RECEIVED JAN 25 2023 **AIR QUALITY DIVISION** erthwrks AIR EMISSIONS TESTING FOR INDUSTRY

Relative Accuracy Test Audit and Performance Testing

Marathon Petroleum Company LP

at the Marathon Detroit Refinery in Detroit, MI

> on the Coker Heater Unit: EU70-COKERHTR-S1 Permit No. MI-ROP-A9831-2012c

> > **Prepared for:**

Test Date: November 28, 2022 Erthwrks Project No. 9049.1.D3

Endorsement Page

This report was developed in accordance with the requirements designated in the applicable regulatory permit(s) and/or regulatory rules. To the best of my knowledge the techniques, instrumentation, and calculations presented in this report will serve to accurately and efficiently detail the results of the test campaign requirements.

Erthwrks, Inc.

Jarrod Hoskinson Name: Title: Senior Project Manager

Signature:

This report has been reviewed for accuracy and completeness. The actions presented in this report are, to the best of my knowledge, an accurate representation of the results and findings of the test campaign. Erthwrks, Inc. operates in conformance with the requirements on ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies and is accredited as such by the Stack Testing Accreditation Council (STAC) and the American Association for Laboratory Accreditation (A2LA).

Erthwrks, Inc.

Name:	Jason	Dunn	

Title: QC Specialist

Signature:

Table of Contents

1.0	INTRODUCTION	4
1.1 1.2 1.3	Identification, location and dates of tests Purpose of Testing Contact Information	4
2.0	SUMMARY OF RESULTS	5
3.0	SOURCE DESCRIPTION	5
3.1 3.2 3.3	Description of the process Applicable permit and source designation Type and quantity of materials processed during tests	6
4.0	SAMPLING AND ANALYTICAL PROCEDURES	6
4.1 4.2 4.3	Gaseous Sampling – O ₂ , and CO ₂ Filterable Particulate Matter Sampling – EPA Method 5 EPA Method 202 – Condensable Particulate Matter	. 7 . 8
4.4	Discussion of sampling procedure or operational variances	9

ATTACHMENTS

- A. Detailed Results of Emissions Test
- B. Quality Control Documentation
- C. Example Calculations
- D. Sampling Datasheets
- E. Raw Datalog Records
- F. Calibrations and Certifications
- G. CEMS Logs and Operational Data
- H. Laboratory Analysis

1.0 INTRODUCTION

1.1 Identification, location and dates of tests

Erthwrks, Inc. was contracted to conduct emissions testing on the Coker Heater in operation at the Marathon Detroit Refinery, located in Detroit Michigan. The testing program was conducted on November 28, 2022.

1.2 Purpose of Testing

The exhaust from Coker Heater was sampled and analyzed to determine the compliance status of the units' emissions for particulate matter (PM) and, condensable particulate matter (CPM).

In addition, oxygen (O_2) and carbon dioxide (CO_2) was also measured to calculate the dry molecular weight of the stack gas.

1.3 **Contact Information**

Marathon Petroleum Company LP

Emily Mattson Environmental Professional 1300 South Fort Street Detroit, MI 48217 313-236-1501 EGMattson@marathonpetroleum.com

Erthwrks, Inc.

John Wood Technical Director P.O. Box 150549, Austin, TX 78745 512-585-1685 jwood@erthwrks.com

Jarrod Hoskinson Senior Project Manager P.O. Box 150549, Austin, TX 78745 512-994-7487 jhoskinson@erthwrks.com

Jason Dunn QC Specialist P.O. Box 150549, Austin, TX 78745 614-565-9177 jdunn@erthwrks.com

2.0 SUMMARY OF RESULTS

Table 2.1—Marathon Coker Heater (EU70-COKERHTR-S1) Compliance Test Results

Pollutant Measured	Methodology	Measured Results	Applicable Limit	Pass/Fail
РМ	EPA Method 5	0.0005 lb/MMBtu	0.0019 lb/MMBtu	Pass
PM/PM ₁₀	EPA Method 5/202	0.0020 lb/MMBtu	0.0076 lb/MMBtu	Pass

3.0 SOURCE DESCRIPTION

3.1 Description of the process

Marathon Petroleum Company LP produces refined petroleum products from crude oil and is required to demonstrate that select process emission sources are operating in compliance with permitted emissions limits.

