RECEIVED

OCT 25 2022

AIR QUALITY DIVISION

Report to

SCIENTIFIC CONTROL LABORATORIES, INC.
Chicago, Illinois

for

TOTAL CHROMIUM AIR EMISSIONS TESTING

of the

CHROME PLATING TANKS & CHROME ETCH TANK (MP1) with EMISSIONS CONTROL SYSTEM

PLASTIC PLATE, INC. (SRN No. 6318)

LACKS ENTERPRISES, INC. - MONROE AVE PLANT

Grand Rapids, Michigan

August 11, 2022

B6138 B638 - fest_20220811

KEY PROJECT PERSONNEL

Source Contact:

Ms. Karen Baweja, Environmental Manager (616-956-7259)

kbaweja@lacksenterprises.com

Lacks Enterprises, Inc. 5460 Cascade Road SE Grand Rapids, MI 49546

Environmental

Consultant:

Mr. Jeff Zak, CEF, P.E. (773-254-2406, X26)

jzak@sclweb.com

Scientific Control Laboratories, Inc.

3158 S. Kolin Avenue Chicago, IL 60623

Test Team Leader: Mr. Michael Huenink (262-784-2434)

ete4mjh@wi.rr.com

Environmental Technology & Engineering Corp

13000 W. Bluemound Road Elm Grove, WI 53122

Report to

SCIENTIFIC CONTROL LABORATORIES, INC. Chicago, Illinois

for

TOTAL CHROMIUM AIR EMISSIONS TESTING

of the

CHROME PLATING TANKS & CHROME ETCH TANK (MP1) with
EMISSIONS CONTROL SYSTEM

PLASTIC PLATE, INC. (SRN No. 6318)
LACKS ENTERPRISES, INC. - MONROE AVE PLANT
Grand Rapids, Michigan

August 11, 2022

Michael J. Huenink Industrial Hygienist October 3, 2022

mill J. H.

ENVIRONMENTAL TECHNOLOGY & ENGINEERING CORP 13000 W. Bluemound Road Elm Grove, Wisconsin 53122 Phone: (262) 784-2434

EXECUTIVE SUMMARY

On August 11, 2022, Environmental Technology & Engineering Corp (ETE) personnel visited the Plastic Plate, Inc. (of Lacks Enterprises) facility located at 1648 Monroe Avenue in Grand Rapids, Michigan (SRN No. 6318). The purpose of the visit was to perform air emissions testing for compliance demonstration with the total chromium air emissions limits for process MP1 which is comprised of two chrome plating tanks and a chromium etch tank. The emissions from these processes are controlled by a common emissions control system. The limits were contained in a Michigan Dept. of Environmental, Great Lakes, & Energy Air Quality Division permit.

The results of the testing of MP1 indicated total chromium levels well below (in compliance with) the total chromium air emissions limits as shown below:

Process Tested	Control System	Test Date	Test	Total Chromium Concentration	Total Chromium Emissions Rate
MP1	3 stage composite mesh pad	8/11	1	0.00078 mg/dscm	0.000067 lb/hr
			2	0.00073 mg/dscm	0.000063 lb/hr
			3	0.00078 mg/dscm	0.000066 lb/hr
		and the second	AVG	0.00076 mg/dscm	0.000065 lb/hr
Apı	plicable Air Emissions	Limits -	—	0.0005 lb/hr	
	Results % of Limit			13.0 %	

Notes: mg/dscm means milligrams of total chromium per dry standard cubic meter of exhaust

1.0 GENERAL BACKGROUND

On August 11, 2022, Environmental Technology & Engineering Corp (ETE) personnel visited the Plastic Plate, Inc. (of Lacks Enterprises) facility located at 1648 Monroe Avenue in Grand Rapids, Michigan (SRN No. 6318). The purpose of the visit was to perform air emissions testing for compliance demonstration with the total chromium air emissions limits for process MP1 which is comprised of two chrome plating tanks and a chromium etch tank. The emissions from these processes are controlled by a common emissions control system. The chromium air emissions limits were contained in a Michigan Dept. of Environmental, Great Lakes, & Energy Air Quality Division permit.

Plastic Plate, Inc. is an electroplating facility specializing in copper, nickel, and chromium plating for the automotive industry. The operations targeted for testing in this project involved a chromium plating process (two tanks) and a chromium etch process. Various sizes and shapes of plastic parts are etched in an acidic solution and then are plated with chromium. The parts are placed on bars as part of the production process; bar count is the common means to quantify production rates. Emissions from the process exhausts are captured through a common ventilation system. The exhaust gas is drawn through a three stage composite mesh pad control system (CMP) which serves as the emissions control device. The control system is exhausted through a single stack to atmosphere.

Plastic Plate and Lacks personnel monitored the operations and emissions control device parameters throughout the test efforts. Those detailed notes are included in Appendix A of this report. The test times and associated data are summarized as follows:

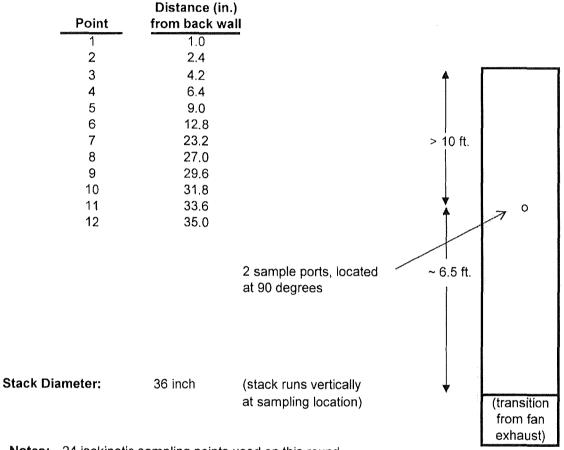
Process Tested	Test	Test Period	Process Bar Count	CMP Scrubber Pressure Drop	Surface Tensions, Etch / Cr 1 / Cr 2
MP1	1	08:30 - 10:33	43	3.5 in. H₂O	52.8/25.5/30 dynes/cm
	2	10:55 - 12:57	44	3.5 in. H ₂ O	58.5/26.5/35.5 dynes/cm
	3	13:13 - 15:15	45	3.5 in. H ₂ O	55.5/27/37 dynes/cm

