

REPORT ON COMPLIANCE AND RELATIVE ACCURACY TESTING

Carleton, Michigan Line #1 (EU00079) & Line #2 (EU00080)

Guardian Industries, LLC 14600 Romine Road Carleton, Michigan 48117 Client Reference No. G000430977 CleanAir Project No. 14903 A2LA ISO 17025 Certificate No. 4342.01 A2LA / STAC Certificate No. 4342.02 Revision 0, Final Report July 18, 2023

> RECEIVED SEP 19 2023 AIR QUALITY DIVISION

14903-Guardian Carleton Report_R0a.docx 71723 045300 14903

Copyright © 2023 Clean Air Engineering, Inc., Palatine, Illinois. All rights reserved.

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page ii

COMMITMENT TO QUALITY

To the best of our knowledge, the data presented in this report are accurate, complete, error free and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Report Submittal:

Justin Giel, QSTI Project Field Leader jgiel@cleanair.com (800) 632-1619 ext. 2152 July 18, 2023

Date

I hereby certify that the information contained within the final test report has been reviewed and, to the best of my ability, verified as accurate.

Independent Report Review:

Hobut-

Robert A. Preksta, QSTI Senior Project Manager bpreksta@cleanair.com (412) 480-6047

July 18, 2023

Date

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

REPORT REVISION HISTORY

Version	Revision	Date	Pages	Comments
Draft	D0a	07/07/23	All	Draft version of original document.
Final	0	07/18/23	All	Final version of original document.

PROJECT PERSONNEL

Name	Affiliation	Project Responsibility
Benjamin Kroeger, CPS, FSO	Guardian Industries, LLC	Primary Client Contact
Justin Giel	CleanAir	Project Manager / Report Submittal
Jason McKeever	CleanAir	Project Field Leader
Bob Preksta	CleanAir	Independent Review of Report
Eric Doak	CleanAir	Field Engineer
Kevan Downs	CleanAir	Field Engineer
Ethan Brady	CleanAir	Field Scientist
Brandon Ruzzi	CleanAir	Field Scientist
Jennifer Wright / Isabella Neer	CleanAir	Report Coordinators

×,

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page iv

TABLE OF CONTENTS

Project Overview	. 1
Test Program Summary	. 1
Test Program Details	. 2
Parameters	. 2
Schedule	. 2
Discussion	. 5
Results	. 7
Description of Installation	21
Process Description	21
Test Locations	21
Methodology	29
Procedures and Regulations	29
Title 40 CFR Part 60, Appendix A	29
Title 40 CFR Part 60, Appendix B Performance Specifications	29
CTM-013 Controlled Condensation Method (CCM)	30
Appendix	31
Appendix A: Test Method Specifications	. A
Appendix B: Sample Calculations	. В
Appendix C: Parameters	. C
Appendix D: QA/QC Data	. D
Appendix E: Field Data	E
Appendix F: Field Data Printouts	F
Appendix G: Reference Method Monitor Data	. G
Appendix H: Laboratory Data	. H
Appendix I: Facility Operating Data	I
Appendix J: CleanAir Resumes and Certifications	J
	Project Overview

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page v

LIST OF TABLES

Table 1-1: Summary of Results / Permit Limits	1
Table 1-2: Summary of Results / Performance Specification Limits	2
Table 1-3: Line #1 (EU00079) Test Schedule	3
Table 1-4: Line #2 (EU00080) Test Schedule	4
Table 2-1: Line #1 Stack (EU00079) – FPM	7
Table 2-2: Line #1 Outlet (EU00079) – Sulfuric Acid Mist	8
Table 2-3: Line #1 Stack (EU00079) – SO ₂ RATA (lb/hr)	9
Table 2-4: Line #1 Stack (EU00079) – SO ₂ RATA (lb/ton of Glass Produced) 1	10
Table 2-5: Line #1 Stack (EU00079) – NO _x RATA (ppm @7% O ₂) 1	1
Table 2-6: Line #1 Stack (EU00079) – NO _x RATA (lb/hr) 1	12
Table 2-7: Line #1 Inlet (EU00079) – NO _x RATA (ppm @7% O ₂) 1	13
Table 2-8: Line #2 Stack (EU00080) – FPM	4
Table 2-9: Line #2 Outlet (EU00080) – Sulfuric Acid Mist 1	15
Table 2-10: Line #2 Stack (EU00080) – SO ₂ RATA (lb/hr) 1	16
Table 2-11: Line #2 Stack (EU00080) – SO ₂ RATA (lb/ton of Glass Produced) 1	17
Table 2-12: Line #2 Stack (EU00080) – NO _x RATA (ppm @7% O ₂) 1	8
Table 2-13: Line #2 Stack (EU00080) – NO _x RATA (lb/hr)	19
Table 2-14: Line #2 Inlet (EU00080) – NO _x RATA (ppm @7% O ₂) 2	20
Table 3-1: Sampling Information 2	22

LIST OF FIGURES

Figure 3-1: EU00079 Stack Sample Point Layout (EPA Method 1)	23
Figure 3-2: EU00079 Outlet (Performance Specification 2)	24
Figure 3-3: EU00079 Inlet (Performance Specification 2)	25
Figure 3-4: EU00080 Stack Sample Point Layout (EPA Method 1)	26
Figure 3-5: EU00080 Outlet (Performance Specification 2)	27
Figure 3-6: EU00080 Inlet (Performance Specification 2)	28

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903

Revision 0, Final Report

Page vi

ACRONYMS & ABBREVIATIONS

AAS (atomic absorption spectrometry) acfm (actual cubic feet per minute) ACI (activated carbon injection) ADL (above detection limit) AIG (ammonia injection grid) APC (air pollution control) AQCS (air quality control system(s)) ASME (American Society of Mechanical Engineers) ASTM (American Society for Testing and Materials) BDL (below detection limit) Btu (British thermal units) CAM (compliance assurance monitoring) CARB (California Air Resources Board) CCM (Controlled Condensation Method) CE (capture efficiency) °C (degrees Celsius) CEMS (continuous emissions monitoring system(s)) CFB (circulating fluidized bed) CFR (Code of Federal Regulations) cm (centimeter(s)) COMS (continuous opacity monitoring system(s)) CT (combustion turbine) CTI (Cooling Technology Institute) CTM (Conditional Test Method) CVAAS (cold vapor atomic absorption spectroscopy) CVAFS (cold vapor atomic fluorescence spectrometry) DI H₂O (de-ionized water) %dv (percent, dry volume) DLL (detection level limited) DE (destruction efficiency) DCI (dry carbon injection) DGM (dry gas meter) dscf (dry standard cubic feet) dscfm (dry standard cubic feet per minute) dscm (dry standard cubic meter) ESP (electrostatic precipitator) FAMS (flue gas adsorbent mercury speciation) °F (degrees Fahrenheit) FB (field blank) FCC (fluidized catalytic cracking) FCCU (fluidized catalytic cracking unit) FEGT (furnace exit gas temperatures) FF (fabric filter) FGD (flue gas desulfurization) FIA (flame ionization analyzer) FID (flame ionization detector) FPD (flame photometric detection) FRB (field reagent blank) FSTM (flue gas sorbent total mercury) ft (feet or foot)

ft² (square feet) ft³ (cubic feet) ft/sec (feet per second) FTIR (Fourier Transform Infrared Spectroscopy) FTRB (field train reagent blank) g (gram(s)) GC (gas chromatography) GFAAS (graphite furnace atomic absorption spectroscopy) GFC (gas filter correlation) gr/dscf (grains per dry standard cubic feet) > (greater than) \ge (greater than or equal to) g/s (grams per second) H₂O (water) HAP(s) (hazardous air pollutant(s)) HI (heat input) hr (hour(s)) HR GC/MS (high-resolution gas chromatography and mass spectrometry) HRVOC (highly reactive volatile organic compounds) HSRG(s) (heat recovery steam generator(s)) HVT (high velocity thermocouple) IC (ion chromatography) IC/PCR (ion chromatography with post column reactor) ICP/MS (inductively coupled argon plasma mass spectroscopy) ID (induced draft) in. (inch(es)) in. H₂O (inches water) in. Hg (inches mercury) IPA (isopropyl alcohol) ISE (ion-specific electrode) kg (kilogram(s)) kg/hr (kilogram(s) per hour) < (less than)/ ≤ (less than or equal to) L (liter(s)) lb (pound(s)) lb/hr (pound per hour) Ib/MMBtu (pound per million British thermal units) Ib/TBtu (pound per trillion British thermal units) Ib/Ib-mole (pound per pound mole) LR GC/MS (low-resolution gas chromatography and mass spectrometry) m (meter) m³ (cubic meter) MACT (maximum achievable control technology) MASS® (Multi-Point Automated Sampling System) MATS (Mercury and Air Toxics Standards) MDL (method detection limit) µg (microgram(s)) min. (minute(s)) mg (milligram(s))

ml (milliliter(s)) MMBtu (million British thermal units) MW (megawatt(s)) NCASI (National Council for Air and Stream Improvement) ND (non-detect) NDIR (non-dispersive infrared) NDO (natural draft opening) NESHAP (National Emission Standards for Hazardous Air Pollutants) ng (nanogram(s)) Nm³ (Normal cubic meter) % (percent) PEMS (predictive emissions monitoring systems) PFGC (pneumatic focusing gas chromatography) pg (picogram(s)) PJFF (pulse jet fabric filter) ppb (parts per billion) PPE (personal protective equipment) ppm (parts per million) ppmdv (parts per million, dry volume) ppmwv (parts per million, wet volume) PSD (particle size distribution) psi (pound(s) per square inch) PTE (permanent total enclosure) PTFE (polytetrafluoroethylene) QA/QC (quality assurance/quality control) QI (qualified individual) QSTI (qualified source testing individual) QSTO (qualified source testing observer) RA (relative accuracy) RATA (relative accuracy test audit) RB (reagent blank) RE (removal or reduction efficiency) RM (reference method) scf (standard cubic feet) scfm (standard cubic feet per minute) SCR (selective catalytic reduction) SDA (spray dryer absorber) SNCR (selective non-catalytic reduction) STD (standard) STMS (sorbent trap monitoring system) TBtu (trillion British thermal units) **TEOM** (Tapered Element Oscillating Microbalance) TEQ (toxic equivalency quotient) ton/hr (ton per hour) ton/yr (ton per year) TSS (third stage separator) USEPA or EPA (United States Environmental Protection Agency) UVA (ultraviolet absorption) WFGD (wet flue gas desulfurization) %wv (percent, wet volume)

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

1. PROJECT OVERVIEW

TEST PROGRAM SUMMARY

Guardian Industries, LLC contracted CleanAir Engineering (CleanAir) to complete testing on Line #1 (EU00079) and Line #2 (EU00080) at Guardian's facility located in Carleton, Michigan. The objective of the test program was complete testing obligations with respect to Michigan Renewable Operating Permit (MI ROP) Number MI-ROP-B1877-2021b.

A summary of the test program results is presented below. Section 2 Results provides a more detailed account of the test conditions and data analysis.

Table 1-1: Summary of Results / Permit Limits

Source	Sampling	Average	
Constituent	Method	Emission	Permit Limit ¹
Line #1 Stack (EU00079) FPM (lb/ton of glass produced)	EPA 5	0.04	0.45
Line #1 Outlet (EU00079) Sulfuric Acid Mist (lb/hr) ²	CTM-013	0.2	1.6
Line #2 Stack (EU00080) FPM (lb/ton of glass produced)	EPA 5	0.01	0.45
Line #2 Outlet (EU00080) Sulfuric Acid Mist (lb/hr)	CTM-013	0.3	1.6

¹ Permit limits obtained from Michigan ROP Number MI-ROP-B1877-2021b.

² Sulfuric Acid Mist results based on Ion Chromatography laboratory results.

