Relative Accuracy Test Audit Test Report

Lansing Board of Water and Light REO Town Facility HRSG #2 Stack Lansing, Michigan Project No. M241102B March 14, 2024 lat mostardi

Relative Accuracy Test Audit Test Report

Lansing Board of Water and Light REO Town Facility HRSG #2 Stack Lansing, Michigan March 14, 2024

> Report Submittal Date April 9, 2024

> > © Copyright 2024 All rights reserved in Mostardi Platt

Project No. M241102B

Corporate Headquarters 888 Industrial Drive Elmhurst, Illinois 60126 630-993-2100

Crown Point, IN | Mendota Heights, MN | Denver, CO | Henderson, NV

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 TEST METHODOLOGY	2
Method 3A Oxygen (O2) Determination	
Method 7E Nitrogen Oxides (NOx) Determination	3
3.0 TEST RESULT SUMMARIES	4
4.0 CERTIFICATION	7
APPENDICES	
Appendix A - Company AETB Certification	
Appendix B - QI Certification(s) for Field Personnel	
Appendix C - Test Section Diagram	
Appendix D - Sample Train Diagram	
Appendix E - Calculation Nomenclature and Formulas	
Appendix F - Reference Method Test Data (Computerized Sheets)	
Appendix G - Continuous Emissions Monitoring System Data and Fuel Analysis	
Appendix H - Calibration and Response Time Data	
Appendix I - Calibration Gas Cylinder Data	
Appendix J - NO2 to NO Converter Efficiency Test	

1.0 EXECUTIVE SUMMARY

Mostardi Platt conducted a Continuous Emissions Monitoring System (CEMS) Relative Accuracy Test Audit (RATA) test program for Lansing Board of Water and Light at the REO Town Facility in Lansing, Michigan, on the HRSG #2 Stack on March 14, 2024. This report summarizes the results of the test program and test methods used in accordance with the Mostardi Platt Protocol P241102 dated December 20, 2023. Mostardi Platt is a self-certified air emissions testing body (AETB). A copy of Mostardi Platt's self-certification can be found in Appendix A.

The test location, test date, and test parameters are summarized below.

TEST INFORMATION						
Test Location	Test Date	Test Parameters				
HRSG #2 Stack	March 14, 2024	Oxygen (O2) and Nitrogen Oxides (NOx)				

The purpose of the test program was to determine the relative accuracies of the HRSG #2 Stack O_2 and NO_x analyzers during the specified operating conditions. The test results from this test program indicate that each CEMS component meets the United States Environmental Protection Agency (USEPA) annual performance specification for relative accuracy as published in 40 Code of Federal Regulations Part 75 (40CFR75) and 40 Code of Federal Regulations (40CFR60).

RATA RESULTS									
Test Location	Date	Parameters	Units	Relative Accuracy Acceptance Criteria	Relative Accuracy (RA)	Bias Adjustment Factor (BAF)			
HRSG #2 Stack	1/1/2024		NOx	lb/mmBtu	± 0.015 lb/mmBtu mean difference	0.009 lb/mmBtu mean difference	1.111		
		NOx	ppm @ 15% O2	≤ 20.0% of the mean reference value	19.15%	N/A			
		O2	% dry	≤ 7.5% of the mean reference value	1.04%	N/A			

The gas cylinders used to perform the RATA are summarized below.

GAS CYLINDER INFORMATION								
Parameter	Gas Vendor	Cylinder Serial Number	Cylinder Value	Expiration Date				
NOx	Airgas	CC334263	0 ppm	8/22/2031				
NOx	Airgas	ALM-042610	13.12 ppm	5/1/2026				
NOx	Airgas	CC240182	25.29 ppm	11/3/2026				
O ₂	Airgas	ALM-042610	0%	5/1/2026				
O2	Airgas	CC334263	12.03%	8/22/2031				
O2	Airgas	CC407478	21.93%	7/7/2030				

No deviations, additions, or exclusions from the test methods, test protocol, the Mostardi Platt Quality Manual, or the ASTM D7036-12 occurred. The specific test conditions encountered did not interfere with the collection of the data.

TEST PERSONNEL INFORMATION						
Location	Address	Contact				
Test Coordinator	Lansing Board of Water and Light 1232 Haco Drive P.O. Box 13007 Lansing, Michigan 48912	Mr. Nathan Hude Environmental Compliance Specialist (517) 702-6170 nathan.hude@lbwl.com				
Test Facility	Lansing Board of Water and Light REO Town Facility 1201 S. Washington Ave. Lansing, Michigan 48917					
Testing Company Supervisor	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Mr. Christopher E. Jensen Senior Project Manager 630-993-2100 (phone) cjensen@mp-mail.com QI Group V (certified on 1/4/2023)				
Testing Company Personnel		Malik Gordon Test Technician				

The identifications of the individuals associated with the test program are summarized below.

