1.0 **PROJECT OVERVIEW**

1.1 GENERAL

Montrose Air Quality Services, LLC (Montrose) located at 1371 Brummel Avenue, Elk Grove Village, Illinois was contracted by We Energies to perform an air emissions test program at the Presque Isle Power Plant (PIPP) located in Marquette, Michigan. The objective of the test program was to perform testing for filterable particulate matter (PM) and hydrogen chloride (HCI) from the exhaust of Unit 7. Testing was conducted to meet the requirements of We Energies, the Michigan Department of Quality (MDEQ) and the United States Environmental Protection Agency (U.S. EPA); and 40 CFR Part 60 and 63, Subpart UUUUU, as applicable.

Testing was performed on February 27, 2019. Coordinating the field aspects of the test program were:

Rob Bregger – We Energies - (414) 221-4772

Blu Kaput – Montrose Air Quality Services, LLC – (630) 860-4740

1.2 EXECUTIVE SUMMARY

The results of the Method 5 PM and Method 26A HCl testing are summarized in the table below. Testing was performed according to Test Plan No. 042AS-339307-PP-1. The procedures outlined in that document were followed except where noted.

Unit	Constituent	Run 1	Run 2	Run 3	Average	MATS Limit
7	Filterable PM (lb/mmBtu)	0.000165	0.000294	0.000148	0.000202	0.03
7	Filterable PM (lb/hr)	0.138	0.255	0.129	0.174	
7	HCI (lb/mmBtu)	0.000659	0.000580	0.000518	0.000586	0.002
7	HCI (lb/hr)	0.551	0.503	0.451	0.502	

TABLE 1 – 1 EXECUTIVE SUMMARY

1.3 QUALITY STATEMENT

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

1.3.2 Quality Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for

.

We Energies: Marquette, MI 2019 Unit 7 Q1 MATS

Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10.

1.4 ASTM D7036-04(2011)

All applicable Montrose field personnel used on-site for this test program were compliant with ASTM D7036-04(2011) "Standard Practice for Competence of Air Emissions Testing Bodies" for all tests performed. This includes having the appropriate QSTI directly supervise the testing. The following table summarizes the key personnel that were involved with this project:

Personnel	Position on Project	Date of QSTI Exam
Brandon Check, Q.S.T.I.	Project Manager	3/31/2016
Blu Kaput, Q.S.T.I.	Overall Test Leader	05/05/2017

TABLE 1 – 2 PROJECT PERSONELL

1.5 METHODOLOGY

1.5.1 Particulate Matter and Hydrogen Chloride Testing Methodology

EPA Methods 5 and 26A were used to determine the PM and HCl concentrations at the test location in a combined sample train. In Method 5, a sample of the gas stream was withdrawn isokinetically from the stack. The PM in the sample gas stream was collected in a glass lined sample probe and on a glass fiber filter. The weight of PM collected with the sample train combined with the volume of dry gas withdrawn from the stack was used to calculate the particulate concentration.

EPA Method 26A was used to determine the HCl concentration at the test location. In Method 26A, a sample of the gas stream was withdrawn isokinetically from the stack. The HCl in the sample gas stream passed through a probe and filter assembly and collected in an impinger condenser system. The impingers contained a solution of dilute sulfuric acid to collect the HCl. After each test run, the impinger contents were recovered and subsequently analyzed at the Element One laboratory located in Wilmington, North Carolina using ion chromatography (IC).

In order to convert the concentration of each constituent to a mass emissions rate, the volumetric gas flow rate through the test location was determined concurrently with each test run, using EPA Methods 1, 2, 3 and 4.

Results for PM and HCI are expressed in units of pounds per million British thermal units (lb/mmBtu). Three test runs were conducted for PM and HCI at the test location. Testing was conducted as close to maximum load as possible.

The PM test was conducted using a probe temperature of 248°F (± 25°F) as allowed by the EPA in letters dated May 11, 2016 and March 8, 2017 and the MDEQ dated May 5, 2017. The volume collected was increased nominally by a factor of two as required for conducting emissions testing to demonstrate LEE status.

1.6 SPECIAL CONSIDERATIONS

Per the requirements of 40 CFR Part 63, Subpart UUUUU, the following strategies were utilized:

- Under §63.10005(h)(2)(i), the minimum sample volume specified in Table 2 was increased nominally by a factor of two (i.e. 2x1.00 dscm; 2x0.75)
- Under §63.10007(A) (2), the unit was operated at maximum normal operating load conditions during each periodic (e.g., quarterly) performance test. Maximum normal operating load was generally between 90 and 110 percent of design capacity but was representative of site specific normal operations during each test run.
- Under Table 5 (1) (f) and 5 (3) (f), emissions concentrations for PM and HCI were converted to lb/MMBtu or lb/MWh emissions rates, using the calculations found in EPA Method 19. The F-factor was 9,820 for subbituminous coal.
- Per the Stationary Source Audit Program (SSAP) for testing requirements under 40 CFR parts 51, 60, 61 and 63 the owner or operator of a stationary source is required to use an audit sample during a compliance test which applies to all test methods for which a commercially available audit exists (i.e. Method 26A)

1.7 PARAMETERS

The following parameters were determined at the Unit 7 test location during each test run:

- gas velocity
- gas temperature
- oxygen concentration
- carbon dioxide concentration
- moisture content
- filterable particulate matter concentration
- hydrogen chloride concentration

1.8 RESULTS

A complete summary of test results may be found in Table 2-1.

An HCl audit sample was submitted for analysis. The results of the audit sample may be found in the Laboratory section of the Appendix.

 r_{χ}

2.0 SUMMARY OF RESULTS

Test Parameters	Run 1	Run 2	Run 3	Average
Date	2/27/19	2/27/19	2/27/19	
Start Time	7:30	9:59	12:27	
Stop Time	9:38	12:05	14:34	
Fd Factor	9,820	9,820	9,820	
Gas Conditions				
Temperature (°F)	327	332	337	332
Volume Metered Standard, Vm(std) (ft3)	80.44	82.25	81.33	81.34
Volumetric Flow Rate (acfm)	327,500	335,200	334,700	332,500
Volumetric Flow Rate (scfm)	215,500	219,200	217,500	217,400
Volumetric Flow Rate (dscfm)	190,300	195,500	191,300	192,400
Carbon Dioxide (% dry)	13.6	13.6	13.8	13.7
Oxygen (% dry)	5.9	5.7	5.3	5.6
Moisture (%)	11.7	10.8	12.1	11.6
Particulate Results				
Concentration (grains/dscf)	0.0000847	0.000152	0.0000785	0.000105
Emission Rate (lb/MMBtu, Fd)	0.000165	0.000294	0.000148	0.000202
Emission Rate (lb/hr)	0.138	0.255	0.129	0.174
Hydrogen Chloride Results				
Concentration (lb/dscf)	4.82E-08	4.29E-08	3.93E-08	4.35E-08
Concentration (ppmdv)	0.510	0.453	0.415	0.459
Emission Rate (Ib/MMBtu, Fd)	0.000659	0.000580	0.000518	0.000586
Emission Rate (lb/hr)	0.551	0.503	0.451	0.502

TABLE 2 – 1 SUMMARY OF UNIT 7 PM & HCI RESULTS

3.0 TEST PROCEDURES

3.1 METHOD LISTING

The following EPA test methods were referenced for the test program. These methods can be found in 40 CFR Part 60 Appendix A.

- Method 1 Sample and velocity traverse for stationary sources
- Method 2 Determination of stack gas velocity and volumetric flow rate (type S pitot tube)
- Method 3 Gas analysis for the determination of dry molecular weight
- Method 4 Determination of moisture content in stack gases
- Method 5 Determination of particulate emissions from stationary sources
- Method 19 Determination of sulfur dioxide removal efficiency and particulate matter, sulfur dioxide, and nitrogen oxides emission rates
- Method 26A Determination of hydrogen halide and halogen emissions from stationary sources - isokinetic method

3.2 METHOD DESCRIPTIONS

3.2.1 Method 1

Method 1 was used to determine the suitability of each test location and to determine the sample points used for the gas velocity and particulate concentration determinations. Each test location conformed to the minimum requirements of being located at least 2.0 diameters downstream and at least 0.5 diameters upstream from the nearest flow disturbance.

The Unit 7 test location is a round, vertical duct with a diameter of 114 inches. Three points in each of the four test ports were traversed for each volumetric flow test run. The test location was located approximately 15.8 diameters downstream and approximately 10.5 diameters upstream from the nearest flow disturbance. A cross-section of the test location, indicating the traverse points is shown in Figure 1 of the Appendix.

3.2.2 Method 2

Method 2 was used to determine the gas velocity through the test location using a Type-S pitot tube and an incline plane oil manometer. The values measured in Method 2, along with the measurements made in Methods 3 and 4, were used to calculate the volumetric flow rate through the test locations. A diagram of the Method 2 apparatus is shown as part of the Method 5/26A sampling train in Figure 2 of the Appendix.