Ms. Karen Baweja of Lacks Enterprises and Mr. Jeff Zak of Scientific Control Laboratories facilitated in the coordination of the process activities and field test efforts. Mr. Trevor Drost and Ms. April Lazzaro of Michigan EGLE-AQD witnessed the test efforts and production activities. The field test efforts were performed by ETE personnel; Michael Huenink was the test team leader. The analysis for total chromium content in the sample solutions was performed by Element One, Inc. (Wilmington, NC).

2.0 RESULTS

Testing to determine total chromium "Cr" levels in the stack exhaust was performed isokinetically using EPA Methods 1 through 4 and 306. A brief description of the method is included in Section 3.0 of this report. Sketches showing the sampling port and point locations at the test location are included as Figure 2-1.

The stack flow parameters measured during testing and the weights of the total Cr collected were used to determine the emissions for each test. Three separate 120 minute tests were performed on the stack. The chromium emission results are included as Table 2-1; the detailed isokinetic data and calculations for the runs are included in Appendix B of this report. The full analytical report is included as Appendix C of this report; however, the best results summary can be observed on page 4 of that lab report.


The results of the testing of MP1 indicated total chromium levels below (in compliance with) the total chromium air emissions limits as shown below:

Process Tested	Control System	Test Date	Test	Total Chromium Concentration	Total Chromium Emissions Rate
MP1	3 stage composite mesh pad	8/11	1	0.00078 mg/dscm	0.000067 lb/hr
	*		2	0.00073 mg/dscm	0.000063 lb/hr
			3	0.00078 mg/dscm	0.000066 lb/hr
,			AVG	0.00076 mg/dscm	0.000065 lb/hr
Apı	plicable Air Emissions	Limits -		-	0.0005 lb/hr
	Results % of Limit		A00007- A00007-	13.0 %	

Notes: mg/dscm means milligrams of total chromium per dry standard cubic meter of exhaust

TEST POINT LOCATIONS

SAMPLE PORT LOCATION

Notes: 24 isokinetic sampling points used on this round

stack; 12 points along each of 2 perpendicular traverses.

All other gas sampling performed at a single point

in the center third of the duct.

RECEIVED

OCT 25 2022

AIR QUALITY DIVISION

CR TEST RESULTS Chromium Control System Stack (MP1) Plastic Plate - Monroe Ave 08/11/22

TABLE 2-1

Sample Location	Test	Sample Total Cr Amount (mg)	Standard Sample Volume (ft3)	Standard Sample Volume (dscm)	Corrected Total Cr Concen. (mg/dscm)	Standard Exhaust Flow Rate (m3/hr)	Total Cr Emission Rate (lb/hr)
MP1	1	0.00277	125.07	3.542	0.00078	38853	0.000067
	2	0.00255	123.47	3.496	0.00073	38996	0.000063
	3	0.00270	122.31	3.463	0.00078	38496	0.000066
			3 -	Гest AVG -	0.00076	38782	0.000065

Applicable Permit Limits -

0.0005 lb/hr

Notes:

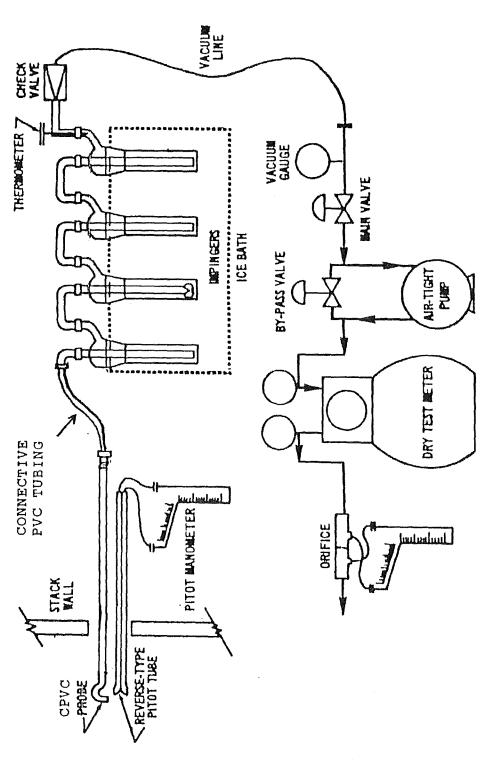
Std. Sample Vol (dscm) = Std. Sample Vol (ft3) x 0.028317

Total Cr Conc. (mg/dscm) = Sample Total Cr Amount (mg) / Std. Sample Vol. (dscm) Emission Rate = [Conc.(mg/m3) x Exhaust Flow(mg/m3)] x [1 lb / 453600 mg]

3.0 TEST METHODS

The equipment used to sample total chromium was the Western Precipitation Division of the Joy Manufacturing Company Emission Parameter Analyzer (Method 5 sample train). Samples were collected and analyzed in accordance with procedures outlined in EPA Method 306.