RECEIVED

SEP 1 9 2023

AIR QUALITY DIVISION

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 2

Table 1-2:

Summary of Results / Performance Specification Limits

Source Constituent	Reference Method	Relative Accuracy (%) ¹	Applicable Specification	Specification Limit ²
Line #1 (EU00079) Stack				
SO ₂ (lb/hr)	EPA 1-4, 6C	4.7	PS6	≤20% RM
SO ₂ (lb/ton of glass produced)	EPA 1-4, 6C	5.3	PS6	≤20% RM
NO _x (ppm @7% O ₂)	EPA 1-4, 7E	9.3	PS2	≤20% RM
NO _x (lb/hr)	EPA 1-4, 7E	4.4	PS6	≤20% RM
Line #1 (EU00079) Inlet				
NO _x (ppm @7% O ₂)	EPA 1-4, 7E	14.0	PS2	≤20% RM
Line #2 (EU00080) Stack				
SO ₂ (lb/hr)	EPA 1-4, 6C	1.0	PS6	≤10% Std.
SO ₂ (lb/ton of glass produced)	EPA 1-4, 6C	7.4	PS6	<u>≤</u> 10% Std.
NO _x (ppm @7% O ₂)	EPA 1-4, 7E	6.1	PS2	≤20% RM
NO _x (lb/hr)	EPA 1-4, 7E	5.4	PS6	≤20% RM
Line #2 (EU00080) Inlet				
NO _x (ppm @7% O ₂)	EPA 1-4, 7E	3.9	PS2	≤20% RM

¹ Relative Accuracy is expressed in terms of comparison to the reference method (% RM) or applicable emission standard (% Std.) The specific expression used depends on the specification limit cited.

² Specification limits obtained from 40 CFR 60, Appendix B, Performance Specifications.

³ Applicable Standards:

Line #2 (EU00080) Stack SO2: 134.3 lb/hr and 1.2 lb/ton glass produced

TEST PROGRAM DETAILS

PARAMETERS

The test program included the following measurements:

- filterable particulate matter (FPM)
- sulfuric acid mist (H₂SO₄)
- sulfur dioxide (SO₂) RATA Only
- nitrogen oxide (NO_x) RATA Only
- flue gas composition (e.g., O₂, CO₂, H₂O)
- flue gas temperature
- flue gas flow rate

SCHEDULE

Testing was performed on June 6 through June 9, 2023. Tables 1-3 and 1-4 outline the on-site schedule followed during the test program.

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

Table 1-3: Line #1 (EU00079) Test Schedule

CleanAir Project No. 14903
Revision 0, Final Report
Page 3

Run Number	Location	Method	Analyte	Date	Start Time	End Time
2	Line #1 Stack	USEPA Method 5	FPM	06/08/23	13:35	14:57
3	Line #1 Stack	USEPA Method 5	FPM	06/08/23	16:00	17:13
4	Line #1 Stack	USEPA Method 5	FPM 06/09/23		07:16	08:27
2	Line #1 Outlet	CTM-013 (Mod.)	H ₂ SO ₄ , as Sulfuric Acid Mist	06/08/23	13:35	14:35
3	Line #1 Outlet	CTM-013 (Mod.)	H ₂ SO ₄ , as Sulfuric Acid Mist	06/08/23	16:00	17:00
4	Line #1 Outlet	CTM-013 (Mod.)	H ₂ SO ₄ , as Sulfuric Acid Mist	06/09/23	07:16	08:16
1	Line #1 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/09/23	14:54	15:15
2	Line #1 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/09/23	15:16	15:37
3	Line #1 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/09/23	15:37	15:58
4	Line #1 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/09/23	16:27	16:48
5	Line #1 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/09/23	16:49	17:10
6	Line #1 Stack	USEPA Methods 6C, 7E	SO2 and NOx	06/09/23	17:11	17:32
7	Line #1 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/09/23	17:55	18:16
8	Line #1 Stack	USEPA Methods 6C, 7E	SO2 and NOx	06/09/23	18:16	18:37
9	Line #1 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/09/23	18:38	18:59
10	Line #1 Stack	USEPA Methods 6C, 7E	SO2 and NO	06/09/23	19:25	19:46
11	Line #1 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/09/23	19:46	20:0
12	Line #1 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/09/23	20:07	20:2
1	Line #1 Inlet	USEPA Method 7E	NOx	06/09/23	14:54	15:1
2	Line #1 Inlet	USEPA Method 7E	NOx	06/09/23	15:16	15:3
3	Line #1 Inlet	USEPA Method 7E	NOx	06/09/23	15:37	15:5
4	Line #1 Inlet	USEPA Method 7E	NOx	06/09/23	16:27	16:4
5	Line #1 Inlet	USEPA Method 7E	NOx	06/09/23	16:49	17:1
6	Line #1 Inlet	USEPA Method 7E	NOx	06/09/23	17:11	17:3
7	Line #1 Inlet	USEPA Method 7E	NOx	06/09/23	17:55	18:1
8	Line #1 Inlet	USEPA Method 7E	NO _x	06/09/23	18:16	18:3
9	Line #1 Inlet	USEPA Method 7E	NO _x	06/09/23	18:38	18:5
10	Line #1 Inlet	USEPA Method 7E	NO _x	06/09/23	19:25	19:4
11	Line #1 Inlet	USEPA Method 7E	NO _x	06/09/23	19:46	20:0
12	Line #1 Inlet	USEPA Method 7E	NO _x	06/09/23	20:07	20:20
1	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	14:54	15:0
2	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	15:17	15:3
3	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	15:35	15:4
4	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	16:27	16:4
5	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	16:49	17:0
6	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	17:11	17:2
7	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	17:55	18:0
8	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	18:16	18:2
9	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	18:38	18:4
10	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	19:25	19:3
11	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	19:46	19:5
12	Line #1 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/09/23	20:07	20:1
1	Line #1 Stack	USEPA Method 4	Moisture	06/09/23	14:54	15:5
2	Line #1 Stack	USEPA Method 4	Moisture	06/09/23	16:27	17:2
3	Line #1 Stack	USEPA Method 4	Moisture	06/09/23	17:55	18:5
4	Line #1 Stack	USEPA Method 4	Moisture	06/09/23	19:25	20:2

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 4

Table 1-4:

Line #2	(EU00080) Test Schedule
---------	----------	-----------------

Run Number	Location	Method	Analyte	Date	Start Time	End Time
1	Line #2 Stack	USEPA Method 5	FPM	06/06/23	09:25	11:05
2	Line #2 Stack	USEPA Method 5	FPM	06/06/23	13:24	14:47
3	Line #2 Stack	USEPA Method 5	FPM	FPM 06/06/23		17:14
1	Line #2 Outlet	CTM-013 (Mod.)	H ₂ SO ₄ , as Sulfuric Acid Mist	06/06/23	09:25	10:25
2	Line #2 Outlet	CTM-013 (Mod.)	H ₂ SO ₄ , as Sulfuric Acid Mist	06/06/23	13:24	14:24
3	Line #2 Outlet	CTM-013 (Mod.)	H ₂ SO ₄ , as Sulfuric Acid Mist 06/06/23		16:02	17:02
1	Line #2 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/07/23	07:47	08:08
2	Line #2 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/07/23	08:08	08:29
3	Line #2 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/07/23	08:57	09:18
4	Line #2 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/07/23	09:56	10:1
5	Line #2 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/07/23	10:18	10:39
6	Line #2 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/07/23	10:39	11:00
7	Line #2 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/07/23	12:11	12:32
8	Line #2 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/07/23	12:33	12:54
9	Line #2 Stack	USEPA Methods 6C, 7E	SO ₂ and NO _x	06/07/23	12:55	13:1
10	Line #2 Stack	USEPA Methods 6C, 7E	SO_2 and NO_x	06/07/23	13:59	14:20
1	Line #2 Inlet	USEPA Method 7E	NOx	06/07/23	07:47	08:0
2	Line #2 Inlet	USEPA Method 7E	NO _x 06/0		08:08	08:2
3	Line #2 Inlet	USEPA Method 7E	NOx	06/07/23	08:57	09:1
4	Line #2 Inlet	USEPA Method 7E	NOx	06/07/23	09:56	10:1
5	Line #2 Inlet	USEPA Method 7E	NOx	06/07/23	10:18	10:3
6	Line #2 Inlet	USEPA Method 7E	NOx	06/07/23	10:39	11:0
7	Line #2 Inlet	USEPA Method 7E	NO _x	06/07/23	12:11	12:3
8	Line #2 Inlet	USEPA Method 7E	NOx	06/07/23	12:33	12:5
9	Line #2 Inlet	USEPA Method 7E	NOx	06/07/23	12:55	13:1
10	Line #2 Inlet	USEPA Method 7E	NO _x	06/07/23	13:59	14:2
1	Line #2 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/07/23	07:47	08:0
2	Line #2 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/07/23	08:10	08:4
3	Line #2 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/07/23	08:59	09:1
4	Line #2 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/07/23	09:50	10:1
5	Line #2 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/07/23	10:18	10:2
6	Line #2 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/07/23	10:39	10:4
7	Line #2 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/07/23	12:11	12:2
8	Line #2 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/07/23	12:33	12:4
9	Line #2 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/07/23	12:55	13:0
10	Line #2 Stack	USEPA Methods 2 & 4	Velocity, Flow Rate	06/07/23	14:04	14:1
1	Line #1 Stack	USEPA Method 4	Moisture	06/07/23	08:26	09:2
2	Line #1 Stack	USEPA Method 4	Moisture	06/07/23	09:50	10:5
3	Line #1 Stack	USEPA Method 4	Moisture	06/07/23	12:11	13:1
4	Line #1 Stack	USEPA Method 4	Moisture	06/07/23	14:04	14:3

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

DISCUSSION

EPA Method 5 Compliance

EPA Method 5, "Determination of Particulate Emissions from Stationary Sources", was followed for the filterable particulate matter (FPM) measurements. This method is contained in Appendix A of 40 CFR 60. Method 5 defines particulate matter as any material that is collected before or on the surface of a quartz fiber filter.

Stack gas was isokinetically withdrawn through a temperature-controlled probe and high-efficiency quartz fiber filter. A minimum of 30 dry standard cubic feet of sample gas was collected over a one-hour test period for each run. A set of impingers were connected to the outlet of the filter. They were gravimetrically measured before and after each test to determine flue gas moisture content. A slipstream of the dry-filtered flue gas exiting the dry gas meter was collected in a flexible bag. This gas sample was analyzed for oxygen and carbon dioxide following Method 3A for each tes1t.

The front-half of the sampling train consisted of a stainless-steel nozzle and probe liner on Line #1 (due to the large diameter of the stack) and a glass nozzle and probe liner on Line #2. These were followed by a filter holder heated to $120^{\circ}C \pm 14^{\circ}C (248^{\circ}F \pm 25^{\circ}F)$, and a quartz fiber filter.

After exiting the filter, the flue gas passed through a Teflon line into a series of glass impingers surrounded by ice. The purpose of the impingers was to determine the flue gas moisture concentration and thoroughly dry the gas. The sample gas then flowed into a calibrated dry gas meter where the collected sample gas volume was determined.

The front-half portion of the sample train (nozzle, probe, and heated filter) was recovered per Method 5 requirements, using acetone as the recovery solvent. The filters and front-half acetone rinses were sent to CleanAir's laboratory in Palatine, Illinois for gravimetric analysis.

Line #1, Run 1 was invalidated due to a sampling equipment problem. Compliance is based on Runs 2, 3, and 4. Because the CTM-013 testing was performed in tandem with the Method 5 testing, Run 1 was also invalidated for the CTM-013 testing.

Sulfuric Acid Mist – CTM-013

CleanAir followed EPA Conditional Test Method 013 (CTM-013). This method is applicable for the determination of sulfur trioxide (SO₃) and sulfuric acid vapor/mist (H₂SO₄) using a controlled condensation sampling system.

The key operating parameters for this method included:

- Probe was maintained at a temperature of >350°F.
- Quartz fiber filter was maintained at a temperature of >500°F.
- H₂SO₄ condenser Modified Graham condenser, filled with water and temperatures were maintained between 75 and 85°C (167 to 185°F).

A second filter, referred to as the sulfuric acid mist (SAM) filter, was located at the condenser outlet for the collection of residual sulfuric acid aerosols not collected by the condenser. The condenser temperature was regulated by a water jacket and the SAM filter was regulated by a closed oven. Both the water jacket and oven were maintained between 167°F to 185°F. The condenser and SAM filter (glass frit) were maintained above the water dew point, which eliminated the problem of oxidation of dissolved SO₂.