The manometer was leveled and "zeroed" prior to each test run. The sample train was leak checked before and after each run by pressurizing the positive side, or "high" side, of the pitot tube, creating a deflection on the manometer of at least three inches H2O. The leak check was considered valid if the manometer remained stable for 15 seconds. This procedure was repeated on the negative side by generating a vacuum of at least three inches H2O. The velocity head pressure and gas temperature were then determined at each point specified in Method 1. The static pressure of the stack was measured using a water filled U-tube manometer. In addition, the barometric pressure was measured and recorded.

1

3.2.3 Method 3

The carbon dioxide and oxygen contents were determined at the test location using EPA Method 3. A gas sample was collected into a Tedlar bag from the back of each sample train for the duration of each test run. Analysis was performed using an Orsat gas analyzer within eight hours of collection.

The analyzer was leak checked prior to analysis by raising the liquid levels in each pipette to a reference mark on the capillary tubes and then closing the pipette valves. The burette solution was then raised to bring the meniscus onto the graduated portion of the burette and the manifold valve was closed. A leak check was considered valid if the pipette meniscus did not fall below the reference mark and the burette meniscus did not fall by more than 0.2 ml after four minutes.

The carbon dioxide content and oxygen content were used to calculate the dry molecular weight of the gas stream. The molecular weight was then used, along with the moisture content determined by EPA Method 4, for the calculation of the volumetric flow rate. For these calculations, the balance of the gas stream was assumed to be nitrogen since the other gas stream components are insignificant for the purposes of calculating molecular weight.

3.2.4 Method 4

The moisture content at the test location was determined using Method 4. A known volume of sample gas was withdrawn from the source and the moisture was condensed and measured. The dry standard volume of the sample gas was then compared to the volume of moisture collected to determine the moisture content of the sample gas. A diagram of the Method 4 apparatus is shown as part of the Method 5/26A train in Figure 2 of the Appendix.

To condense the water vapor the gas sample passed through a series of impingers. The impingers were charged as outlined in each individual method. The sample train was leak checked prior to the test run by capping the probe tip and pulling a vacuum greater than the highest vacuum expected during the test run. A leak check was considered valid if the leak rate was below 0.02 cubic feet per minute.

The volume of dry gas exiting the gas condenser system was measured with a dry gas meter. After leaving the dry gas meter, the sample stream passed through an orifice used to meter the flow rate through the sample train. The pressure drop across the orifice was measured with an incline plane, oil manometer. The gas meter reading, gas meter inlet and outlet temperatures, gas meter static pressure and pump vacuum were recorded for each sample point.

After the test run, the sample train was leak checked at the highest vacuum encountered during the test run. The tests were considered valid since the leak rate was less than 0.02 cfm. The amount of water collected in the condenser system was measured gravimetrically. The net weight gain of water was converted to a volume of wet gas and then compared to the amount of dry gas sampled to determine the moisture content.

3.2.5 Methods 5/26A

EPA Methods 5 and 26A in a combined sample train were used to determine the PM and HCl concentrations at the test location. A sample of the gas stream was withdrawn isokinetically from the stack and the PM in the sample gas stream was collected in a glass probe and on a glass

fiber filter. The HCI was collected in impingers containing a dilute sulfuric acid solution. A diagram of the Method 5/26A sample train is shown in Figure 2 in the Appendix.

To prevent contamination, all components of the sample train were constructed of glass with no metal connections. Prior to testing the components were washed using detergent and then rinsed with tap water, deionized water and lastly with acetone. After drying, all components were sealed with parafilm or Teflon tape.

The sample probe that was used consisted of a glass liner and glass nozzle. Sample gas passed through the nozzle and probe assembly and then through a glass fiber filter heated to $248^{\circ}F$ ($\pm 25^{\circ}F$). After exiting the filter, the sample gas was passed through a series of four glass impingers. The first and second impingers each contained 100 ml of 0.1 N H₂SO₄. The third impinger was initially empty. The fourth contained a known weight of silica gel to absorb any remaining water vapor. The dry gas exiting the moisture condenser system then passed through a sample pump and a dry gas meter to measure the gas volume. After leaving the dry gas meter, the sample stream passed through an orifice, which was used to meter the flow rate through the sample train. The pressure drop across the orifice was measured with an incline plane oil manometer.

85mm Whatman quartz filters were used as the substrate for the particulate sampling. The filter was loaded into a glass filter holder with a Teflon support screen that was prepared in the same manner as the other components of the sample train. Prior to the test run, the filter was desiccated for at least 24 hours and then weighed to the nearest 0.0001g until a constant weight was achieved. The weight of the filter was considered constant only when two consecutive weights taken at least six hours apart are within 0.0005g of each other.

The probe was thoroughly pre-cleaned with acetone and the probe wash saved prior to each test run as a quality assurance check. The impingers were pre cleaned with distilled water and loaded with the appropriate impinger contents. The sample train was leak checked prior to the test run by capping the probe tip and pulling a vacuum of at least 15 in.Hg. A leak check was considered valid if the leak rate was below 0.02 cfm. When not in operation inside the stack, the nozzle was sealed with Teflon tape.

The probe tip was placed at each of the sample points determined in Method 1. The velocity at the sample point was determined using Method 2 by reading the velocity pressure from the manometer. Sample was withdrawn from the source at a rate such that the velocity at the opening of the nozzle matched the velocity of the stack gas at the sample point (isokinetically). During the test run the train was moved to each of the Method 1 sample points. The sample time at each point was calculated based on the number of sample points and the maximum allowable run time. The gas velocity pressure (ΔP), gas meter reading, gas meter inlet and outlet temperatures, gas meter orifice pressure (ΔH) and pump vacuum was recorded for each sample point.

After the test run the train was leak checked at the highest vacuum encountered during the test run. The probe liner and nozzle were washed with acetone and the rinse saved. The filter was removed from the filter holder, transferred to a container and sealed. The H_2SO_4 impinger contents were recovered separately and stored in HDPE sample jars.

Analysis of the samples for particulate matter was performed at the Montrose laboratory located in Elk Grove Village, Illinois. The probe rinses were transferred to a tared beaker, evaporated to dryness under ambient temperature and pressure conditions, desiccated for 24 hours and weighed to a constant weight. The filters were desiccated for 24 hours and weighed to a constant

We Energies: Marquette, MI 2019 Unit 7 Q1 MATS

۶.

weight. The weight gain of the probe rinse and filters yield the total weight of particulate collected. To eliminate interference in establishing a constant weight, both the analytical balance and the desiccators were equipped with an ion generating polonium strip designed to eliminate static electricity that may collect on the samples.

Analysis of the samples for HCI was performed at the Element One laboratory located in Wilmington, North Carolina.

3.2.6 Method 19

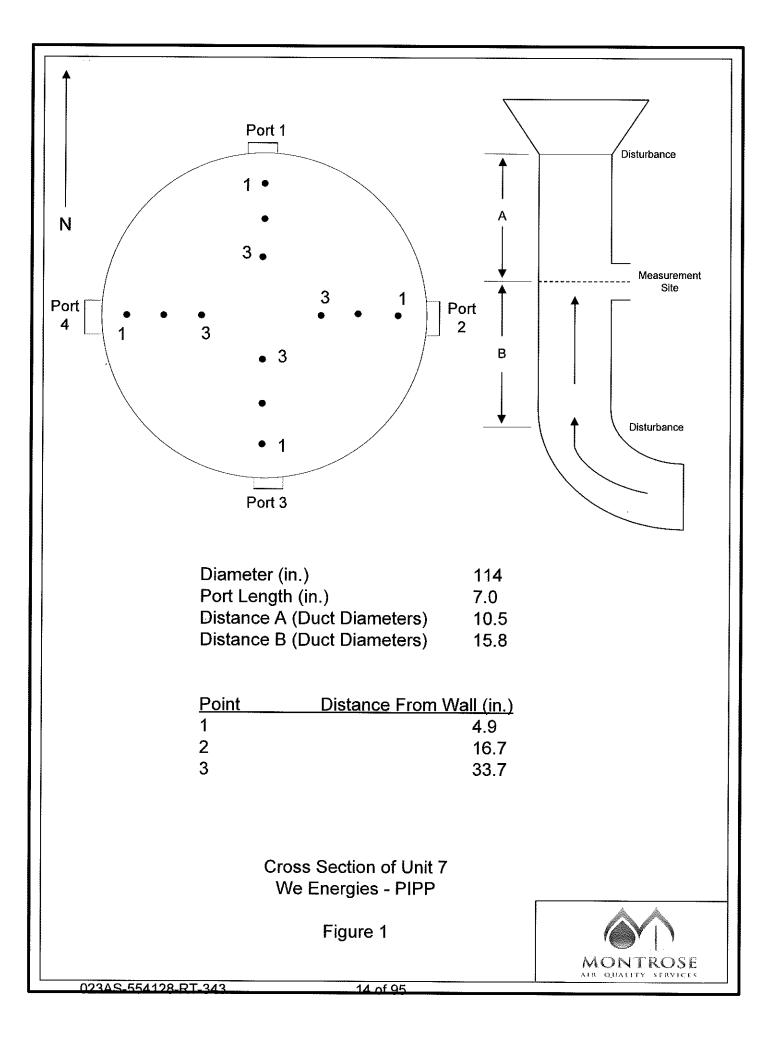
The equations in EPA Method 19 were used to calculate the emission rates of various pollutants from the test location in units of lb/mmBtu. The calculations were based on the O_2 concentration of the sample gas and an appropriate F factor, which is the ratio of combustion gas volumes to heat inputs. In order to calculate the lb/mmBtu emission rate, an Fd factor of 9,820 dscf/mmBtu was used as per 40CFR Part 75 for sub-bituminous coal.

