Formaldehyde Air Emissions Testing of

Reciprocating Internal Combustion Engines EURC011 and EURC012

Reed City Compressor Station

7677 230th Avenue Reed City, Michigan 49677 SRN: B3721

RECEIVED

APR 2 1 2015

AIR QUALITY DIV.

Prepared for TransCanada Houston, Texas

Bureau Veritas Project No. 11015-000003.00

April 14, 2015

Move Forward with Confidence

Bureau Veritas North America, Inc. 22345 Roethel Drive Novi, Michigan 48375 248.344.2661 http://www.us.bureauveritas.com/hse

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY AIR QUALITY DIVISION

RENEWABLE OPERATING PERMIT REPORT CERTIFICATION

Authorized by 1994 P.A. 451, as amended. Failure to provide this information may result in civil and/or criminal penalties.

Reports submitted pursuant to R 336.1213 (Rule 213), subrules (3)(c) and/or (4)(c), of Michigan's Re must be certified by a responsible official. Additional information regarding the reports and docume for at least 5 years, as described in General Condition No. 22 in the RO Permit and be made availa Quality, Air Quality Division upon request.	newable Operating (RO) Permit program entation listed below must be kept on file able to the Department of Environmental
Source Name ANR Pipeline Company, Reed City Compressor Station	County Osceola
Source Address 7677 230 th Avenue City	Reed City
AQD Source ID (SRN) B3721 RO Permit No. MI-ROP-B3721-2014	RO Permit Section No. 1
Please check the appropriate box(es):	
Annual Compliance Certification (General Condition No. 28 and No. 29 of the RO Per	mit)
 Reporting period (provide inclusive dates): From To 1. During the entire reporting period, this source was in compliance with ALL terms and condition of which is identified and included by this reference. The method(sis/are the method(s) specified in the RO Permit. 2. During the entire reporting period this source was in compliance with all terms and condition of which is identified and included by this reference, EXCEPT enclosed deviation report(s). The method used to determine compliance for each term and the RO Permit, unless otherwise indicated and described on the enclosed deviation report(s). 	onditions contained in the RO Permit, s) used to determine compliance onditions contained in the RO Permit, f for the deviations identified on the d condition is the method specified in s).
 Semi-Annual (or More Frequent) Report Certification (General Condition No. 23 of the Reporting period (provide inclusive dates): From	e RO Permit) ements in the RO Permit were met nents in the RO Permit were met and for the deviations identified on the
Other Report Certification Reporting period (provide inclusive dates): From <u>4/14/2015</u> To Additional monitoring reports or other applicable documents required by the RO Permit are att Replacement of NSCR on units EURC012 & EURC013 per Op. Permit, Part	ached as described: D, Section V
I certify that, based on information and belief formed after reasonable inquiry, the statements supporting enclosures are true, accurate and complete.	and information in this report and the

Randy Schmidgall	Vice Pres. US Pipeline Op.	(832) 320-5511
Name of Responsible Official (print or type)	Title	Phone Number
Rindilla Amilia	04/17/2	815-
Signature of Responsible Official	·	Date

i

RECEIVED

APR 2 1 2015

AIR QUALITY DIV.

Executive Summary

TransCanada retained Bureau Veritas North America, Inc. to test air emissions at the ANR Pipeline Company Reed City Compressor Station at 7677 230th Avenue in Reed City, Michigan. ANR operates reciprocating internal combustion engines (RICE) to compress natural gas for transport via natural gas pipeline. The purpose of the emission test program was to evaluate compliance with National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (40 CFR Part 63, Subpart ZZZZ) and Michigan Department of Environmental Quality (MDEQ) Renewable Operating Permit MI-ROP-B3721-2014. Formaldehyde emissions were measured at the inlet and outlet of the catalysts of two engines.

