RECEIVED

APR 2 6 2017 AIR QUALITY DIV.

Mercury and Air Toxics Standard Particulate Matter and Hydrogen Chloride Emissions Test Report

We Energies Presque Isle Power Plant Flue 6 Stack Marquette, Michigan Project No. M171002E March 15, 2017

Mercury and Air Toxics Standard Particulate Matter and Hydrogen Chloride Emissions Test Report

We Energies Presque Isle Power Plant Flue 6 Stack Marquette, Michigan March 15, 2017

Report Submittal Date April 13, 2017

> © Copyright 2017 All rights reserved in Mostardi Platt

Project No. M171002E

888 Industrial Drive Elmhurst, Illinois 60126 630-993-2100

1.0 EXECUTIVE SUMMARY

MOSTARDI PLATT conducted a Mercury and Air Toxics Standards (MATS) filterable particulate matter and Hydrogen Chloride emissions test program for the We Energies at the Presque Isle Power Plant on the Flue 6 Stack in Marquette, Michigan on March 15, 2017. This report summarizes the results of the test program and test methods used.

The test location, test date, and test parameters are summarized below.

TEST INFORMATION				
Test Location Test Date		Test Parameters		
Flue 6 Stack	March 15, 2017	Filterable Particulate Matter (FPM) and Hydrogen Chloride (HCI)		

The purpose of the test program was to document FPM and HCI emissions to qualify for the LEE designation as required by 40 CFR Part 63, Subpart UUUUU. Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

TEST RESULTS					
Test Location Test Parameter		Emission Limits	Emission Rates		
Flue 6 Stack	FPM	≤0.030 lb/mmBtu	0.0005 lb/mmBtu		
	HCI	≤0.002 lb/mmBtu	0.0007 lb/mmBtu		

Emissions on lb/mmBtu basis were determined using a standard F_d -Factor of 9,820 dscf/mmBtu for sub-bituminous coal. Plant operating data as provided by We Energies is included in Appendix A.

The Stationary Source Audit Sample Program audit sample was obtained from ERA and submitted for analysis to Maxxam Analytical. The results of the audit sample was compared to the assigned value by ERA and found to be acceptable. The audit sample result and evaluation are appended to this report.

RECEIVED

APR 2 6 2017

The identifications of individuals associated with the test program are summarized below.

TEST PERSONNEL INFORMATION				
Location	Address	Contact		
Test	We Energies	Mr. Rob Bregger		
Coordinator	333 West Everett Street	(414) 221-2772 (phone)		
	Environmental Department A231	rob.bregger@we-energies.com		
	Milwaukee, Wisconsin 53203			
Test Facility	We Energies	Ms. Brenda Bergemann		
	Presque Isle Power Plant	(414) 221-2453 (phone)		
	2701 Lakeshore Boulevard, North	brenda.bergemann@we-energies.com		
	Marquette, Michigan 49885			
Testing	Mostardi Platt	Mr. Sean Cronin		
Company	888 Industrial Drive	Project Manager		
Representative	Elmhurst, Illinois 60126	(630) 993-2100 (phone)		
-		scronin@mp-mail.com		

The test crew consisted of Messrs. J. Konrad, T. Russ and S. Cronin of Mostardi Platt.

2.0 TEST METHODOLOGY

Emissions testing was conducted following the methods specified in 40CFR60, Appendix A. A schematic of the test section diagram is found in Appendix B and schematics of the sampling trains used are included in Appendix C. Calculation nomenclature and sample calculations are included in Appendix D. Laboratory analysis data are found in Appendix E. Copies of analyzer print-outs for each test run are included in Appendix F and field data sheets are found in Appendix G.

The following methodologies were used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location are summarized below.

TEST POINT INFORMATION					
Location	Upstream Diameters	Downstream Diameters	Test Parameter	Number of Sampling Points	
Flue 6 Stack	>2.0	>8.0	FPM, HCI	12	

Method 2 Volumetric Flowrate Determination

Gas velocity was measured following Method 2, for purposes of calculating stack gas volumetric flow rate. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method, Calibration data are presented in Appendix H.

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Stack gas molecular weight was determined in accordance with Method 3A. An ECOM analyzer was used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H and copies of the gas cylinder certifications are found in Appendix I.

Method 5 Filterable Particulate Matter (FPM) Determination

Stack gas filterable particulate concentrations and emission rates were determined in accordance with Method 5 with filter and probe temperatures between 248 and 273 degrees Fahrenheit in accordance with the USEPA letter which is appended. An Environmental Supply Company, Inc. sampling train was used to sample stack gas at an isokinetic rate, as specified in the Method utilizing Pallflex TX40HI45 filters. Particulate matter in the sample probe was recovered using an acetone wash. The probe wash and filter catch were analyzed by Mostardi Platt personnel. Laboratory analysis data are found in Appendix E. Calibration data are presented in Appendix H.