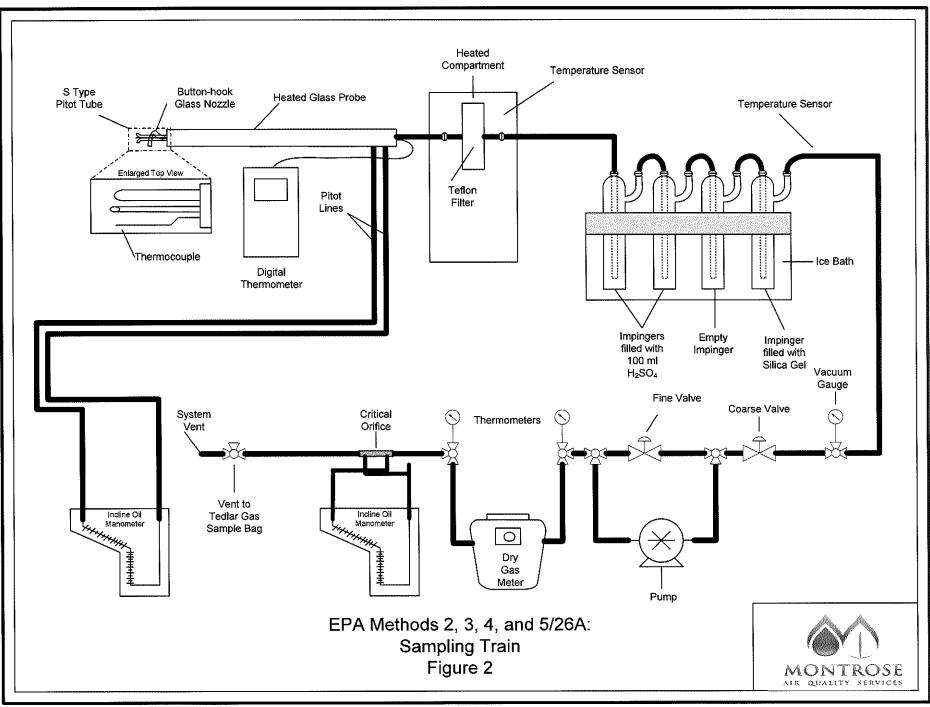
APR 24 2019

AIR QUALITY DIVISION

4.0 DESCRIPTION OF INSTALLATION

Boilers #7-9 are Riley pulverized coal wall fired dry bottom utility boilers which use distillate oil start-up guns. Each boiler's nameplate steam capacity rating is 615,000 lb/hr with a heat input capacity of approximately 1010 MMBTU/hr. Each boiler serves a GE steam turbine/generator set rated at 78,982 KW. Mercury emissions from Boilers #7, #8, and #9 are controlled with a TOXECON TM mercury control demonstration system installed in 2005. Each boiler is equipped with an electrostatic precipitator and the TOXECON TM fabric filter baghouse common to Boilers #7 through #9.


We Energies: Marquette, MI 2019 Unit 7 Q1 MATS



8

APPENDIX A FIGURES

We Energies: Marquette, MI 2019 Unit 7 Q1 MATS

APPENDIX B SAMPLE CALCULATIONS

Sample Calculations for Unit 7, Run 1

Area of Sample Location

$$A_{s} = (\pi) \left(\frac{d_{s}}{2 \times 12}\right)^{2}$$
$$A_{s} = (\pi) \left(\frac{114}{2 \times 12}\right)^{2}$$
$$A_{s} = 70.9 ft^{2}$$

where:

r.

ή

As	= area of stack (ft ²)
ds	= diameter of stack (in)
12	= conversion factor (in/ft)
2	= conversion factor (diameter to radius)

.

Stack Pressure Absolute

$$P_{a} = P_{b} + \frac{P_{s}}{13.6}$$

$$P_{a} = 28.72 + \frac{-0.7}{13.6}$$

$$P_{a} = 28.67 in. Hg$$

	= stack pressure absolute (in. Hg)
	= barometric pressure (in. Hg)
	= static pressure (in. H ₂ O)
.6	= conversion factor (in. H ₂ O/in. Hg)
	• • •

Volume of Dry Gas Collected Corrected to Standard Conditions

$$V_{m(std)} = \frac{17.64 (V_m) (Y_d) \left(P_b + \frac{\Delta H}{13.6} \right)}{(T_m + 460)}$$
$$V_{m(std)} = \frac{17.64 (83.36) (0.9987) \left(28.72 + \frac{1.57}{13.6} \right)}{(80.3 + 460)}$$
$$V_{m(std)} = 78.38 scf$$

where:

V _{m(std)}	= volume of gas collected at standard conditions (scf)
Vm	= volume of gas sampled at meter conditions (ft ³)
Y _d	= gas meter correction factor (dimensionless)
Pb	= barometric pressure (in. Hg)
ΔH	= average sample pressure (in. H₂O)
T _m	= average gas meter temperature (°F)
13.6	= conversion factor (in. H ₂ O/in. Hg)
17.64	= ratio of standard temperature over standard pressure (°R/in. Hg)
460	= conversion (°F to °R)

•

.

Volume of Water Vapor Collected Corrected to Standard Conditions

$$\begin{split} V_{w(std)} &= 0.04715 \times V_{wc} + 0.04715 \times V_{wsg} \\ V_{w(std)} &= 0.04715 \times 187.1 + 0.04715 \times 19.6 \\ V_{w(std)} &= 9.75 \, scf \end{split}$$

V _{w(std)}	= volume of water vapor at standard conditions (scf)
V _{wc}	= weight of liquid collected (g)
V _{wsg}	= weight gain of silica gel (g)
0.04715	= volume occupied by one gram water at standard conditions (ft ³ /g)

Percent Moisture1

$$B_{ws} = 100 \times \left[\frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})} \right]$$
$$B_{ws} = 100 \times \left[\frac{9.75}{(78.38 + 9.75)} \right]$$
$$B_{ws} = 11.1\%$$

where:

ş

B _{ws}	= moisture content of the gas stream (%)
V _{m(std)}	= volume of gas collected at standard conditions (scf)
V _{w(std)}	= volume of water vapor at standard conditions (scf)
100	= conversion factor

Molecular Weight of Dry Gas Stream2

$$M_{d} = \left(44 \times \frac{\% CO_{2}}{100}\right) + \left(32 \times \frac{\% O_{2}}{100}\right) + \left(28 \times \frac{(\% N_{2})}{100}\right)$$
$$M_{d} = \left(44 \times \frac{13.6}{100}\right) + \left(32 \times \frac{6.2}{100}\right) + \left(28 \times \frac{80.2}{100}\right)$$
$$M_{d} = 30.42 lbs / lb - mole$$

Md	= molecular weight of the dry gas stream (lb/lb-mole)
%CO₂	= carbon dioxide content of the dry gas stream (%)
44	= molecular weight of carbon dioxide (lb/lb-mole)
%O2	= oxygen content of the dry gas stream (%)
32	= molecular weight of oxygen (lb/lb-mole)
%CO	= carbon monoxide content of the dry gas stream (%)
%N2	= nitrogen content of the dry gas stream (%)
28	= molecular weight of nitrogen (lb/lb-mole)
100	= conversion factor

¹ In the event that the measured moisture concentration exceeds the calculated saturation point of the stack gas, the saturated moisture values are used in all ensuing calculations.

² The remainder of the gas stream after subtracting carbon dioxide and oxygen is assumed to be nitrogen.