The sampling train consisted of a glass probe tip, a glass lined probe, and PVC connective tubing. A series of four impingers followed in an ice bath. The first was a modified Greenburg-Smith impinger with 100 ml of 0.1 N sodium hydroxide (NaOH); the second was a Greenburg-Smith impinger with 100 ml of 0.1 N NaOH; the third was a modified Greenburg-Smith impinger dry; the fourth was also a modified Greenburg-Smith impinger containing a tared quantity of Silica Gel. The gas then passed through a vacuum pump, calibrated dry gas meter, and a calibrated orifice. A schematic drawing of the sampling train is included.


The temperatures of the stack gas stream, as well as strategic locations within the sampling devices, were monitored by RTDs and read directly from a gauge on the control unit. The initial gas stream velocity was obtained from a preliminary traverse using a Pitot tube. The initial moisture was estimated from previous tests of similar processes. This data, along with the stack temperature, was used to set a nomograph so that rapid calculations of isokinetic sampling conditions could be made.

The principle of the method was to collect the sample representative of the exhaust by adjusting the sample collection velocity to match the exhaust gas stream velocity at the point of collection. The velocity at the point of collection was measured with an "S" type Pitot tube and the collection velocity was matched to the stack gas velocity by adjusting the flow as indicated by the calibrated orifice.

To determine the molecular weight of the stack gas, samples were drawn into an Orsat analyzer and analyzed for percentage CO2, O2, CO, and N2.

At the completion of the test, the impinger contents were measured and weighed for determination of the actual moisture content of the exhaust gas stream. The impinger contents were then placed in a clean glass jar with Teflon-lined cap. The probe tip, probe, and connective tubing were then rinsed with 0.1 N NaOH (100 ml total) into the sampling train. That rinse was also placed in the sample jar. The impingers were then rinsed twice more with 0.1 N NaOH (100 ml) and the rinses were also added to the sample jar. The samples were refrigerated prior to analysis.

The sample solutions were analyzed for total Cr content by ICP-MS using the analytical methods contained in EPA Method 306. Field blanks of the sample solutions were also analyzed and all results were blank corrected. For those samples analyzed in duplicate, the average of the two results was used in the final emissions calculations.

EPA METHOD 306

TOTAL CHROMIUM EMISSIONS SAMPLING TRAIN

4.0 CALIBRATION DATA

The probe tips, Pitot tubes, dry gas meters, and sample box orifices were calibrated prior to the testing in accordance with the procedures outlined in the Maintenance, Calibration, and Operation of Isokinetic Source-Sampling Equipment as published by the US EPA. The values obtained were:

Stack/	Date	Control	Orifice Coeff.	Dry Gas Meter	Probe Tip
Test Location		Box ID	(∆H@)	Coeff. (γ)	Diameter
MP1	8/11	3	0.949	0.993	0.250 in.

The flow measurements were made with an S-type Pitot tube which had a verified Pitot tube coefficient (C_p) of 0.84. Prior to the sampling efforts on the stack, the "null" angles were measured for a determination of the absence or presence of cyclonic flow. Those measurements indicated null angles in the range of 0 to 5 percent, with the average of 2.3 degrees falling well within the 20 percent criteria for acceptable sampling locations.

The dry gas meter installed in the control box was a temperature compensating meter. The correction factor (gamma) for the meter could best be described by the equations:

Box 3
$$\gamma = 0.993 + [(T_M - 70) \times 0.00012]$$

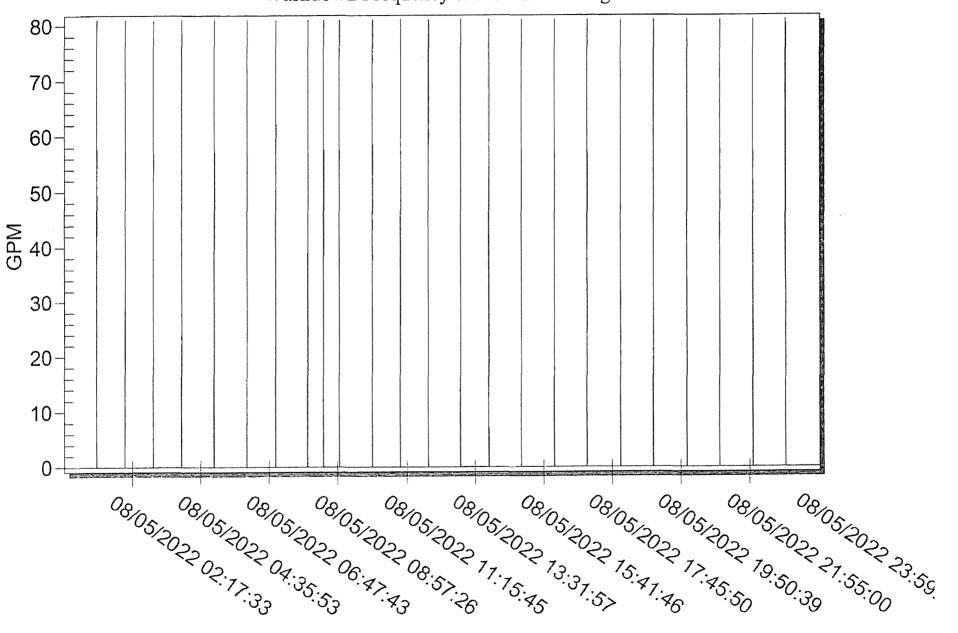
The most recent calibrations on the sampling equipment were performed on July 8, 2022.

