JOHN ZINK®AIR SOURCE TEST GROUP

VCU COMPLIANCE TEST REPORT

Prepared for: CITGO Petroleum Corporation Ferrysburg Terminal 524 Third Street Ferrysburg, Ottawa County, Michigan 49409 **Original Equipment Manufacturer: John Zink Company LLC Original Equipment SO#: A008364**

AUG 03 2018

PREPARED BY J.N. THOMASON, QSTI AIR QUALITY DIVISION DATE **REVISION 1.0** JZ FILE NUMBER VA 9195668

JOHN ZINK COMBUSTION

John Zink Company, LLC • 11920 East Apache Street • Tulsa, Oklahoma 74116 USA PHONE 918-234-2776 • FAX 918-234-1968 • EMAIL jeffrey.thomason@johnzink.com • johnzinkhamworthy.com

1.0 INTRODUCTION

CITGO Petroleum Corporation ("CITGO") contracted John Zink Air Source Testing Group (JZASTG) to perform air emission testing services for one Vapor Combustion Unit (VCU) at the XYZ Terminal located in Ferrysburg, Ottawa County, Michigan. Concentrations of total volatile organic compounds (VOC, as total hydrocarbons [THC] measured on a propane detection basis), carbon monoxide (CO) and carbon dioxide (CO₂) were measured in the exhaust of the VCU. The total flow rate, temperature, pressure and inlet vapor hydrocarbons were simultaneously recorded upstream of the vapor combustion zone. The facility was monitored for VOC leaks immediately before the testing began using a portable hydrocarbon analyzer. The pressure of the vapor system was monitored in each loading bay.

The purpose of the test was to determine the compliance status of the VCU with respect to provisions found in the Code of Federal Regulations, Title 40, Part 60 (40 CFR 60), Subpart XX ("Standards of Performance for Bulk Gasoline Terminals"), 40 CFR 63, Subpart BBBBBB ("National Emission Standards for Hazardous Air Pollutants for Source Categories: Gasoline Distribution Bulk Terminals, Bulk Plants, and Pipeline Facilities; and Gasoline Dispensing Facilities") and specific conditions found in Michigan Department of Environmental Quality – Air Quality Division Permit Number 201-03, State Registration Number B6258. Tests were completed while loading on bays 1 and 2. The emissions from these bays are controlled by the VCU identified in the permit as Emission Point Number EU-RACK serviced by stack SV-VCU.

This document presents the results for compliance testing of the VCU. Table 1-1 presents an executive summary of results. Section 2 provides a detailed summary of results as well as identification of the owner and contact, the physical location of the site, test contractor contact information and identification of specific test methods. Section 3 details Quality Assurance and Quality Control procedures and documentation. The appendices to this document provide raw field data, examples of calculations and formulae utilized to derive all results presented in this document, records of fuel loading, calibration certification documents and copies of relevant QA/QC procedures.

1.1 Test Objectives

- Determine if compliance with all federal and state permit limitations are met
- Quantify the total amount of VOC released to the atmosphere
- Verify that the vapor collection system is leak-free
- Validate the test matrix by loading at least 300,000 liters (~80,000 gallons) of gasoline in a minimum six-hour test period per 40 CFR 503(c)(1)
- Monitor the vapor collection system pressure during truck loading and record the highest instantaneous pressure for each loading bay per 40 CFR 60.503(d)(2)

1.2 **Process Description and Operation**

This facility owns and operates a John Zink Model ZCT-3-8-45-3-3/6-3/6-X-X VCU as an exhaust emission control device. The emissions from this unit are the subject of this report.

The fuels loading/distribution terminal has a total of 2 bays capable of loading gasoline blended with ethanol and petroleum distillates into tank trucks. A third bay is utilized exclusively for the off-loading of ethanol and is not subject to regulation. A field sketch of the loading rack detailing the number of loading arms at each bay and type of product loaded may be found in Appendix 1 of this report. As gasoline and/or other fuels are loaded into a tank truck the displaced vapors are pushed by air displaced during trailer loading through a closed venting system to the VCU. A knockout tank is associated with this system which captures any condensed liquid from the loading rack. After passing through a detonation arrestor to prevent backward flame propagation, vapors enter the burner area. There is no set pattern of loading (the trucks load on a first come, first served basis). However, the usual periods of heavy loading activity are in the early morning and late afternoon. The source test was timed to coincide with these periods.

Concentration measurements were made both upstream and downstream of the combustion zone. The upstream sample was obtained by extracting a small sample from the exhaust of a turbine meter temporarily installed on the vapor inlet line of the VCU. The downstream sample was obtained from a sample port approximately five feet below the combustor stack exit to atmosphere. This port was accessed via manlift. A field sketch of the unit may be found in Appendix A.

1.3 Complications during Sampling Event

No deviations from the published test methods or the accepted source test protocol were made during this sampling event. No adverse test conditions or environmental conditions which may have impacted results were encountered during the completion of this event. The test program was conducted according to the site-specific test plan using procedures deemed acceptable by the Michigan Department of Environmental Quality Air Quality Division and the United States Environmental Protection Agency.