Molecular Weight of Wet Gas Stream

$$M_{s} = \left(M_{d} \times \left(1 - \frac{B_{ws}}{100}\right)\right) + \left(18 \times \frac{B_{ws}}{100}\right)$$
$$M_{s} = \left(30.42 \times \left(1 - \frac{11.1}{100}\right)\right) + \left(18 \times \frac{11.1}{100}\right)$$

$$M_s = 29.04 lbs / lb - mole$$

where:

Ms	= molecular weight of the wet gas stream (lb/lb-mole)
Md	= molecular weight of the dry gas stream (lb/lb-mole)
B _{ws}	= moisture content of the gas stream (%)
18	= molecular weight of water (lb/lb-mole)
100	= conversion factor

Velocity of Gas Stream

$$V_{s} = 85.49 (C_{p}) \left(\sqrt{\Delta P} \right) \sqrt{\frac{(T_{s} + 460)}{(M_{s})(P_{a})}}$$
$$V_{s} = 85.49 (0.84) (1.18) \sqrt{\frac{(326 + 460)}{(29.04)(28.67)}}$$

 $V_{s} = 82.2 \, ft \, / \, sec$

where:

Vs	= average velocity of the gas stream (ft/sec)
C _P √∆P	= pitot tube coefficient (dimensionless)
√∆P	= average square root of velocity pressures (in. H_2O) ^{1/2}
Ts	= average stack temperature (°F)
Ms	= molecular weight of the wet gas stream (lb/lb-mole)
Pa	= stack pressure absolute (in. Hg)
85.49	= pitot tube constant (ft/sec)([(lb/lb-mole)(in. Hg)]/[(°R)(in. H ₂ O)]) ^{1/2}
460	= conversion (°F to °R)

.

Volumetric Flow of Gas Stream - Actual Conditions

$$Q_{a} = 60(V_{s})(A_{s})$$
$$Q_{a} = 60(82.2)(70.9)$$
$$Q_{a} = 349,387 a c fm$$

where:

5

Qa	= volumetric flow rate of the gas stream at actual conditions (acfm)
Vs	= average velocity of the gas stream (ft/sec)
As	= area of duct or stack (ft ²)
60	= conversion factor (sec/min)

Volumetric Flow of Gas Stream - Standard Conditions

$$Q_{std} = \frac{17.64(Q_a)(P_a)}{(T_s + 460)}$$
$$Q_{std} = \frac{17.64(349,387)(28.67)}{(326 + 460)}$$
$$Q_{std} = 224,772 scfm$$

Q _{std} Qa	 volumetric flow rate of the gas stream at standard conditions (scfm) volumetric flow rate of the gas stream at actual conditions (acfm)
са Т _s Ра 17.64	 average stack temperature (°F) stack pressure absolute (in. Hg) ratio of standard temperature over standard pressure (°R/in. Hg)
460	= conversion (°F to °R)

Volumetric Flow of Gas Stream - Standard Conditions - Dry Basis

$$Q_{dstd} = Q_{std} \left(1 - \frac{B_{ws}}{100} \right)$$
$$Q_{dstd} = 224,772 \left(1 - \frac{11.1}{100} \right)$$
$$Q_{dstd} = 199,993 dscfm$$

where:

Q _{dstd}	= volumetric flow rate of the dry gas stream at standard conditions (dscfm)
Q _{std}	= volumetric flow rate of the gas stream at standard conditions (scfm)
B _{ws}	= moisture content of the gas stream (%)
100	= conversion factor

Area of Nozzle

$$A_n = \pi \times \left(\frac{d_n}{2 \times 12}\right)^2$$
$$A_n = \pi \times \left(\frac{0.205}{2 \times 12}\right)^2$$
$$A_n = 0.000229 \, ft^2$$

where: An

dn

12 2

=	area	of	nozzle	(ft2)
_	aiça	UI.		111 /

- = diameter of nozzle (in)
- = conversion factor (in/ft) = conversion factor (diameter to radius)

Percent Isokinetic

¢

ę

$$I = \frac{0.0945 (T_s + 460) (V_{m(std)})}{(P_a) (V_s) (A_n) (\Theta) \left(1 - \frac{B_{ws}}{100}\right)}$$
$$I = \frac{0.0945 (326 + 460) (78.38)}{(28.67) (82.2) (0.000229) (120) \left(1 - \frac{11.1}{100}\right)}$$

I = 101.1%

where:

1	= percent isokinetic (%)
Ts	= average stack temperature (°F)
460	= conversion (°F to °R)
V _{m(std)}	= volume of gas collected at standard conditions (scf)
Pa	= stack pressure absolute (in. Hg)
Vs	= average velocity of the gas stream (ft/sec)
An	= cross sectional area of nozzle (ft ²)
Θ	= sample time (min)
B _{wsat}	= moisture saturation point of the gas stream (%)
0.0945	= constant K ₄ (((in.Hg)(min))/((°R)(sec)))
100	= conversion factor

Acetone Wash Blank-Particulate

$$W_{a} = \frac{(m_{ab})(v_{aw})}{v_{awb}}$$
$$W_{a} = \frac{(0.0012)(99)}{226}$$

 $W_a = 0.0005g$ where:

Wa	= particulate mass in acetone wash, blank corrected (g)
m _{ab}	= mass collected, acetone wash blank (g)
Vaw	= volume of acetone wash (ml)
Vawb	= volume of acetone wash blank (ml)

Mass in Front Half, Acetone Blank Corrected

$$\begin{split} m_f &= m_{fil} + (m_a - W_a) \\ m_f &= 0.0000 + (0.0020 - 0.0005) \\ m_f &= 0.0015g \\ \text{where:} \\ m_f &= \text{mass in front half filter, and acetone wash, blank corrected (g)} \\ m_{fil} &= \text{mass in front half filter (g)} \\ m_a &= \text{mass in acetone wash (g)} \\ Wa &= \text{particulate mass in acetone wash blank (g)} \end{split}$$

Total Particulate Concentration, grains/dscf

$$C_{gr/dscf} = \frac{(M_n)(15.43)}{V_{m(std)}}$$
$$C_{gr/dscf} = \frac{(0.0015)(15.43)}{78.38}$$
$$C_{gr/dscf} = 0.000286 \, grains \, / \, dscf$$

C _{gr/dscf}	= particulate concentration (grains/dscf)
Mn	= total particulate catch (g)
V _{m(std)}	= volume of gas collected at standard conditions (scf)
15.43	= conversion factor (grains/g)

Particulate Emission Rate, lb/mmBtu 3

$$E_{PM} = \frac{(M_n)(F_d)(20.9)}{(V_{m(std)})(453.6)(20.9 - O_2)}$$
$$E_{PM} = \frac{(0.0015)(9,820)(20.9)}{(78.38)(453.6)(20.9 - 6.2)}$$

 $E_{_{PM}}=0.000569lb\,/\,mmBtu$

where:

Total Particulate Emission Rate, lb/hr

$$E_{lb/hr} = \frac{(M_n)(Q_{dstd})(60)}{(V_{m(std)})(453.6)}$$
$$E_{lb/hr} = \frac{(0.0015)(199,993)(60)}{(78.38)(453.6)}$$

 $E_{lb/hr}=0.490 lb\,/\,hr$

E _{lb/hr}	= particulate emission rate (lb/hr)
Mn	= total particulate catch (g)
V _{m(std)}	= volume of gas collected at standard conditions (scf)
Qdstd	 volumetric flow rate of the dry gas stream at standard conditions (dscfm)
60	= conversion factor (min/hr)
453.6	= conversion factor (g/lb)

³ All particulate emission rates are calculated in a similar manner.

Concentration of Hydrogen Chloride in Flue Gas (lb/dscf)

$$C_{HCL} = \frac{(M_{HCl})}{(V_{m(std)})(10^3)(453.59)}$$
$$C_{HCl} = \frac{(1.48)}{(78.38)(10^3)(453.59)}$$

Concentration of Hydrogen Chloride in Flue Gas, ppmdv

$$C_{ppmdv} = \frac{(M_{HCl})(385.3)(10^{6})}{(MW_{HCl})(V_{m(std)})(10^{3})(453.59)}$$
$$C_{ppmdv} = \frac{(1.48)(385.3)(10^{6})}{(36.46)(78.38)(10^{3})(453.59)}$$

 $C_{ppmdv} = 0.440 \, ppmdv$

where:

Cppmdv	= concentration of hydrogen chloride in flue gas (ppmdv)
M _{HCI}	= mass of hydrogen chloride collected in sample (mg)
385.3	= conversion factor (ft ³ /lb-mole)
10 ⁶	= conversion factor (ppm)
MW _{HCI}	= molecular weight of hydrogen chloride (lb/lb-mole)
V _{m(std)}	= volume of gas collected at standard temperature and pressure (scf)
10 ³	= conversion factor (mg/g)
453.59	= conversion factor (g/lb)