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

The condenser collection media, including the coil condenser rinse and glass frit, were extracted with DI water.

CleanAir conducted three 1-hour CTM-013 tests for the determination of sulfuric acid mist. At the conclusion of each test, samples were recovered and sent to the on-site laboratory trailer for analysis. CleanAir analyzed the samples on-site with barium-thorin titration procedures on the day of sampling. CleanAir also analyzed the same samples the following day using ion chromatography (IC).

Moisture and flow data from the concurrent EPA Method 5 testing were used to calculate mass emission rates.

Relative Accuracy Testing

Relative accuracy testing consisted of concurrent pollutant emissions measurements using the facility CEMS and a RM monitoring system. The RATA consisted of 12 runs of gaseous measurements for Line #1 and 10 runs for Line #2. The best nine runs were used for the RATA calculations. Each test run was 21 minutes in length.

CleanAir performed a leak check of each sampling system in its entirety prior to performing the initial bias check. The acceptable leak rate for this check is zero liters per minute (lpm) for 30 seconds, as measured on the flow control panel.

In accordance with Performance Specification 2, Paragraph 8.1.3.2, three sample points were located along a measurement line that passed through the centroidal area. The three points were located at 83.3%, 50.0%, and 16.7%.

A calibration error check and an initial system bias were performed successfully. Copies of the RM calibration error and other RM QA/QC information are in Appendix G. Calibration gas certifications are in Appendix D. Additional data reduction and calculated result parameters are in Appendix C.

A passing converter efficiency check was performed on the RM NOx analyzer according to Section 16.2 of Method 7E. The converter efficiency check is in Appendix D.

Oxygen (O_2) and carbon dioxide (CO_2) data used in the molecular weight calculation was determined using Method 3A and analyzed via a calibrated paramagnetic/IR instrument analyzer.

Twelve Method 2 velocity traverses were performed during the RATA. One Method 4 moisture run was conducted for every three RATA runs for a total of four moisture runs performed. The results from the Methods 2 and 4 testing were used to convert the compliance data concentration-based results into mass-based emission results in units of lb/hr and lb/ton glass produced.

End of Section

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

2. RESULTS

This section summarizes the test program results. Additional results are available in the report appendices.

Run No		2	3	4	Average
Date (2	023)	Jun 8	Jun 8	Jun 9	
Start Ti	me (approx.)	13:35	16:00	07:16	
Stop Ti	me (approx.)	14:57	17:13	08:27	
Proces	s Conditions				
RP	Production rate (ton of glass produced/hr)	16.7	16.7	16.7	16.7
Gas Co	nditions				
O2	Oxygen (dry volume %)	11.2	11.0	10.1	10.8
CO ₂	Carbon dioxide (dry volume %)	8.1	8.4	7.8	8.1
Ts	Stack temperature (°F)	594	594	591	593
Bw	Actual water vapor in gas (% by volume)	11.6	12.4	12.0	12.0
Gas Flo	w Rate				
Qa	Volumetric flow rate, actual (acfm)	98,500	102,000	102,000	101,000
Qs	Volumetric flow rate, standard (scfm)	47,900	49,700	49,700	49,100
Q _{std}	Volumetric flow rate, dry standard (dscfm)	42,400	43,500	43,800	43,200
Sampli	ng Data				
Vmstd	Volume metered, standard (dscf)	39.19	40.71	41.57	40.49
%1	Isokinetic sampling (%)	100.7	101.9	103.4	102.0
Labora	tory Data				
m _{filter}	Matter collected on filter(s) (g)	0.00204	0.00305	0.00191	
ms	Matter collected in solvent rinse(s) (g)	0.00164	0.00321	0.00244	
mn	Total FPM (g)	0.00368	0.00626	0.00435	
FPM Re	sults				
Csd	Particulate Concentration (Ib/dscf)	2.07E-07	3.39E-07	2.31E-07	2.59E-07
E _{lb/hr}	Particulate Rate (lb/hr)	0.526	0.884	0.606	0.672
ERP	Particulate Rate - Production-based (lb/ton of glass produced)	0.0315	0.0529	0.0364	0.0403

Average includes 3 runs.

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report

Page 8

Table 2-2:

Run No	1	2	3	4	Average
Date (20	023)	Jun 8	Jun 8	Jun 9	
Start Tir	me (approx.)	13:35	16:00	07:16	
Stop Tir	me (approx.)	14:35	17:00	08:16	
Gas Co	nditions				
02	Oxygen (dry volume %)	11.2	11.0	10.1	10.8
CO ₂	Carbon dioxide (dry volume %)	8.1	8.4	7.8	8.1
Ts	Stack temperature (°F)	632	623	612	622
Bw	Actual water vapor in gas (% by volume)	11.72	11.67	12.96	12.12
Gas Flo	ow Rate ²				
Qa	Volumetric flow rate, actual (acfm)	98,500	102,000	102,000	101,000
Qs	Volumetric flow rate, standard (scfm)	47,900	49,700	49,700	49,100
Qstd	Volumetric flow rate, dry standard (dscfm)	42,400	43,500	43,800	43,200
Sampli	ng Data				
Vmstd	Volume metered, standard (dscf)	23.78	23.65	24.02	23.82
Labora	tory Data (Ion Chromatography)				
mn	Total H2SO4 collected (mg)	0.5580	0.6758	0.9514	
Labora	tory Data (Titration)				
mn	Total H2SO4 collected (mg)	0.9303	0.8908	1.0224	
Sulfuri	c Acid Mist (H2SO4) IC Results				
Csd	H2SO4 Concentration (ppmdv)	0.203	0.248	0.343	0.265
Elb/hr	H2SO4 Rate (lb/hr)	0.132	0.164	0.229	0.175
Sulfuri	c Acid Mist (H2SO4) Titration Results				
Csd	H2SO4 Concentration (ppmdv)	0.339	0.326	0.369	0.345
Elb/hr	H2SO4 Rate (lb/hr)	0.219	0.217	0.246	0.227

¹ Run 1 was invalidated due to a sampling train equipment problem during the concurrently run Method 5 test.

² Velocity and flow rate data obtained from USEPA Method 5 testing.

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 9

Table 2-3:

	Start	Date	RM Data	CEMS Data	Difference	Difference
No.	Time	(2023)	(lb/hr)	(lb/hr)	(lb/hr)	Percent
1 *	14:54	Jun 9	4.46	5.00	-0.54	-12.2%
2 *	15:16	Jun 9	2.68	4.50	-1.82	-67.9%
3 *	15:37	Jun 9	4.33	5.20	-0.87	-20.2%
4	16:27	Jun 9	4.89	5.10	-0.21	-4.3%
5	16:49	Jun 9	5.16	5.30	-0.14	-2.8%
6	17:11	Jun 9	5.09	5.30	-0.21	-4.2%
7	17:55	Jun 9	4.81	5.30	-0.49	-10.2%
8	18:16	Jun 9	4.96	5.40	-0.44	-8.9%
9	18:38	Jun 9	5.16	5.40	-0.24	-4.7%
10	19:25	Jun 9	4.61	4.90	-0.29	-6.3%
11	19:46	Jun 9	4.62	5.00	-0.38	-8.2%
12	20:07	Jun 9	4.66	5.20	-0.54	-11.5%
	Average)	4.88	5.21	-0.33	-6.7%

Relative Accuracy Test Audit Results

Relative Accuracy (as % of RM)	8.89%	20.0%	
		Limit	
t-Value for 9 Data Sets	2.306		
Confidence Coefficient (CC)	0.106810		
Standard Deviation of Differences	0.138956		

RM = Reference Method (CleanAir Data)

062323 160415

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 10

Table 2-4:

Run No.	Start Time	Date (2023)	RM Data (lb/ton of glass produced)	CEMS Data (Ib/ton of glass produced)	Difference (Ib/ton of glass produced)	Difference Percent
1 *	14:54	Jun 9	0.27	0.30	-0.03	-12.2%
2 *	15:16	Jun 9	0.16	0.27	-0.11	-67.9%
3 *	15:37	Jun 9	0.26	0.31	-0.05	-19.4%
4	16:27	Jun 9	0.29	0.31	-0.02	-5.6%
5	16:49	Jun 9	0.31	0.32	-0.01	-3.4%
6	17:11	Jun 9	0.31	0.32	-0.01	-4.8%
7	17:55	Jun 9	0.29	0.32	-0.03	-10.7%
8	18:16	Jun 9	0.30	0.33	-0.03	-10.8%
9	18:38	Jun 9	0.31	0.33	-0.02	-6.5%
10	19:25	Jun 9	0.28	0.30	-0.02	-8.4%
11	19:46	Jun 9	0.28	0.30	-0.02	-8.0%
12	20:07	Jun 9	0.28	0.31	-0.03	-10.6%
1	Average		0.29	0.32	-0.02	-7.6%

Relative Accuracy Test Audit Results

Standard Deviation of Differences	0.007576		
Confidence Coefficient (CC)	0.005823		
t-Value for 9 Data Sets	2.306		
		Limit	
Relative Accuracy (as % of RM)	9.58%	20.0%	

RM = Reference Method (CleanAir Data)

062323 1604 15

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

CleanAir Project No. 14903 Revision 0, Final Report Page 11

Table 2-5:

Line #1 Stack (EU00079) - NOx RATA (ppm @7% O2)

Run No.	Start Time	Date (2023)	RM Data (ppm@7%O2)	CEMS Data (ppm@7%O2)	Difference (ppm@7%O2)	Difference Percent
1	14:54	Jun 9	166.9	156.2	10.7	6.4%
2	15:16	Jun 9	175.1	162.2	12.9	7.4%
3	15:37	Jun 9	148.8	138.7	10.1	6.8%
4	16:27	Jun 9	157.2	144.0	13.2	8.4%
5 *	16:49	Jun 9	167.7	151.6	16.1	9.6%
6 *	17:11	Jun 9	144.1	143.4	0.7	0.5%
7	17:55	Jun 9	164.3	152.8	11.5	7.0%
8	18:16	Jun 9	151.2	139.9	11.3	7.5%
9	18:38	Jun 9	174.9	161.6	13.3	7.6%
10	19:25	Jun 9	188.0	173.5	14.5	7.7%
11 *	19:46	Jun 9	163.1	148.3	14.8	9.0%
12	20:07	Jun 9	176.6	162.5	14.1	8.0%
	Average		167.0	154.6	12.4	7.4%

Relative Accuracy Test Audit Results

Standard Deviation of Differences	1.531915		
Confidence Coefficient (CC)	1.177532		
t-Value for 9 Data Sets	2.306		
		Limit	
Relative Accuracy (as % of RM)	8.13%	20.0%	

RM = Reference Method (CleanAir Data)

062323 1604 15

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 12

Table 2-6:

Run	Start	Date	RM Data	CEMS Data	Difference	Difference
No.	Time	(2023)	(lb/hr)	(lb/hr)	(lb/hr)	Percent
1	14:54	Jun 9	39.2	39.7	-0.5	-1.4%
2	15:16	Jun 9	39.1	39.0	0.1	0.1%
3	15:37	Jun 9	35.5	35.9	-0.4	-1.0%
4	16:27	Jun 9	39.5	37.9	1.6	4.1%
5 *	16:49	Jun 9	41.7	39.6	2.1	5.0%
6 *	17:11	Jun 9	35.8	37.5	-1.7	-4.7%
7	17:55	Jun 9	40.4	40.1	0.3	0.8%
8	18:16	Jun 9	37.6	36.9	0.7	1.8%
9	18:38	Jun 9	44.0	42.5	1.5	3.4%
10	19:25	Jun 9	45.9	44.1	1.8	4.0%
11 *	19:46	Jun 9	39.8	38.7	1.1	2.9%
12	20:07	Jun 9	44.0	43.4	0.6	1.3%
	Average		40.6	39.9	0.6	1.6%

Relative Accuracy Test Audit Results

Standard Deviation of Differences	0.868194		
Confidence Coefficient (CC)	0.667352		
t-Value for 9 Data Sets	2.306		
		Limit	
Relative Accuracy (as % of RM)	3.21%	20.0%	

RM = Reference Method (CleanAir Data)