Table 1: Executive Summary of Results

Terminal Owner:	CITGO Petroleum Corp				
Terminal Name:	Ferrysburg				
Location:	Ferrysburg, Michigan				
Test Date:	06/27/18				
Type of Vapor Control Unit:	Vapor Combustor				
Vapor Control Make & Model:	John Zink ZCT-3-8-45-3	3-3/6-3/6-X-X			
Number of Loading Bays:	2 gasoline, 1 offloading	bay (ethanol)			
Emission Test Methods					
Inlet Vapor Flow Rate	EPA Method 2A				
VOC Inlet Concentration	EPA Method 25B				
Exhaust Flow Rate	EPA Method 2B				
VOC Exhaust Concentration	EPA Method 25A				
CO ₂ Exhaust Concentration	EPA Method 3A				
CO Exhaust Concentration	EPA Method 10				
NOx Exhaust Concentration	EPA Method 7E				
Vapor Leak Test	EPA Method 21				
Product Loading Data	Observations	Criteria			
Start Test (time)	6:33				
Start Test (time) End Test (time)	6:33 13:11				
Start Test (time) End Test (time) Total Test Duration (hours)	6:33 13:11 6:37	<u>></u> 6 hrs			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading)	6:33 13:11 6:37 3.85	<u>></u> 6 hrs			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons):	6:33 13:11 6:37 3.85 226,989	<u>≥</u> 6 hrs			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters):	6:33 13:11 6:37 3.85 226,989 859,247	<u>≥</u> 6 hrs			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net gallons):	6:33 13:11 6:37 3.85 226,989 859,247 196,919	<u>></u> 6 hrs			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net gallons): Total Gasolines Loaded (net liters):	6:33 13:11 6:37 3.85 226,989 859,247 196,919 745,420	<u>></u> 6 hrs > 300,000 liters			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net gallons): Total Gasolines Loaded (net liters): % Non-gasoline/gasoline with ethanol Loaded	6:33 13:11 6:37 3.85 226,989 859,247 196,919 745,420 13.2%	<u>></u> 6 hrs > 300,000 liters			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net gallons): Total Gasolines Loaded (net liters): % Non-gasoline/gasoline with ethanol Loaded Emission Test Results	6:33 13:11 6:37 3.85 226,989 859,247 196,919 745,420 13.2% Observations	<u>></u> 6 hrs > 300,000 liters Limits			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net gallons): Total Gasolines Loaded (net liters): % Non-gasoline/gasoline with ethanol Loaded Emission Test Results Vapor Control Leak Check	6:33 13:11 6:37 3.85 226,989 859,247 196,919 745,420 13.2% Observations no leaks	≥ 6 hrs > 300,000 liters Limits no leaks			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net gallons): Total Gasolines Loaded (net liters): % Non-gasoline/gasoline with ethanol Loaded Emission Test Results Vapor Control Leak Check Maximum Loading Pressure (" H20)	6:33 13:11 6:37 3.85 226,989 859,247 196,919 745,420 13.2% Observations no leaks 17.4	≥ 6 hrs > 300,000 liters Limits no leaks < 18 " H20			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net gallons): Total Gasolines Loaded (net liters): % Non-gasoline/gasoline with ethanol Loaded Emission Test Results Vapor Control Leak Check Maximum Loading Pressure (" H20) Average Inlet Concentation (% as C3H8)	6:33 13:11 6:37 3.85 226,989 859,247 196,919 745,420 13.2% Observations no leaks 17.4 25.7	≥ 6 hrs > 300,000 liters Limits no leaks < 18 " H20			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net gallons): Total Gasolines Loaded (net liters): % Non-gasoline/gasoline with ethanol Loaded Emission Test Results Vapor Control Leak Check Maximum Loading Pressure (" H20) Average Inlet Concentation (% as C3H8) Inlet Vapor VOC (lbs)	6:33 13:11 6:37 3.85 226,989 859,247 196,919 745,420 13.2% Observations no leaks 17.4 25.7 1007.88	≥ 6 hrs > 300,000 liters Limits no leaks < 18 " H20			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net liters): Total Gasolines Loaded (net liters): % Non-gasoline/gasoline with ethanol Loaded Emission Test Results Vapor Control Leak Check Maximum Loading Pressure (" H20) Average Inlet Concentation (% as C3H8) Inlet Vapor VOC (lbs) Average Exhaust Concentration (ppmv as C3H8)	6:33 13:11 6:37 3.85 226,989 859,247 196,919 745,420 13.2% Observations no leaks 17.4 25.7 1007.88 23.9	≥ 6 hrs > 300,000 liters Limits no leaks < 18 " H20			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net gallons): Total Gasolines Loaded (net liters): % Non-gasoline/gasoline with ethanol Loaded Emission Test Results Vapor Control Leak Check Maximum Loading Pressure (" H20) Average Inlet Concentation (% as C3H8) Inlet Vapor VOC (lbs) Average Exhaust Concentration (ppmv as C3H8) Total VOC Emissions (lbs):	6:33 13:11 6:37 3.85 226,989 859,247 196,919 745,420 13.2% Observations no leaks 17.4 25.7 1007.88 23.9 6.42	<u>></u> 6 hrs > 300,000 liters Limits no leaks < 18 " H20			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net gallons): Total Gasolines Loaded (net liters): % Non-gasoline/gasoline with ethanol Loaded Emission Test Results Vapor Control Leak Check Maximum Loading Pressure (" H20) Average Inlet Concentation (% as C3H8) Inlet Vapor VOC (lbs) Average Exhaust Concentration (ppmv as C3H8) Total VOC Emissions (lbs): VOC Emission Rate (lbs/hr)*:	6:33 13:11 6:37 3.85 226,989 859,247 196,919 745,420 13.2% Observations no leaks 17.4 25.7 1007.88 23.9 6.42 1.67	≥ 6 hrs > 300,000 liters Limits no leaks < 18 " H20			
Start Test (time) End Test (time) Total Test Duration (hours) Test Time (digital hours of active loading) Total Fuels Loaded (net gallons): Total Fuels Loaded (net liters): Total Gasolines Loaded (net gallons): Total Gasolines Loaded (net liters): % Non-gasoline/gasoline with ethanol Loaded Emission Test Results Vapor Control Leak Check Maximum Loading Pressure (" H20) Average Inlet Concentation (% as C3H8) Inlet Vapor VOC (lbs) Average Exhaust Concentration (ppmv as C3H8) Total VOC Emissions (lbs): VOC Emission Rate (lbs/hr)*: VOC Emissions (mg/liter of gasoline loaded):	6:33 13:11 6:37 3.85 226,989 859,247 196,919 745,420 13.2% Observations no leaks 17.4 25.7 1007.88 23.9 6.42 1.67 3.90	<u>></u> 6 hrs > 300,000 liters Limits no leaks < 18 " H20			

*Hours of active loading

2.0 SUMMARY

Detailed test results and summary information are presented and discussed in this section. The test matrix to evaluate compliance consisted of a period of greater than six hours (actual time of test 6:37, 6.62 digital hours) while the unit was operating at normal conditions. During the test period, quantities of VOC (as THC, propane detection basis) were measured from the inlet of the VCU using the procedures of USEPA Method 25B. Inlet volume was calculated using USEPA Method 2A (direct measurement of flow). Quantities of THC, CO and CO₂ were measured in the source exhaust using USEPA Methods 25A, 10 and 3A, respectively. Exhaust flow was calculated using the equations of USEPA Method 2B.

Test results are based on the one-minute interval averages recorded by the data-logging system. Fiveminute averages of these measurements were calculated to determine VOC emissions. This is consistent with 60 CFR 60.503(c)(4). Table 2 presents these averages.

For the direct analysis of VCU inlet and exhaust stack gas, two extractive systems were used to obtain samples for the analyses of inlet and exhaust VOC and exhaust CO and CO₂. Each sample was extracted using a stainless steel/Teflon[™] diaphragm pump. For the inlet sample a portion of the stream just past the turbine meter was extracted and directed to the test trailer via Teflon[™] sample line. This line was not heated due to the risk of explosion given the high percent level concentrations of the sample (USEPA Method 25A, §5.2). The sample passes through a mole sieve dryer to remove water without effecting hydrocarbon concentration, then is routed through a rotameter for flow control and to the NDIR analyzer for measurement. The exhaust gas sample was continuously pulled through a heated Teflon sample line (maintained at $250 \pm 20^{\circ}$ F). A portion of the heated, unconditioned sample was delivered to the FID analyzer. The remainder of the sample was passed through a peristaltic condenser to remove moisture and then partitioned to the CO and CO₂ analyzers through a manifold and rotameters for flow control. All portions of the sample system are manufactured from inert material. A list of instruments utilized for this sampling event may be found in §2.5. A diagram of the sampling system is in §2.6.

The total quantity of gasoline vapors emitted from the VCU during the test period was found to be 6.42 pounds (291,206.3 mg) of VOC, measured and quantified on a propane detection basis. The total volume of gasoline loaded during test period was 196919 net gallons (745,420 liters). Therefore, the VCU emits VOC at an average rate of 3.90 mg/liters of gasoline loaded. The actual time of active loading was 3.85 digital hours. Using the total weight of VOC emitted and this time, a value of 1.67 pounds per hour of active loading is calculated. This corresponds to 0.03 pounds per 1000 gallons of gasoline loaded and can be extrapolated to 7.30 tons per year based on 8,760 hours of active loading. This assumes continuous loading which is a significant overestimation.