ŧ,

Hydrogen Chloride Emission Rate, Ib/mmBtu4

$$E_{HCl} = \frac{(C_{HCl})(F_d)(MW)(20.9)}{(20.9 - O_2)(385.3)(10^6)}$$
$$E_{HCl} = \frac{(0.440)(9,820)(36.46)(20.9)}{(20.9 - 6.2)(385.3)(10^6)}$$

 $E_{HCI} = 0.000580 lb \,/\,mmBtu$

where:

E _{HCI}	= hydrogen chloride emission rate, (lb/mmBtu)
CHCI	= hydrogen chloride concentration, (ppm)
F₀	=fuel factor (dcsf/mmBtu)
20.9	= oxygen content of ambient air (%)
%O2	= oxygen content of the dry gas stream (%)
MW	= molecular weight of hydrogen chloride (lb/lbmole)
385.3	= volume occupied by one pound gas at standard conditions (dscf/lbmole)

Hydrogen Chloride Emission Rate, lb/hr

$$E_{HCI} = \frac{(C_{ppmdv})(MW)(Q_{dstd})(60)}{385.3 \times 10^6}$$
$$E_{HCI} = \frac{(0.440)(36.46)(199,993)(60)}{385.3 \times 10^6}$$

 $E_{HCl} = 0.500 lb / hr$

where:

EHCI	= hydrogen chloride emission rate, (lb/hr)
Cppmdv	= hydrogen chloride concentration, dry basis, (ppmdv)
Q _{dstd}	= volumetric flow rate of the dry gas stream at standard conditions (dscfm)
MW	= molecular weight of hydrogen chloride (lb/lbmole)
60	= conversion factor (min/hr)
385.3	= volume occupied by one pound gas at standard conditions (dscf/lbmole)
10 ⁶	= conversion factor (fraction to ppm)

APR 24 2019

AIR QUALITY DIVISION

⁴ All lb/mmBtu calculations were performed in a similar manner.

We Energies: Marquette, MI 2019 Unit 7 Q1 MATS

APPENDIX C PARAMETERS

¢

\$

EPA Methods 1-4 Parameters	Run 1	Run 2	Run 3
ate	2/27/2019	2/27/2019	2/27/2019
tart Time	7:30	9:59	12:27
top Time	9:38	12:05	14:34
imensions of Sample Location, D_s (in)	114.0	114.0	114.0
elocity Pressure, $\Delta P^{1/2}$ avg (in. H ₂ O ^{1/2})	1.11	1.14	1.13
arometric Pressure, P _b (Inches Hg)	29.40	29.40	29.40
tatic Pressure, P _s (Inches H ₂ O)	-0.7	-0.7	-0.7
itot Coefficient, C _P	0.84	0.84	0.84
ample Location Temperature, T _s (°F)	327	332	337
olume Metered, V _m (ft ³)	79.65	82.29	81.87
teter Temperature, T _m (°F)	52.5	57.9	61.1
verage Sample Pressure, ∆H _{avg} (in. H₂O)	1.49	1.58	1.56
as Meter Correction Factor, Y _d	0.9942	0.9942	0.9942
arbon Dioxide (% dry)	13.6	13.6	13.8
exygen (% dry)	5.9	5.7	5.3
Veight of Water Collected, V _{wc} (g)	207.7	195.1	221.2
ilica Gel Net Weight, V _{wsg} (g)	19.3	17.1	15.4
Diameter of Nozzle, Dn (in)	0.210	0.210	0.210
tun Time, θ (minutes)	120	120	120
PA METHODS 1-4 RESULTS			
rea of Sample Location, A _s (ft ²)	70.9	70.9	70.9
tack Pressure Absolute (inches Hg)	29.35	29.35	29.35
olume Metered Standard, V _{m(std)} (ft ³)	80.44	82.25	81.33
olume of Water Vapor, V _{w(std)} (ft ³)	10.70	10.01	11.16
ercent Moisture, B _{ws} (%)	11.7	10.8	12.1
loisture Saturation Point, B _{wsat} (%)	100	100	100
ry Molecular Weight, M _d (lbs/lb mole)	30.42	30.41	30.43
/et Molecular Weight, M _s (lbs/lb mole)	28.96	29.06	28.93
as Velocity, V _s (ft/sec)	77.0	78.8	78.7
verage Flowrate, Q _a (acfm)	327,487	335,212	334,656
tandard Flowrate, Q _{std} (scfm)	215,520	219,234	217,497
ry Standard Flowrate, Q _{dstd} (dscfm)	190,287	195,535	191,337
rea of Nozzle, A _n (ft ²)	0.000241	0.000241	0.000241
okinetics (%)	103.9	103.4	104.4
xygen-based Fuel Factor, F _d , (dscf/MMBtu)	9,820	9,820	9,820
ront-Half Particulate (g)	0.0004	0.0008	0.0004
oncentration (grains/dscf)	0.0000847	0.000152	0.0000785
mission Rate, Fd (lb/mmBtu)	0.000165	0.000294	0.000148
mission Rate (lb/hr)	0.138	0.255	0.129
ydrogen Chloride (mg)	1.76	1.60	1.45
ydrogen Chloride Concentration (lb/dscf)	4.82E-08	4.29E-08	3.93E-08
ydrogen Chloride Concentration (ppmdv)	0.510	0.453	0.415
ydrogen Chloride Emission Rate, F _d (lb/MMBtu)	0.000659	0.000580	0.000518
lydrogen Chloride Emission Rate (lb/hr)	0.551	0.503	0.451

We Energies: Marquette, MI 2019 Unit 7 Q1 MATS

APPENDIX D FIELD DATA PRINTOUTS

v

9

Method 5-26A	
Field Data Entry	

Project No. 023AS-554128

Project Number	023AS-554128
Client	We Energies
Plant	Presque Iste, MI
Location	Unit 7
Date	2/27/2019
Meter ID	M-28
Yd	0.9942
Pilot C.	0.84

Nozzle Diameter (in)	0.210
Filter ID	31820
Train Type	IMP
Train ID	IMP-14
P ₆ (Inches Hg)	29.40
P, (Inches H ₂ O)	-0.7
Start Time	7:30
Stop Time	9:38

Place an "x" in the appropriate Box

Circular?	x
Rectangular?	
Diameter	114
Length	
Width	

Moisture	Tare Wt	Final Wt	Net Wt
	(9)	(g)	(9)
mpinger 1	743.3	983.8	240.5
mpinger 2	742.3	754.5	12.2
mpinger 3	601.0	606.0	5.0
DI Rinse			-50.0
Silica Gel	754,5	773.8	19.3
Neight of W	ater Collecte	d, V _{we} (9)	207.7
Silica Gel Ne	n Weight, V.,	" (9)	19.3

Analyzer	%CO2	%CO2+%O2	%O ₂
Trial 1	13.6	19.6	6.0
Trial 2	13.7	19.5	5,8
Trial 3	13.6	19.4	5.8
Average	13.6	NA	5.9

	Min/Pt 10	Velocity Pressure	Orifice Setting	Gas Sample Volume	Stack	DGM	DGM	Square	Stack Gas	Volume Metered	
Traverse	Elapsed	۸P	4 H	Initial (ft ²)	Temp.	Inlet	Outlet	Root	Velocity	Vmstd	Isokinetics
Point	Time	(in, H _z O)	(in, H _z O)	890.72	(°F)	(°F)	(°F)	ΔP	Vs (fl/sec)	(በ ግ	(%)
1-1	10	1.50	1.80	898.12	330	43	43	1.225	84.8	7.620	107.7
1-2	20	1.30	1,50	904.81	328	48	44	1,140	78.8	6,843	103,7
1-3	30	0.83	1.00	910.19	326	53	45	0,911	62,9	5,463	103.5
2-1	40	1.70	2.00	917.88	328	55	46	1,304	90.2	7,806	103.5
2-2	50	1.40	1.70	925.01	327	57	48	1.183	81.8	7.204	105.2
2-3	60	0.92	1.10	930,75	326	58	49	0.959	66.2	5,779	104,0
3-1	70	1.60	1.90	938.32	328	58	50	1.265	87.5	7.630	104,3
3-2	80	1.20	1.40	944.81	325	60	51	1.095	75.6	6.514	102.6
3-3	90	0.88	1.00	950.34	325	59	52	0.938	64.7	5,545	102.0
4-1	100	1.60	1.90	957.84	326	60	52	1,265	87.4	7,530	102.8
4-2	110	1.30	1.50	964.60	326	60	54	1,140	78.7	6.767	102.5
4-3	120	0,90	1.10	970,37	325	61	53	0,949	65,5	5,770	104,9

Totals and Averages								
120	1.49	79.65	327	52.5	1.115	77.0	80.44	103.9

Method 5-26A	
Field Data Entry	

Project No. 023AS-554128

.