Copies of the QI certifications for test personnel are included in Appendix B.

2.0 TEST METHODOLOGY

Emission testing was conducted following the United States Environmental Protection Agency (USEPA) methods specified in 40CFR75 and 40CFR60, Appendix A in addition to the Mostardi Platt Quality Manual and the test protocol. Schematics of the test section diagrams and sampling trains used are included in Appendix C and D respectively. Calculation and nomenclature are included in Appendix E. Copies of analyzer print-outs for each test run are included in Appendix F. CEM data and process data as provided by Lansing Board of Water and Light are included in Appendix G.

The following methodologies were used during the test program:

Method 3A Oxygen (O₂) Determination

Stack gas O₂ concentrations and emission rates were determined in accordance with USEPA Method 3A, 40CFR60, Appendix A. A Servomex analyzer was used to determine the O₂ concentrations in the manner specified in the Method. The instrument has a paramagnetic detector and the O₂ operates in the nominal range of 0% to 25% with the specific range determined by the high-level calibration gas of 21.93%. High-range calibrations were performed using USEPA Protocol gas. Zero nitrogen (a low ppm pollutant in balance nitrogen calibration gases) was introduced during other instrument calibrations to check instrument zero. High- and a mid-range % O₂ levels in balance nitrogen were also introduced. Zero and mid-range calibrations were performed using USEPA Protocol gas after each test run. Copies of the gas cylinder certifications are found in Appendix I. This testing met the performance specifications as outlined in the Method.

Method 7E Nitrogen Oxides (NO_x) Determination

Stack gas NO_x concentrations and emission rates were determined in accordance with USEPA Method 7E, 40CFR60, Appendix A. A Thermo Scientific Model 42i-HL High level Chemiluminescence Nitrogen Oxides Analyzer was used to determine nitrogen oxides concentrations, in the manner specified in the Method. The instrument operated in the nominal range of 0 ppm to 50 ppm with the specific range determined by the high-level span calibration gas of 25.29 ppm.

The Model 42i-HL High level is based on the principle that nitric oxide (NO) and ozone (O₃) react to produce a characteristic luminescence with an intensity linearly proportional to the NO concentration. Infrared light emission results when electronically excited nitrogen dioxide (NO₂) molecules decay to lower energy states. Specifically,

$NO+O_3 \rightarrow NO_2+O_2+hu$

 NO_2 must first be transformed into NO before it can be measured using the chemiluminescent reaction. NO_2 is converted to NO by a stainless steel NO_2 -to-NO converter heated to about 641 °C. The flue gas air sample is drawn into the Model 42i-HL High level through the sample bulkhead. The sample flows through a particulate filter, a capillary, and then to the mode solenoid valve. The solenoid valve routes the sample either straight to the reaction chamber (NO mode) or through the NO_2 -to-NO converter and then to the reaction chamber (NOx mode).

Dry air enters the Model 42i-HL High level through the dry air bulkhead, through a flow sensor, and then through a silent discharge ozonator. The ozonator generates the necessary ozone concentration needed for the chemiluminescent reaction. The ozone reacts with the NO in the ambient air sample to produce electronically excited NO₂ molecules. A photomultiplier tube (PMT) housed in a thermoelectric cooler detects the NO₂ luminescence.

The NO and NO_x concentrations calculated in the NO and NO_x modes are stored in memory. The difference between the concentrations is used to calculate the NO₂ concentration. The Model 42i-HL outputs NO, NO₂, and NO_x concentrations to both the front panel display and the analog outputs.

Stack gas was delivered to the analyzer via a Teflon[®] sampling line, heated to a minimum temperature of 250°F. Excess moisture in the stack gas was removed using a refrigerated condenser. The entire system was calibrated in accordance with the Method, using USEPA Protocol gases introduced at the probe, before and after each test run. This testing met the performance specifications as outlined in the Method.

A list of calibration gases used and the results of all calibration and other required quality assurance checks are found in Appendix H. Copies of the gas cylinder certifications are found in Appendix I. The NO₂ to NO converter test can be found in Appendix J. This testing met the performance specifications as outlined in the Method.