The Coker unit (EU70-COKER) converts Vacuum Resid (Crude Vacuum Tower Bottoms), a product normally sold as asphalt or blended into residual fuel oil, into lighter, more valuable products. The Vacuum Resid feedstock is heated before it enters the main fractionator, where lighter material vaporizes. The fractionator bottoms are routed through a fired heater and then into a coke drum. This emission unit consists of process vessels (fractionators), coke drums, heater (EU70-COKERHTR-S1), cooling tower, compressors, pumps, piping, drains, and various components (pumps and compressor seals, process valves, pressure relief valves, flanges, connectors, etc.). This emission group includes the Coke Handling System, which will collect, size, and transport the petroleum coke created during the coking process. The system consists of a coke pit, storage pad, enclosed crusher, enclosed conveyors, and surge bins. The Coker Heater is fired by refinery fuel gas. Emissions are vented to the atmosphere via the Coker Heater Stack (SV70-H1), where testing will be performed.

Applicable permit and source designation 3.2

Marathon Petroleum Company LP operates the Coker Heater (EU70-COKERHTR-S1) under Michigan Department of Environment, Great Lakes, and Energy (EGLE) Renewable Operating Permit No. MI-ROP-A9831-2012c and is required to periodically conduct PM and CPM testing to determine compliance status.

3.3 Type and quantity of materials processed during tests

During the emission testing on November 28, 2022, at the Marathon Petroleum Company LP Refinery, the Coker Heater was tested while operating at load conditions representative of normal conditions. The load conditions during the testing were documented by Marathon Detroit Refinery and provided in Appendix F.

4.0 SAMPLING AND ANALYTICAL PROCEDURES

4.1 Gaseous Sampling – O₂, and CO₂

For the gaseous sampling, Erthwrks utilized a stainless-steel probe, of sufficient length to reach all sampling points, inserted into a sampling port that is located on the stack in accordance with EPA Method 1. The sample is extracted through the probe, a heated Teflon sampling line, to a heating filter. The sample then enters a minimum contact sample conditioner that cools and removes moisture from the gas matrix prior to entering the Erthwrks sampling manifold.

Erthwrks followed all quality assurance and quality control procedures as defined in US EPA 40 CFR 60 Appendix A. The Calibration Error (CE) Test was conducted as specified in EPA Method 7E §8.2.3. In accordance with this requirement, a three-point analyzer calibration error test was conducted prior to sampling. The CE test was conducted by introducing the low, mid, and high-level calibration gasses (as defined in EPA Method 7E §3.3.1-3) sequentially and the response was recorded. The results of the CE test are acceptable if the calculated calibration error is within $\pm 2.0\%$ of calibration span (or ≤ 0.5 ppmv).

The Initial System Bias and System Calibration Error Check was conducted in accordance with EPA Method 7E §8.2.5. The upscale calibration gas was introduced at the probe upstream of all sample system components and the response recorded. The procedure will was repeated with the low-level gas and the response recorded. During this activity, the sample system response time was also be recorded. This specification is acceptable if the calculated values of the system calibration error check are within $\pm 5.0\%$ of the calibration span value (or ≤ 0.5 ppmv).

After each test run, the sample system bias check is conducted to validate the run data. The low-level and upscale drift are calculated using Equation 7E-4. The run data is valid if the calculated drift is within $\pm 3.0\%$ of the calibration span value (or ≤ 0.5 ppmv).

After each test run, the corrected effluent gas concentration was calculated as specified in EPA Method 7E §12.6. The arithmetic average of all valid concentration values are adjusted for bias using equation 7E-5B.

The figure below details the Erthwrks gaseous sampling system:

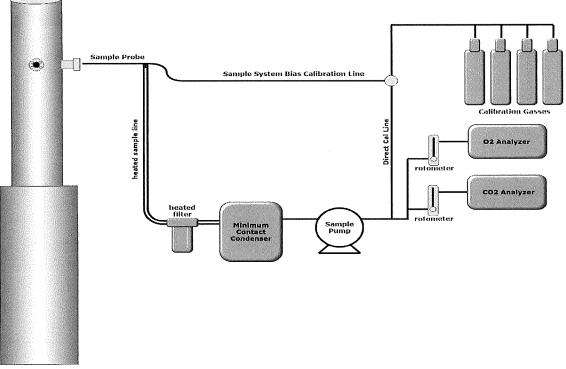


Figure 1: Erthwrks Gaseous Sampling System Diagram

4.2 Filterable Particulate Matter Sampling – EPA Method 5

EPA Test Method 1 was used for the selection of sampling points. Stack dimensions, number of sample ports and sample port locations were confirmed prior to testing to determine the appropriate number diof traverse points for the test.