Project Number	023AS-554128
Client	We Energies
Plant	Presque Isle, MI
Location	Unit 7
Date	2/27/2019
Meter ID	M-28
Ya	0.9942
Pitot C.	0.84

Nozzle Diameter (in)	0.210
Filter ID	31821
Train Type	IMP
Train ID	IMP-14
P _b (Inches Hg)	29,40
P. (Inches H ₂ O)	-0.7
Start Time	9:59
Stop Time	12:05

Place an "x" in the appropriate Box

Circular?	х
Rectangular?	
Diameter	114
Length	
Width	

Moisture	Tare Wt (g)	Final Wt (g)	Net Wi (g)
Impinger 1	735.0	965.9	230,9
Impinger 2	580.6	592,1	11.5
Impinger 3	591.4	594.1	2.7
DI Rinse			-50.0
Silica Gel	770.8	787.9	17.1
Weight of W	ater Collecter	1, V _m (9)	195,1
Silica Gel Ne	t Weight, V.,	n (g)	17,1

Analyzer	%CO₂	%CO2+%O2	%O ₂
Trial 1	13.8	19.8	6.0
Trial 2	13.4	19.0	5.6
Trial 3	13.6	19.2	5.6
Average	13.6	NA	5.7

	Min/Pt 10	Velocity Pressure	Orifice	Gas Sample Volume	Stack	DGM	DGM	Square	Stack Gas	Volume Metered	
Traverse	Elapsed	AP	۵H	Initial (ft ²)	Тепр.	Inlet	Outlet	Root	Velocity	Vinstd	Isokinetics
Point	Time	(in. H ₂ O)	(in. H ₂ O)	970,80	(শ্ৰ	CE	(°F)	۸P	Vs (ft/sec)	ന്ത്	(%)
4-1	10	1.60	1.90	978.34	329	52	53	1,265	87.5	7.622	104.2
4-2	20	1.40	1.70	985.58	330	58	54	1.183	81.9	7.265	106.3
4-3	30	0.92	1.10	991.37	329	61	53	0.969	66.4	5,790	104.4
3-1	40	1.70	2.00	999.11	331	60	54	1.304	90.3	7.758	103.0
3-2	50	1.40	1.70	1006,35	331	62	54	1.183	82.0	7,237	105.9
3-3	60	0.90	1.10	1012.09	332	62	55	0.949	65.8	5,724	104.6
2-1	70	1.70	2.00	1019.93	332	61	55	1.304	90.4	7.843	104.2
2-2	80	1.50	1.80	1027.35	333	63	55	1.225	85.0	7.405	104.8
2-3	90	0.93	1.10	1032.98	332	63	55	0.964	66.9	5.609	100.8
1-1	100	1.50	1.80	1040.30	334	62	56	1.225	85.0	7.305	103,5
1-2	110	1.40	1.70	1047.48	333	66	56	1.183	82.1	7.136	104.6
1-3	120	0.86	1.00	1053.09	333	64	56	0.927	64.3	5.577	104,3

Totals and Averages								
120	1.58	82.29	332	57.9	1.139	77.0	80.44	103.4

Method 5-26A
Field Data Entry

Project Number	023AS-554128
Client	We Energies
Plant	Presque Isle, MI
Location	Unit 7
Date	2/27/2019
Meter (D	M-28
Yd	0.9942
Pitot Ca	0.84

Nozzle Diameter (in)	0.210
Filter ID	31825
Train Type	IMP
Train ID	IMP-14
P _b (Inches Hg)	29.40
P. (Inches H ₂ O)	-0.7
Start Time	12:27
Stop Time	14:34

Place an "x" in the appropriate Box

Circular?	х
Rectangular?	
Diameter	114
Length	

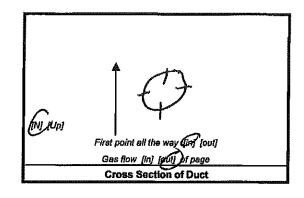
Moisture	Tare Wt	Final Wt (g)	Net Wt (g)
Impinger 1	(g) 751.6	1002.0	250,4
impinger 2	711.0	726.9	15.9
Impinger 3	605.0	609.9	4.9
DI Rinse			-50,0
Silica Gel	773.4	788.8	15.4
Weight of W	ater Collecte	d, V _{wa} (g)	221.2
Silica Gel Ne	nt Weight, V.,	_{ng} (g)	15,4

Analyzer	%CO2	%CO2+%O2	%O ₂
Trial 1	13.8	19.2	5,4
Trial 2	13.8	19,2	5.4
Trial 3	13.9	19.1	5.2
Average	13,8	NA	5,3

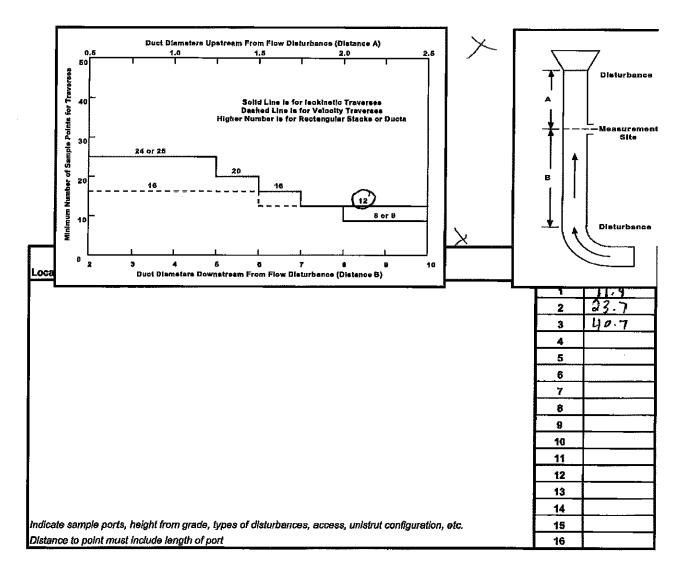
	Min/Pt 10	Velocity Pressure	Orifice Setting	Gas Sample Volume	Stack	DGM	DGM	Square	Stack Gas	Volume Metered	
Traverse	Elapsed	ΔP	۸H	Initial (ft ³)	Temp.	Inlet	Outlet	Root	Velocity	Vmstd	Isokinetics
Point	Time	(in H ₂ O)	(in. H ₂ O)	53.37	(°F)	(°F)	(°F)	۸P	Vs (ft/sec)	(¶ ³)	(%)
1-1	10	1.50	1.80	60.69	340	56	56	1,225	85.3	7.347	104.5
1-2	20	1.40	1.70	67.93	338	64	56	1.183	82.3	7,209	106.0
1-3	30	0,86	1.00	73.44	338	64	57	0.927	64.5	5,472	102.6
2-1	40	1.70	2.00	81.83	337	62	57	1.304	9D,7	8,369	111.6
2-2	50	1.50	1.80	88.51	338	65	57	1.225	85.2	6.641	94.3
2-3	60	0.90	1.10	94.36	336	66	57	0,949	65.9	5,800	106.2
3-1	70	1.70	2,00	102.12	336	65	58	1.304	90.6	7.711	102.7
3-2	80	1.30	1.60	109.18	335	67	58	1.140	79.2	6.995	106.5
3-3	90	0.90	1.10	114.90	335	67	58	0,949	65.9	5.660	103.6
4-1	100	1.60	1.90	122.52	336	66	58	1.265	87.9	7.562	103,9
4-2	110	1.30	1.60	129.46	335	67	59	1,140	79.2	6.869	104.6
4-3	120	0.93	1.10	135.24	335	67	59	0.964	67.0	5.714	102,9

Totals and Averages								
120	1.56	61.87	337	61.1	1.131	77.0	80.44	104.4

We Energies: Marquette, MI 2019 Unit 7 Q1 MATS


APPENDIX E FIELD DATA

EPA Method 1 Sample and Velocity Traverses Datasheet


LOCATION	il n't	7
LOCATION	00.11.1	

Client	I P PP	
Project No: 55412		8
Plant	m Grahe ++	e, mI
Date	3-12-111	9.
Technician	13R	
Duct Dlameter	'(in.)	11.4
Port Diameter	(în.)	
Port Length (ii	r.)	1.0
Port Type		mole flonge
Distance A (ft)		99.75' (1,197")
Distance B (ft)		150.1' (1,801.2)
Distance A (Du	uct Dlameters)	10.5
Distance B (Dı	ct Diameters)	15.8