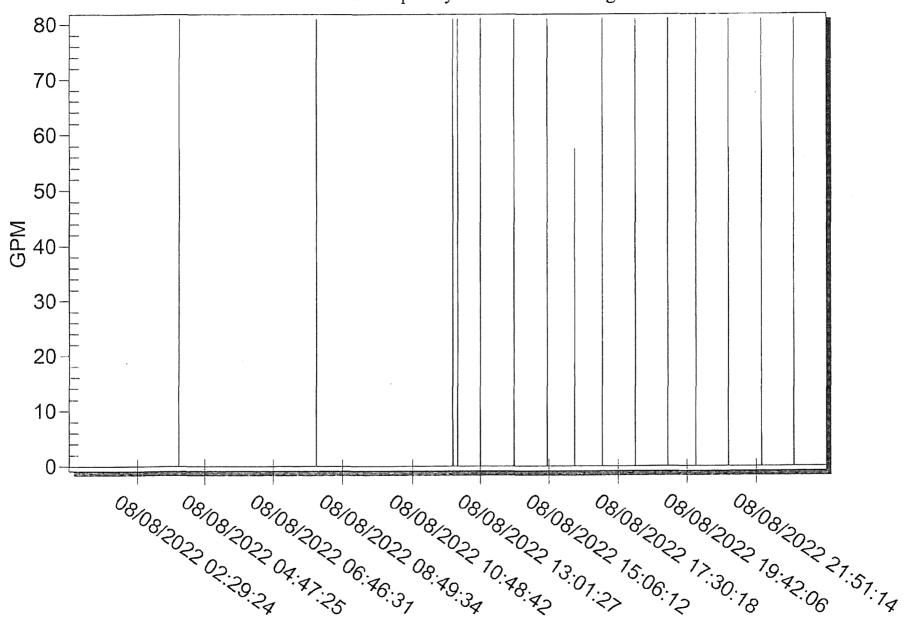
The isokinetic ratios for the test runs were in the range of 93.0 to 94.5 percent, within the acceptable range of 90 to 110 percent.

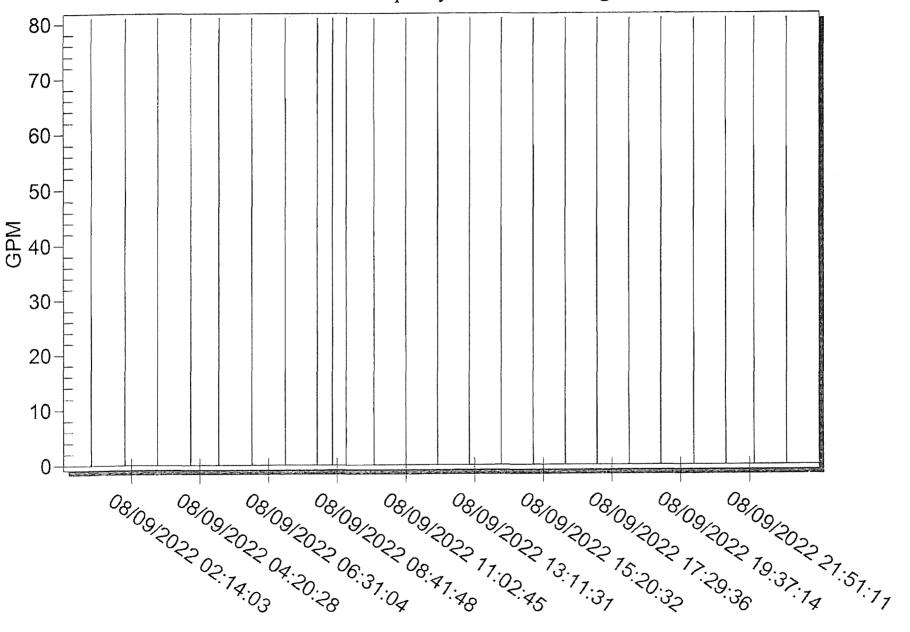
The quality control data from the sample analysis is included in the detailed analytical report.