EPA Test Method 5 was used to determine filterable particulate matter emission rates. Method 5 is the method at which particulate matter is withdrawn isokinetically from the

source and collected on a glass fiber filter and on the lining of the isokinetic probe maintained at a temperature of $120 \pm 14^{\circ}$ C. Upon completion of each test run, the nozzle and probe liner were rinsed and brushed with acetone. The acetone rinse catch will be collected and combined with the filter holder rinse and labeled as "front half rinse". The total PM mass, which includes any material that condenses at or above the filtration temperature, is determined gravimetrically. Filterable PM will be calculated by combining the net gravimetric gain of the filter and the net gravimetric gain of the evaporated front half rinse.

Figure 2 below shows the Method 5 sampling system components.

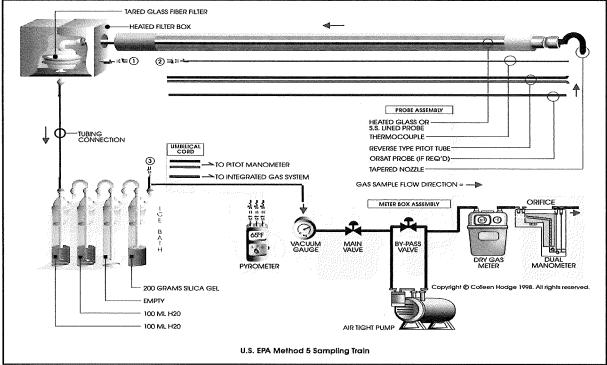


Figure 2: Erthwrks PM Sampling System Diagram

4.3 EPA Method 202 – Condensable Particulate Matter

For the determination of PM/PM10, the CPM was measured via EPA Method 202. The Method 202 components begin at the back half of the Method 5 filter housing. The filterable particulate matter is removed in these "front half" components. The condensable particulate matter is then collected by drawing the filtered gas through a water jacketed, spiral condenser maintained at $65^{\circ} - 85^{\circ}$ F. The cooled effluent gas is then passed through two empty impingers and finally through a hexane extracted Teflon filter. Upon completion of each test run, the moisture collected in this portion of the sampling train is purged with ultra-high purity (UHP) nitrogen gas for one hour to remove any dissolved

sulfur dioxide. The moisture is collected in a container and combined with the deionized water used to rinse all Method 202 sampling glassware two times.

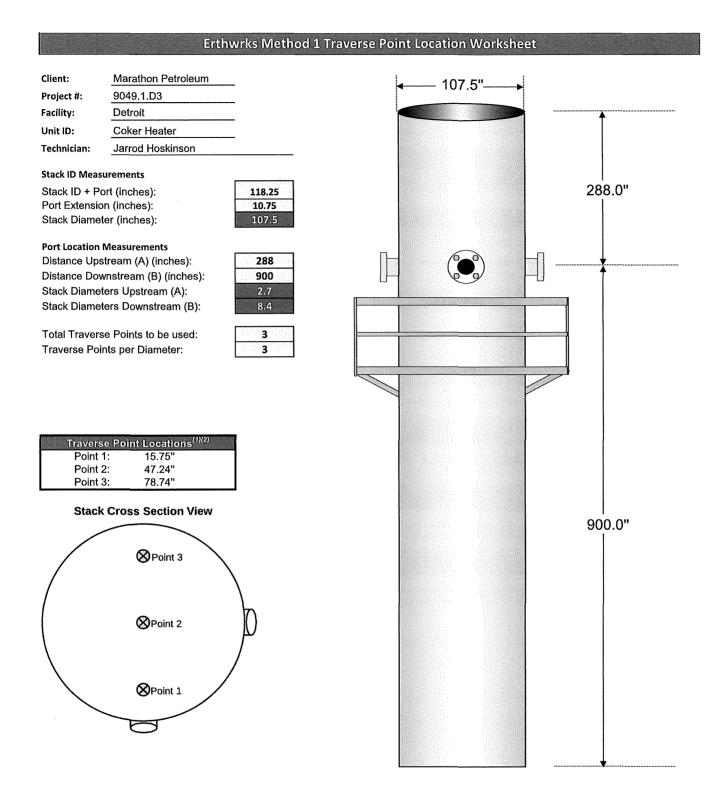
The glassware is next rinsed with hexane and acetone. These rinses are collected and combined in an additional container. The Teflon filter is removed from the filter housing, labeled, and collected. Gravimetric analysis is then conducted on the extracted, evaporated samples for each run.

