

Mercury and Air Toxics Standards Particulate Matter and Hydrogen Chloride Emissions Test Report

We Energies
Presque Isle Power Plant
Flue 8 Stack
Marquette, Michigan
January 25, 2017

Report Submittal Date February 23, 2017

© Copyright 2017 All rights reserved in Mostardi Platt

Project No. M171002B

RECEIVED

MAR 1 7 2017

1.0 EXECUTIVE SUMMARY

AIR QUALITY DIV.

MOSTARDI PLATT conducted a Mercury and Air Toxics Standards (MATS) Filterable Particulate Matter and Hydrogen Chloride emissions test program for the We Energies at the Presque Isle Power Plant on the Flue 8 Stack in Marquette, Michigan on January 25, 2017. This report summarizes the results of the test program and test methods used.

The test location, test date, and test parameters are summarized below.

TEST INFORMATION						
Test Location	Test Date	Test Parameters				
Flue 8 Stack	January 25, 2017	Filterable Particulate Matter (FPM) and Hydrogen Chloride (HCI)				

The purpose of the test program was to document the FPM and HCI emissions to qualify for the LEE designation as required by 40 CFR Part 63, Subpart UUUUU. Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

	TEST RESULTS							
Test Location	Test Parameter	Emission Limit	Emission Rate					
Flore C Charle	FPM	≤0.030 lb/mmBtu	0.0001 lb/mmBtu					
Flue 8 Stack	HCI	≤0.002 lb/mmBtu	0.0008 lb/mmBtu					

Emissions on lb/mmBtu basis were determined using a standard F_d-Factor of 9,820 dscf/mmBtu for sub-bituminous coal. Plant operating data as provided by We Energies is included in Appendix A.

The Stationary Source Audit Sample Program audit sample was not obtained for this portion of the test program but will be submitted along with the results for Flue 5 and Flue 6.

The identifications of individuals associated with the test program are summarized below.

TEST PERSONNEL INFORMATION							
Location	Address	Contact					
Test Coordinator	We Energies 333 West Everett Street Environmental Department A231 Milwaukee, Wisconsin 53203	Mr. Rob Bregger (414) 221-2772 (phone) rob.bregger@we-energies.com					
Test Facility	We Energies Presque Isle Power Plant 2701 Lakeshore Boulevard, North Marquette, Michigan 49885	Ms. Amanda Studinger (906) 226-5704 (phone) amanda.studinger@we-energies.com					
Testing Company Representative	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Mr. Stuart Sands Project Manager (630) 993-2100 (phone) ssands@mp-mail.com					

The test crew consisted of Messrs. J. Konrad, J. Volbrecht, M. Karum, and S. Sands of Mostardi Platt.

2.0 TEST METHODOLOGY

Emissions testing was conducted following the methods specified in 40CFR60, Appendix A. A schematic of the test section diagram is found in Appendix B and schematics of the sampling trains used are included in Appendix C. Calculation nomenclature and sample calculations are included in Appendix D. Laboratory analysis data are found in Appendix E. Copies of analyzer print-outs for each test run are included in Appendix F and field data sheets are found in Appendix G.

The following methodologies were used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location are summarized below.

TEST POINT INFORMATION								
Location	Upstream Diameters	Downstream Diameters	Test Parameter	Number of Sampling Points				
Fire 0.041-	>2.0	>8.0	FPM	12				
Flue 8 Stack	>2.0	>8.0	HCI	1				

Method 2 Volumetric Flowrate Determination

Gas velocity was measured following Method 2, for purposes of calculating stack gas volumetric flow rate. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Method 3A Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Stack gas molecular weight was determined in accordance with Method 3A. An ECOM analyzer was used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H and copies of the gas cylinder certifications are found in Appendix I.