The engines are listed under flexible groups FGRC001 and FGMACTZZZZ of the permit. The relevant emission standard is presented below:

Pollutant	Limit	Equipment	USEPA Method	Applicable Requirement
Formaldehyde	Reduce formaldehyde emissions by 76% or more.	EURC011 EURC012	3A and 320	40 CFR Part 63, Subpart ZZZZ

Emission Standard

The testing was completed in accordance with United States Environmental Protection Agency (USEPA) Reference Methods 3A and 320. The testing was conducted on February 26, 2015, and consisted of three 60-minute test runs at each source to measure formaldehyde concentrations.

Detailed results are presented in Tables 1 and 2 after the Tables Tab of this report. The results of the testing are summarized in the table on the following page.

Formaldehyde Emission Results **Compared to Permit Emission Limits**

Date (2015)	Source ID	Parameter	Units	Average Result	Emission Limit		
EURC011 Formaldehyde Removal Efficiency Testing							
		0 ₂	%	0.42	N/A		
Feb. 26	EURC011 Inlet	Formaldehyde	ppmvd	3.9	N/A		
		Formaldehyde	ppmvd at 15% O ₂	1.1	N/A		
		0 ₂	%	0.37	N/A		
Feb. 26	EURC011 Outlet	Formaldehyde	ppmvd	0.24	N/A		
		Formaldehyde	ppmvd at 15% O ₂	0.07	N/A		
Formaldehyde Removal Efficiency			%	94	≥76		
EURC01	2 Formaldehyde Removal Efficiency	Testing					
		O ₂	%	0.41	N/A		
Feb. 26	EURC012 Inlet	Formaldehyde	ppmvd	23,1	N/A		
		Formaldehyde	ppmvd at 15% O ₂	6.6	N/A		
		O ₂	%	0	N/A		
Feb. 26	EURC012 Outlet	Formaldehyde	ppmvd	0.40	N/A		
		Formaldehyde	ppmvd at 15% O ₂	0.11	N/A		
Formaldehyde Removal Efficiency			%	98	≥76		

O₂ = oxygen N/A not applicable ppmvd = part per million by volume, dry basis

The measurements demonstrate that the EURC011 and EURC012 engines were operating within the allowable limit.

1.0 Introduction

TransCanada retained Bureau Veritas North America, Inc. to test air emissions at the ANR Pipeline Company Reed City Compressor Station at 7677 230th Avenue in Reed City, Michigan. ANR operates reciprocating internal combustion engines (RICEs) to compress natural gas for transport via natural gas pipeline. The purpose of the emission test program was to evaluate compliance with National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (40 CFR Part 63, Subpart ZZZZ) and Michigan Department of Environmental Quality (MDEQ) Renewable Operating Permit MI-ROP-B3721-2014. Formaldehyde emissions were measured at the inlet and outlet of the catalysts of two engines.

1.1 Summary of Test Program

The testing was completed in accordance with United States Environmental Protection Agency (USEPA) Reference Methods 3A and 320. Three 60-minute test runs were performed on February 26, 2015, to measure formaldehyde concentrations in part per million by volume, dry basis (ppmvd) corrected to $15\% O_2$. The inlet and outlet corrected formaldehyde concentrations were used to calculate the formaldehyde removal efficiency.

1.2 Purpose of Testing

The purpose of the emission test program was to evaluate compliance with 40 CFR Part 63, Subpart ZZZZ by measuring the oxygen (O_2) and formaldehyde concentrations from the two engines upstream and downstream of the engine catalysts. The engines are listed under flexible groups FGRC001 and FGMACTZZZZ of MDEQ air permit MI-ROP-B3721-2014. The relevant emission standard is presented in Table 1-1.

Pollutant	Limit	Equipment	USEPA Method	Applicable Requirement
Formaldehyde	Reduce formaldehyde emissions by 76% or more.	EURC011 EURC012	3A and 320	40 CFR Part 63, Subpart ZZZZ

Table 1-1Emission Standard

1.3 Contact Information

Contact information is listed in Table 1-2. Mr. Brian Young, Senior Project Manager with Bureau Veritas, led the emission testing program. TransCanada provided process coordination and arranged for facility operating parameters to be recorded. The testing was witnessed by Messrs. Jeremy Howe and Kurt Childs, Environmental Quality Analysts with MDEQ.