4.4 Discussion of sampling procedure or operational variances

Erthwrks, Inc. sampled effluent gas on the Coker Heater for 120 minutes during run one (1). Runs two (2) and three (3) were both ninety (90) minutes in duration.

JAN 25 2023

9049.1.D3 MPC Detroit Coker Heater Emissions Test Report November 2022 Version 1761 2/2012 02277 DIVISION


Attachment A Detailed Results of Emission Test

Erthwrks Particulate Matter Summary of Results

Client:	Marathon Petroleum	
Project:	9049.1.D3	
Facility:	Detroit	
Unit ID:	Coker Heater	

		Run Designat	ion			
Run Number		1	2	3	Average	
Date		11/28/2022	11/28/2022	11/28/2022		mm:dd:yyyy
Run Start Time		11:52	14:33	16:36		hh:mm
Run End Time		14:05	16:13	18:16		hh:mm
	Op	erating Cond	itions			
Firing Rate (MMbtu/hr)		253.08	255.70	258.32	255.70	MMBtu/hr
	Sta	ck Gas Compo	osition			
Oxygen Concentration	(%O ₂)	5.09	5.02	5.02	5.04	%
Carbon Dioxide Concentration	(%CO ₂)	9.56	9.62	9.53	9.57	%
Stack Moisture Content	(B _{ws})	12.44	11.24	12.22	11.97	%
Stack Dry Molecular Weight	(M _d)	29.73	29.74	29.73	29.73	lb/lb-mole
Stack Wet Molecular Weight	(M _s)	28.27	28.42	28.29	28.33	lb/lb-mole
	Stack Gas V	olumetric Flo	w Calculatio	ns		
Absolute Stack Pressure	(P _s)	29.79	29.78	29.80	29.79	in Hg
Average Stack Temperature	(t _s) _{avg}	845.1	851.3	853.0	849.8	°R
Average Square Root of ΔP's	$(\Delta p^{1/2})_{avg}$	0.3270	0.3435	0.3428	0.3378	%
Average Stack Gas Velocity	(v _s)	1411.05	1484.42	1485.34	1460.27	ft/min
Average Stack Gas Flow	(Q _{aw})	8.89E+04	9.36E+04	9.36E+04	9.20E+04	acfm
Wet Standard Stack Flow Rate	(Q _{sw})	3.32E+06	3.47E+06	3.46E+06	3.42E+06	wscfh
Dry Standard Stack Flow Rate	(Q _{sd})	2.91E+06	3.08E+06	3.04E+06	3.01E+06	dscfh
P	articulate Ma	tter Emission	Rate Calcula	itions		
Mass of Filterable PM (M.5)	mg	1.60	1.1	1.0	1.23	mg
Mass of Condensible PM (M.202)	mg	3.60	3.3	5.2	4.03	mg
Total Mass of Particulates	mg	5.20	4.40	6.20	5.27	mg
Filterable PM Mass Concentration	lb/dscf	4.40E-08	3.89E-08	3.58E-08	3.96E-08	lb/dscf
Total PM Mass Concentration	lb/dscf	1.43E-07	1.55E-07	2.22E-07	1.74E-07	lb/dscf
Filterable PM Mass Emission Rate	lb/hr	0.13	0.12	0.11	0.12	lb/hr
Total PM Mass Emission Rate	lb/hr	0.42	0.48	0.67	0.52	lb/hr
Filterable PM Mass Emission Rate	lb/day	3.07	2.87	2.61	2.85	lb/day
Total PM Mass Emission Rate	lb/day	9.99	11.48	16.19	12.55	lb/day
Filterable PM Mass Emission Rate	lb/MMbtu	0.0005	0.0005	0.0004	0.0005	lb/MMbtu
Total PM Mass Emission Rate	lb/MMbtu	0.0016	0.0019	0.0026	0.0020	lb/MMbtu

Attachment B Quality Control Documentation

⁽¹⁾For stack diameter >4.0" and <2.4 meters, stratification is measured at 16.7%, 50.0%, and 83.3" of stack diameter (M7E, §8.1.2). ⁽²⁾ For stack diameter >2.4 meters, stratification is measured at 0.4, 1.2, and 2.0 meters from stack wall (M7E, §8.1.2).