3.0 TEST RESULT SUMMARIES

Client: Lansing Board of Water & Light Facility: REO Town Facility Project #: M241102 Fuel Type: Natural Gas Location: HRSG #2 Stack Date: 3/14/24 Test Method: 7E, 3A Fuel Factor: 8710

NO	Moni	tor/Model:	Thermo Fisher S		NO, Serial # :	12004	16212	
			: Thermo Fisher Scientific 41iQ-LS			O2 Serial # :		
1=accept 0=reject	Test Run	Test Date	Start Time	End Time	RM NO _x Ib/MMBtu	CEM NO _x Ib/MMBtu	(RM-CEM) Difference (di)	(RM-CEM) Difference (di ²)
1	1	03/14/24	05:45	06:05	0.055	0.046	0.009	0.000081
1	2	03/14/24	06:20	06:40	0.054	0.047	0.007	0.000049
0	3	03/14/24	06:57	07:17	0.055	0.044	0.011	0.000121
1	4	03/14/24	07:33	07:53	0.053	0.044	0.009	0.000081
1	5	03/14/24	08:06	08:26	0.052	0.043	0.009	0.000081
1	6	03/14/24	08:38	08:58	0.051	0.043	0.008	0.000064
1	7	03/14/24	09:12	09:32	0.050	0.041	0.009	0.000081
1	8	03/14/24	09:44	10:04	0.049	0.039	0.010	0.000100
1	9	03/14/24	10:17	10:37	0.047	0.037	0.010	0.000100
1	10	03/14/24	10:51	11:11	0.049	0.039	0.010	0.000100
				n	1	9		
				t(0.025)	2.3	306		
			Mean Reference	e Method Value	0.	051	RM avg	
			M	ean CEM Value	0.042		CEM avg	
			Sur	n of Differences	0.081		di	
			N	lean Difference	0.009		d	
Sum of Differences Squared					0.001		di ²	
Standard Deviation					0.	001	sd	
		Confiden	ce Coefficient 2	.5% Error (1-tail)	0.	001	cc	
				Accuracy - APS	0.009 lb/m		lb/mmBtu o	difference A
				justment Factor	1.111 BAF ^B			

^A Relative accuracy for low emission sources with NO_x emissions of ≤ 0.200 lbs/mmBtu based on a mean difference of

+/- 0.015 lbs/mmBtu for annual RATA testing, or +/- 0.020 lbs/mmBtu for semi-annual RATA testing.

⁸ Maximum Bias Adjutment Factor

Client:	Lansing Board of Water & Light
Facility:	REO Town Facility
Project #:	M241102

1

1

0

1

1

1

1

1

1

1

Date: 3/14/24 Test Method: 7E, 3A NOx ppmvd @ 15% O2 RATA **CEM Analyzer Information** NOx Monitor/Model: Thermo Fisher Scientific 41iQ-LS NO_x Serial # : 1200416212 O2 Monitor/Model: Thermo Fisher Scientific 41iQ-LS 1200416212 O2 Serial # : (RM-CEM) **RM NOx** CEM NOx (RM-CEM) 1=accept Test Test Date Start Time End Time ppmvd @ 15 ppmvd @ 15 Difference Difference² 0=reject Run %02 %02 (di) (di²)1 03/14/24 05:45 06:05 15.0 12.6 2.4 5.76 2 03/14/24 06:20 06:40 14.7 12.7 2.0 4.00 3 03/14/24 06:57 07:17 14.9 11.8 3.1 9.61 4 03/14/24 07:33 07:53 14.5 11.8 7.29 2.7 14.2 5 03/14/24 08:06 08:26 11.5 7.29 2.7 6 03/14/24 08:38 13.9 08:58 11.5 2.4 5.76 7 03/14/24 09:12 09:32 13.5 11.2 2.3 5.29 8 03/14/24 09:44 10:04 13.2 10.6 2.6 6.76 9 03/14/24 10:17 10:37 12.7 10.2 2.5 6.25 10 03/14/24 10:51 11:11 13.2 10.5 2.7 7.29 n 9 t(0.975) 2.306 Mean Reference Method Value 13.878 RM avg Mean CEM Value 11.400 CEM avg Sum of Differences 22,300 di Mean Difference 2,478 d

Sum of Differences Squared

Confidence Coefficient 2.5% Error (1-tail)

Standard Deviation

Relative Accuracy

Location: HRSG #2 Stack

55.690

0.233

0.179

19.15

di²

sd

cc

RA

Client:	Lansing Board of Water & Light
Facility:	REO Town Facility
Project #:	M241102