TransCanada	Bureau Veritas
Pedro Amieva	Brian Young
US Plant Reliability	Senior Project Manager
TransCanada	Bureau Veritas North America, Inc.
717 Texas Street	22345 Roethel Drive
Houston, Texas 77002	Novi, Michigan 48375
Telephone: 832.320.5839	Telephone: 248.344.3020
pedro_amieva@transcanada.com	Facsimile: 248.344.2656
	brian.young@us.bureauveritas.com
Steve Marsh	
TransCanada	
7677 230 th Avenue	
Reed City, Michigan 49677	
Telephone: 231.832.7728	
steve_marsh@transcanada.com	
Michigan Department of	of Environmental Quality
Jeremy Howe	Kurt Childs
Environmental Quality Analyst	Environmental Quality Analyst
Air Quality Division – Cadillac District Office	Air Quality Division – Cadillac District Office
120 West Chapin Street	120 West Chapin Street
Cadillac, Michigan 49601	Cadillac, Michigan 49601
Telephone: 231.876.4416	Telephone: 231.876.4411
howej1@michigan.gov	childsk@michigan.gov

Table 1-2Key Personnel

2.0 Source and Sampling Locations

2.1 **Process Description**

ANR operates a natural gas compressor station in Reed City, Michigan. The facility operates natural gas-fired, reciprocating internal combustion engines to compress natural gas for transport via natural gas pipeline. The engines fall under flexible groups FGRC001 and FGMACTZZZZ in the permit and are subject to 40 CFR Part 63, Subpart ZZZZ requirements. EURC011 and EURC012 are the units that were tested.

EURC011 and EURC012 are 660-horsepower White Superior engines model number 8G825. The engines were installed in 1963. Specifications of the engines are presented in Table 2-1.

ID	Installation Date	Manufacturer	Model	Rating (hp)	Fuel
EURC011	1963	White Superior	8G825	660	Natural gas
EURC012	1963	White Superior	8G825	660	Natural gas

Table 2-1Non-Emergency Area Source RICE Tested

Operating parameters recorded during testing are included in Appendix E.

2.2 Control Equipment

The exhausts of the engines pass through nonselective catalytic reduction catalysts (NSCR) prior to discharge to the atmosphere. NSCR is the conversion of oxides of nitrogen (NO_x), carbon monoxide (CO), and hydrocarbons to water, carbon dioxide (CO₂), and nitrogen.

2.3 Flue Gas Sampling Locations

Figure 1 after the Figures Tab of this report, depicts the EURC011 and EURC012 sampling ports and traverse point locations. Descriptions of the sampling locations are presented in Sections 2.3.1 and 2.3.2

2.3.1 EURC011 Sampling Location

The inlet to the EURC011 catalyst was sampled from a single sampling port. The sampling port is located in a straight section of a 10-inch-internal-diameter duct. The port is located:

- 4 feet (4.8 duct diameters) from the nearest downstream disturbance
- 1 foot (1.2 duct diameters) from the nearest upstream disturbance

The ports were accessible via a ladder.

The EURC011 catalyst exhaust was sampled from a single sampling port. The sampling port is located in a straight section of a 10-inch-internal-diameter duct. The port is located:

- 3 feet (3.6 duct diameters) from the nearest downstream disturbance
- 4 feet (4.8 duct diameters) from the nearest upstream disturbance

The port was accessible via a manlift.

2.3.2 EURC012 Sampling Location

The inlet to the EURC012 catalyst was sampled from a single sampling port. The sampling port is located in a straight section of a 10-inch-internal-diameter duct. The port is located:

- 4 feet (4.8 duct diameters) from the nearest downstream disturbance
- 1 foot (1.2 duct diameters) from the nearest upstream disturbance

The port was accessible via a ladder.

The EURC012 catalyst exhaust was sampled from a single sampling port. The sampling port is located in a straight section of a 10-inch-internal-diameter duct. The port is located:

- 3 feet (3.6 duct diameters) from the nearest downstream disturbance.
- 4 feet (4.8 duct diameters) from the nearest upstream disturbance.