11/28/2022
Marathon Petroleum
Detroit
9049.1.D3
Coker Heater
Jarrod Hoskinson

Calibration Gas Verification

Pollutant	Low-Level Gas Conc. (C _v)	Cylinder Serial #	Mid-Level Gas Conc. (C ₃)	Cylinder Sectal #	Righ-Level Gas Conc. (C ₁₇ /CS)	Gylimler Serial #	Dillutor Root Gas
02	n/a	n/a	10.19	CC171439	19.98	CC498073	NA
CO2	n/a	n/a	9.978	CC171439	19.61	CC498073	NA

Reference Method Analyzer Info					
Make	Model	Serial No.			
Teledyne	T200H	896			
Teledyne	T300M	820			

Calibration Error Test

Mid-Level Response (C₁₀₀) bratinn ise (AGE)* High-Level Response (C_{or}) northant ((Aleff)) nonneon (AEE) (NGE) Response (Co.) 0.00 -0.01% 02 n/a n/a 9.94 -1.24% 19.98 -0.01% CO2 0.03 0.15% must either be within ± 2.0% or ≤ 0.5 ppmv absolute n/a n/a ence, or +-5 % for THC for the mid and low gas -1.02% 9.78 19.72 0.58% * ACE

Initial Sample System Bias and Response Time

Pollutant	Upwale Gas Cent.	Upscale Gas	Upscale Response	Sample System	Response Time	Downsealte	Sample System	Response Time
CONTRACTOR	Cotte. (G _{MD})	Direct (C _{tor})	(C,)	llias (SB)*	([svc]	Response (C.)	Bins (SB)	(sec)
01	10.19	9.94	9.81	-0.68%	80	0.10	0.51%	80
CO2	9.98	9.78	9.69	-0.44%	80	0.15	0.64%	80
SB must either be within ± 5.0% or ≤ 0.5 ppmv absolute difference								

Sample Collection Raw Data--Pre and Post Sample System Calibration (SSC) and Raw Run Results

		Run #: Start Time: End Time:	Run 1 11:52 14:05		
Pollutont	Initial Zero - SSC (C, 1)	Initial Upscale SSC (C, .)	Raw Results (C _{AC})	Final Zero SSC (C _v)	Final-Upscale SSC (Co.)
0 _z	0.10	9.81	4.93	0.09	9.74
CO2	0.15	9.69	9.23	0.21	9.58

Sample Collection Raw Data--Pre and Post Sample System Calibration (SSC) and Raw Run Results

		Run #: Start Time: End Time:	Run 3 16:36 18:17		
Pollutant	Initial Zero SSC	Initial Upscale	Raw Results	Final Zero SSC	Final Upscale SSC
	(C,)	SSC (C,)	(C _{we})	(C _v .)	(C _{cc})
02	0.08	9.73	4.83	0.09	9.71
CO2	0.22	9.60	9.24	0.23	9.73

	Run #: Start Time:	Run 2 14:33		
Initial Zero - SSC [C c]	End Time: Initial@pseale SSC (C ₁₂)	16:13 Bow Results (Cov.)	Final Zero SSC (C _o -)	Final Upscale SSC (C)
0.09 0.21	9.74 9.58	4.84 9.26	0.08	9.73 9.60

Run 1 Sample Collection Calculations--Pre- and Post-Run Sample System Blas Check, Drift Assessment, Corrected Results

Bias (SB)* Sys. Bias (SB)* Bias (SB)	Blas (SB)*	Rias (C.)	Bibs (G ₀)	Assessment (D)	Assessment (D)	(C_{mn})
O ₂ 0.51% -0.68% 0.45%	-1.04%	0.09	9.77	0.06%	0.37%	5,09
CO2 0.64% -0.44% 0.91%	-1.02%	0.18	9.63	0.27%	0.58%	9.56