As specified in 40 CFR 60.503(b) and as referenced in 40 CFR 63.11092(a)(1)(i) the terminal's vapor collection system was monitored using USEPA Method 21 to identify any leaking components. A leak detection threshold of 500 ppm as methane was used to identify any leaking components. The survey included all valves, flanges, fittings, seals, check valves, etc. No leaks were detected during this survey.

This document and the information contained herein may only be used for its intended and limited purpose. John Zink Company LLC retains all intellectual property rights, whether registered or unregistered, including trademarks, patents and copyrights embodied in this document and the information contained herein.

The vapor collection system pressure was monitored at each loading bay during the sampling event. Data was recorded at five-minute intervals during loading with the highest instantaneous pressure noted. The highest instantaneous pressure recorded was 17.41" H₂O on Bay 1.

Ref. No. VA 9195668 July 9, 2018

Table 2: Summary of Results

	TABULAR SUMMARY	
1	CITGO Petroleum Corp	
	Fenysburg	
	6/27/2018	_

Technicians:	JNT, MSL	EDR, LB
Turbine Meter:	GTS 8" s/i	181355
Atmospheric Pressure:	29.10	inHg
Amblent CO ₂ Conc.:	408.39	ppm

1

1

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Inter Vapors					Co	mbusto	Exhaust					
Interval Volume Volume Term, (r) Volume (r) (r) (r)<	Time	Turbir	e Meter	System	Inlet	Inlet Gas	niet Gas Iniet Hydrocarbon		Exhaust		Exhau	st Concentrat	ions	
Ending 1.0030 (in H ₂) (F) (H ² @STP) (vol. %) (H ² @STP) (vol. %) (ppm) (p	Interval	Volume	Volume * Y	Pressure	Temp,	Volume	(as	C ₃ H ₈)	Volume	CO2	co	VOC (as C_3H_0)	VOC	co
Start Test @@:6.33 0 0 0 0 0 2669 0 4260 000 0 138 42.77 23.211 0.00 0.00 6442 575 576 0.89 666 563 44.09 28.42 87807 0.877 46.59 24.94 0.02 0.02 0.42 47.26 34.70 112706 0.836 51.08 21.21 0.27 0.42 6.57 2075 2081 0.58 66.6 24.84 49.58 14.06 105285 0.803 50.16 22.17 0.42 1.03 7.02 2085 2091 0.02 67.4 0 47.30 0.00 0 0.131 4.19 0.18 0.00 0.00 0.131 4.19 0.18 0.00 0.00 0.012 4.13 0.09 0.00 0.0132 4.13 0.09 0.00 0.012 4.13 0.09 0.00 0.0132 4.13 0.09 0.00 0.0122	Ending		1.0030	(in. H ₂ 0)	(°F)	(ft ³ @STP)	(Vol. %)	(lbs)	(ft ³ @STP)	(Vol. %)	(ppmv)	(ppmv)	(lbs)	(lbs)
	Start Test@6:33	0	0											
6.42 575 576 0.89 666 583 44.09 28.42 87807 0.877 6.570 224.94 0.25 0.307 657 1230 1234 0.62 67.0 642 47.26 34.70 110206 0.836 51.08 21.21 0.27 0.42 657 2075 2081 0.58 672 579 50.51 33.46 106265 0.863 50.16 22.07 0.27 0.33 702 2085 2091 0.02 67.4 0 47.30 0.00 0 0.131 4.19 -0.18 0.00 0.00 0.717 2085 2091 0.02 664 0 47.07 0.00 0 0.131 4.19 -0.133 4.00 -1.55 0.000 0.00 0.032 4.13 -0.99 0.00 0.00 0.132 4.16 -1.32 0.00 0.00 0.132 4.16 -1.38 0.00 0.00 0.133 4.32	6:37	0	0	0.02	66.9	0	42.60	0.00	0	0.138	4.27	23.21	0.00	0.00
	6:42	575	576	0.89	66.6	563	44.09	28.42	87807	0.877	46.59	24.94	0.25	0.30
652 1483 1488 0.58 66.6 248 49.58 14.06 100238 0.401 18.40 18.68 0.21 0.13 657 2075 2085 2091 0.02 67.2 10 47.91 0.55 10477 0.175 5.80 9.28 0.00 0.00 702 2085 2091 0.02 67.4 0 47.30 0.00 0 0.131 4.19 0.18 0.00 0.00 717 2085 2091 0.02 66.4 0 47.07 0.00 0 0.131 4.19 -0.43 0.00 0.00 722 2085 2091 0.02 67.5 0 47.07 0.00 0 0.132 4.04 -1.55 0.00 0.00 732 2085 2091 0.02 67.5 0 47.16 0.00 0 0.133 4.32 4.04 -1.35 0.00 0.00 747 2085 2091 0.02 68.9 0 47.12 0.00 0 0.133 <	6:47	1230	1234	0.62	67.0	642	47.26	34.70	112706	0.836	51.08	21.21	0.27	0.42
657 2075 2081 0.58 67.2 579 50.51 33.46 105285 0.863 50.16 22.07 0.22 0.33 702 2085 2091 0.02 67.2 10 47.91 0.55 10477 0.175 5.80 92.8 0.01 0.00 712 2085 2091 0.02 66.8 0 47.14 0.00 0 0.131 4.19 -0.18 0.00 0.00 712 2085 2091 0.02 66.4 0 47.07 0.00 0 0.131 4.20 -0.43 0.00 0.00 722 2085 2091 0.02 67.5 0 47.15 0.00 0 0.132 4.04 -1.55 0.00 0.00 737 2085 2091 0.02 68.9 0 47.16 0.00 0 0.133 4.32 4.24 0.00 0.00 747 2085 2091 0.02 68.9 0 47.14 1.38 2859 1.67 5.59 -1.8	6:52	1483	1488	0.58	66.6	248	49.58	14.06	100238	0.401	18.40	18.68	0.21	0.13
7.02 2085 2091 0.02 67.4 10 47.91 0.55 10477 0.175 5.80 9.28 0.01 0.00 7.17 2085 2091 0.02 67.4 0 47.30 0.00 0 0.131 4.95 2.31 0.00 0.00 7.12 2085 2091 0.02 66.4 0 47.07 0.00 0 0.131 4.20 0.43 0.00 0.00 7.27 2085 2091 0.02 67.0 0 47.07 0.00 0 0.132 4.13 -0.99 0.00 0.00 7.32 2085 2091 0.02 67.5 0 47.16 0.00 0 0.132 4.04 -1.55 0.00 0.00 7.32 2085 2091 0.02 67.5 0 47.16 0.00 0 0.132 4.04 -1.52 0.00 0.00 7.42 2085 2091 0.02 68.8 0 47.12 0.00 0 0.133 4.32 4.49 0.00 0.00 7.47 2085 2091 0.02 68.9 0 46.98 0.00 0 0.133 4.32 4.49 0.00 0.00 7.47 2085 2091 0.02 68.7 75.12 111 2118 0.17 75.9 0.10 0.61 7.57 3213 3222 1.316 8.77 7.16 5.99 -2.18	6:57	2075	2081	0.58	67.2	579	50.51	33.46	105265	0.863	50.16	22.07	0.27	0.38