The port was accessible via a manlift.

2.4 Process Sampling Locations

Process sampling was not required during this test program. A process sample is a sample that is analyzed for operational parameters, such as calorific value of a fuel (e.g., diesel, natural gas, coal), organic compound content (e.g., paint coatings), or composition (e.g., polymers).

3.0 Summary and Discussion of Results

3.1 Objectives

The testing was performed to evaluate compliance with National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (40 CFR Part 63, Subpart ZZZZ) by measuring oxygen and formaldehyde concentrations at the inlet and the outlet of the two engine catalysts. The relevant emission standard is provided in Table 1-1.

3.2 Test Matrix

Table 3-1 presents the sampling and analytical test matrix.

Test Matrix						
Sampling Location	No. of Runs	Test Parameter	Sampling Method (USEPA)	Run Duration (min)	Analytical Method	
Inlet and outlet of EURC011	3	O ₂ Formaldehyde	3A 320	60	Paramagnetic Fourier transform infrared spectroscopy	
Inlet and outlet of EURC012	3	O ₂ Formaldehyde	3A 320	60	Paramagnetic Fourier transform infrared spectroscopy	

Table 3-1 Fest Matrix

3.3 Field Test Changes and Issues

Field test changes were not required to complete the emission testing.

3.4 Results

The results of the testing are compared to the applicable emission limit in Table 3-2. Detailed results are presented in Tables 1 and 2 after the Tables Tab of this report. Graphs of the measured oxygen and formaldehyde concentrations are presented after the Graphs Tab of this report. Sample calculations are presented in Appendix B.

Table 3-2						
Formaldehyde Emission	Results	Compared	to Emission	Limit		

Date (2015)	Source ID	Parameter	Units	Average Result	Emission Limit		
EURC01	EURC011 Formaldehyde Removal Efficiency Testing						
		O ₂	%	0.42	N/A		
Feb. 26	EURC011 Inlet	Formaldehyde	ppmvd	3.9	N/A		
		Formaldehyde	ppmvd at 15% O ₂	1.1	N/A		
		O ₂	%	0.37	N/A		
Feb. 26	EURC011 Outlet	Formaldehyde	ppmvd	0.24	N/A		
		Formaldehyde	ppmvd at 15% O ₂	0.07	N/A		
Formaldehyde Removal Efficiency			%	94	≥76		
EURC012	2 Formaldehyde Removal Efficiency	Testing					
		O ₂	%	0.41	N/A		
Feb. 26	EURC012 Inlet	Formaldehyde	ppmvd	23.1	N/A		
		Formaldehyde	ppmvd at 15% O ₂	6.6	N/A		
		O ₂	%	0	N/A		
Feb. 26	EURC012 Outlet	Formaldehyde	ppmvd	0.40	N/A		
		Formaldehyde	ppmvd at 15% O ₂	0.11	N/A		
Formaldehyde Removal Efficiency			%	98	≥76		

 $O_2 = oxygen$ N/A not applicable ppmvd = part per million by volume, dry basis

The measurements demonstrate the EURC011 and EURC012 engines were operating within the allowable limit.

4.0 Sampling and Analytical Procedures

Bureau Veritas measured emissions in accordance with USEPA Methods 3A and 320, identified in Table 4 to Subpart ZZZZ of Part 63—Requirements for Performance Tests. The sampling and analytical methods used during this test program are listed in the following table.

USEPA Sampling Method	Parameter	Analysis			
3A	Oxygen	Paramagnetic			
320	Formaldehyde	Extractive Fourier transform infrared spectroscopy (FTIR)			

Table 4-1Sampling and Analytical Test Methods

4.1 Test Methods

4.1.1 Oxygen Concentrations (USEPA Method 3A)

USEPA Method 3A "Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrument Analyzer Procedure)" was used to measure oxygen concentrations of the flue gas. Figure 2 in the Appendix depicts the USEPA 3A sampling train. Flue gas was continuously sampled from the stack and conveyed to a paramagnetic analyzer for oxygen concentration measurements. Flue gas oxygen concentration was measured to correct the formaldehyde concentration to 15% oxygen.