062323 160415

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

CleanAir Project No. 14903 Revision 0, Final Report Page 13

Table 2-7:

Run	Start	Date	RM Data	CEMS Data	Difference (ppm@7%O2)	Difference Percent
No.	Time	(2023)	(ppm@7%O2)	(ppm@7%O2)	(ppin@1/202)	Fercent
1	14:54	Jun 9	1049.1	1179.8	-130.7	-12.5%
2 *	15:16	Jun 9	1097.0	1618.1	-521.1	-47.5%
3	15:37	Jun 9	1046.8	1160.9	-114.1	-10.9%
4	16:27	Jun 9	1062.8	1197.4	-134.6	-12.7%
5	16:49	Jun 9	1072.8	1187.0	-114.2	-10.6%
6	17:11	Jun 9	1079.4	1204.4	-125.0	-11.6%
7	17:55	Jun 9	1085.5	1215.2	-129.7	-12.0%
8 *	18:16	Jun 9	909.4	1194.2	-284.8	-31.3%
9 *	18:38	Jun 9	211.2	1240.5	-1029.3	-487.5%
10	19:25	Jun 9	1117.5	1259.8	-142.3	-12.7%
11	19:46	Jun 9	1072.1	1215.5	-143.4	-13.4%
12	20:07	Jun 9	1078.8	1263.1	-184.3	-17.1%
	Average	í.	1073.9	1209.2	-135.4	-12.6%

Relative Accuracy Test Audit Results

Standard Deviation of Differences	21.119689		
Confidence Coefficient (CC)	16.234001		
t-Value for 9 Data Sets	2.306		
		Limit	
Relative Accuracy (as % of RM)	14.12%	20.0%	

RM = Reference Method (CleanAir Data)

062323 160415

Guardian Industries, LLC
Carleton, Michigan
Report on Compliance and Relative Accuracy Testing

CleanAir Project No. 14903 Revision 0, Final Report

Page 14

Table 2-8:

Run No.		1	2	3	Average
Date (20	023)	Jun 6	Jun 6	Jun 6	
	ne (approx.)	09:25	13:24	16:02	
	ne (approx.)	11:05	14:47	17:14	
Proces	s Conditions				
RP	Production rate (ton of glass produced/hr)	17.8	17.8	17.8	17.8
Gas Co	nditions				
02	Oxygen (dry volume %)	14.2	14.1	14.1	14.2
CO ₂	Carbon dioxide (dry volume %)	4.2	4.3	4.3	4.3
Ts	Stack temperature (°F)	457	461	456	458
Bw	Actual water vapor in gas (% by volume)	9.1	8.6	8.6	8.8
Gas Flo	w Rate				
Qa	Volumetric flow rate, actual (acfm)	88,200	93,300	92,800	91,400
Qs	Volumetric flow rate, standard (scfm)	49,600	52,200	52,200	51,400
Q _{std}	Volumetric flow rate, dry standard (dscfm)	45,100	47,700	47,700	46,900
Sampli	ng Data				
Vmstd	Volume metered, standard (dscf)	40.90	43.97	45.39	43.42
%1	Isokinetic sampling (%)	97.0	98.5	101.7	99.1
Labora	tory Data				
m _{filter}	Matter collected on filter(s) (g)	0.00037	0.00082	0.00029	
ms	Matter collected in solvent rinse(s) (g)	0.00120	0.00095	0.00130	
mn	Total FPM (g)	0.00157	0.00177	0.00159	
FPM Re	sults				
Csd	Particulate Concentration (Ib/dscf)	8.46E-08	8.88E-08	7.72E-08	8.35E-08
E _{lb/hr}	Particulate Rate (lb/hr)	0.229	0.254	0.221	0.235
ERP	Particulate Rate - Production-based (lb/ton of glass produced)	0.0129	0.0143	0.0125	0.0132

Average includes 3 runs.

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

CleanAir Project No. 14903 Revision 0, Final Report Page 15

Table 2-9:

Run No	D.	1	2	3	Average
Date (2	023)	Jun 6	Jun 6	Jun 6	
Start Ti	me (approx.)	09:25	13:24	16:02	
Stop Ti	me (approx.)	10:25	14:24	17:02	
Gas Co	onditions				
Oz	Oxygen (dry volume %)	14.2	14.1	14.1	14.2
CO ₂	Carbon dioxide (dry volume %)	4.2	4.3	4.3	4.3
Ts	Stack temperature (°F)	482	489	483	485
Bw	Actual water vapor in gas (% by volume)	11.21	9.92	9.39	10.17
Gas Flo	ow Rate ¹				
Qa	Volumetric flow rate, actual (acfm)	88,200	93,300	92,800	91,400
Qs	Volumetric flow rate, standard (scfm)	49,600	52,200	52,200	51,400
Qstd	Volumetric flow rate, dry standard (dscfm)	45,100	47,700	47,700	46,900
Sampli	ng Data				
Vmstd	Volume metered, standard (dscf)	24.31	23.63	24.05	24.00
Labora	tory Data (Ion Chromatography)				
mn	Total H2SO4 collected (mg)	0.5987	0.8004	1.0171	
Labora	tory Data (Titration)				
mn	Total H2SO4 collected (mg)	0.83312	1.39382	1.39242	
Sulfuri	c Acid Mist (H2SO4) IC Results				
Csd	H2SO4 Concentration (ppmdv)	0.213	0.294	0.366	0.291
Elb/hr	H2SO4 Rate (lb/hr)	0.147	0.214	0.267	0.209
Sulfuri	c Acid Mist (H2SO4) Titration Results				
Csd	H2SO4 Concentration (ppmdv)	0.29699	0.5113	0.5017	0.437
Elb/hr	H2SO4 Rate (lb/hr)	0.20448	0.37264	0.36557	0.314

¹ Velocity and flow rate data obtained from USEPA Method 5 testing.

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 **Revision O, Final Report** Page 16

Run No.	Start Time	Date (2023)	RM Data (lb/hr)	CEMS Data (lb/hr)	Difference (lb/hr)	Difference Percent
1	07:47	Jun 7	5.70	7.20	-1.50	-26.4%
2	08:08	Jun 7	7.99	9.20	-1.21	-15.1%
3	08:57	Jun 7	7.34	8.50	-1.16	-15.8%
4	09:56	Jun 7	5.85	6.90	-1.05	-17.9%
5	10:18	Jun 7	6.96	8.10	-1.14	-16.4%
6 *	10:39	Jun 7	5.26	6.60	-1.34	-25.4%
7	12:11	Jun 7	6.20	7.20	-1.00	-16.1%
8	12:33	Jun 7	4.77	6.00	-1.23	-25.8%
9	12:55	Jun 7	6.50	7.20	-0.70	-10.8%
10	13:59	Jun 7	5.30	6.70	-1.40	-26.4%
1	Average		6.29	7.44	-1.15	-18.3%

Relative Accuracy Test Audit Results

Standard Deviation of Differences	0.231835		
Confidence Coefficient (CC)	0.178204		
t-Value for 9 Data Sets	2.306		
		Limit	
Relative Accuracy (as % of Appl. Std.)	0.99%	10.0%	
Appl. Std. = 134.3 lb/hr			

RM = Reference Method (CleanAir Data)

062323 160549

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 **Revision 0, Final Report** Page 17

Run No.	Start Time	Date (2023)	RM Data (lb/ton of glass produced)	CEMS Data (Ib/ton of glass produced)	Difference (lb/ton of glass produced)	Difference Percent
1	07:47	Jun 7	0.32	0.40	-0.08	-24.3%
2	80:80	Jun 7	0.45	0.50	-0.05	-10.8%
3	08:57	Jun 7	0.41	0.50	-0.09	-20.6%
4	09:56	Jun 7	0.33	0.40	-0.07	-21.0%
5	10:18	Jun 7	0.39	0.50	-0.11	-27.2%
6 *	10:39	Jun 7	0.30	0.40	-0.10	-34.5%
7	12:11	Jun 7	0.35	0.40	-0.05	-14.2%
8	12:33	Jun 7	0.27	0.30	-0.03	-11.4%
9	12:55	Jun 7	0.37	0.40	-0.03	-9.0%
10	13:59	Jun 7	0.30	0.40	-0.10	-33.6%
	Average		0.36	0.42	-0.07	-18.8%

Relative Accuracy Test Audit Results

Standard Deviation of Differences	0.028091		
Confidence Coefficient (CC)	0.021593		
t-Value for 9 Data Sets	2.306		
		Limit	
Relative Accuracy (as % of Appl. Std.)	7.38%	10.0%	
Appl. Std. = 1.2 lb/ton of glass proc	duced		

RM = Reference Method (CleanAir Data)

062323 160549

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 **Revision O, Final Report** Page 18

Run No.	Start Time	Date (2023)	RM Data (ppm@7%O2)	CEMS Data (ppm@7%O2)	Difference (ppm@7%O2)	Difference Percent
1	07:47	Jun 7	332.2	354.5	-22.3	-6.7%
2 *	08:08	Jun 7	372.3	392.7	-20.4	-5.5%
3	08:57	Jun 7	330.1	351.8	-21.7	-6.6%
4	09:56	Jun 7	370.0	383.0	-13.0	-3.5%
5	10:18	Jun 7	361.1	387.3	-26.2	-7.2%
6	10:39	Jun 7	369.3	388.1	-18.8	-5.1%
7	12:11	Jun 7	405.6	426.5	-20.9	-5.1%
8	12:33	Jun 7	371.6	391.4	-19.8	-5.3%
9	12:55	Jun 7	393.9	408.6	-14.7	-3.7%
10	13:59	Jun 7	370.5	385.5	-15.0	-4.1%
-	Average	•	367.2	386.3	-19.1	-5.2%

Relative Accuracy Test Audit Results

-				
	Relative Accuracy (as % of RM)	6.10%	20.0%	
			Limit	
	t-Value for 9 Data Sets	2.306		
	Confidence Coefficient (CC)	3.255055		
	Standard Deviation of Differences	4.234677		

RM = Reference Method (CleanAir Data)

062323 160549

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 19

Table 2-13:

Line #2 Stack (EU00080) - NOx RATA (lb/hr) **RM** Data **CEMS** Data Difference Difference Start Date Run (2023) (lb/hr) (lb/hr) (lb/hr) Percent No. Time 1 -7.7% 07:47 Jun 7 53.4 57.5 -4.1 2 * 08:08 59.6 64.6 -5.0 -8.4% Jun 7 57.1 -3.8 -7.0% 3 08:57 Jun 7 53.3 0.2 0.3% 4 09:56 Jun 7 62.8 62.6 5 10:18 Jun 7 58.3 62.2 -3.9 -6.6% Jun 7 -2.1 6 10:39 60.3 62.4 -3.6% 7 66.5 68.7 -2.2 -3.3% 12:11 Jun 7 -0.9 -1.5% 8 12:33 Jun 7 60.8 61.7 9 66.4 65.8 0.6 0.9% 12:55 Jun 7 -0.7% 10 13:59 Jun 7 61.7 62.1 -0.4 60.4 62.2 -1.8 -3.1% Average

Relative Accuracy Test Audit Results

Relative Accuracy (as % of RM)	5.36%	20.0%	
		Limit	
t-Value for 9 Data Sets	2.306		
Confidence Coefficient (CC)	1.387918		
Standard Deviation of Differences	1.805617		

RM = Reference Method (CleanAir Data)

062323 160549

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision O, Final Report Page 20

Table 2-14:

Run	Start	Date	RM Data	CEMS Data	Difference	Difference
No.	Time	(2023)	(ppm@7%O2)	(ppm@7%O2)	(ppm@7%O2)	Percent
1	07:47	Jun 7	1915.5	1822.4	93.1	4.9%
2	08:08	Jun 7	1975.0	1941.1	33.9	1.7%
3	08:57	Jun 7	1933.9	1877.4	56.5	2.9%
4	09:56	Jun 7	2000.7	1999.5	1.2	0.1%
5 *	10:18	Jun 7	1994.0	1892.0	102.0	5.1%
6	10:39	Jun 7	2024.4	2031.2	-6.8	-0.3%
7	12:11	Jun 7	2111.6	2029.4	82.2	3.9%
8	12:33	Jun 7	2022.4	1932.7	89.7	4.4%
9	12:55	Jun 7	2084.7	2035.1	49.6	2.4%
10	13:59	Jun 7	2051.3	1987.1	64.2	3.1%
	Average	1	2013.3	1961.8	51.5	2.6%

Relative Accuracy Test Audit Results

M = Reference Method (CleanAir Data)			062323 160549
Relative Accuracy (as % of RM)	3.95%	20.0%	
t-Value for 9 Data Sets	2.306	Limit	
Confidence Coefficient (CC)	27.930977		
Standard Deviation of Differences	36.336917		

RM = Reference Method (CleanAir Data)

CEMS = Continuous Emissions Monitoring System (Guardian Industries, LLC Data) RATA calculations are based on 9 of 10 runs. * indicates the excluded run.