707 2085 2091 0.02 67.4 0 47.30 0.00 0 0.147 4.95 2.31 0.00 0.00 7.12 2085 2091 0.02 66.8 0 47.14 0.00 0 0.131 4.19 0.18 0.00 0.00 7.12 2085 2091 0.02 66.4 0 47.07 0.00 0 0.132 4.13 0.999 0.00 0.00 7.22 2085 2091 0.02 67.5 0 47.16 0.00 0 0.132 4.04 -1.55 0.00 0.00 7.37 2085 2091 0.02 68.8 0 47.12 0.00 0 0.132 4.04 -1.38 0.00 0.00 7.47 2085 2091 0.02 68.8 0 47.12 0.00 0 0.133 4.32 4.24 0.00 0.00 7.52 2111 2118 0.17 68.9 26 47.14 1.38 28559 0.167 5.59 -2.18 0.00	7:02	2085	2091	0.02	67.2	10	47.91	0.55	10477	0.175	5.80	9.28	0.01	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7:07	2085	2091	0.02	67.4	0	47.30	0.00	0	0.147	4.95	2.31	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7:12	2085	2091	0.02	66.8	0	47.14	0.00	0	0.131	4.19	-0.18	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7:17	2085	2091	0.02	66.4	0	47.07	0.00	0	0.131	4.20	-0.43	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7:22	2085	2091	0.02	67.0	0	47.07	0.00	0	0.132	4.13	-0.99	0.00	0.00
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7:27	2085	2091	0.02	68.2	0	47.15	0.00	0	0.132	4.04	-1.55	0.00	0.00
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7:32	2085	2091	0.02	67.5	0	47.16	0.00	0	0.132	4.00	-1.32	0.00	0.00
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7:37	2085	2091	0.02	68.8	0	47.12	0.00	0	0.132	4.16	-1.38	0.00	0.00
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7:42	2085	2091	0.02	68.9	0	46.98	0.00	0	0.133	4.32	-4.24	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7:47	2085	2091	0.02	69.1	0	47.02	0.00	0	0.133	4.35	-4.90	0.00	0.00 (
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	7:52	2111	2118	0.17	68.9	26	47.14	1.38	28559	0.167	5.59	-2.18	0.00	0.01
802 4006 4018 0.91 68.8 775 12.14 10.76 48285 0.616 60.04 11.73 0.06 0.21 807 5402 5419 2.07 69.5 1365 8.30 12.96 50715 0.687 78.59 52.05 0.30 0.29 8.12 6056 6074 0.67 69.2 637 4.18 3.05 32004 0.216 12.29 244.66 0.90 0.03 8.17 6979 7000 0.81 68.8 901 12.44 12.83 34812 0.913 64.25 292.05 1.16 0.16 8.22 7706 7730 0.80 69.1 709 30.21 24.53 90190 0.744 42.34 16.89 0.17 0.28 827 9008 9035 1.71 69.7 1271 38.58 56.13 94359 1.587 71.67 18.96 0.20 0.49 832 9643 9672 0.75 69.2 619 50.81 36.00 109564 0.892 49.24 18.87 0.24 0.39 $8:37$ 11096 11129 2.16 70.1 419 36.98 60.05 121172 1.331 52.60 11.19 0.16 0.27 $8:42$ 12080 12216 1.30 71.4 967 26.52 29.34 9784 0.820 37.73 919 0.10 0.27 $8:57$ <t< td=""><td>7:57</td><td>3213</td><td>3222</td><td>1.31</td><td>68.7</td><td>1076</td><td>28.58</td><td>35.21</td><td>112028</td><td>0.857</td><td>57.00</td><td>7.59</td><td>0.10</td><td>0.46</td></t<>	7:57	3213	3222	1.31	68.7	1076	28.58	35.21	112028	0.857	57.00	7.59	0.10	0.46
8.07 5402 5419 2.07 69.5 1365 8.30 12.96 50715 0.687 78.59 52.05 0.30 0.29 8.12 6056 6074 0.67 69.2 637 4.18 3.05 32004 0.216 12.29 244.66 0.90 0.03 8.17 6979 7000 0.81 68.8 901 12.44 12.83 34812 0.913 64.25 292.05 1.16 0.16 8.22 7706 7730 0.80 69.1 709 30.21 24.53 90190 0.744 42.34 16.89 0.17 0.28 8.27 9008 9035 1.71 69.7 1271 38.58 56.13 94359 1.587 71.67 18.96 0.20 0.49 8.32 9643 9672 0.75 69.2 619 50.81 36.00 109564 0.892 49.24 18.87 0.24 0.39 8.37 11096 11129 2.16 70.1 1419 36.98 60.05 121172 1.331 52.60 11.19 0.16 0.46 842 12090 12126 1.30 71.4 967 26.52 29.34 97884 0.820 37.73 9.19 0.10 0.27 847 12977 13016 0.82 70.4 863 20.07 19.82 81308 0.674 45.14 4.19 0.40 0.27 857 </td <td>8:02</td> <td>4006</td> <td>4018</td> <td>0.91</td> <td>68.8</td> <td>775</td> <td>12.14</td> <td>10.76</td> <td>48285</td> <td>0.616</td> <td>60.04</td> <td>11.73</td> <td>0.06</td> <td>0.21</td>	8:02	4006	4018	0.91	68.8	775	12.14	10.76	48285	0.616	60.04	11.73	0.06	0.21
8:12 6056 6074 0.67 69.2 637 4.18 3.05 32004 0.216 12.29 244.66 0.90 0.03 $8:17$ 6979 7000 0.81 68.8 901 12.44 12.83 34812 0.913 64.25 292.05 1.16 0.16 $8:22$ 7706 7730 0.80 69.1 709 30.21 24.53 90190 0.744 42.34 16.89 0.17 0.28 $8:27$ 9008 9035 1.71 69.7 1271 38.58 56.13 94359 1.587 71.67 18.96 0.20 0.49 $8:32$ 9643 9672 0.75 69.2 619 50.81 36.00 109564 0.892 49.24 18.87 0.24 0.39 $8:37$ 11096 11129 2.16 70.1 1419 36.98 60.05 121172 1.331 52.60 11.19 0.16 0.46 $8:42$ 12090 12126 1.30 71.4 967 26.52 29.34 97884 0.820 37.73 9.19 0.10 0.27 $8:47$ 12977 13016 0.82 70.4 863 20.07 19.82 81308 0.674 45.14 4.19 0.04 0.27 $8:52$ 13400 13440 0.42 70.6 4111 17.50 8.23 47988 0.483 50.77 7.62 0.04 0.18 $8:5$	8:07	5402	5419	2.07	69.5	1365	8.30	12.96	50715	0.687	78.59	52.05	0.30	0.29