Method 5 Filterable Particulate Matter (FPM) Determination

Stack gas FPM concentrations and emission rates were determined in accordance with USEPA Method 5, 40CFR60, Appendix A. An Environmental Supply Company, Inc. sampling train was used to sample stack gas at an isokinetic rate, as specified in the Method. Filter and probe temperatures were set to temperatures between 248 and 273° Fahrenheit in accordance with the USEPA letter which is appended. Particulate matter in the sample probe was recovered using an acetone rinse. The probe wash and filter catch were analyzed by Mostardi Platt in accordance with the Method in the Elmhurst, Illinois laboratory. Sample analysis data are found in Appendix E. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

Modified Method 26 Hydrogen Chloride (HCI) Determination

Stack gas hydrogen chloride concentrations and emission rates were determined in accordance with a modified Method 26. An Environmental Supply Company sampling train was used to sample stack gas, in the manner specified in the Method at one sample point modified to use large impingers as allowed for per 40 CFR Part 63, Subpart UUUUU. Analyses of the samples collected were conducted by Maxxam Analytics of Mississauga, Ontario. Laboratory analysis data are found in Appendix F. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix H.

3.0 TEST RESULT SUMMARIES

Client:

We Energies

Facility:

Preque Isle Power Plant

Test Location: Flue 8 Stack

Test Method:

est Method: 5				
Source Condition	Normal	Normal	Normal	
Date	1/25/17	1/25/17	1/25/17	
Start Time	7:05	9:35	12:00	
End Time	9:11	11:41	14:05	
	Run 1	Run 2	Run 3	Average
Stack Cond	itions			
Average Gas Temperature, °F	327.6	327.9	331.2	328.9
Flue Gas Moisture, percent by volume	12.0%	10.4%	11.8%	11.4%
Average Flue Pressure, in. Hg	28.64	28.64	28.64	28.64
Gas Sample Volume, dscf	97.925	96.692	98.260	97.626
Average Gas Velocity, ft/sec	90.818	89.393	91.457	90.556
Gas Volumetric Flow Rate, acfm	386,244	380,183	388,962	385,130
Gas Volumetric Flow Rate, dscfm	218,122	218,481	219,131	218,578
Gas Volumetric Flow Rate, scfm	247,823	243,831	248,437	246,697
Average %CO ₂ by volume, dry basis	13.5	13.7	13.6	13.6
Average %O ₂ by volume, dry basis	5.6	5.6	5.7	5.6
Isokinetic Variance	101.4	100.0	101.3	100.9
Standard Fuel Factor Fd, dscf/mmBtu	9,820.0	9,820.0	9,820.0	9,820.0
Filterable Particulate N	/latter (Metl	10d 5)		
grams collected	0.0000	0.0002	0.0006	0.0003
mg/dscm	0.000	0.073	0.216	0.0962
mg/wscm	0.000	0.065	0.190	0.0852
mg/acm at stack conditions	0.000	0.042	0.121	0.0543
grains/acf	0.0000	0.0000	0.0001	0.0000
grains/dscf	0.0000	0.0000	0.0001	0.0000
lb/hr	0.000	0.060	0.177	0.079
lb/mmBtu (Standard Fd Factor)	0.0000	0.0001	0.0002	0.0001
•				

HCI Test Results Summary Presque isle Power plant We Energies Flue 8 Stack

Run No.	Location	Date	Time	Meter Volume, dscf	O ₂ , % dry	HCI detected, mg	HCI Concentration ppmvd	DSCFM	HCI lba/hr	HCI Ibs/MMBtu
1	Stack	1/25/2017	7:05-8:35	65.63	5.60	1.9	0.67	218,122	0.835	0.0009
2	Stack	1/25/2017	9:35-11:05	65.05	5.60	1.8	0.64	218,481	0.800	0.0008
3	Stack	1/25/2017	12:00-13:30	65.04	5.70	1.8	0.64	219,131	0.802	0.0008
Average				5.63	1.83	0.65	218,578	0.812	0.0008	

4.0 CERTIFICATION

MOSTARDI PLATT is pleased to have been of service to We Energies. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

CERTIFICATION

MOSTARDI PLATT

Scott W. Banach

As project manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

Stuart Sands

Program Manager

Acottly Banass

Quality Assurance

6 of 106