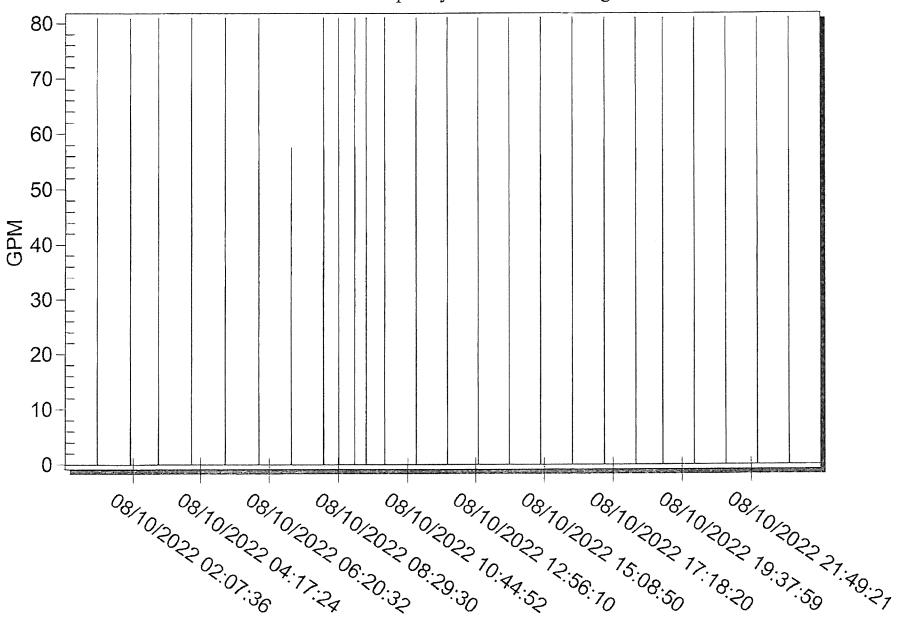
APPENDIX A

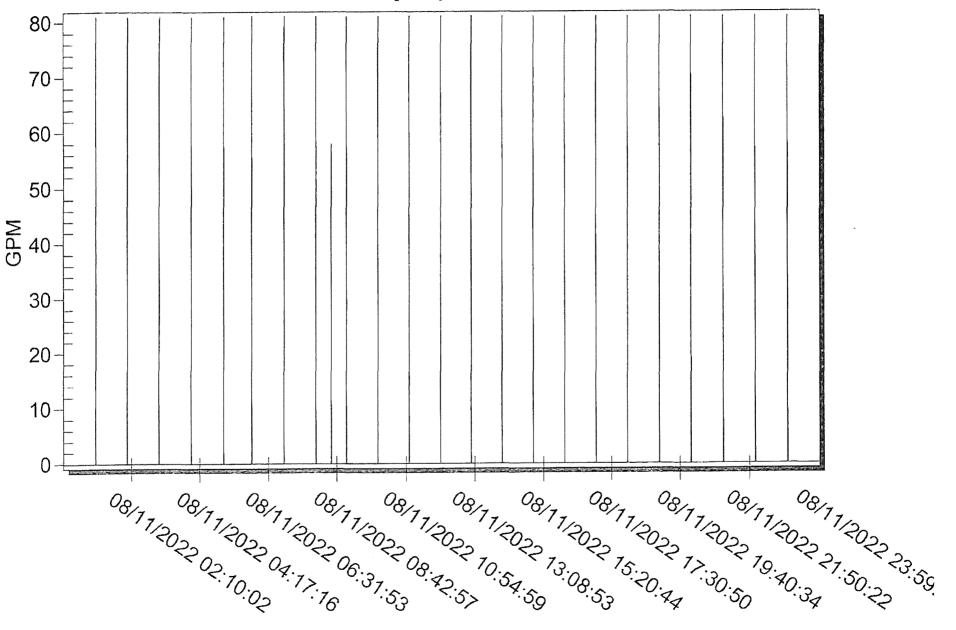
Process & Control Equipment Data


Monroe Chrome Scrubber Test 2022


Bar Loads Processed


		Sample					Su	rface Tens	ion
Process/Tank	Stack No.	Run No.	Pollutant	Date	Time	Bar count	Etch	Cr 1	Cr 2
Chrome & Etch	MP1	#1	chromium	8/11/2022	8:30-10:33	43	52.8	25.5	30
Chrome & Etch	MP1	#2	chromium	8/11/2022	10:55-12:57	44	58.5	26.5	35.5
Chrome & Etch	MP1	#3	chromium	8/11/2022	13:13-15:15	45	55.5	27	37


Scrubber Pressure Drop Readings


Hour	1st Stage	2nd Stage	3rd Stage	Overall
9:07	1.3	1.8	0.4	3.5
11:15	1.2	1.8	0.4	3.5
13:50	1.3	1.8	0.3	3.5

Environmental PM's

1689325

Composite Mesh Pad Scrubber System - Weekly PM's

Sy:	System Name: Chrome Equipme	ent #: <u>MP1</u>	Plant:_	Monroe	
	Any reading or finding out of range MUST have a Work Order filled out for correction	ve action and the Maint	enance Manager / Designa	ated Employee Must Be Notified	Immediately!
1	1 Check the fresh water fill valve components on the wash down tank for proper open	ation, secure fitment, a	nd damage.		
	Any problems found? If so, Work Order No. generated:	Date: 8/()	Signed by:		
	Comments:				
2	2 Check the wash down pump for leaks, secure fitment, damage, and any abnormal vi	ibration or noise,			
	Any problems found? If so, Work Order No. generated:	Date: <u>8/10</u>	_ Signed by	 	
	Comments:				
3	3 Visually inspect all ductwork for any leaks, cracks, gaps, damage and missing compo	onents (supports, sleeve	es, transitions). Check duct	work and conduit for secure and	l proper support.
	Any problems found? <u>No</u> If so, Work Order No. generated:	Date: <u>8/10</u> _	_ Signed by:		
	Comments:				
4	4 Visually inspect internal evaporator ball packings are at proper levels above the unit	t's roofline, inside the t	op doghouse structures.		<u> </u>
	Any problems found? No. generated:	Date: <u>8/10</u>	_ Signed by:		
	Comments:				
. 5	5 Visually observe the exhaust stack for any visible emissions (0% opacity), other than	uncombined water vap	oor.		. 4
	Any problems found? // If so, Work Order No. generated:	Date: <u> </u>	_ Signed by:		
	Comments:				
6	6 Record the differential pressure readings on the Magnehelic gauges:	·			
	A. Scrubber Pressure Overall: 3, 6				
	B. Evaporator Pressure (If unit is present on system):				
	C. Scrubber Pressure Stage #1 (Reference Only): 1,4				}
	D. Scrubber Pressure Stage #2 (Reference Only): 1,8				
	E. Scrubber Pressure Stage #3 (Reference Only): 1				
	F. Scrubber Pressure Stage HEPA (If applicable) (Reference Only):	_		<i></i>	
	Any problems found? If so, Work Order No. generated:	Date: <u>8/15</u>	_ Signed by:		
	Comments:				
7	7 Record the differential pressure values shown on the IPod and/or line computer:				- 1 C.
	A. Scrubber Pressure Overall: 3.6 Is it within +/- 10% of the meter rea	ading recorded in previ	ous step? <u>/e 5</u>		
	B. Evaporator Pressure (If unit is present on system): NA Is it within	+/- 10% of the meter re	ading recorded in previous	step?	
	Any problems found? If so, Work Order No. generated:				
	Comments		-		