8:17 6979 7000 0.81 68.8 901 12.44 12.83 34812 0.913 64.25 292.05 1.16 0.16 $8:22$ 7706 7730 0.80 69.1 709 30.21 24.53 90190 0.744 42.34 16.89 0.17 0.28 $8:27$ 9008 9035 1.71 69.7 1271 38.58 56.13 94359 1.587 71.67 18.96 0.20 0.49 $8:32$ 9643 9672 0.75 69.2 619 50.81 36.00 109564 0.892 49.24 18.87 0.24 0.39 $8:37$ 11096 11129 2.16 70.1 1419 36.98 60.05 121172 1.331 52.60 11.19 0.16 0.46 $8:42$ 12090 12126 1.30 71.4 967 26.52 29.34 97884 0.820 37.73 9.19 0.10 0.27 $8:47$ 12977 13016 0.82 70.4 863 20.07 19.82 81308 0.674 45.14 4.19 0.04 0.27 $8:52$ 13400 13440 0.42 70.6 411 17.50 8.23 47988 0.483 50.77 7.62 0.04 0.18 $8:57$ 14481 14525 1.19 71.1 1052 31.81 38.30 71502 1.432 74.84 20.14 0.16 0.39	8:12	6056	6074	0.67	69.2	637	4.18	3.05	32004	0.216	12.29	244.66	0.90	0.03
8:22 7706 7730 0.80 69.1 709 30.21 24.53 90190 0.744 42.34 16.89 0.17 0.28 8:27 9008 9035 1.71 69.7 1271 38.58 56.13 94359 1.587 71.67 18.96 0.20 0.49 8:32 9643 9672 0.75 69.2 619 50.81 36.00 109564 0.892 49.24 18.87 0.24 0.39 8:37 11096 11129 2.16 70.1 1419 36.98 60.05 121172 1.331 52.60 11.19 0.16 0.46 8:42 12090 12126 1.30 71.4 967 26.52 29.34 97884 0.820 37.73 9.19 0.10 0.27 8:47 12977 13016 0.82 70.4 863 20.07 19.82 81308 0.674 45.14 4.19 0.04 0.27 8:52 13400 13440 0.42 70.6 411 17.50 8.23 47988	8:17	6979	7000	0.81	68.8	901	12.44	12.83	34812	0.913	64.25	292.05	1.16	0.16
827 9008 9035 1.71 69.7 1271 38.58 56.13 94359 1.587 71.67 18.96 0.20 0.49 8.32 9643 9672 0.75 69.2 619 50.81 36.00 109564 0.892 49.24 18.87 0.24 0.39 8.37 11096 11129 2.16 70.1 1419 36.98 60.05 121172 1.331 52.60 11.19 0.16 0.46 8.42 12090 12126 1.30 71.4 967 26.52 29.34 97884 0.820 37.73 9.19 0.10 0.27 8.47 12977 13016 0.82 70.4 863 20.07 19.82 81308 0.674 45.14 4.19 0.04 0.27 8.52 13400 13440 0.42 70.6 411 17.50 8.23 47988 0.483 50.77 7.62 0.04 0.18 8.57 14481 14525 1.19 71.1 1052 31.81 38.30 71502 <td< td=""><td>8:22</td><td>7706</td><td>7730</td><td>0.80</td><td>69.1</td><td>709</td><td>30.21</td><td>24.53</td><td>90190</td><td>0.744</td><td>42.34</td><td>16.89</td><td>0.17</td><td>0.28</td></td<>	8:22	7706	7730	0.80	69.1	709	30.21	24.53	90190	0.744	42.34	16.89	0.17	0.28
8:32 9643 9672 0.75 69.2 619 50.81 36.00 109564 0.892 49.24 18.87 0.24 0.39 8:37 11096 11129 2.16 70.1 1419 36.98 60.05 121172 1.331 52.60 11.19 0.16 0.46 8:42 12090 12126 1.30 71.4 967 26.52 29.34 97884 0.820 37.73 9.19 0.10 0.27 8:47 12977 13016 0.82 70.4 863 20.07 19.82 81308 0.674 45.14 4.19 0.04 0.27 8:52 13400 13440 0.42 70.6 411 17.50 8.23 47988 0.483 50.77 7.62 0.04 0.18 8:57 14481 14525 1.19 71.1 1052 31.81 38.30 71502 1.432 74.84 20.14 0.16 0.39 9.02 15995 16043 2.18 71.0 1477 33.01 55.78 117484 1.278	8:27	9008	9035	1.71	69.7	1271	38.58	56.13	94359	1.587	71.67	18.96	0.20	0.49
8:37 11096 11129 2.16 70.1 1419 36.98 60.05 121172 1.331 52.60 11.19 0.16 0.46 8:42 12090 12126 1.30 71.4 967 26.52 29.34 97884 0.820 37.73 9.19 0.10 0.27 8:47 12977 13016 0.82 70.4 863 20.07 19.82 81308 0.674 45.14 4.19 0.04 0.27 8:52 13400 13440 0.42 70.6 411 17.50 8.23 47988 0.483 50.77 7.62 0.04 0.18 8:57 14481 14525 1.19 71.1 1052 31.81 38.30 71502 1.432 74.84 20.14 0.16 0.39 9.02 15995 16043 2.18 71.0 1477 33.01 55.78 117484 1.278 51.58 7.42 0.10 0.44 9.07 16746 16796 0.98 70.7 730 19.59 16.36 72209	8:32	9643	9672	0.75	69.2	619	50.81	36.00	109564	0.892	49.24	18.87	0.24	0.39
8:42 12090 12126 1.30 71.4 967 26.52 29.34 97884 0.820 37.73 9.19 0.10 0.27 8:47 12977 13016 0.82 70.4 863 20.07 19.82 81308 0.674 45.14 4.19 0.04 0.27 8:52 13400 13440 0.42 70.6 411 17.50 8.23 47988 0.483 50.77 7.62 0.04 0.18 8:57 14481 14525 1.19 71.1 1052 31.81 38.30 71502 1.432 74.84 20.14 0.16 0.39 9.02 15995 16043 2.18 71.0 1477 33.01 55.78 117484 1.278 51.58 7.42 0.10 0.44 9.07 16746 16796 0.98 70.7 730 19.59 16.36 72209 0.630 36.69 4.94 0.04 0.19 9.12 17308 17359 0.48 70.5 546 12.09 7.56 53876 <td< td=""><td>8:37</td><td>11096</td><td>11129</td><td>2.16</td><td>70.1</td><td>1419</td><td>36.98</td><td>60.05</td><td>121172</td><td>1.331</td><td>52.60</td><td>11.19</td><td>0.16</td><td>0.46</td></td<>	8:37	11096	11129	2.16	70.1	1419	36.98	60.05	121172	1.331	52.60	11.19	0.16	0.46
8:47 12977 13016 0.82 70.4 863 20.07 19.82 81308 0.674 45.14 4.19 0.04 0.27 8:52 13400 13440 0.42 70.6 411 17.50 8.23 47988 0.483 50.77 7.62 0.04 0.18 8:57 14481 14525 1.19 71.1 1052 31.81 38.30 71502 1.432 74.84 20.14 0.16 0.39 9.02 15995 16043 2.18 71.0 1477 33.01 55.78 117484 1.278 51.58 7.42 0.10 0.44 9.07 16746 16796 0.98 70.7 730 19.59 16.36 72209 0.630 36.69 4.94 0.04 0.19 9.12 17308 17359 0.48 70.5 546 12.09 7.56 53876 0.402 30.61 11.41 0.07 0.12 9.17 18329 18384 1.19 70.6 994 18.66 21.23 47391 <t< td=""><td>8:42</td><td>12090</td><td>12126</td><td>1.30</td><td>71.4</td><td>967</td><td>26,52</td><td>29.34</td><td>97884</td><td>0.820</td><td>37.73</td><td>9,19</td><td>0.10</td><td>0.27</td></t<>	8:42	12090	12126	1.30	71.4	967	26,52	29.34	97884	0.820	37.73	9,19	0.10	0.27