E

For rectangular ducts

General Testing Datasheet

METHOD NO. 5/26A RUN NO. Page of 1 WE ENERGIES Client 29.4 Barometric (in. Hg) Water (ml) (g) Plant MESQUE ISIE MI Amblent Temp. (⁰F) 29 Silica gel (g) Location ViT Static (in. H₂O) ~ - 70 Total Vic 2-27-19 Project No. Date AE5-4-9 Probe ID Liner Type GiA55 °5¥ Meter Operator Nozzle ID 310 Nozzle Dia (in.) .31Ö Be **Probe Operator** Filter ID 31820 ,99437 .8. M-28 Meter ID Yd Pitot Cp [N])[Up] Train ID TB Train Type IMP ∆H@ .895 KF 19 Leak check ~ First point all the way (in) [out] Duct Dim. (in.) 110 44 Port Lgth. (in.) (). CCC [cfm])[lpm] @ Pre Leak Check 19 (inHg) Gas flow [in] (out) of page 0.000 (cfm) [lpm] @ Post Leak Check 17 (inHg) **Cross Section of Duct** Start Time ന്ദാ Stop Time 0938 Velocity Min/Point Orlfice Gas Sample Probe Filter Impinger DGM DGM J/A Setting 30 Pressure Volume Stack Temp Temp Outlet inlet Auxiliary Outlet Pump ΔΡ ΔH Traverse Elapsed Initial [f³] [l] (°F) (°F) Temp Temp Temp Temp Vacuum Temp (in H₂O) 890.12 (⁸F) 250 Point Time $(in H_2O)$ 250 (⁰F) (⁰F) (⁰F) (in Hg) (°F) Notes 898.12 10 · R 330 40 - 1 わちい 42 43 5 20 3 Э 18i 327 48 44 5 1. Qod 254 40 30 3 033 O - 19 910 3960 ふくく 249 41 52 U 45 2-1 40 1.7 2.0 917 8 350 30 Z ລຽ 41 55 46 ۵ 50 ,ς 250 251 1,4 ٦. ٢ 925 :0 48 57 41 < ろ 92 930 (cD 25 42 යා 58 JÁ າ5 Ч 250 3-6 70 1.9 A 38 22 250 43 58 50 9 251 6 80 Э 946 43 a 250 5 1:4 25 (0 53 3 88 90 990 2SI 25) 14 4 .0 ·34 22 i-1 250 ,9 9 iM 10 326 ରମ୍ଭ 43 50 10 60 2 1+3 HO 964 ふらう 250 03 (£ 54 5 3 IN 190 970 53 325 251 251 いろ 4 V ta \ (AD) 13314 129 3920 R 1051 12.2 Total 587 THISKI BOR Average 320-71 46

Circle correct bracketed [] units

023AS-554128-RT-343

36

õ

95

1

Train Type denotes impingers, knockouts, etc.

General Testing Datasheet

METHOD NO. 5/26A

37 of 95

RUN	NO	Q				METHOD	NO	5/3	<u>XoA</u>		-		F	age (of ì
Client	U)	E ENE	2615-	>	-	[Barometri	ic (in. Hg)	29.4	Water (mi) (g)	
Plant	R	esou	ह र्म्स	E, MI	_	ľ					Ambient 1	[emp. (⁰ F)	38	Silica gel (g)	_
Location	U N	シドフ		-				i			Static (In.	H₂O)	70	Total Vic	
Date	a	<u>27-19</u>	Proje	ct No.			1 a				Probe ID		AE5-4-9	Liner Type	6435
Meter Ope	erator	3×		•			1 ¹¹ ~1	(F-		Nozzie ID		20	Nozzle Dia (in.)	6
Probe Op	erator	BR				l		\checkmark			Filter ID		31821		
Meter ID	M-3		,994	- Pitot Cp	.84			3			Train ID		IB-1	Train Type	IMP
∆H@	1.89		1,20		<u>.k</u>	1	First poin	t all the way	io] [out]		Duct Dim.	. (in.)	114"	Port Lgth. (in.)	` ``
Pre Leak			Cfm Jlpm		(inHg)		Gas flo	w [in] 600	of page						
Post Lea	Check	0.000	cfmi)(lpm		(inHg)		Crose	Section of	f Duct		Start Time	<u> </u>	0959	Stop Time	1205
	Min/Point	Velocity	Orifice	Gas Sample		Probe	Filter	Impinger	DGM	DGM	ł	NA			
	10	Pressure	•	Volume	Stack	Temp	Temp	Outlet	iniet	Outlet	Pump	Annullary			
Traverse	Elapsed	ΔP	ΔH	Initial [f ²] [l]	Temp	(⁰ F)	(⁰ F)	Temp	Тетр	Temp	Vacuum	Temp			
Point	Time	(in H ₂ O)	(in H ₂ O)	970,80	(°F)	250	390	(^e F)	(⁰ F)	(⁰ F)	(in Hg)	(°F)	Notes		
4-1	10	1.6	1.9	918.34	329	255	255	39	52	53	5				
3	<u>.</u> 20	1:4	1.7	985.58	330	351	250	43	58	54	15				
3	30	.92	1.1	991.37	329	250	249	44	Col	53	<u> </u>				
3-1	40	17	20	999,11	331	250	249	45	(0)	54,	6				
2	50	1.4		1006.35	331	253	250	42	69	54	6				
3	60	,90	1.1	1012.09	332	251	250	Чž	63	55	4		<u> </u>		
a-1	00	17	20	1019.93	332	251	250	48	6	55	10	 			
<u></u> 2	1	1.5	1.8	1027.35	333	350	250	51	63	55_	<u>[4</u>			<u> </u>	
3		.93	1.1	1032.98	333	251	250	21	· 63	<u>_55</u> _	<u> </u>				
1-1	100	15_	1.8	1040.30	334	851	350	51	62	54	6				
2	110	1.4_	1.7	1047.42	333	352	251	57	66	150	<u> (</u> -			·	
3	130	86	1.0	1053.09	333	252	250	52	64	50	4				
Total	130		18.9	(83,29)	3919	ł.			134	<u>4656</u>	4				
Average		(1.137	(1.515)		331.58	<u> </u>		_	<u>(51</u>	<u>,92)</u>				<u> </u>	

Circle correct bracketed [] units

Train Type denotes impingers, knockouts, etc.

General Testing Datasheet

METHOD NO. 5/240A

DUM NO

RUN	NO	3				METHOD	NO	5/2	<u>6</u> A		•		Pa	age	of /
Client	1.56	E ENER	21.155								Barometri	ic (in. Ha	29,4	Water (mi) (g)	
Plant	100	SOUE	ISLE	E, MI				h,			Amblent 1			Silica gel (g)	
Location		シュアフ						L	-		Static (In.		70	Total Vic	
Date		27-19	Proje	ct No.			†),		Probe ID			Liner Type	GIAS
Meter Ope		BK					4	4	1		Nozzie ID		. 210	Nozzle Dia (in.)	6125 10
Probe Ope		BF	· · · · · · · · · · · · · · · · · · ·				-(\sim	-		Filter ID		31825		
Meter ID	N-2		,999	2. Pitot Cp	.84	(N) IUPI		•	2		Train ID		IB-14	Train Type	IMP
∆H@	1.89		1.19				First poin	t all the way(🕞 jouti		Duct Dim.	. (in.)	_114"	Port Lgth. (in.)	7"
Pre Leak (Check	0.00	(cfp) [ipm	1@ (9	(inHg)		Gas fo	w lin lout o	of page				· · · · · · · · · · · · · · · · · · ·		
Post Leak	Check		(fm) [ipm		(inHg)		Cross	Section of	f Duct		Start Time	e	1.1297	Stop Time	1434
			_												
	Min/Point	Velocity	Orifice	Gas Sample		Probe	Filter	Impinger	DGM	DGM		Na			
{	B	Pressure	71	·	Stack	Temp	Temp	Outlet	Inlet	Outlet	Pump	-Auxiliar	y		
Traverse	Elapsed	AP		[•] Initiai [f ³] [l]	Temp	<u>(</u> ⁰F)	(⁰ F)	Temp	Temp	Temp	Vacuum	Temp			-
Point	Time	(in H ₂ O)		<u>a 053.31</u>	(°F)	250	250	([®] F)	(⁰ F)	(^⁰ F)	(In Hg)	(⁰ F)	Notes		
1-1	10	15	1.8	060.69	340		248	41	56	56	5				
2	20	1.4	1.7	067.93	338	250	255	40	64	50	5				
3	Ŷ	.80	1.0	073,44	<u>338</u>	330	251	42	_હ્ય	57	4				
3-1	40	1.7	2.0	081.83	337	<u>851</u>	250	47	62	5					
3	50	1.5	1.8	088.51	<u>338</u>	252	351	45	65	57	5	<u>↓ </u>			
3	W	.90	1.1	094.36	336	251	<u>250</u>	410	(do	57	<u>4</u>		-		
3-1	10	1.7	2.0	102.13	336	251	249	46	65	500	5		- <u> </u>		
2	80	1.3	1.6	109.18	375	357	1250	47	67			↓_ {			·
3	90	.90	111	114,90	335	251	250	47	5	-58_	<u> </u>	┝╌┟──			
4-1	100	1.6	1.9	123.53	336	251	230	47	<u>ما ما</u>	58	5	┢╾╿──			
2	10	1.3	1,6	129.46	335	350	352	48	67	<u> </u>			- 		
	120	.93	1.1	135,24	335	251	350	48	67	59	<u> </u>	<u> </u>	<u> </u>		
Total	130	13.515	18:1	(81.87)	4039	Ł			176	690	4				
Average		(1.1312	<u>e1.550</u>	<u></u>	236-58	P			(61.0	<u> </u>	<u> </u>				

Circle correct bracketed [] units

Train Type denotes impingers, knockouts, etc.