 ± 0.5 must either be within $\pm 3.0\%$ or the pre- and post-run bias responses are ≤ 0.5 ppmv absolute difference

Run 2	Run 2 Sample Collection CalculationsPre- and Post-Run Sample System Bias Check, Drift Assessment, Corrected Results								
Pollutani	duital Zero Sys.	Initial Upscale	Final Zero Sys.	Final Upscale Sys.	Avg. Zero Sys.	Avg. Upscale Sys.	Zero Dinti	Upscale Drift	Corrected Results
Politica	Brits (SB)	Sys. Bias (SB)?	Bias (SBP	Bras (SB)*	Bias (C _o)	Bias (C _y)	Assessment (D)	Assessment (D)	(0)
02	0.45%	-1.04%	0.42%	-1.06%	0.09	9.73	0.03%	0.02%	5.02
C02	0.91%	-1.02%	0.97%	-0.89%	0.21	9.59	0.07%	0.13%	9.62

* SB must either be within ± 5.0% or ≤ 0.5 ppmv absolute difference † D must either be within ± 3.0% or the pre- and post-run bias responses are ≤ 0.5 ppmv absolute difference

Run 3 Sample Collection Calculations--Pre- and Post-Run Sample System Bias Check, Drift Assessment, Corrected Results

Pollutant	Initial Zero Sys. flias (SII):	Initial Opscale Sys. Ilias (80)*	Final Zero Sys. Bias (SB)*	Final Upscale Sys Ilias (SB)	Avg. Zero – Sys. Ilias (C.,)	Avg Ilpscale Sys. filias (Ge)		Upscale Drift Assessment (D)	Corrected Results (C _{an})
02	0.42%	-1.06%	0.45%	-1.15%	0.09	9.72	0.03%	0.09%	5.02
CO2	0.97%	-0.89%	1.03%	-0.27%	0.23	9.66	0.06%	0.63%	9.53

⁴ SB must either be within ± 5.0% or ≤ 0.5 ppmv absolute difference † D must either be within ± 3.0% or the pre- and post-run bias responses are ≤ 0.5 ppmv absolute difference

Attachment C Example Calculations

Erthwrks QAQC Example Calculations

Example Calculations for System QA : Run 1, Coker Heater

Example Calculations for Pollutant : 02

Variable:	Description:
C ₀	Average of the pre- and post-run system cal bias responses from zero gas, ppmv.
C _{Avg}	Average unadjusted gas concentration for test run, ppmv.
C _{Dir}	Measured concentration of the cal gas when introduced in direct mode, ppmv.
C _M	Average of the pre- and post-run system cal bias responses from the upscale gas, ppmv.
C _{MA}	Actual concentration of the upscale calibration gas, ppmv.
CS	Calibration span, ppmv.
Cs	Measured concentration of the cal gas when introduced in the system cal mode, ppmv.
Cv	Manufacturer certified concentration of calibration gas, ppmv.
SBf	Post-run system bias, percent of calibration span.
SBi	Pre-run system bias, percent of calibration span.
Analyzer Ca	libration Error, ACE Eq. 7E-1

bration Error, ACE		Eq. 7E-1
	$C_{\rm Dir} = 9.94$	%
$ACE = \frac{C_{Dir} - C_V}{CS} \times 100$	$C_{V} = 10.19$	%
CS	CS= 19.98	%
ACE = -1.24%		

Initial Upscale System Bias, SB₁ Eq. 7E-2 CS= 19.98 % $SB_i = \frac{C_S - C_{Dir}}{CS} \times 100$ $C_{s} = 9.81$ % $C_{Dir} = 9.94$ % $SB_i =$ -0.68%

Upscale Drift Assessment, D	Eq. 7E-4
	SBi = -0.68%
$D = ABS SB_f - SB_i $	$SB_{f} = -1.04\%$
D = 0.37%	
Effluent Gas Concentration, C _{Gas}	Eq. 7E-5

S concentration, e _{Gas}		EG. / E-3
	C _{Avg} = 4.93	%
$C_{Gas} = (C_{Avg} - C_0) \frac{C_{MA}}{C_M - C_0}$	$C_{o} = 0.09$	%
$C_{M} = C_{O}$	$C_{MA} = 10.19$	%
$C_{Gas} = 5.09$	C _M = 9.77	%