8:52 13400 13440 0.42 70.6 411 17.50 8.23 47988 0.483 50.77 7.62 0.04 0.18 8:57 14481 14525 1.19 71.1 1052 31.81 38.30 71502 1.432 74.84 20.14 0.16 0.39 9:02 15995 16043 2.18 71.0 1477 33.01 55.78 117484 1.278 51.58 7.42 0.10 0.44 9:07 16746 16796 0.98 70.7 730 19.59 16.36 72209 0.630 36.69 4.94 0.04 0.19 9:12 17308 17359 0.48 70.5 546 12.09 7.56 53876 0.402 30.61 11.41 0.07 0.12 9:17 18329 18384 1.19 70.6 994 18.66 21.23 47391 1.179 56.68 10.63 0.55 0.20 9.22 19455 19514 1.21 71.3 1095 38.02 47.65 102126 1.253	8:47	12977	13016	0.82	70.4	863	20.07	19.82	81308	0.674	45.14	4.19	0.04	0.27
8:57 14481 14525 1.19 71.1 1052 31.81 38.30 71502 1.432 74.84 20.14 0.16 0.39 9:02 15995 16043 2.18 71.0 1477 33.01 55.78 117484 1.278 51.58 7.42 0.10 0.44 9:07 16746 16796 0.98 70.7 730 19.59 16.36 72209 0.630 36.69 4.94 0.04 0.19 9:12 17308 17359 0.48 70.5 546 12.09 7.56 53876 0.402 30.61 11.41 0.07 0.12 9:17 18329 18384 1.19 70.6 994 18.66 21.23 47391 1.179 56.68 10.63 0.55 0.20 9:22 19455 19514 1.21 71.3 1095 38.02 47.65 102126 1.253 60.57 14.67 0.17 0.45 9:27 20347 20408 0.74 715 865 39.42 39.05 85014	8:52	13400	13440	0.42	70.6	411	17.50	8.23	47988	0.483	50.77	7.62	0.04	0.18
9:02 15995 16043 2:18 71.0 1477 33.01 55.78 117484 1.278 51.58 7.42 0.10 0.44 9:07 16746 16796 0.98 70.7 730 19.59 16.36 72209 0.630 36.69 4.94 0.04 0.19 9:12 17308 17359 0.48 70.5 546 12.09 7.56 53876 0.402 30.61 11.41 0.07 0.12 9:17 18329 18384 1.19 70.6 994 18.66 21.23 47391 1.179 56.68 10.63 0.55 0.20 9:22 19455 19514 1.21 71.3 1095 38.02 47.65 102126 1.253 60.57 14.67 0.17 0.45 9:27 20347 20408 0.74 715 865 39.42 39.05 86014 1.234 65.05 14.385 0.13 0.40	8:57	14481	14525	1.19	71.1	1052	31.81	38.30	71502	1.432	74.84	20.14	0.16	0.39
9:07 16746 16796 0.98 70.7 730 19.59 16.36 72209 0.630 36.69 4.94 0.04 0.19 9:12 17308 17359 0.48 70.5 546 12.09 7.56 53876 0.402 30.61 11.41 0.07 0.12 9:17 18329 18384 1.19 70.6 994 18.66 21.23 47391 1.179 56.68 101.63 0.55 0.20 9:22 19455 19514 1.21 71.3 1095 38.02 47.65 102126 1.253 60.57 14.67 0.17 0.45 9:27 20347 20408 0.74 715 865 39.42 39.05 85014 1.234 65.05 14.385 0.13 0.40	9:02	15995	16043	2.18	71.0	1477	33.01	55.78	117484	1,278	51.58	7.42	0.10	0.44
9:12 17308 17359 0.48 70.5 546 12.09 7.56 53876 0.402 30.61 11.41 0.07 0.12 9:17 18329 18384 1.19 70.6 994 18.66 21.23 47391 1.179 56.68 101.63 0.55 0.20 9:22 19455 19514 1.21 71.3 1095 38.02 47.65 102126 1.253 60.57 14.67 0.17 0.45 9:27 20347 20408 0.74 71.5 865 39.42 39.05 85014 1.234 65.05 14.385 0.13 0.40	9:07	16746	16796	0.98	70.7	730	19.59	16.36	72209	0.630	36.69	4.94	0.04	0.19
9:17 18329 18384 1.19 70.6 994 18.66 21.23 47391 1.179 56.68 101.63 0.55 0.20 9:22 19455 19514 1.21 71.3 1095 38.02 47.65 102126 1.253 60.57 14.67 0.17 0.45 9:27 20347 20408 0.74 71.5 865 39.42 39.05 85014 1.234 65.05 113.85 0.13 0.40	9:12	17308	17359	0.48	70.5	546	12.09	7.56	53876	0.402	30.61	11.41	0.07	0.12
9.22 19455 19514 1.21 71.3 1095 38.02 47.65 102126 1.253 60.57 14.67 0.17 0.45 9.27 20347 20408 0.74 715 865 39.42 39.05 85014 1.234 65.05 13.85 0.13 0.40	9:17	18329	18384	1.19	70.6	994	18.66	21.23	47391	1,179	56.68	101 63	0.55	020
927 20347 20408 0.74 715 865 3942 3905 85014 1324 6506 13.85 0.13 0.40	9:22	19455	19514	1.21	71.3	1095	3802	47.65	102126	1253	60.57	14.67	0 17	045
	9:27	20347	20408	0.74	71.5	865	39.42	39.05	85014	1234	65.06	13.85	0.13	040
9:32 21036 21100 0.71 71.1 670 36.05 27.64 91685 0.824 45.30 8.15 0.09 0.30	9:32	21036	21100	0.71	71.1	670	36.05	27.64	91685	0.824	45.30	8,15	0.09	0.30
9:37 21450 21515 0.37 70.9 402 3518 1618 67307 0.665 3825 555 0.04 0.19	9:37	21450	21515	0.37	70.9	402	35.18	16.18	67307	0.665	38.25	555	0.04	0.19
942 21475 21540 001 703 24 2620 073 343 5625 874 1329 000 000	942	21475	21540	0.01	70.3	24	2620	0.73	343	5.625	874	13.29	000	0.00
	9:47	21475	21540	0.02	70.7	<u>.</u>	14 42	0.00	0	1.807	295.01	41.46	0.00	0.00
952 21475 21540 0.02 712 0 1918 0.00 0 0113 539 3377 0.00 0.00	9:52	21475	21540	0.02	712	ñ	19 18	0.00	n	0.113	539	330.77	0.00	0.00
957 21707 21772 104 728 224 3037 779 66786 0344 825 660 005 004	9:57	21707	21772	104	728	224	30.37	7 79	66786	0.344	825	660	0.05	0.00
	10:02	22995	23064	1.59	73.2	1249	21.34	30.50	96690	0.861	47.10	8 14	0.09	0.33