End of Section

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

3. DESCRIPTION OF INSTALLATION

PROCESS DESCRIPTION

Guardian's flat glass manufacturing Line #1 and Line #2 consist of a raw material melting Furnace, glass forming and finishing, and glass cutting. Line #1 and Line #2 produce flat glass using the float method. Materials are weighed and mixed with water in the batch house before entering the natural gas-fired Furnace. Glass then enters the tin bath to be formed and drawn. Next, it enters a lehr to reduce its temperature. The natural gasfired Furnace portion of the emission unit is controlled by a control device consisting of a Dry Scrubber (DS), Particulate Filter (PF), and Selective Catalytic Reduction (SCR).

The emission unit includes a 4,000 cubic foot Dry Scrubber reagent storage silo equipped with a passive bin vent and a 20,000-gallon pressurized aqueous ammonia storage tank.

The testing reported in this document will be performed at the Stack locations (EU00079 and EU00080).

TEST LOCATIONS

The sample point placement was determined by EPA Method 1 and Performance Specification 2. Table 3-1 presents the sampling information for the test locations. The figures represent the layout of the test location.

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

Table 3-1: Sampling Information

CleanAir Project No. 14903 Revision 0, Final Report

Page 22

Source Constituent	Method	Run No.	Ports	Points per Port	Minutes per Point	Total Minutes	Figure
Line #1 Stack (EU00079)							
Flow Rate	EPA2	1-12	2	6	Varied	Varied	3-1
Moisture	EPA4	1-3	1	1	60	60	NA
FPM	EPA 5	2-4	2	6	5	60	3-1
Line #1 Outlet (EU00079)							
H ₂ SO ₄ , as Sulfuric Acid Mist	CTM-013	2-4	1	1	60	60	NA
SO ₂ , NO _x	EPA6C, 7E	1-12	1	3	7	21	3-2
Line #1 Inlet (EU00079)							
NO _x	EPA7E	1-12	1	3	7	21	3-3
Line #2 Stack (EU00080)							
Flow Rate	EPA2	1-10	2	6	Varied	Varied	3-4
Moisture	EPA4	1-3	1	1	60	60	NA
Moisture	EPA4	4	1	1	35	35	NA
FPM	EPA 5	1-3	2	6	5	60	3-4
Line #2 Outlet (EU00080)							
H ₂ SO ₄ , as Sulfuric Acid Mist	CTM-013	1-3	1	1	60	60	NA
SO ₂ , NO _x	EPA6C, 7E	1-10	1	3	7	21	3-5
Line #2 Inlet (EU00080)							
NOx	EPA7E	1-10	1	3	7	21	3-6

Note:

Moisture and H₂SO₄ were sampled at the approximate center of the duct. Readings were taken every five minutes.

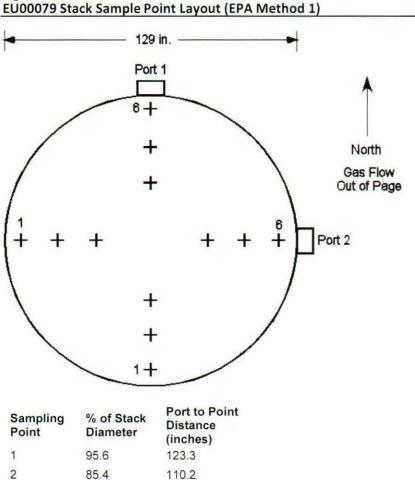
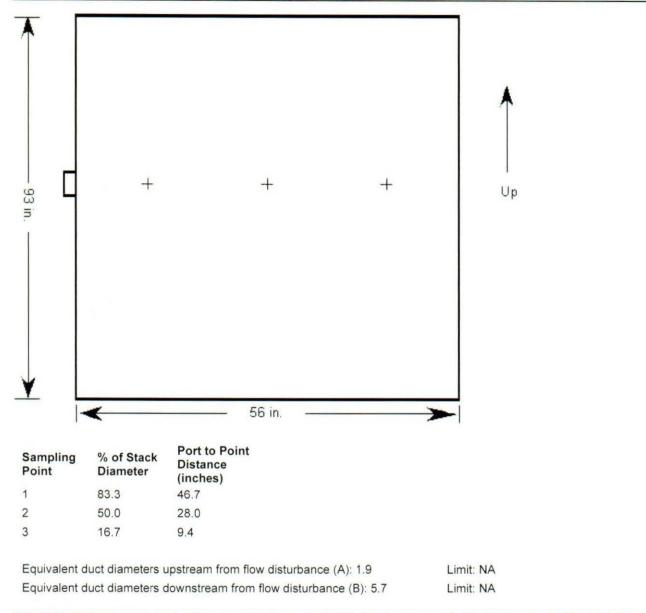

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 **Revision 0, Final Report** Page 23

Figure 3-1:

3

70.4


90.8

4	29.6	38.2	
5	14.6	18.8	
6	4.4	5.7	
Duct dia	ameters upstrea	m from flow disturbance (A): 11.2	Limit: 0.5
Duct diameters downstream from flow disturbance (B): 7.0			Limit: 2.0

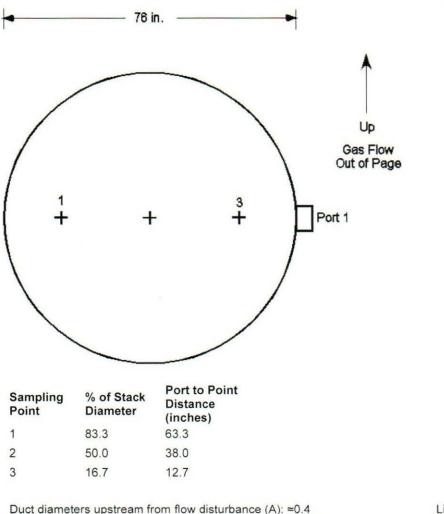
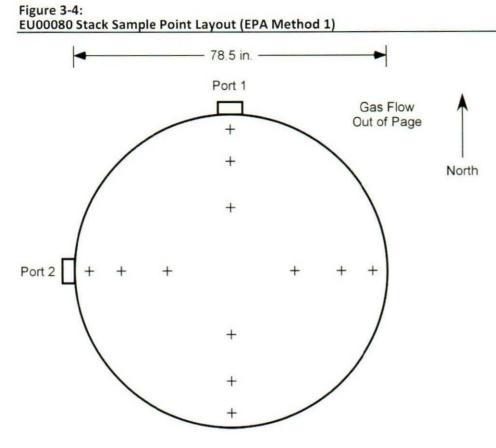

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 24

Figure 3-2: EU00079 Outlet (Performance Specification 2)

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 25

Figure 3-3: EU00079 Inlet (Performance Specification 2)

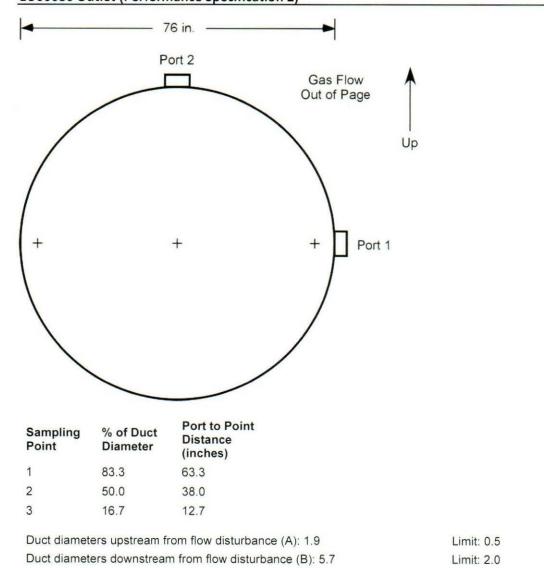


Duct diameters upstream from flow disturbance (A): ≈0.4	Limit: 0.5
Duct diameters downstream from flow disturbance (B): \approx 1.9	Limit: 2.0

RECEIVED SEP 19 2023

AIR QUALITY DIVISION

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 26



Sampling Point	% of Stack Diameter	Port to Point Distance (inches)
1	95.6	75.0
2	85.4	67.0
3	70.4	55.3
4	29.6	23.2
5	14.6	11.5
6	4.4	3.5

Duct diameters upstream from flow disturbance (A): ≈2.3	Limit: 0.5
Duct diameters downstream from flow disturbance (B): ≈13	Limit: 2.0

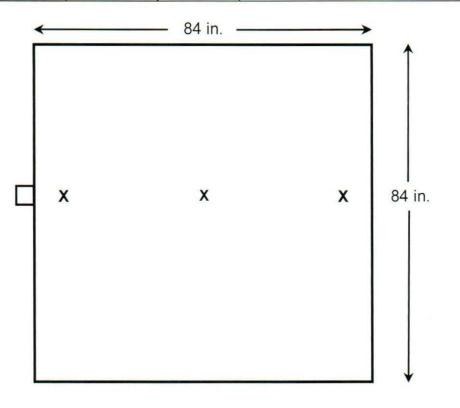

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 27

Figure 3-5: EU00080 Outlet (Performance Specification 2)

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 28

Sampling Point	% of Duct Width	Port to Point Distance (inches)	
1	83.3	70.0	
2	50.0	42.0	
3	16.7	14.0	
Equivalent d	luct diameters	upstream from flow disturbance (A): ≈0.4	Limit: NA
Equivalent duct downstream from flow disturbance (B): ≈1.9		m from flow disturbance (B): ≈1.9	Limit: NA

End of Section

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

4. METHODOLOGY

PROCEDURES AND REGULATIONS

The test program sampling measurements followed procedures and regulations outlined by the USEPA and Michigan Department of Environment, Great Lakes, and Energy (EGLE). These methods appear in detail in Title 40 of the CFR and at https://www.epa.gov/emc.

Appendix A includes diagrams of the sampling apparatus, as well as specifications for sampling, recovery, and analytical procedures. Any modifications to standard test methods are explicitly indicated in this appendix. In accordance with ASTM D7036 requirements, CleanAir included a description of any such modifications along with the full context of the objectives and requirements of the test program in the test protocol submitted prior to the measurement portion of this project. Modifications to standard methods are not covered by the ISO 17025 and TNI portions of CleanAir's A2LA accreditation.

CleanAir follows specific QA/QC procedures outlined in the individual methods and in USEPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods," EPA/600/R-94/038C. Appendix D contains additional QA/QC measures, as outlined in CleanAir's internal Quality Manual.