Location: HRSG #2 Stack Date: 3/14/24 Test Method: 3A

O2 % (dry) RATA

02	Monit	or/Model:		CEM Analyzer In cientific 41iQ-LS	Tormation	O ₂ Serial # :	12004	416212
1=accept 0=reject	Test Run	Test Date	Start Time	End Time	RM O ₂ % (dry)	CEM O ₂ % (dry)	(RM-CEM) Difference (di)	(RM-CEM) Difference ² (di ²)
1	1	03/14/24	05:45	06:05	15.3	15.3	0.0	0.00
1	2	03/14/24	06:20	06:40	15.1	15.3	-0.2	0.04
1	3	03/14/24	06:57	07:17	15.2	15.3	-0.1	0.01
1	4	03/14/24	07:33	07:53	15.2	15.3	-0.1	0.01
1	5	03/14/24	08:06	08:26	15.2	15.3	-0.1	0.01
1	6	03/14/24	08:38	08:58	15.2	15.3	-0.1	0.01
1	7	03/14/24	09:12	09:32	15.1	15.3	-0.2	0.04
0	8	03/14/24	09:44	10:04	15.1	15.3	-0.2	0.04
1	9	03/14/24	10:17	10:37	15.1	15.2	-0.1	0.01
1	10	03/14/24	10:51	11:11	15.1	15.2	-0.1	0.01
	_			n t(0.025)	2	9 306		
	_	N	lean Reference	Method Value		.167	RM avg	
				ean CEM Value	15.278		CEM avg	
			Sun	of Differences	-1.000		di	
Mean Difference					-0.111		d	
			Sum of Differ	ences Squared	0.	140	di ²	
			Star	dard Deviation	0.	0.060		
		Confidence	e Coefficient 2.	5% Error (1-tail)	0.046 cc			
			Re	lative Accuracy	1.04 RA			

Project No. M241102B HRSG #2 Stack

4.0 CERTIFICATION

Mostardi Platt is pleased to have been of service to Lansing Board of Water and Light. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

As the program manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results. The test program was performed in accordance with the test protocol, test methods, the Mostardi Platt Quality Manual, and the ASTM D7036-12, as applicable.

MOSTARDI PLATT

Christopher E. Jensen

Program Manager

Quality Assurance

Scott W. Banach

APPENDICES

Appendix A - Company AETB Certification

March 23, 2012

Effective immediately, Mostardi Platt self-certifies that all Part 75 test projects conform to the ASTM D 7036-04 Standard Practice. The following contact information is provided as required by the Standard:

Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126

630-993-2100

tplatt@mp-mail.com

Also, attached is a list of each Qualified Individual (QI) with the type of exam (e.g., Group I, II, III IV and/or V), the date the exam was taken and the name and email address of the exam provider.

Should you have any questions or need additional information, please contact Thomas Platt, P.E. at 630-993-2683.

Approved:

By:

Robert J. Platt J Chief Executive Officer

> 888 Industrial Drive Elmhurst, Illinois 60126 630-993-2100

Project No. M241102B HRSG #2 Stack ©Mostardi Platt

QSTI AETB Import Data

QI Last Name [REQUIRED]	QI First Name [REQUIRED]	QI Middle Initial	AETB Name (REQUIRED)	AETB Phone Number [REQUIRED]	AETB Email [REQUIRED]	Exam Date mm/dd/yyyy [REQUIRED]	Exam Provider Name [REQUIRED]	Exam Provider Email [REQUIRED]	Comment
leckham	Kenneth	1	Mostard Platt	630-993-2100	tplatt@mp-mail.com	5/18/2023	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
lenninghoff	Aaron	W	Mostard Platt	630-993-2100	tplatt@mp-mail.com	9/8/2023	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
urton	Stuart	L	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/4/2023	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
arlisle	Robert	W	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/8/2021	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
oleman	Paul	F	Mostard Platt	630-993-2100	tplatt@mp-mail.com	3/22/2023	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
rivlare	Jeffrey	M	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/4/2023	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
rooks	Nate	1	Mostard Platt	630-993-2100	tplatt@mp-mail.com	11/9/2023	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
Junn	Christian	P	Mostard Platt	630-993-2100	tplatt@mp-mail.com	10/27/2023	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
ldridge	Christopher	5	Mostard Platt	630-993-2100	tplatt@mp-mail.com	2/18/2021	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
ross	Jeffery	M	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/19/2024	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
lendricks	Benjamin	W	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/30/2020	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
owe	Jacob	W	Mostard Platt	630-993-2100	tplatt@mp-mail.com	2/17/2021	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
ensen	Christopher	E	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/4/2023	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
ones	Kyle	L	Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/11/2021	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
ossack	Daniel	1	Mostard Platt	630-993-2100	tplatt@mp-mail.com	11/11/2021	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
ipinski	Michal		Mostard Platt	630-993-2100	tplatt@mp-mail.com	1/31/2020	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
eterson	Mark	E		630-993-2100	tplatt@mp-mail.com	1/17/2023	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
etrovich	William	A		630-993-2100	tplatt@mp-mail.com	2/4/2022	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
uss	Timothy	E		630-993-2100	tplatt@mp-mail.com	4/8/2020	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
ands	Stuart	T		630-993-2100	tplatt@mp-mail.com	1/5/2023	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
ather	Michael	P	1. The second state of the second	630-993-2100	tplatt@mp-mail.com	2/7/2020	Source Evaluation Society	qstiprogram@gmail.com	Group V (Part 75)
ollars	Richard	1	Mostard Platt	630-993-2100	tplatt@mp-mail.com	7/28/2023	Source Evaluation Society	ostiprogram@gmail.com	Group V (Part 75)
orce		M		630-993-2100	tplatt@mp-mail.com	2/18/2022	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)
rezak	Christopher	S	Mostard Platt	630-993-2100	tplatt@mp-mail.com	4/14/2020	Source Evaluation Society	gstiprogram@gmail.com	Group V (Part 75)