Ref. No. VA 9195668 July 9, 2018

				Inlet	Vapors				Co	mbusto	r Exhaust		
Time	Turbi	ne Meter	System	Inlet	Inlet Gas	Inlet Hy	drocarbon	Exhaust		Exhau	st Concentrat	ions	
Interval	Volume	Volume * Y	Pressure	Temp.	Volume	(as	C ₃ H ₈)	Volume	CO2	со	VOC (as C ₃ H ₆)	voc	со
Ending		1.0030	(in. H ₂ 0)	(°F)	(ft ³ @STP)	(Vol.%)	(lbs)	(ft ³ @STP)	(Vol. %)	(ppmv)	(ppmv)	(lbs)	(lbs)
10:07	23531	23601	0.23	73.2	518	11.16	6.61	36128	0.512	67.19	6.48	0.03	0.18
10:12	23661	23732	0.01	73.0	126	8.45	1.21	12133	0.298	41.17	4.97	0.01	0.04
10:17	23661	23732	0.02	75.2	0	8.45	0.00	0	0.173	7.69	-2.38	0.00	0.00
10:22	23661	23732	0.02	76.5	0	8.17	0.00	0	0.134	6.41	-3.58	0.00	0.00
10:27	23661	23732	0.02	75.7	0	7.50	0.00	0	0.133	6.71	-3.69	0.00	0.00
10:32	23661	23732	0.02	75.8	0	7.57	0.00	0	0.133	6.98	-3.80	0.00	0.00
10:37	23661	23732	0.12	78.3	0	6,96	0.00	0	1.437	7.54	1.70	0.00	0.00
10:42	23710	23781	0.62	78.2	47	11.50	0.62	360	4.514	213.34	-4.71	0.00	0.01
10:47	23711	23782	1.30	78.3	1	24.56	0.03	481	0.102	171.34	326.59	0.02	0.01
10:52	24428	24501	1.15	78.8	687	13.40	10.54	30758	0.916	46.65	63.23	0.22	0.10
10:57	26205	26284	2.80	79.7	1708	29.62	57.89	101209	1.533	50.68	8.39	0.10	0.37
11:02	26846	26926	0.39	80.0	612	19.83	13.88	68051	0.569	49.64	4,19	0.03	0.25
11:07	26963	27044	0.36	80.1	112	24.58	3.15	43248	0.228	17.95	8.14	0.04	0.06
11:12	28156	28240	1.22	81.6	1137	27.54	35.84	80749	1.197	49.46	8.86	0.08	0.29
11:17	28735	28821	0.25	81.8	551	28.69	18.09	75792	0.659	45.42	8.91	0.08	0.25
11:22	28795	28882	0.20	81.7	58	27.28	1.80	25582	0.220	18.19	9.29	0.03	0.03
11:27	29338	29426	0.77	81.9	517	28.85	17.06	66831	0.704	32.39	9.87	0.08	0.16
11:32	30036	30126	0.31	81.7	664	34.89	26.51	96284	0.756	44.61	7.76	0.09	0.31
11:37	30972	31064	1.73	83.2	891	37.92	38.67	129531	0.815	36.98	17.53	0.26	0.35
11:42	32008	32104	0.89	84.5	982	25.69	28.89	106085	0.750	37.27	4.02	0.05	0.29
11:47	32540	32638	0.14	84.6	504	26.49	15.27	76194	0.560	43.37	5.14	0.04	0.24
11:52	32643	32741	-0.01	85.3	97	13.90	1.54	19672	0.242	26.16	5.38	0.01	0.04
11:57	32643	32741	-0.03	85.6	0	9.03	0.00	0	0.165	9.42	-1.64	0.00	0.00
12:02	32643	32741	-0.03	85.7	0	8.35	0.00	0	0.131	8.13	-3.22	0.00	0.00
12:07	32643	32741	-0.03	85.9	0	8.29	0.00	0	0.130	8.04	-3.44	0.00	0.00
12:12	32643	32741	0.00	86.0	0	8.35	0.00	0	0.130	8.02	-3.32	0.00	0.00
12:17	32643	32741	-0.03	85.7	0	8.87	0.00	0	0.130	8.05	-3.77	0.00	0.00
12:22	32643	32741	-0.02	85.8	0	8.55	0.00	0	0.130	8.03	-4.90	0.00	0.00
12:27	32643	32741	-0.03	86.6	0	8.57	0.00	0	0.130	8.06	-4.54	0.00	0.00
12:32	32643	32741	-0.03	88.2	0	8.75	0.00	0	0.129	8.10	-4.78	0.00	0.00
12:37	32643	32741	-0.03	88.7	0	8.57	0.00	0	0.129	8.03	-5.17	0.00	0.00
12:42	32643	32741	-0.03	88.1	0	8.27	0.00	0	0.129	7.94	-5.59	0.00	0.00
12:47	32643	32741	-0.03	86.8	0	8.75	0.00	0	0.130	7.86	-5.35	0.00	0.00
12:50	32643	32741	-0.03	86.25	0	8.93	0.00	0	0.130	7.89	-4.93	0.00	0.00
12:56	33367	33467	1.16	86.00	685	12.00	9.40	29631	0.851	39.41	59.78	0.20	0.08
13:01	34769	34873	1.44	85.93	1328	19.99	30.37	96736	0.859	39.91	2.88	0.03	0.28
13:06	35788	35895	0.60	86.22	962	19.49	21.47	84301	0.703	45.71	2.92	0.03	0.28
13:11	36282	36390	0.25	85.77	466	16.30	8.70	59283	0.420	38.25	5.10	0.03	0.16
13:16						ļ							
						1							
Tatala	20040	20744			24600		4007.99	22002002				6.40	10.75
IOTAIS	32043	32/41	<u></u>	75.0	31022	~ 7	88.1001	3200802		00 70		0.42	10.75
Averages			0.5	/5.0		25.7			0.66	36.72	23.94		

SUMMARY OF RESULTS

TOTAL FUELS LOADED	226989
TOTAL GASOLINE LOADED	196919 net gallons
HYDROCARBON EMISSIONS	3.904 mg/liter of gasoline loaded
	0.03 lbs/1000 gallons of gasoline loaded
	1.67 lbs/hr VOC emission rate
CARBON MONOXIDE EMISSIONS	6.54 mg/liter of gasoline loaded
	0.05 lbs/1000 gallons of gasoline loaded

2.1 **Owner Information**

CITGO Petroleum Corporation Mr. James La Porte EHS & S Manager, 23001 Morrill Road Jackson, Michigan 49201 (734) 233-5108 direct jlaport@citgo.com

2.2 Site Information

CITGO Ferrysburg Terminal 524 Third Street Ferrysburg, Michigan 49409

2.3 Test Contractor Information

John Zink Air Source Test Group J.N. Thomason, QSTI, Air Source Testing Manager 11920 East Apache Street Tulsa OK, 74116 (918) 234-2776 direct (918) 234-1968 fax Jeffrey.thomason@johnzink.com

2.4 Test Participants

Name	Affiliation	Telephone Number
James La Porte	CITGO	734-233-5108
Mike Humphreys	CITGO	616-842-9040
Chris Robinson	MDEQ	616-356-0259
Jeremy Howe	MDEQ	231-878-6687
Tyler Salemasick	MDEQ	616-558-1281
Jeff Thomason	John Zink ASTG	918-234-2776
M. Sum Lee	John Zink ASTG	918-606-2580
Louis Beauregard	John Zink ASTG	918-402-3865
Dan Rainey	John Zink ASTG	908-346-9524