TITLE 40 CFR PART 60, APPENDIX A

Method 1	"Sample and Velocity Traverses for Stationary Sources"	
Method 2	"Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)"	
Method 3A	"Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)"	
Method 4	"Determination of Moisture Content in Stack Gases"	
Method 5	"Determination of Particulate Matter Emissions from Stationary Sources"	
Method 6C	"Determination of Sulfur Dioxide Emissions from Stationary Sources (Instrumental Analyzer Procedure)"	
Method 7E	"Determination of Nitrogen Oxide Emissions from Stationary Sources (Instrumental Analyzer Procedure)"	
TITLE 40 CF PS2	R PART 60, APPENDIX B PERFORMANCE SPECIFICATIONS "Specifications and Test Procedures for SO ₂ and NOx Continuous Emission Monitoring Systems in Stationary Sources"	
PS3	"Specifications and Test Procedures for O ₂ and CO ₂ Continuous Emission Monitoring Systems in Stationary Sources"	

PS6 "Specifications and Test Procedures for Continuous Emission Rate Monitoring Systems in Stationary Sources"

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing

CleanAir Project No. 14903 Revision 0, Final Report Page 30

CTM-013 CONTROLLED CONDENSATION METHOD (CCM)

"Determination of Sulfur Oxides Including Sulfur Dioxide, Sulfur Trioxide and Sulfuric Acid Vapor and Mist from Stationary Sources Using a Controlled Condensation Sampling Apparatus"

End of Section

CleanAir

Guardian Industries, LLC Carleton, Michigan Report on Compliance and Relative Accuracy Testing CleanAir Project No. 14903 Revision 0, Final Report Page 31

5. APPENDIX

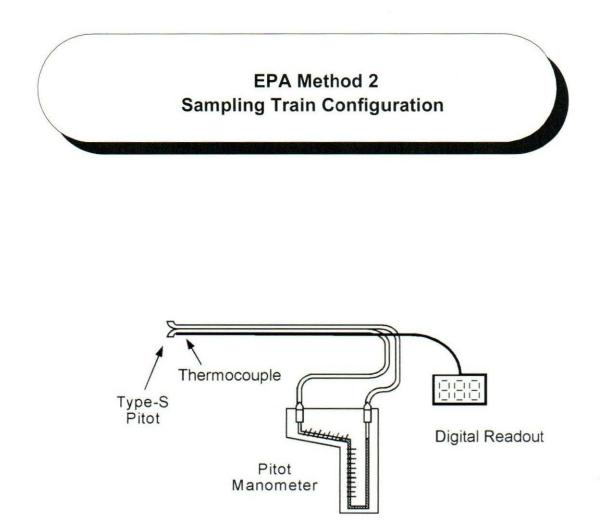
Appendix A: Test Method Specifications Appendix B: Sample Calculations Appendix C: Parameters Appendix D: QA/QC Data Appendix E: Field Data Appendix F: Field Data Printouts Appendix G: Reference Method Monitor Data Appendix H: Laboratory Data Appendix I: Facility Operating Data Appendix J: CleanAir Resumes and Certifications

APPENDIX A: TEST METHOD SPECIFICATIONS

. .

This Page Intentionally Left Blank

• •


EPA Method 2

 Source Location Name(s)
 Line #1 and Line #2 Stacks

 Pollutant(s) to be Determined
 None

 Other Parameters to be Determined from Train
 Flow Rate

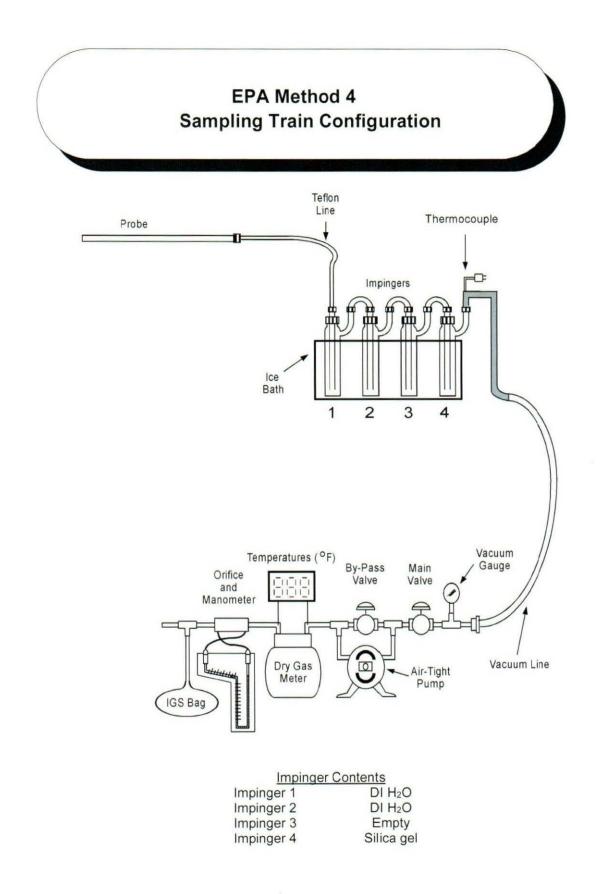
	Standard Method Specification	Actual Specification Used
Pollutant Sampling Information		
Duration of Run	N/A	Varied
No. of Sample Traverse Points	N/A	12
Sample Time per Point	N/A	Varied
Sampling Rate	N/A	N/A
Sampling Probe		
Nozzle Material	N/A	N/A
Nozzle Design	N/A	N/A
Probe Liner Material	N/A	N/A
Effective Probe Length	Sufficient to Traverse Points	15 feet and 9 feet
Probe Temperature Set-Point	N/A	N/A
Velocity Measuring Equipment		
Pitot Tube Design	Type S	Type S
Pitot Tube Coefficient	N/A	0.84
Pitot Tube Calibration by	Geometric or Wind Tunnel	Geometric
Pitot Tube Attachment	Attached to Probe	Attached to Probe
Metering System Console		
Meter Type	Dry Gas Meter	Dry Gas Meter
Meter Accuracy	N/A	N/A
Meter Resolution	N/A	N/A
Meter Size	N/A	N/A
Meter Calibrated Against	N/A	N/A
Pump Type	N/A	N/A
Temperature Measurements	N/A	Type K Thermocouple/Pyrometer
Temperature Resolution	5.4°F	1.0°F
∆P Differential Pressure Gauge	Inclined Manometer or Equivalent	Inclined Manometer
∆H Differential Pressure Gauge	Inclined Manometer or Equivalent	Inclined Manometer
Barometer	Mercury or Aneroid	Digital Barometer calibrated w/Mercury Aneroid
Filter Description		
Filter Location	N/A	N/A
Filter Holder Material	N/A	N/A
Filter Support Material	N/A	N/A
Cyclone Material	N/A	N/A
Filter Heater Set-Point	N/A	N/A
Filter Material	N/A	N/A
Other Components		
A REAL PROPERTY AND A REAL PROPERTY OF A REAL PROPE		
Description	N/A	N/A
Description Location	N/A N/A	N/A N/A

. .

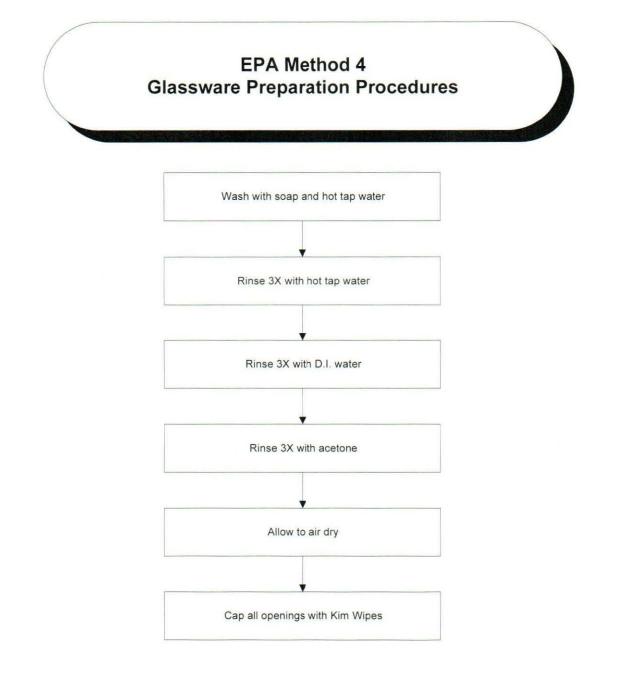
 Source Location Name(s)
 Line #1 a

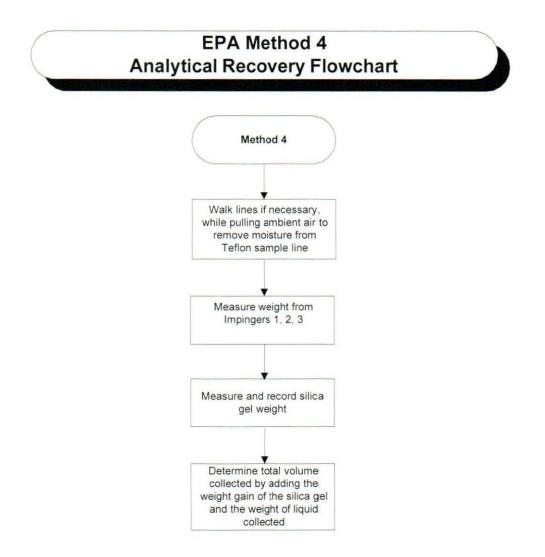
 Pollutant(s) to be Determined
 None

 Other Parameters to be Determined from Train
 Moisture


EPA Method 4

Line #1 and Line #2 Stacks None Moisture


	Standard Method Specification	Actual Specification Used
Pollutant Sampling Information		
Duration of Run	N/A	60 minutes
No. of Sample Traverse Points	N/A	1
Sample Time per Point	N/A	60 minutes
Sampling Rate	Within 10% of Constant Rate	Constant Rate (±10%)
Sampling Probe		
Nozzle Material	N/A	None
Nozzle Design	N/A	N/A
Probe Liner Material	Stainless Steel, Glass, Other Metals, Plastic Tubing	Stainless Steel
Effective Probe Length	N/A	10 feet and 8 feet
Probe Temperature Set-Point	Prevent water condensation	None
Velocity Measuring Equipment		
Pitot Tube Design	N/A	None
Pitot Tube Coefficient	N/A	N/A
Pitot Tube Calibration by	N/A	N/A
Pitot Tube Attachment	N/A	N/A
Metering System Console		
Meter Type	Dry Gas Meter	Dry Gas Meter
Meter Accuracy	±2%	±1%
Meter Resolution	N/A	0.01 cubic feet
Meter Size	N/A	0.1 dcf/revolution
Meter Calibrated Against	Wet Test Meter or Standard DGM	Wet Test Meter
Pump Type	N/A	Rotary Vane
Temperature Measurements	N/A	Type K Thermocouple/Pyrometer
Temperature Resolution	5.4°F	1.0°F
∆P Differential Pressure Gauge	Inclined Manometer or Equivalent	Inclined Manometer
∆H Differential Pressure Gauge	Inclined Manometer or Equivalent	Inclined Manometer
Barometer	Mercury or Aneroid	Digital Barometer calibrated w/Mercury Aneroid
Filter Description		
Filter Location	In Stack or Exit of Probe	None
Filter Holder Material	Borosilicate Glass (for probe exit location)	N/A
Filter Support Material	Glass Frit	N/A
Cyclone Material	N/A	None
Filter Heater Set-Point	Prevent condensation	N/A
Filter Material	Glass Wool (in-stack) or Fiberglass Mat (out of stack)	None
Other Components		
Description	N/A	N/A
Location	N/A	N/A
Operating Temperature	N/A	N/A


EPA Method 4

	Standard Method Specification	Actual Specification Used
mpinger Train Description		
Type of Glassware Connections	Ground Glass or Equivalent	Screw Joint with Silicone Gasket
Connection to Probe or Filter by	Flexible Line	Flexible Teflon Line
Number of Impingers	4	4
mpinger Stem Types		
Impinger 1	Modified-Greenburg Smith	Modified Greenburg-Smith
Impinger 2	Greenburg-Smith	Greenburg-Smith
Impinger 3	Modified Greenburg-Smith	Modified Greenburg-Smith
Impinger 4	Modified Greenburg-Smith	Modified Greenburg-Smith
Impinger 5		
Impinger 6		
Impinger 7		
Impinger 8		
Gas Density Determination		
Sample Collection	N/A	N/A
Sample Collection Medium	N/A	N/A
Sample Analysis	N/A	N/A
Sample Recovery Information		
Probe Brush Material	N/A	N/A
Probe Rinse Reagent	N/A	N/A
Probe Rinse Wash Bottle Material	N/A	N/A
Probe Rinse Storage Container	N/A	N/A
Filter Recovered?	No	No
Filter Storage Container	N/A	N/A
Impinger Contents Recovered?	No	No
Impinger Rinse Reagent	N/A	N/A
Impinger Wash Bottle	N/A	N/A
Impinger Storage Container	N/A	N/A
Analytical Information		
Method 4 H ₂ O Determination by	Gravimetric	Gravimetric
Filter Preparation Conditions	N/A	N/A
Front-Half Rinse Preparation	N/A	N/A
Back-Half Analysis	N/A	N/A
Additional Analysis	N/A	None