PM Continued On Page 2

8	We	ekend mesh pad wash down procedure (2 people required):
	A.	Manually do Stage #1 wash down for 4 minutes.
		- Visually confirm through the scrubber window port that all nozzles are spraying with equal pressure and uniform pattern.
		- Visually confirm water drains out of the bottom mesh pad retaining trough through the weeping holes, and that there is no standing water that remains.
	В.	During Stage #1 wash down cycle, record water flow rate shown on flow meter: and also the value shown on iPod and/or line computer:
		- Is the flow meter value within +/- 10% of the iPod and/or line computer value?
	C.	Manually do Stage #2 wash down for 4 minutes. [KRAFT K2 UNIT ONLY- Single wash down for 30 seconds]
		- Visually confirm through the scrubber window port that all nozzles are spraying with equal pressure and uniform pattern.
		- Visually confirm water drains out of the bottom mesh pad retaining trough through the weeping holes, and that there is no standing water that remains.
	D.	During Stage #2 wash down cycle, record water flow rate shown on flow meter: and also the value shown on iPod and/or line computer
		- Is the flow meter value within +/- 10% of the iPod and/or line computer value?
	E.	Manually do Stage #3 wash down until drain water is clear (Confirm blower is off before starting the process). [NOT APPLICABLE FOR KRAFT K2 UNIT- No third stage wash down]
		- Visually confirm through the scrubber window port that all nozzles are spraying with equal pressure and uniform pattern.
		- Visually confirm water drains out of the bottom mesh pad retaining trough through the weeping holes, and that there is no standing water that remains.
	F.	During Stage #3 wash down cycle, record water flow rate shown on flow meter: and also the value shown on iPod and/or line computer
		- Is the flow meter value within +/- 10% of the iPod and/or line computer value?
	G.	Make sure switches for all wash down stages are set back to "Auto" upon completion.
	Any	problems found? No if so, Work Order No. generated: Date: 8/10 Signed by:
	Com	ments:
9	Mai	ntenance Manager must contact appropriate personnel to calibrate any devices which were found not to be within +/- 10%
	Any	problems found? NO If so, Work Order No. generated: Date: 8/14/22 Signed by: Signed by:
		ments;
10		pare the pressure/flow values recorded in Steps # 5 & 6 with the "Exhaust System Monitoring Devices" document (This step must be completed by Maintenance Manager):
		Scrubber Pressure Overall, is it within range? \(\frac{\frac{\psi_S}{\psi_S}}{\psi_S}\)
	l .	Evaporator Pressure (If unit is present on system), is it within range?
	l	Mesh Pad Wash Down Stage #1 Flow Spray, is it within range? 48
	ŀ	Mesh Pad Wash Down Stage #2 Flow Spray, is it within range?
		Mesh Pad Wash Down Stage #3 Flow Spray, is it within range? N Mesh Pad Wash Down Stage #3 Flow Spray, is it within range? N Mesh Pad Wash Down Stage #3 Flow Spray, is it within range? N Mesh Pad Wash Down Stage #3 Flow Spray, is it within range?
	Any	Mesh Pad Wash Down Stage #3 Flow Spray, is it within range? N/H [NOT APPLICABLE FOR KRAFT K2 UNIT-No third stage wash down] problems found? NU If so, Work Order No. generated: Date: O(0/2) Signed by:
	Com	ments:
		Maintenance Manager or Designated Employee must sign this PM!
		8/10/22
ate	<u></u>	Signature: # Signature:

APPENDIX B

Isokinetic Data & Calculations for Cr Test Runs

PLASTIC PLATE STACK	IP1 8/11/22
---------------------	-------------

TEST NO.	1	
BAROMETRIC PRESSURE	29.44	IN HG
TIP DIAMETER	0.250	IN
STACK DIMENSIONS	36	IN
STACK AREA	7.069	FT2
SAMPLING TIME PER POINT	5.0	MIN
NUMBER OF POINTS	24	
METER VOLUME	126,94	FT3
PITOT COEFFICIENT	0.84	
METER COEFFICIENT	0.993	
PARTICULATE COLLECTED	0.0001	GRAMS
WATER COLLECTED	54	ML
STATIC PRESSURE	-0.79	IN H2O

ORSAT RESULTS

CO2	O2	CO	N2
0.00%	20.90%	0.00%	79.10%

TEST POINT	STACK TEMP DEG F	PITOT DEL P IN H2O	ORIFICE DEL H IN H2O	METER TEMP DEG F	STACK VELOCITY AFPS
1	82	0.93	1.86	68	55.60
2	82	0.94	1.88	69	55.90
3	83	0.92	1.84	71	55.35
4	83	0.92	1.84	73	55.35
5	86	1.02	2.04	77	58.44
6	86	1.04	2.08	82	59.01
7	87	0.98	1.96	86	57.34
8	84	1.07	2.14	90	59.75
9	81	1.03	2.06	92	58.46
10	83	1.27	2.54	96	65.03
11	85	1.33	2.66	98	66.67
12	86	1.35	2.70	101	67.23
13	86	1.29	2.58	104	65.72
14	87	1.23	2.46	107	64.23
15	87	1.14	2.28	109	61.84
16	87	1.09	2.18	109	60.47
17	88	1.07	2.14	110	59.97
18	87	0.96	1.92	111	56.75
19	80	0.92	1.84	114	55.20
20	82	0.82	1.64	113	52.21
21	86	0.77	1.54	115	50.78
22	87	0.76	1.52	118	50.49
23	87	0.73	1.46	118	49.48
24	87	0.64	1.28	118	46.33
AVERAGE	85		2.02	98	57.82

