i>C_d:</i> Pollutant concentration, lb/scf

F_d: Fuel specific F-factor, dscf/MMBtu

 Q_h : Fuel flow, scf/hr

%O2: Oxygen concentration in percent, measured on a dry basis

GCV: Upper dry heating value of fuel, Btu/dscf

Where VOC measurement registered as a negative emission, it was reported as a zero. This was the case for Units A and B during the testing event.

TC Energy ANR Blue Lake CS Project Number: 050614.0099.048

5. QUALITY ASSURANCE PROCEDURES

Each reference method presented in the U.S. Code of Federal Regulations details the instrument calibration requirements, sample recovery and analysis, data reduction and verification, types of equipment required, and the appropriate sampling and analytical procedures to ensure maximum performance and accuracy. EQM and EQM's affiliates and subcontractors adhere to the guidelines for quality control set forth by the United States Environmental Protection Agency. These procedures are outlined in the following documents:

- Code of Federal Regulations, Title 40, Part 51
- Code of Federal Regulations, Title 40, Part 60
- Quality Assurance Handbook, Volume 1, EPA 600/9-76-005
- Quality Assurance Handbook, Volume 2, EPA 600/4-77-027a
- Quality Assurance Handbook, Volume 3, EPA 600/4-77-027b

6. CONCLUSIONS

An Emissions Test was conducted on the internal combustion compressor engines labeled Unit EU BLCMPR-B and Unit EU BLCMPR-C at TC Energy's ANR Storage Company's Blue Lake Compressor Station located in Blue Lake, Michigan. The testing was conducted on June 16, 2022..

During the course of the testing, the Engine A conformed to the requirements of Code of Federal Regulations, Title 40, Part 60, Appendix A, National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines and 40 CFR Part 60, Subpart JJJJ requirement..

The usefulness and/or significance of the emissions values presented in this document as they relate to the compliance status of the emissions shall be determined by others.

For additional information pertaining to the testing program see Appendix D of this report

A. FIELD DATA