-

Source Location Name(s) Pollutant(s) to be Determined Other Parameters to be Determined from Train

Pollutant Sampling Information

Duration of Run No. of Sample Traverse Points Sample Time per Point Sampling Rate

Sampling Probe

Nozzle Material Nozzle Design Probe Liner Material Effective Probe Length Probe Temperature Set-Point

Velocity Measuring Equipment

Pitot Tube Design Pitot Tube Coefficient Pitot Tube Calibration by Pitot Tube Attachment

Metering System Console

Meter Type Meter Accuracy Meter Resolution Meter Size Meter Calibrated Against Pump Type Temperature Measurements Temperature Resolution ΔP Differential Pressure Gauge ΔH Differential Pressure Gauge Barometer

Filter Description

Filter Location Filter Holder Material Filter Support Material Cyclone Material Filter Heater Set-Point Filter Material

Other Components

Description	
Location	
Operating Temperature	

EPA Method 5

Line #1 and Line #2 Stacks Filterable Particulate Matter (FPM) Gas Density, Moisture, Flow Rate

Standard Method Specification

N/A N/A Isokinetic (90-110%)

Stainless Steel or Glass Button-Hook or Elbow Borosilicate or Quartz Glass N/A 248°F±25°F

Type S N/A Geometric or Wind Tunnel Attached to Probe

Dry Gas Meter ±2% N/A N/A Wet Test Meter or Standard DGM N/A S.4°F Inclined Manometer or Equivalent Inclined Manometer or Equivalent Mercury or Aneroid

After Probe Quartz Glass Frit N/A 248°F±25°F Glass Fiber

N/A

N/A

Actual Specification Used

60 minutes 12 5 minutes Isokinetic (90-110%)

Stainless Steel (Line 1); Borosilicate Glass (Line 2) Button-Hook Stainless Steel (Line 1); Borosilicate Glass (Line 2) 15 feet and 9 feet 248°F±25°F

Type S 0.84 Geometric Attached to Probe

Dry Gas Meter ±1% 0.01 cubic feet 0.1 dcf/revolution Wet Test Meter Rotary Vane Type K Thermocouple/Pyrometer 1.0°F Digital Manometer Inclined Manometer Digital Barometer calibrated w/Mercury Aneroid

Exit of Probe Borosilicate Glass Teflon None 248°F±25°F Quartz Fiber

N/A N/A N/A

Impinger Train Description

- Type of Glassware Connections Connection to Probe or Filter by Number of Impingers Impinger Stem Types Impinger 1
 - Impinger 2 Impinger 3 Impinger 4 Impinger 5 Impinger 6
 - Impinger 7
 - Impinger 8

Gas Density Determination

Sample Collection Sample Collection Medium Sample Analysis

Sample Recovery Information

Probe Brush Material Probe Rinse Reagent Probe Rinse Wash Bottle Material Probe Rinse Storage Container Filter Recovered? Filter Storage Container Impinger Contents Recovered? Impinger Rinse Reagent Impinger Wash Bottle Impinger Storage Container

Analytical Information

Method 4 H₂O Determination by Filter Preparation Conditions Front-Half Rinse Preparation Back-Half Analysis Additional Analysis

EPA Method 5

Standard Method Specification

Ground Glass or Equivalent Direct Glass Connection 4

Modified Greenburg-Smith Greenburg-Smith Modified Greenburg-Smith Modified Greenburg-Smith

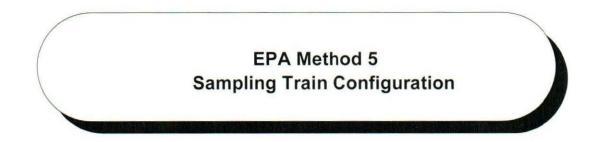
Actual Specification Used

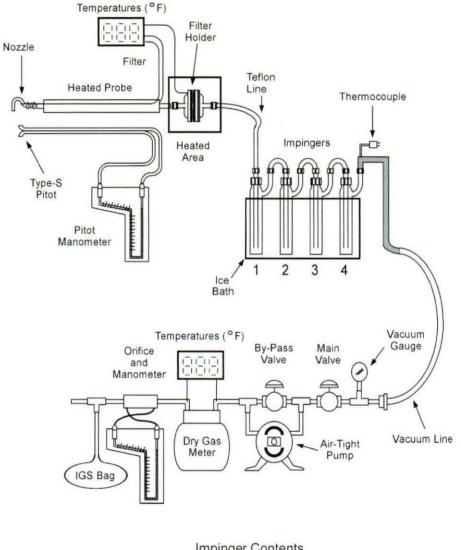
Ground Glass with Silicone O-Ring Direct Glass Connection 4

Modified Greenburg-Smith Greenburg-Smith Modified Greenburg-Smith Modified Greenburg-Smith

Multi-point integrated Flexible Gas Bag Orsat or Fyrite Analyzer

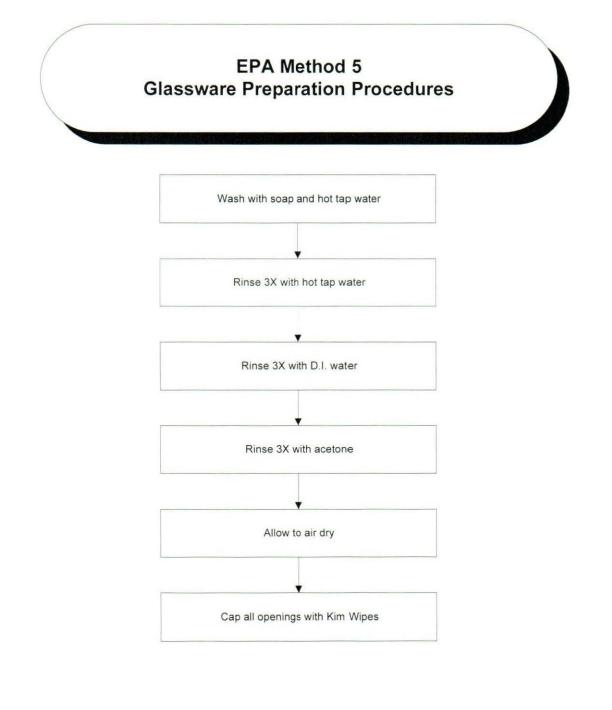
Nylon Bristle Acetone Glass or Polyethylene Glass or Polyethylene Yes N/A Provision Deionized Distilled Water Glass or Polyethylene Glass or Polyethylene

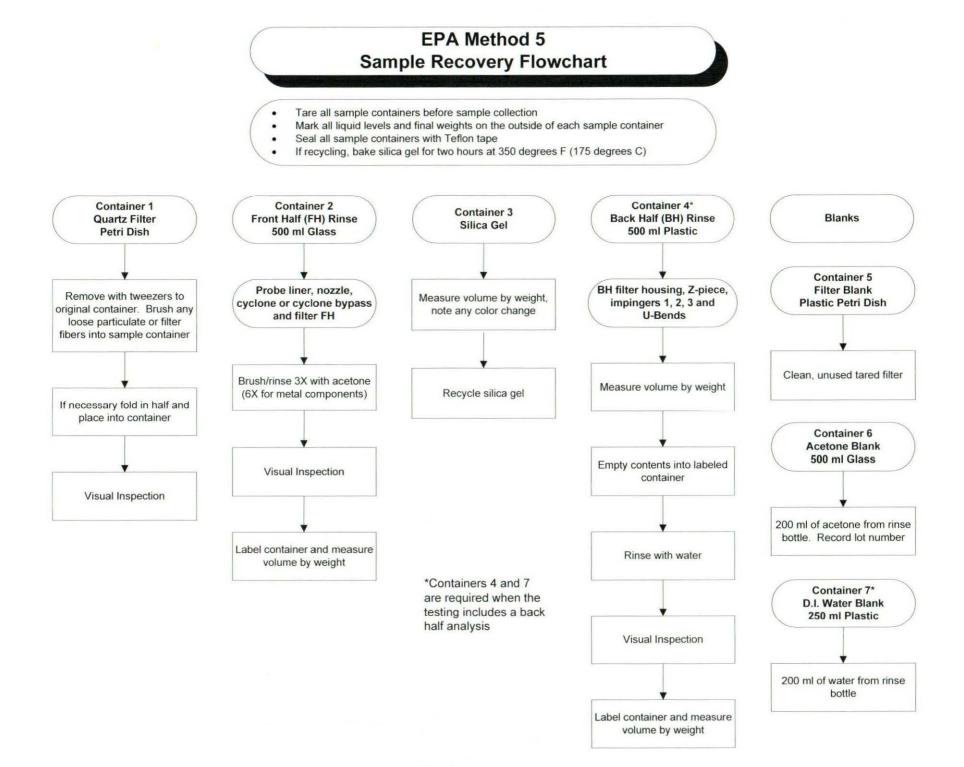

Gravimetric

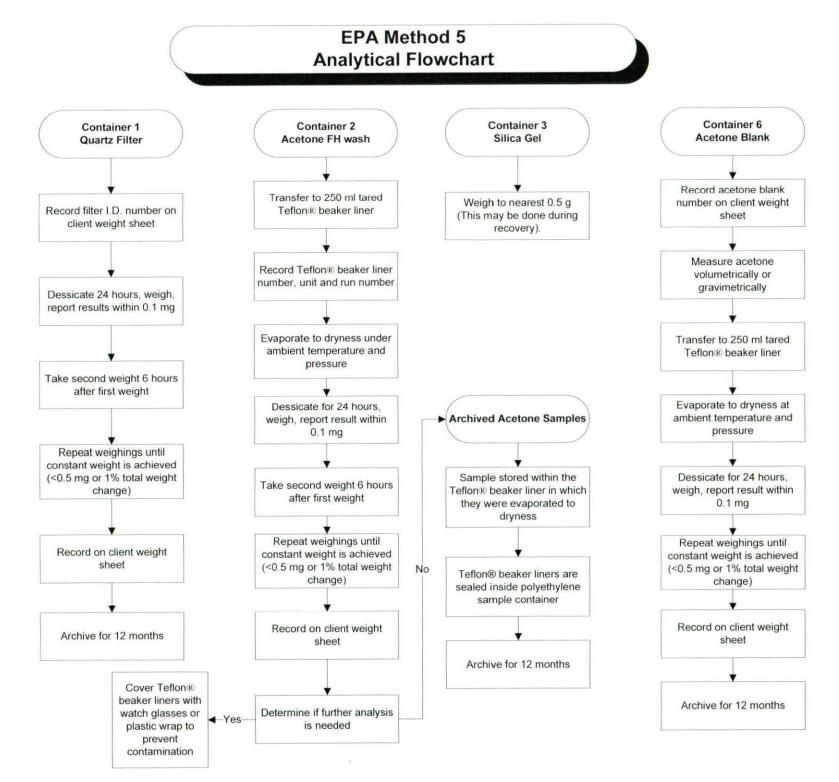

Dessicate 24 hours minimum at ambient temperature Evaporate at ambient temperature and pressure N/A N/A Multi-Point Integrated Vinyl Bag CEM

Nylon Bristle Acetone Teflon Glass Yes Polystyrene Archived N/A N/A

Gravimetric


Dessicate 24 hours minimum at ambient temperature Evaporate at ambient temperature and pressure N/A None




Impinger	Contents
Impinger 1	DI H ₂ O
Impinger 2	DI H ₂ O
Impinger 3	Empty
Impinger 4	Silica Gel

. ..

. .