Flue gas was extracted from the stack through:

- A stainless-steel probe
- A heated Teflon sample line to prevent condensation
- A chilled Teflon® condenser (equipped with a peristaltic pump) to remove moisture from the flue gas
- A paramagnetic O₂ gas analyzer

Data were recorded at 1-second intervals by a computer equipped with data acquisition software. Recorded concentrations were reported as 1-minute averages over the duration of each test run and included in Appendix D of this report.

A calibration error check was performed on each analyzer by introducing zero-, mid-, and highlevel calibration gases directly into the analyzer. The calibration error check was performed to evaluate if the analyzer responds to within $\pm 2\%$ of the calibration span. Prior to each test run, a system-bias test was performed where known concentrations of calibration gases are introduced at the probe tip to measure if the response was within $\pm 5\%$ of the analyzer calibration span.

At the conclusion of each test run, an additional system-bias check was performed to evaluate the analyzer drift from pre- and post-test system-bias checks. The acceptable analyzer drift tolerance is $\pm 3\%$ of the calibration span. The results of the pre- and post-test system bias checks were used to correct the measured pollutant concentrations for analyzer drift.

Calibration data, along with the USEPA Protocol 1 certification sheets for the calibration gases, are included in Appendix A.

4.1.2 Formaldehyde Concentrations (USEPA Method 320)

Formaldehyde emissions were measured using USEPA Method 320, "Measurements of Vapor Phase Organic and Inorganic Emissions by Extractive Fourier Transform Infrared (FTIR) Spectroscopy." Gaseous samples were withdrawn from the stack and transferred to the FTIR spectrometer. The USEPA Method 320 sampling train is depicted in Figure 3. FTIR data is provided in Appendix F.

The samples were directed through a heated probe, heated filter, and heated transfer line connected to the FTIR. The probes, filters, transfer lines, and FTIR were maintained at 191° C (376° F) during testing. Concentrations were measured based on their infrared absorbance compared to reference spectra. The FTIR analyzer scans the sample approximately once per second. A data point consists of the co-addition of 64 scans, with a data point generated every minute.

FTIR quality assurance procedures followed USEPA Method 320. A calibration transfer standard (CTS) was analyzed before and after testing. Acetaldehyde spiking was performed before and after the test. Section 3.29 of USEPA Method 320 allows the use of a surrogate analyte for spiking. Acetaldehyde was chosen as surrogate to formaldehyde for the following reasons:

- The highest obtainable formaldehyde cylinder is 30 parts per million (ppm): therefore, the spiked concentration would be 3 ppm (analyte spiking consists of sampling 1 part calibration gas in the presence of 9 parts effluent gas). The formaldehyde concentrations of the source tested had the potential to be much higher than 3 ppm.
- Acetaldehyde's physical and chemical properties are similar to those of formaldehyde. Formaldehyde is the C_1 aldehyde (CH₂O); acetaldehyde is the C_2 aldehyde (CH₃CHO).

The analyte spikes are set to a target dilution ratio of 1:10 or less. Acetaldehyde spike recoveries were within the Method 320 allowance of $\pm 30\%$.

4.2 **Procedures for Obtaining Process Data**

Process data were recorded by TransCanada personnel. Refer to Section 2.1 and 2.2 for discussions of process and control device data and Appendix E for the operating parameters recorded during testing.

4.3 Sampling Identification and Custody

Gaseous pollutant concentrations were measured using analyzers processing the flue gas in real time; therefore, recovery and analytic procedures for laboratory samples were not necessary.

5.0 QA/QC Activities

Equipment used in this emissions test program passed quality assurance/quality control (QA/QC) procedures. Refer to Appendix A for equipment calibration and inspection sheets. Field data sheets are presented in Appendix C. Computer-generated Data Sheets are presented within Appendix D.