2/16/2024

Appendix B - QI Certification(s) for Field Personnel

Qualified Individual

Christopher E. Jensen

Has satisfactorily completed the requirements of

ASTM D 7036 - 04, Section 8.3

Standard Practice for Competence of Air Emission Testing Bodies

Examinations provided by Source Evaluation Society: www.sesnews.org, (919) 544-6338

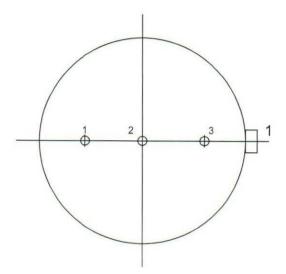
All Part 75 test methods, under my supervision, shall conform to the company's Quality Manual and to this practice, in all respects.

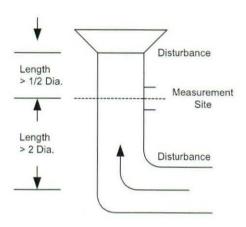
Passed Group V on 1/4/2023

Expiration Date: Group V on 1/4/2028

Signature:

nager:


Baynon W # **Technical Director:**


Date: 1/9/2023

Quality Manager:

Appendix C - Test Section Diagram

GASEOUS TRAVERSE FOR ROUND DUCTS

Job: Lansing Board of Water and Light REO Town Facility Lansing, Michigan

Date: March 14, 2024

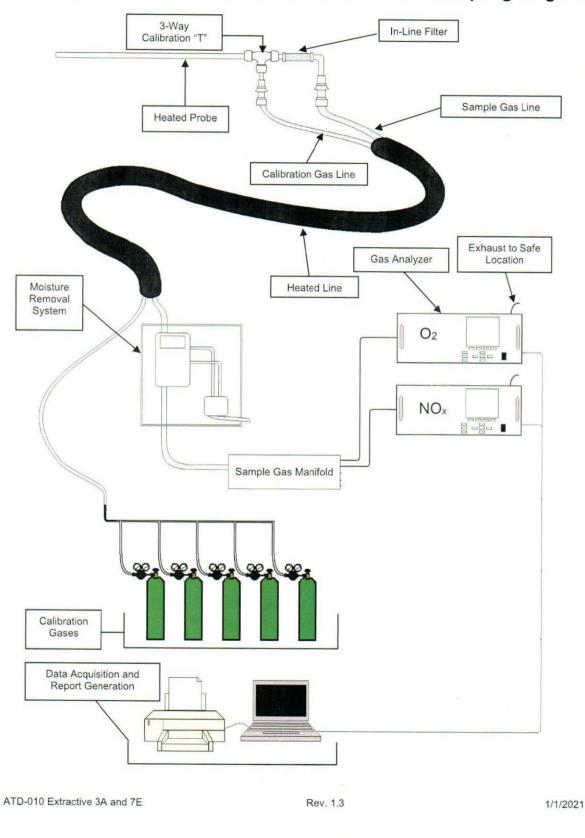
Test Location: HRSG #2 Stack

Stack Diameter: 9.67 Feet

Stack Area: 73.44 Square Feet

No. Sample Points: 3

Port Length: 12 inches


Distance from Inside Wall To Traverse Point:

1. 83.3 % of diameter 2. 50.0 % of diameter 3. 16.7 % of diameter

Project No. M241102B HRSG #2 Stack 15 of 52

©Mostardi Platt

Appendix D - Sample Train Diagram

USEPA Methods 3A and 7E Extractive Gaseous Sampling Diagram

©Mostardi Platt