DRY STANDARD VOLUME	125,07	SCF
PERCENT WATER VAPOR	1.99	% VOL
FLOW RATE	24521	ACFM
	22866	DSCFM
	38853	M3/HR
PARTICULATE CONCENTRATION	0.0000	GR/DSCF
	0.0000	GR/ACF
PARTICULATE EMISSION RATE	0.00	LB/HR
LB PART PER 1000 LB GAS	0.0000	
ISOKINETIC PERCENT	94.5	

PLASTIC PLATE	STACK MP	1			8/11/22	
TEST NO. BAROMETRIC PRESSURE TIP DIAMETER STACK DIAMETER STACK AREA SAMPLING TIME PER POINT NUMBER OF POINTS METER VOLUME PITOT COEFFICIENT METER COEFFICIENT PARTICULATE COLLECTED WATER COLLECTED STATIC PRESSURE	2 29.45 0.250 36 7.069 5.0 24 124.98 0.84 0.993 0.0001 51 -0.79	IN HG IN IN FT2 MIN FT3 GRAMS ML IN H2O				
ORSAT RESULTS CO2	O2	CO		N2		
0.00% TEST STACK POINT TEMP DEG F	20.90% PITOT DEL P IN H2O	0.00%	ORIFICE DEL P IN H2O		METER TEMP DEG F	STACK VELOCITY AFPS
1 87 2 86 3 80 4 81 5 84 6 85 7 86 8 87 9 88 10 87 11 88 12 87 13 88 14 83 15 82 16 85 17 88 18 88 19 88 20 89 21 89 22 86 23 89 24 88	0.93 0.97 0.98 0.98 1.04 1.07 1.06 1.02 1.07 1.18 1.24 1.29 1.24 1.29 1.03 1.06 0.97 0.92 0.82 0.76 0.79 0.76 0.81		1.86 1.94 1.96 1.96 2.08 2.14 2.12 2.04 2.14 2.36 2.48 2.58 2.06 2.12 2.12 1.94 1.84 1.52 1.52 1.62		110 109 109 110 111 113 115 117 118 118 118 119 119 119 119 120 119 120 121 122 122 122	55.84 56.97 56.95 57.00 58.88 59.78 59.56 58.47 59.95 62.89 64.53 65.76 64.53 65.52 58.49 59.50 59.66 57.08 55.59 52.53 50.57 51.41 50.57 52.16
AVERAGE 86			2.03		117	58.09
DRY STANDARD VOLUME PERCENT WATER VAPOR FLOW RATE PARTICULATE CONCENTRAT PARTICULATE EMISSION RAT LB PART PER 1000 LB GAS ISOKINETIC PERCENT	0.0000	SCF % VOL ACFM DSCFM M3/HR GR/DSCF GR/ACF LB/HR			OCT	EIVED 25 2022 ITY DIVISION

PLASTIC PLATE		STACK MP1		8/11/22				
TEST NO. BAROMETRIC PRESSURE TIP DIAMETER STACK DIAMETER STACK AREA SAMPLING TIME PER POINT NUMBER OF POINTS METER VOLUME PITOT COEFFICIENT METER COEFFICIENT PARTICULATE COLLECTED WATER COLLECTED STATIC PRESSURE			3 29.43 0.250 36 7.069 5.0 24 123.79 0.84 0.993 0.0001 51 -0.78	IN HG IN IN FT2 MIN FT3 GRAMS ML IN H2O				
	LTS O2 00%	O2 20.90%		CO 0.00%		N2 79.10%		
TEST POINT	STACK TEMP DEG F		PITOT DEL P IN H2O		ORIFICE DEL P IN H2O		METER TEMP DEG F	STACK VELOCITY AFPS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	89 92 93 93 92 92 93 94 94 94 94 92 92 92 92 93 93 92 91 91 88 88		0.93 0.91 0.89 0.93 1.01 1.08 1.03 1.03 1.08 1.31 1.32 1.34 1.33 1.16 1.06 0.92 0.93 0.82 0.89 0.88 0.83 0.81 0.83 0.71		1.86 1.82 1.78 1.86 2.02 2.16 2.06 2.06 2.16 2.62 2.64 2.68 2.62 2.12 1.84 1.86 1.64 1.78 1.76 1.66 1.62 1.66 1.42		118 119 119 119 120 120 122 122 124 125 126 127 126 127 126 127 128 128 128 128	55.96 55.50 54.94 56.16 58.47 60.47 59.10 59.16 60.58 66.71 66.97 67.47 67.10 62.67 59.90 55.81 56.16 52.74 54.89 54.58 52.96 52.32 52.82 48.85
AVERAGE	92		0.71		2.00		126	58.01
DRY STANDA	RD VOLUME		122.31	SCF				

DRY STANDARD VOLUME	122.31	SCF	
PERCENT WATER VAPOR	1,92	% VOL	
FLOW RATE	24604	ACFM	
	22655	DSCFM	
	38496	M3/HR	
PARTICULATE CONCENTRATION	0.0000	GR/DSCF	
	0.0000	GR/ACF	
PARTICULATE EMISSION RATE	0.00	LB/HR	
LB PART PER 1000 LB GAS	0.0000		
ISOKINETIC PERCENT	93.3		