Example Calcs for Run : Run 1 Coker Heater

Variable:	Description:
B _{ws}	Proportion of water vapor, by volume, in the gas stream
C _f	Conversion factor, sec/hr
Cp	Pilot coefficient, 0.84
Kp	Velocity equation constant, 5129.4 (ft/min) [(lb/lb-mole)(in Hg) / (R)(in H_2O)] ^{0.5}
M _d	Molecular weight of stack gas, dry
Ms	Molecular weight of stack gas, dry, g/g-mole (lb/lb-mole)
Mw	Molecular weight of water, g/g-mole (lb/lb-mole)
Pm	Absolute pressure at the dry gas meter = Barometric Pressure + Δh_{avg} / 13.6, in Hg
Tm	Absolute Temperature at Meter, °R
Vm	Volume measured by DGM, dcf
V _{m(std)}	Dry gas volume measured by the dry gas meter, corrected to standard conditions, dscm (dscf)
Vs	Measured concentration of the cal gas when introduced in the system cal mode, ppmv
V _{wc(std)}	Volume of water vapor condensed, corrected to standard conditions, scm (scf)
W _f	Final imp weight, g
Wi	Initial imp weight, g
Y	Dry gas meter calibration factor, unitless

Dry Molecular Weight of Stack Gas, M _d		Eq. 3-1	
	%O ₂ =		
$M_{d} = 0.44(\%CO_{2}) + 0.32(\%O_{2}) + 0.28(\%N_{2} + \%CO)$	$%CO_2 = 9.56$ $%N_2 = 85.35$		
M _d = 29.73 lb/lb-mol	%CO =		
	7000	0.00	
Volume of Water Vapor Collected, V _{wc(std)}		Eq. 4-2	
	K ₃ = 0.04715	(ft ³ /g)	
$V_{wc(std)} = K_3(W_f - W_i)$	W _i = 2528.00	(g)	
	W _f = 2769.40	(g)	
$V_{wc(std)} = 11.38 \text{ ft}^3$			
Sample Gas Volume, V _{m(std)}		Eq. 4-3	
$T_{\rm res}$ (V. * P.)	$T_{std} = 528$	(°R)	
$V_{m(std)} = \left(\frac{T_{std}}{P_{rds}} * Y\right) \left(\frac{V_m * P_m}{T_m}\right)$	$P_{std} = 29.920$	(inHg)	
rstd (Im)	V _m = 79.03	(ft ³)	
	$P_{m} = 29.88$	(in H ₂ O)	
$V_{m(std)} = 80.09 \text{ ft}^3$	$T_{m} = 520.5$	(°R)	
Maisture Content B	Y= 1.0003	(unitless)	
Moisture Content, B _{ws}		Eq. 4-4	
$B_{ws} = \frac{V_{wc(std)}}{V_{wc(std)} + V_{m(std)}}$			
B _{ws} = 12.44%			
Molecular Weight of Stack Gas, M,		Eq. 2-6	
$M_{S} = M_{d}(1 - B_{ws}) + (M_{w}*B_{ws})$	M _w = 18.00	(lb/lb-mole)	

M_s = 28.27

Example Calcs for Run : Run 1 Coker Heater

Variable:	Description:
Δp _{avg}	Average velocity head of stack gas, mm H_2O (in H_2O)
A _n	Cross-sectional area of nozzel, ft ²
Α	Cross-sectional area of stack, ft ²
B _{ws}	Proportion of water vapor, by volume, in the gas stream
C _f	Conversion factor, sec/hr
C _p	Pilot coefficient, 0.84
К _р	Velocity equation constant, 5129.4 (ft/min) [(lb/lb-mole)(in Hg) / (R)(in H ₂ O)] ^{0.5}
K ₅	Constant, 0.09450 for English units
ΔH@	Orifice meter calibration coefficient, in H ₂ O
Ms	Dry molecular weight of stack gas, lb/lb-mole
Q	Dry volumetric stack gas flow rate corrected to standard conditions, dscm/hr (dscf/hr)
Ps	Stack Pressure (Pbar + Pg)(in Hg)
Y _{qa}	Dry gas meter calibration check value, dimensionless
P _{bar}	Barometric pressure at the sampling site, mm Hg (in. Hg)
P _{std}	Standard absolute pressure, 760 mm Hg (29.92 in. Hg)
T _m	Absolute average DGM temperature, K (°R)
Ts	Absolute average stack gas temperature, 293 °K (528 °R)
T _{s(abs)}	Average Stack Temperature (°F) + 460, °R
V _m	Volume of gas sample as measured by dry gas meter, dcm (dcf)
V _{m(std)}	Dry gas volume measured by the dry gas meter, corrected to standard conditions, dscm (dscf)
θ	Total sampling time, min
Vs	Measured concentration of the cal gas when introduced in the system cal mode, ppmv.