CTM-013

Sulfuric Acid (H₂SO₄)

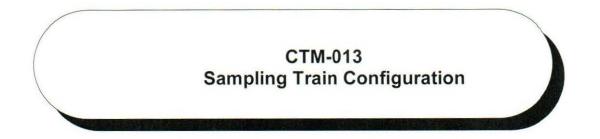
Outlet (EU00079 and EU00080)

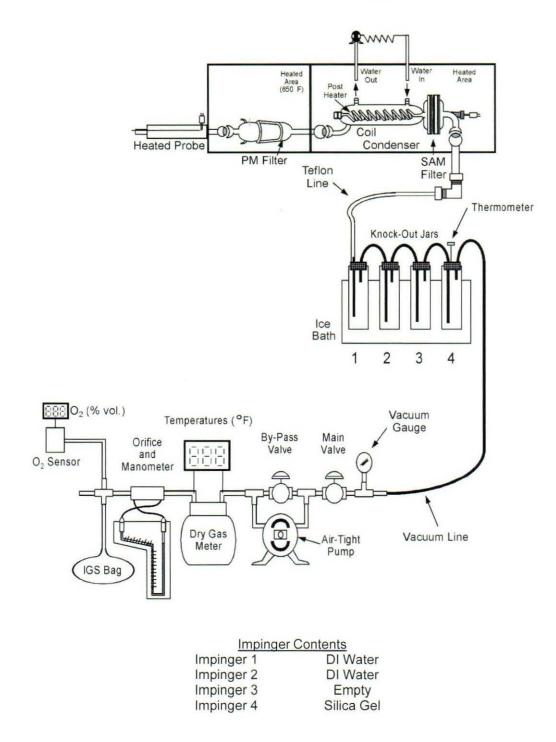
 Source Location Name(s)
 Outlet

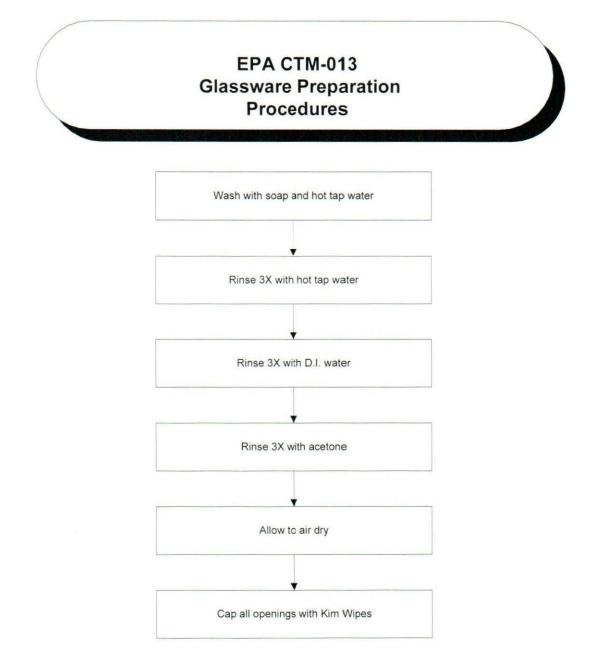
 Pollutant(s) to be Determined
 Sulfur

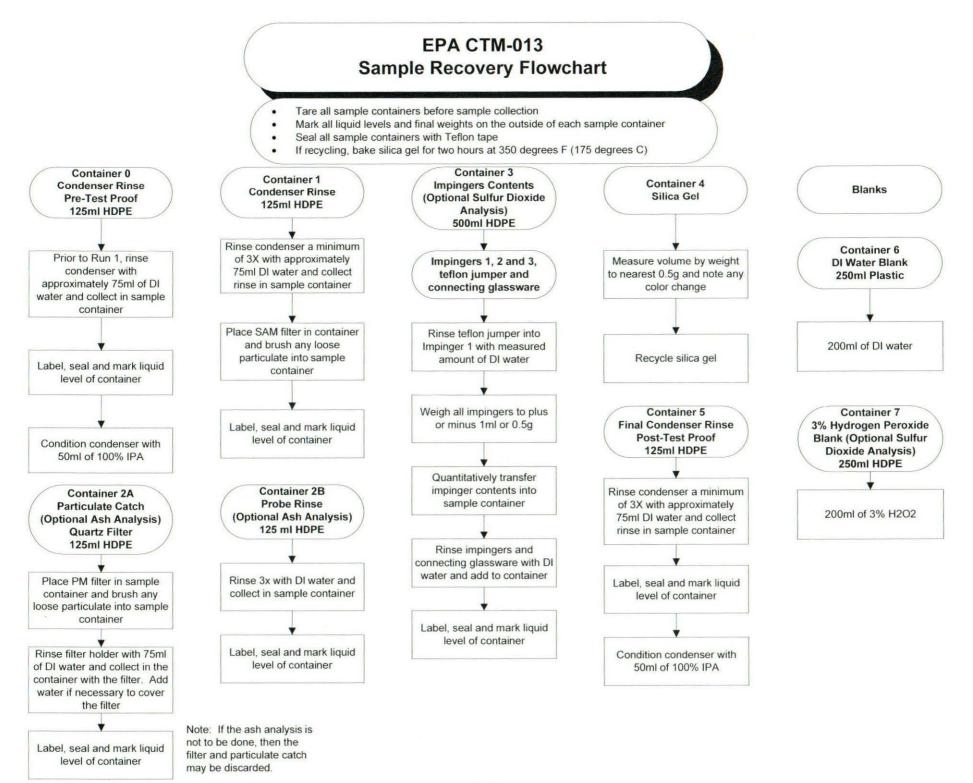
 Other Parameters to be Determined from Train
 None

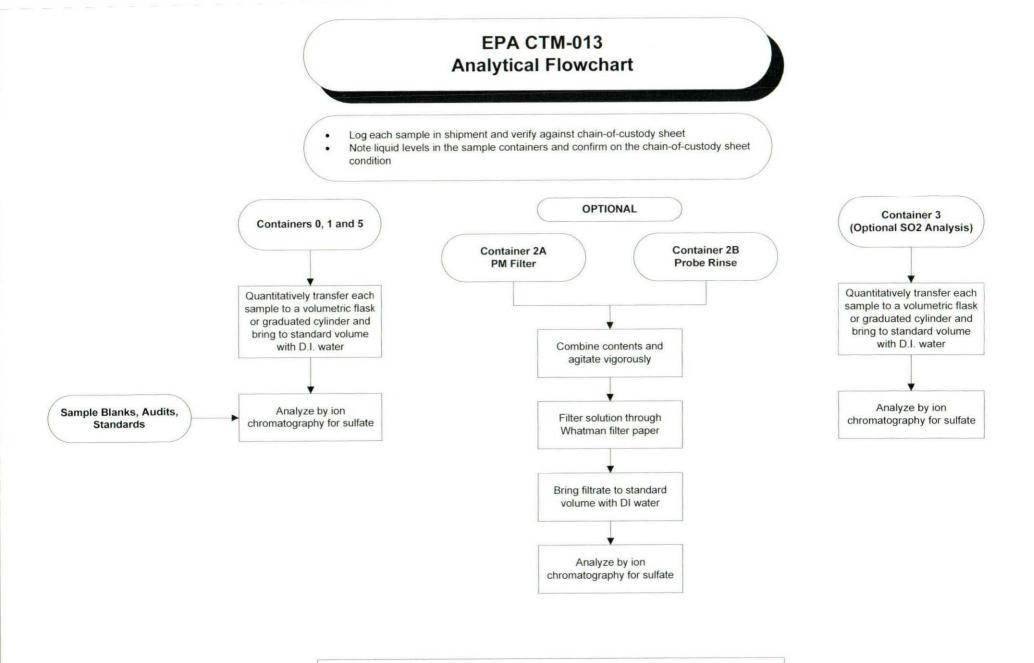
Pollutant Compling Information	Standard Method Specification	Actual Specification Used
Pollutant Sampling Information	60 minutes	60 minutes
Duration of Run	60 minutes	1
No. of Sample Traverse Points	Aller Barris	
Sample Time per Point	60 minutes	60 minutes Constant rate of 10.0 Lpm ±10%
Sampling Rate	Constant rate of 10.0 Lpm ±10%	Constant rate of 10.0 Lpm ±10%
Sampling Probe		
lozzle Material	N/A	None
lozzle Design	N/A	N/A
robe Liner Material	Borosilcate Glass	Quartz
ffective Probe Length	N/A	10 feet
robe Temperature Set-Point	>350°F	650°F
elocity Measuring Equipment		
Pitot Tube Design	N/A	None
Pitot Tube Coefficient	N/A	N/A
Pitot Tube Calibration by	N/A	N/A
Pitot Tube Attachment	N/A	N/A
Metering System Console		
Neter Type	Dry gas meter or controlled orifice	Dry Gas Meter
Meter Accuracy	±2%	±1%
leter Resolution	N/A	0.01 cubic feet
leter Size	N/A	0.1 dcf/revolution
leter Calibrated Against	N/A	Wet Test Meter
ump Type	N/A	Rotary Vane
emperature Measurements	N/A	Type K Thermocouple/Pyrometer
emperature Resolution	±5°F	1.0°F
P Differential Pressure Gauge	N/A	N/A
H Differential Pressure Gauge	N/A	Inclined Manometer
Barometer	Capable of measurement within 0.1 in. Hg	Digital Barometer calibrated w/Mercury Aneroid
Particulate (PM) Filter		
filter Location	Exit of Probe	Exit of Probe
Connection to probe liner by	Direct glass-to-glass	Direct Quartz-to-Quartz
ilter Holder Material	Quartz	Quartz
ilter Support Material	Glass frit	Quartz
Cyclone Material	N/A	None
ilter Heater Set-Point	>500°F	650°F
Filter Material	Tissuequartz	Quartz Fiber
filter Conditioning	Pre-rinsed w 0.1N H ₂ SO ₄ ; baked at 600°F	Pre-rinsed w/ 0.1N $H_2SO_4;$ baked at 600°F
SO ₃ Coil condenser and Filter		
	Condenser Coil (10 coils) with Type C glass frit	Condenser Coil (10 coils) with Type C glass frit
Description Location	After PM Filter	After PM filter
Connection to PM Filter by	Direct glass-to-glass	Ground Glass with Silicone O-Ring
Nater Jacket	Temperature regulated water jacket surrounding coil condenser	Temperature regulated water jacket surrounding co condenser
Operating Temperature	167 -185°F	167 -185°F


Pollutant(s) to be Determined


Source Location Name(s)


CTM-013


Outlet (EU00079 and EU00080) Sulfuric Acid (H₂SO₄) Other Parameters to be Determined from Train None


	Standard Method Specification	Actual Specification Used
mpinger Train Description		
ype of Glassware Connections	Ground Glass	Flexible Rubber Line
onnection to SAM Filter by	Direct glass-to-glass	Flexible Teflon Line
umber of Impingers	4	4
npinger Stem Types		
Impinger 1	Midget or Full size impinger	Knock-Out Jar
Impinger 2	Midget or Full size impinger	Knock-Out Jar
Impinger 3	Midget or Full size impinger	Knock-Out Jar
Impinger 4	Midget or Full size impinger	Knock-Out Jar
Impinger 5		
Impinger 6		
Impinger 7		
as Density Determination		
ample Collection	N/A	Single Point Integrated
ample Collection Medium	N/A	Vinyl Bag
ample Analysis	N/A	CEM
ample Recovery Information		
robe Brush Material	N/A	N/A
robe Rinse Reagent	N/A	N/A
robe Rinse Wash Bottle Material	N/A	N/A
robe Rinse Storage Container	N/A	N/A
M Filter Recovered?	No	Yes
M Filter Storage Container	N/A	Polyethylene
O ₃ Condenser Contents Recovered?	Yes	Yes
O3 Condenser Rinse Reagent	Sulfate-free water	DI Water
O ₃ Condenser Wash Bottle	Polyethylene	Polyethylene
O3 Condenser Storage Container	Polyethylene	Polyethylene
AM Filter Recovered?	Yes	Yes, placed into SO3 condenser storage contained
AM Filter Storage Container	Polyethylene	Polyethylene
mpinger Contents Recovered?	Optional	No
npinger Rinse Reagent	Sulfate-free water	N/A
mpinger Wash Bottle	Polyethylene	N/A
npinger Storage Container	Polyethylene	N/A
Analytical Information		
Method 4 H ₂ O Determination by	Gravimetric	Gravimetric
O3 Condenser/SAM Filter Analysis	Ion chromatography for sulfate	Ion chromatography and titration for sulfate
mpinger Analysis (SO ₂)	Ion Chromatography or Titration for sulfate (optional)	N/A