38 of 95

Impinger Weights Datasheet

ркојест NO.____5 54128

ĸ

Client	pipp
Plant	marquette, aut
Location	un 1 7
Date	2.127119 Unit
Operator	BR

Run No.		7				
Method No.	5120A	Train ID	113-14	Filter No.	31820	
	Contents	Tare with Contents (g)	Final (g)	Total (g)	Notes	-
Impinger No. 1	to Haso4	743.3	983.8	2110 5		
Impinger No. 2	H2504	742.3	7545	12.12		
Impinger No. 3	MT	601.0	606.0	5.0		
Impinger No. 4	Silice	754.5	773.8	17.3		
Impinger No. 5						
Impinger No. 6						
Impinger No. 7						
Additional Rinse				SUN PIRK		
			Net Weight (g)	226.92	·····	

Run No.					
Method No.	5126A	Train ID	173-1	Filter No.	31821
	Contents	Tare with Contents (g)	Final (g)	Total (g)	Notes
Impinger No. 1	H2504	735.0	965.9	230.9	
Impinger No. 2	42504	580.6	59.2.1	11.5	
Impinger No. 3	MT	591.4	524.1	a,7	
Impinger No. 4	Silila	170.8	7877	17.1	
Impinger <u>No. 5</u>					
Impinger <u>No.</u> 6					
Impinger <u>No.</u> 7					
Additional Rinse				Seni DIR. Se	
			Net Weight (g)	212.2	

Run No.	3				
Method No.	51264	Train ID	18-14	Filter No.	31825
	Contents	Tare with Contents (g)	Final (g)	_Total (g)	Notes
Impinger No. 1	H2.504	751.0	1002.0	250.4	
Impinger No. 2	Hasoci	711.0	726.9	15.9	
Impinger No. 3	MT	605.0	609.9	4.9	
Impinger No. 4	Silica	773.4	788.8	15.4	
Impinger No. 5					
Impinger No. 6					
Impinger No. 7					
Additional Rinse				Sont OI Ringe	
			Net Weight (g)	236.6	

Page] of [

EPAMethod 3

Orsat Analyzer Datasheet

Page of

Cilent	0:00		
Plant	morguesse, MI	Project Number	594128
Location	lin't y	Date	3/27119
Analyzer Type	ORSAX	Leak Check	0.000

F_O= (20.9-O₂%) CO₂%

Run No.	Trial No.	%CO2	%CO2+%O2	%O ₂	Anaiyst	Date	Tíme
Amblent Air	Check	D	20.8	20.8			
Run No.	Trial No.	%CO2	%CO2+%O2	%O ₂	Analyst	Date	Time
1 J	. 1	13.6	19.6	6.0		2127119	
	2	13.7	19.5	5.8			· · · · · · · · · · · · · · · · · · ·
	3	13.6	19.4	58			
	Average						
Run No.	Trial No.	%CO2	%CO2+%O2	%O ₂	Analyst	Date	Time
2	1	13.8	19.9	6.0		2/27/19	
	2	13.4	19.0	5.6			
	3	13.6	19.2	5.6			
	Average						
Run No.	Trial No.	%CO ₂	%CO2+%O2	%O ₂	Analyst	Date	Time
3	1	13.8	19.2	5.4		2127/19	
	2	13.8	19.2	5.4			
	3	13 9	19.1	5.2			
	Average						
Run No.	Trial No.	%CO2	%CO2+%O2	%O2	Analyst	Date	Time
	1						· · · · · · · · · · · · · · · · · · ·
	2					<u>ان سور م</u>	
	3						
	Average						
Run No.	Trial No.	%CO ₂	%CO2+%O2	%O ₂	Analyst	Date	Time
	1						
	2						
Г	3			-			
	Average						
Run No.	Trial No.	%CO2	%CO2+%O2	%O ₂	Analyst	Døte	Time
	1						
	2					<u>.</u> <u>.</u>	
	3						
	Average						
Run No.	Trial No.	%CO2	%CO2+%O2	%O2	Analyst	Date	Time
	1						
	2						
	3						
	Average						
Run No.	Trial No.	%CO2	%CO ₂ +%O ₂	%O ₂	Analyst	Date	Time
	1						
	2						
	3		[
	Average						

Notes:

Run an ambient air check to verify Oxsorb. Measurements must be made to the nearest 0.2%. Three different trails should be performed for each sample. The differences between the trials must not be greater than 0.2% overall. Expected F_o Ranges

Wood Bark	1.000-1.120	Residual Oil	1.210-1.370
Anthracite/Lignite	1.015-1.130	Distillate Oil	1.260-1.413
Municipal Waste	1.043-1.177	Nat. Gas	1.600-1.836
Bituminous	1.083-1.230		

4

MONTROSE AIR QUALITY SERVICES, LLC EPA Method 2 **Cyclonic Flow Traverse Datasheet**

Client	Pipp		
Project No.	554128		
Plant	morgaette, r	n 5	
Location	45+ 7,8,9	Duct size (in)	114
Date	8122777	Port Length (in)	7
Probe ID	AE2-6-1	S Pitot Cp	· 8 4

									Page	<u> [</u>	of /
Client		199				7					
Project N		55412	\$			1					
Plant		icruse 44				1					
<u>_</u>		45+ 7,4			114	-		[≜	ہر	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Location		313277			7	1				Ĺ	7
Date Probe ID	* 5		H7 Port Ler - /3 Pitot Cp			1		1		\mathcal{O}	
FIODEID	AT E	<u>-1x - v</u>	- rannot op		- 8 4			À.		-(
								(INIJUP)			
									First point all (
								<u> </u>	Gas flow [in]		
Gent 1	77	2/27/	19	ι	NNI 8	212	17119		Cross Sec	tion of Due	
·····		1	1	1						7 7	2128/19
<u>Run Num</u>			<u> </u>	Run Nurr					umber	<u> </u>	/ =
Start Tim	······	7:		Start Tim		08:0		Start 1		07:	
Stop Time		71',		Stop Tim		08.		Stop 7		07:	
Barometr		29		Barometi	يور سگان کار کار ک	29.			ietric (inHg)	29.1	<u>/ ·</u>
Static (inl		1-0	<u>}</u>	Static (In		-0.	7		(InH2O)	0.7	
Probe Op		<u>qt</u>		Probe Op		70			Operator	30	
Data Reco		BR	·	Data Rec		BR			ecorder	BB	
Pre Leak		//	/	Pre Leak		<u> </u>			ak Check		
Post Leak	1	<u> </u>	/	Post Leal		V	r	Post L	eak Check		
	Pressure	Angle	1	1	Pressure	Angle	1		Pressure	Angle	
Traverse		α (100%)	i	Traverse	- • • ·	α		Trave	· · · ·	α	
Point	(in H ₂ O)	(< 20°)	Notes	Point	(in H ₂ O)	(< 20 ⁰)	Notes	and the second se		(< 20 [₽])	Notes
101	104	8.6		1- [102	4.7	 	<u> - </u>	102	4.6	
2	102	7.4		2	.02	5.6	ļ			1.4	
3	201	1.2	·	3	.01	5.2	 _	$-\frac{3}{2}$	0	ð	
2-1	105	9.1	┣━━───	<u>a-1</u>	101	3.8	<u> </u>	2-1	,04	10.7	
2	.03	8.3	ļ	2	0	0	ļ	2	1.03	9.6	
<u> </u>	101	44		3	101	2.6			.03	8.4	
2-1	20 Q	9.2	<u> </u>	3-1	102	4.5		3-1	·03	9.4	
2	183	1.6	L	2	.01	5.8	l	2	.03	7.1	
<u> </u>	,03	8.1	<u> </u>	3	101	7,4	L	3	.02	7.2	
4-1	103	57		4-1	102	7-5		4.1	.02	6.6	
2	.02	6.3	l	3	.02	6.3	<u> </u>	<u></u> 2	-01	3.2	
3	.03	7.0		3	.0]	6.9		3	0	0	
				· ·			L				
							Ļ				
					L						
							L				
										-	
			······································								
otal		88.9				60.3 5.02		Total		74.2 6.2	

We Energies: Marquette, MI 2019 Unit 7 Q1 MATS

APPENDIX F LABORATORY DATA