Method 26A Hydrogen Chloride (HCl) Determination

Stack gas HCI concentrations and emission rates were determined in accordance with Method 26A, 40CFR60, Appendix A in conjunction with the USEPA Method 5 sampling. An Environmental Supply Company sampling train was used to sample stack gas, in the manner specified in the Method utilizing Pallflex TX40HI45 filters. Analyses of the samples collected were conducted by Maxxam Analytics, Inc. of Mississauga, Ontario. Sample analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

3.0 TEST RESULT SUMMARIES

Client:	We Energies
Facility:	Presque Isle Power Plant
Test Location:	Flue 6 Stack
Test Method:	5

Normal	Normal	Normal	
			Average
315.8	316.9	316.5	316.4
9.9%	10.0%	9.8%	9.9%
29.28	29.28	29.28	29.28
125.140	129.310	128.329	127.593
69.861	71.931	71.699	71.164
266,661	274,562	273,676	271,633
160,012	164,289	164,241	162,847
177,597	182,595	182,084	180,759
11.9	12.0	12.1	12.0
7.7	7.7	7.5	7.6
100.6	101.2	100.5	100.8
9,820.0	9,820.0	9,820.0	9,820.0
atter (Meth	nod 5)		
0.0022	0.0020	0.0020	0.0021
0.635	0.533	0.539	0.5690
0.0002	0.0001	0.0001	0.0001
0.0003	0.0002	0.0002	0.0002
0.381	0.328	0.332	0.347
0.0006	0.0005	0.0005	0.0005
	3/15/17 7:10 9:17 Run 1 itions 315.8 9.9% 29.28 125.140 69.861 266,661 160,012 177,597 11.9 7.7 100.6 9,820.0 atter (Meth 0.0022 0.635 0.0002 0.0003 0.381	3/15/17 3/15/17 7:10 9:45 9:17 11:53 Run 1 Run 2 itions 315.8 315.8 316.9 9.9% 10.0% 29.28 29.28 125.140 129.310 69.861 71.931 266,661 274,562 160,012 164,289 177,597 182,595 11.9 12.0 7.7 7.7 100.6 101.2 9,820.0 9,820.0 atter (Method 5) 0.0020 0.635 0.533 0.0002 0.0001 0.0003 0.0002 0.381 0.328	3/15/17 3/15/17 3/15/17 7:10 9:45 12:15 9:17 11:53 14:23 Run 1 Run 2 Run 3 itions 315.8 316.9 316.5 9.9% 10.0% 9.8% 29.28 29.28 125.140 129.310 128.329 69.861 71.931 71.699 266,661 274,562 273,676 160,012 164,289 164,241 177,597 182,595 182,084 11.9 12.0 12.1 7.7 7.7 7.5 100.6 101.2 100.5 9,820.0 9,820.0 9,820.0 9,820.0 9,820.0 0.0022 0.0020 0.0020 0.0020 0.635 0.533 0.539 0.0002 0.0001 0.0002 0.0001 0.0002 0.0002 0.0002 0.381 0.328 0.332 0.332

Client:We EnergiesFacility:Presque Isle Power PlantTest Location:Flue 6 StackTest Method:5/26A					
Source Condition	Normal	Normal	Normal		
Date Start Time	3/15/17	3/15/17	3/15/17		
End Time	7:10 9:17	9:45 11:53	12:15 14:23		
cha lime	Run 1	Run 2	Run 3	Average	
	tack Conditions		Nun 5	Average	
]	
Average Gas Temperature, °F	315.8	316.9	316.5	316.4	
Flue Gas Moisture, percent by volume	9.9%	10.0%	9.8%	9.9%	
Average Flue Pressure, in. Hg	29.28	29.28	29.28	29.28	
Gas Sample Volume, dscf	125.140	129.310	128.329	127.593	
Average Gas Velocity, ft/sec	69.861	71.931	71.699	71.164	
Gas Volumetric Flow Rate, acfm	266,661	274,562	273,676	271,633	
Gas Volumetric Flow Rate, dscfm	160,012	164,289	164,241	162,847	
Gas Volumetric Flow Rate, scfm	177,597	182,595	182,084	180,759	
Average %CO ₂ by volume, dry basis	11.9	12.0	12.1	12.0	
Average %O ₂ by volume, dry basis	7.7	7.7	7.5	7.6	
Isokinetic Variance	100.6	101.2	100.5	100.8	
Standard Fuel Factor Fd, dscf/mmBtu	9,820.0	9,820.0	9,820.0	9,820.0	
Hydrogen Chloride (HCI) Emissions					
ug of sample collected	3300.00	2300.00	2100.00	2566.67	
ppm	0.61	0.41	0.38	0.47	
mg/dscm	0.93	0.63	0.58	0.71	
lb/hr	0.558	0.387	0.356	0.433	
lb/mmBtu (Standard Fd Factor)	0.0009	0.0006	0,0006	0.0007	

4.0 CERTIFICATION

MOSTARDI PLATT is pleased to have been of service to We Energies. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

CERTIFICATION

As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

MOSTARDI PLATT

Program Manager

Sean Cronin

otthe Banace

Quality Assurance

Scott W. Banach