RECEIVED

AUG 03 2018

2.5 Test Methods

AIR QUALITY DIVISION

Parameter	Test Method	Measurement Technique	Modifications to Method
Inlet Flow Rate	USEPA Method 2A	Direct measurement of flow	None
Inlet VOC	USEPA Method 25B	Continuous Analyzer (NDIR)	None
Exhaust Flow Rate	USEPA Method 2B	Carbon Balance	None
Exhaust CO ₂	USEPA Method 3A	Continuous Analyzer (NDIR)	None
Exhaust CO	USEPA Method 10	Continuous Analyzer (NDIR)	None
Exhaust VOC	USEPA Method 25A	Continuous Analyzer (FID)	None
VOC Leaks	USEPA Method 21	Portable Analyzer (CatOx)	None

2.5 List of Instruments

Parameter	Manufacturer	Model	Serial Number	
Inlet Flow	Rockwell	GTS 8	81355	
Inlet VOC	Infrared Industries	8400	5540	
CO2	Servomex	1440	01440D-5277	
CO	Thermo Environmental	48i	1180730005	
THC	Thermo Environmental	51i	11809200043	
VOC Leaks	RKI	Eagle 2	EG2335	

2.6 Sampling System Diagram

3.0 QUALITY ASSURANCE and QUALITY CONTROL

All sampling was performed following standard USEPA protocols as presented in 40 CFR 60, Appendix A. The test data was checked for completeness, thoroughly documented and subjected to a rigorous peer review process.

3.1 Equipment Calibration and Analytical Technique

All testing equipment used to conduct emission measurements are maintained according to the manufacturer's instructions to ensure proper operation. Calibration and quality assurance activities are completed on each measurement device according to procedures specified by the USEPA.

3.1.1 Inlet/Outlet THC Continuous Emission Monitors

Upon arrival at the site the inlet and outlet instruments were activated and allowed to warm up per the manufacturer's instructions. A four-point calibration error test was performed on each analyzer at the beginning of the day. Vendor-certified calibration gases containing propane were used for this calibration of the inlet analyzer. The inlet analyzer is designed to measure THC as its' carbon equivalent; therefore, the instrument readings are equivalent to the calibration gas concentrations. The outlet analyzer was calibrated with propane standards certified by the vendor to EPA Protocol G1 with results reported as VOC on that measurement basis.

Calibration error tests were performed on each analyzer by introducing the zero and calibration gases through the entire system to establish a linear response line as directed in USEPA Method 25A §8.4. The zero and high-level calibration gases were introduced in sequence with the analyzer being adjusted as necessary to record the proper values. The predicted values for the mid- and low-level gases were then calculated. These gases were then introduced successively to the measurement system. The predicted response was then compared to the actual response. The differences between the respective responses was less than 5% of the respective calibration gas values.

The inlet and outlet sampling systems were then evaluated for response time. For each system, the zero gas was introduced through the entire measurement system and allowed to stabilize. The high-level gas was then introduced. The time from the concentration change to the measurement system response equivalent to a 95% step change was recorded. This process was repeated three times and the results were averaged.

Following the completion of each test period, sample system drift was determined in the manner prescribed in USEPA Method 25A §8.4. 2. The zero- and mid-level calibration were introduced in sequence to the measurement system. The analyzer response was recorded. The results of these tests did not exceed 3% of span; therefore, no corrective action was required.

3.1.2 CO and CO₂ Continuous Emission Monitors

Non-dispersive infrared analyzers were used for CO and CO₂ concentration measurements in conformance with the specifications of USEPA Methods 10 and 3A, respectively. The CO analyzer uses gas filter correlation to eliminate interference from CO2 or moisture. A calibration error test was performed on each monitor by routing low, high and mid-level calibration gases directly to each analyzer. The calibration error test for each met the requirements of the reference methods. After the calibration error test, a sampling system bias test was completed. The mid-level calibration gas was routed through the entire sampling system including calibration valve, sample line and moisture removal system. All sample system bias tests met the reference method requirements. The upscale and downscale response time of the sample system was determined during the initial bias test. The longest elapsed time was chosen and the response time for the system. No test period began until at least twice this response time had elapsed. Due to the continuous calculation of outlet flow required by USEPA Method 2B, no concentrations were corrected for bias. Sample system drift was determined at the end of each sample period. Drift is defined in USEPA Method 7E §3.1.6 (as referenced in Methods 10 and 3A) as the value derived by subtracting the pre-run bias concentration from the post-run bias concentration expressed as a percentage of calibration span. All sample system drift test results met the requirements of the test methods.

3.1.3 Volumetric Flow Rate

The turbine meter used for outlet flow rates was calibrated prior to testing in accordance with USEPA methodology. A post-test calibration check was also completed on the meter. Calibration documentation may be found in Appendix E. That documentation shows that the difference in pre- and post-test calibrations differed by less than 5% as specified in USEPA Method 2A, §10.1.8.

The temperature sensor used for this sampling event was checked at ambient temperature and compared to a reference thermometer. The sensor agreed within 2% of the reading of the reference thermometer and the data collected is valid in accordance with USEPA Method 2A, §10.2. The barometer utilized was calibrated against a mercury barometer prior to the field test.

3.1.4 Portable Hydrocarbon Analyzer (leak detector)

An RKI portable analyzer equipped with a catalytic oxidation detector was used to monitor the vapor collection system during tank truck loading. The analyzer was calibrated with a 500 ppmv certified methane standard. Leaks were defined as exceeding a threshold of 500 ppm methane. The monitoring includes all valves, flanges, seals, check valves, etc., and conformed to USEPA Method 21 procedures.

3.1.5 Pressure Monitoring of Vapor Collection System

The pressure at the vapor hose connection at each of the loading bays was monitored using a Dwyer digital manometer on Bay 2 and a SignalFire[™] electronic pressure transducer. Each device had a calibrated range of greater than of 0-20" H₂O. The pressures were monitored every five minutes on multiple loads at each bay with the highest instantaneous pressure on each load being recorded. The documentation for this monitoring may be found in Appendix A of this report. Typically, monitoring continues until

a "worst case scenario" is noted. The facility is accepted as meeting the standard presented in 40 CFR 60.502(h) if the worst-case pressure is less than the citation.

3.1.6 Data Acquisition and Handling System

The electronic output signals of the continuous analyzers as well as the turbine meter volume, temperature and pressure and the output of the electronic pressure transducer were converted to a digital format and stored by a computerized data acquisition and handling system (IntelliLogger™ IL-80) with an interrogation frequency of one (1) second creating 10-second, 30-second and 60-second averages. The system translated this digital format into the proper units and stored them to disk. The system provides resolution of less than 0.5% of the calibration span of each analyzer. Logged data records are presented in Appendix D.

3.2 Fuel Loading Data

During the test, terminal personnel collected fuel loading data using bills of lading (BOL) generated by the site's automation system. Each load is documented by company and vehicle log in and the quantity and type of product(s) to be loaded. This information generates a BOL at the end of loading which documents gross and net gallons loaded. This information was provided to JZASTG as a record of volume to be utilized in the calculation of mass emissions in terms of the standard. To successfully obtain permission to load, each trailer must have a current certificate of leak tightness (per USEPA Method 27) on file at the facility. This documentation is available upon request.