PARTICULATE SAMPLE CALCULATION FORMULA

1. DRY MOLECULAR WEIGHT (Md) lb/lb-mole

Md = .44*% CO2 + .32*%O2 + .28*%N2 + .28*%CO

2. WATER VAPOR PERCENT (%H2O)

Vw std = 0.04707*(Vf - Vi)

where: Vw std = standard cubic feet of water vapor

Vf = Final volume of impingers, ml Vi = Initial volume of impingers, ml

%H2O = Vw std * 100/(Vm std + Vw std)

where Vm std = standard cubic feet of gas sampled

3. WET MOLECULAR WEIGHT (Ms) lb/lb-mole

 $Ms = Md^{*}(1 - \%H2O/100) + 18^{*}\%H2O/100$

4. STACK PRESSURE (Ps)

Ps = Pb + Pg/13.6

where: Pb = barometric pressure (uncorrected), in. Hg Pg = stack gauge pressure, in. H2O 13.6 = specific gravity of mercury (Hg)

in. Hg.

5. AVERAGE STACK VELOCITY (vs) feet per second

 $Vs = Kp*Cp*DELP*(Tsavg/(Ps*Ms))^0.5$

where: Kp = 85.49 unit conversion

Cp = 0.84, pitot tube calibration factor

DELP = average of square root of velocity head, in. H2O

Tsavg = average stack temperature, deg R (460+F)

Ps = stack pressure

Ms = wet molecular weight

6. STACK GAS FLOW RATE (Qs)

std. cubic feet per minute

Qs = 60*(1 - %H2O/100)*Vs*A*(528*Ps/Tsavg/29.92)

where: A = stack area, ft2 528 = std temperature, deg R 29.92 = std pressure, in. Ha

7. DRY GAS VOLUME (Vmstd) dry std. cubic feet

 $Vm \ std = (GAMAC*(Pb+ DELH/13.6)/29.92) * Vm$

where: GAMAC = dry gas meter calibration factor corrected for meter temperature (GAMA+(Tm-70)*.00012)

Vm = volume of dry gas metered, cubic feet Tm = average meter temperature, degrees F DELH = average orifice pressure drop, in.H2O

8. PARTICULATE CONCENTRATION (cs)

grains per dry standard

cubic foot

Cs = Mn * 15.43/Vm stdwhere: Mn = particulate captured, grams 15.43 = grains per gram

9. **EMISSION RATE (ER)**

pounds per hour

PMRA = Mn*A*60/(t*An*453.6)

AREA METHOD lb/hr

PMRC = Cs*Qs*60/(15.43*453.6) CONC, METHOD lb/hr

ER = (PMRA + PMRC)/2

where: An = area of sampling nozzle, square feet

10. **EMISSION CONCENTRATION (EC)** lb/1000 lb exhaust gas

EC = ER * 386700 * (1-%H2O/100)/(Qs*60*Ms)

where: 386700 = cubic feet per lb mole * 1000

11. **ISOKINETIC SAMPLING PERCENTAGE (I)**

I = PMRA/PMRC

APPENDIX C Element One Lab Report

Environmental Technology & Engineering Corporation

13000 W. Bluemound Rd., Ste. 109 Elm Grove, WI 53122

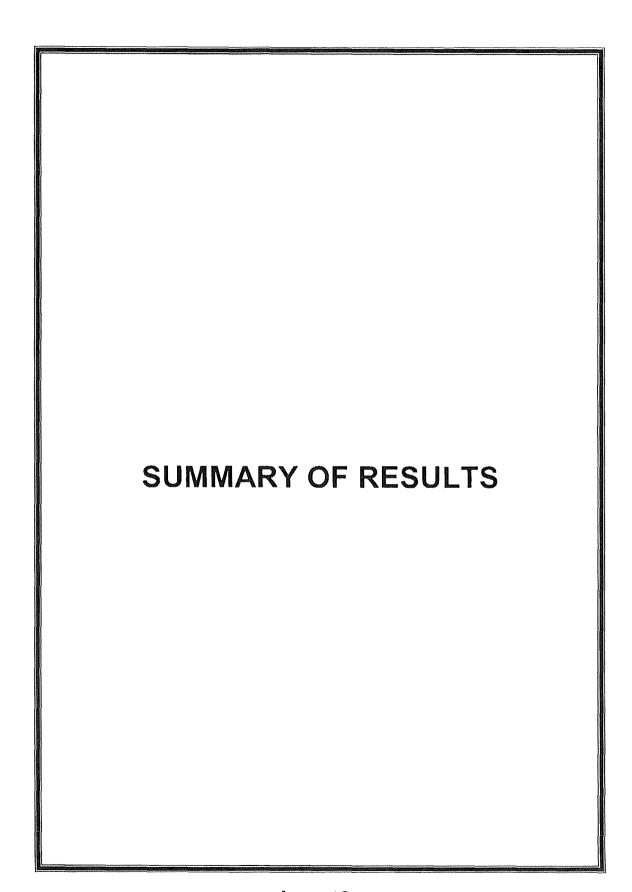
Project ID: 4984-LACKS

Total Chromium

EPA Method 306 Analysis

Analytical Report 39142

Element One, Inc. 6319-D Carolina Beach Rd., Wilmington, NC 28412 910-793-0128 FAX: 910-792-6853 e1lab@e1lab.com


The following data for Analytical Report 39142 has been reviewed for completeness, accuracy, adherence to method protocol, and compliance with quality assurance guidelines.

Review by:

Daphne Woodman, B.S. Chemist August 24, 2022

Report Reviewed and Finalized by:

Ken Smith, Laboratory Director August 24, 2022