5.1 Pretest QA/QC Activities

Before testing, the sampling equipment was cleaned, inspected, and calibrated according to procedures outlined in the applicable USEPA sampling methods and USEPA's "Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods."

5.2 QA/QC Audits

The results of select sampling and equipment QA/QC audits and the acceptable tolerance are presented in the following sections. Analyzer calibration and gas certification sheets are presented in Appendix A.

5.2.1 Instrument Analyzer QA/QC Audits

The instrument analyzer sampling trains described in Section 4.1 were audited for measurement accuracy and data reliability. The analyzers passed the applicable calibration criteria. Calibration gas selection, error, bias, and drift checks are included in Appendix A. The gas cylinders used during the test program are presented in Table 5-1.

Table 5-1Calibration Gas Cylinder Information

Parameter	Gas Vendor	Cylinder Serial Number	Cylinder Value	Expiration Date
Oxygen Carbon dioxide	Pangaea Gases	EB0049262	20.01% O ₂ 19.89% CO ₂	March 6, 2022
	Airgas	CC68032	10.89% O ₂ 11.21 % CO ₂	February 17, 2023
Nitrogen	Pangaea Gases	EB0049226	99.999%	February 26, 2017

5.3 QA/QC Blanks

Reagent and field train blanks were not applicable to this test program.

5.4 QA/QC Problems

QA/QC problems were not encountered during this test program.

Limitations

The information and opinions rendered in this report are exclusively for use by TransCanada Bureau Veritas North America, Inc. will not distribute or publish this report without TransCanada's consent except as required by law or court order. The information and opinions are given in response to a limited assignment and should be implemented only in light of that assignment. Bureau Veritas North America, Inc. accepts responsibility for the competent performance of its duties in executing the assignment and preparing reports in accordance with the normal standards of the profession, but disclaims any responsibility for consequential damages.

This report prepared by: Brian P. Young

Senior Project Manager Health, Safety, and Environmental Services

This report reviewed by:

Derek R. Wong, Ph.D.

Defek R. Wong, Ph.D., P.E. Director and Vice President Health, Safety, and Environmental Services

Table

.

Table 1

EURC011 Formaldehyde Removal Efficiency Results

TransCanada - Reed City Compressor Station

Reed City, Michigan

Bureau Veritas Project No. 11015-000003.00 Sampling Date: February 26, 2015

Parameter		Units	Run 1	Run 2	Run 3	Average
Sample Time			13:15-14:15	14:25-15:25	15:35-16:35	
Duration		min	60	60	60	
Inlet	O ₂ Concentration (C_{avg}) Pre-test system calibration, zero gas (C_0) Post-test system calibration, zero gas (C_0) Certified low bracket gas concentration (C_{MA}) Pre-test system calibration, low bracket gas (C_M) Post-test system calibration, low bracket gas (C_M) Post-test system calibration, low bracket gas (C_M) Corrected O ₂ Concentration (C_{gas}) [†] Formaldehyde Concentration Moisture Content Formaldehyde Concentration Formaldehyde Concentration Corrected to 15% Oxygen	% % % % ppmv % ppmvd ppmvd	0.39 0.0 -0.1 10.89 10.9 10.8 0.44 3.0 17.8 3.6 1.0	0.36 -0.1 -0.1 10.89 10.8 10.8 0.46 3.3 17.9 4.0 1.2	0.32 -0.1 0.0 10.89 10.8 10.8 0.37 3.4 18.0 4.1 1.2	0.36 -0.07 -0.07 10.89 10.8 10.8 0.42 3.2 17.9 3.9 1.1
Outlet	O ₂ Concentration (C_{avg}) Pre-test system calibration, zero gas (C_0) Post-test system calibration, zero gas (C_0) Certified low bracket gas concentration (C_{MA}) Pre-test system calibration, low bracket gas (C_M) Post-test system calibration, low bracket gas (C_M) Post-test system calibration, low bracket gas (C_M) Corrected O ₂ Concentration (C_{gas}) [†] Formaldehyde Concentration Moisture Content Formaldehyde Concentration Formaldehyde Concentration	% % % % % ppmv % ppmvd ppmvd	0.67 0.3 10.89 11.1 11.2 0.38 <0.2 18.0 0.24 0.07	0.71 0.3 0.4 10.89 11.2 11.2 0.36 <0.2 17.9 0.24 0.07	0.71 0.4 0.3 10.89 11.2 11.2 0.36 <0.2 18.0 0.24 0.07	0.70 0.33 0.33 10.89 11.2 11.2 0.37 <0.2 17.9 0.24 0.07
Formaldehyde Removal Efficiency		%	93	94	94	94

. •

[†] corrected for analyzer drift

Co average of the initial and final system calibration bias check responses from the low-level (or zero) calibration gas, ppmv

CMA actual concentration of the upscale calibration gas, ppmv

 C_M Average of initial and final system calibration bias check responses for the upscale calibration gas, ppmv

Cess Average effluent gas concentration adjusted for bias, ppmv

ppmvd part per million by volume, dry basis

O2 oxygen

Table 2

EURC012 Formaldehyde Removal Efficiency Results TransCanada - Reed City Compressor Station Reed City, Michigan Bureau Veritas Project No. 11015-000003.00

Sampling Date: February 26, 2015

Parameter		Units	Run 1	Run 2	Run 3	Average
Sample Time			8:10-9:10	9:25-10:25	10:35-11:35	
Duration		min	60	60	60	
Iniet						
	O ₂ Concentration (C _{wa})	%	0.46	0.41	0.40	0.42
	Pre-test system calibration, zero gas (Co)	%	0.04	0	0	0.01
	Post-test system calibration, zero gas (Co)	%	0	0	0	0
	Certified low bracket gas concentration (CMA)	%	10.89	10.89	10.89	10.89
	Pre-test system calibration, low bracket gas (CM)	%	10.9	10.9	10.9	10.9
	Post-test system calibration, low bracket gas (CM)	%	10.9	10.9	10.9	10.9
	Corrected O ₂ Concentration $(C_{gas})^{\dagger}$	%	0.44	0.41	0.40	0.41
	Formaldehyde Concentration	ppmv	18.9	19.2	18.9	19.0
	Moisture Content	%	17.8	17.8	17.7	17.8
	Formaldehyde Concentration	ppmyd	22.9	23.4	23.0	23.1
	Formaldehyde Concentration Corrected to 15% Oxygen	ppmvd	6.6	6.7	6.6	6.6
Outlet						
	O ₂ Concentration (C _{ase})	%	0.086	0,14	0.24	0.16
	Pre-test system calibration, zero gas (Co)	%	0.7	0.1	0.2	0.3
	Post-test system calibration, zero gas (C ₀)	%	0.1	0.2	0.3	0.2
	Certified low bracket gas concentration (CMA)	%	10.89	10.89	10.89	10.89
	Pre-test system calibration, low bracket gas (G _M)	%	11.2	11	11	11.1
	Post-test system calibration, low bracket gas (C_M)	%	11	11	11.1	11.0
	Corrected O_2 Concentration $(C_{gas})^{\dagger}$	%	0	0	0	0
	Formaldehyde Concentration	ppmv	0.3	0.3	0.3	0.3
	Moisture Content	%	18.1	18.1	18.1	18.1
	Formaldehyde Concentration	nnmvd	0.41	0.38	0.41	0.40
	Formaldehyde Concentration Corrected to 15% Oxygen	nnmvd	0.12	0.11	0.11	0.11
Formaldehyde Removal Efficiency		%	98	98		98

[†] corrected for analyzer drift

Co average of the initial and final system calibration bias check responses from the low-level (or zero) calibration gas, ponty

 C_{MA} actual concentration of the upscale calibration gas, ppmv

 $C_{\rm M}$ Average of initial and final system calibration bias check responses for the upscale calibration gas, $\rm ppmv$

 $\mathbf{C}_{\mathbf{gus}}$ Average effluent gas concentration adjusted for bias, ppmv

ppmvd part per million by volume, dry basis

O2 oxygen