Average Stack Gas Velocity, V _s		Eq. 2-7
	K _p = 5129.	4
$V_{r} = K + C + \sqrt{\Lambda n} + \sqrt{\frac{T_{s(abs)}}{T_{s(abs)}}}$	C _p = 0.84	unitless
$V_{S} = K_{p} * C_{p} * \sqrt{\Delta p_{avg}} * \sqrt{\frac{T_{s(abs)}}{P_{s} * M_{s}}}$	$P_s = 29.79$) in H ₂ O
Ŷ	T _{s(abs)} = 845.08	33 °R
V _s = 1411.05 ft/min	$(\Delta p_{avg})^{1/2} = 0.327$	0
V _s = 23.52 ft/sec	M _s = 28.27	7 lb/lb-mole
Average Stack Gas Flow, Qa		
	A = 63.03	3 ft ²
$Q_a = V_s * A$	V _s = 1411.0)5 ft/min
Q _a = 8.89E+04 acfm		
Wet Standard Stack Gas Flow, Q _{sw}		
	P _s = 29.79) in Hg

	$P_s =$	29.79	in Hg
$Q_{sw} = Q_a * 60 * \left(\frac{T_{std}}{P_{std}}\right) * \left(\frac{P_s}{T_{s(abs)}}\right)$	$P_{std} =$	29.92	in Hg
(P_{std}) $(T_{s(abs)})$	T _{s(abs)} =	845.1	°R
	T _{std} =	528	°R

Q_a = 3.32E+06 wscfh

Average Stack Gas Dry Volumetric Flow Rate, Q			Eq. 2-8
τι . D	C _f =	3600	sec/hr
$Q = C_{f} * B_{ws} * A * V_{s} * \frac{T_{std} * P_{s}}{P_{std} * T_{s(abs)}}$	A=	63.03	ft ²
$P_{std} * T_{s(abs)}$	B _{ws} =	0.876	unitless
	$P_s =$	29.79	in Hg
Q = 2.91E+06 dscfh	P _{std} =	29.92	in Hg
	T _{s(abs)} =	845.1	°R
	T _{std} =	528	°R
	V _s =	23.52	ft/sec

Percent Isokinetic, I	Eq. 5-8
	T _s = 845.0833 °R
$T_{s} * V_{m(std)} * Ps(std) * 100$	V _{m(std)} = 80.09 dscf
$I = \frac{1}{T_{(std)} * vs * \theta * An * Ps * 60 * (1 - Bws)}$	P _s = 29.79 in Hg
	v _s = 23.52 ft/sec
l = 98.9 %	$A_n = 8.78E-04 ft^2$
	θ = 120 min
	B _{ws} = 0.876 unitless

Post-Test Metering Calibration					Eq. 5-15
		Run 1:	ΔH@ =	1.869	unitless
e	$0.0319T_{\rm m}$ (29)		T _m =	520.5	°R
$Y_{qa} = \frac{0}{V_r}$	$\frac{1}{M_{m}} \frac{0.0319 T_{m}}{\Delta H_{m} \left(P_{m} + \frac{\Delta H_{avg}}{M_{s}}\right)} \left(\frac{29}{M_{s}}\right) \sqrt{\Delta H_{avg}}$		P _{bar} =	29.78	in H₂O
.1	$\frac{1}{m} \sqrt{\frac{\Delta H@(P_{bar} + \frac{\Delta H_{avg}}{13.6})}{\Delta H@(P_{bar} + \frac{\Delta H_{avg}}{13.6})}} \left(\frac{M_s}{M_s}\right) \sqrt{\Delta H_{avg}}$		V _m =	79.03	dcf
	$\sqrt{(1-1)}$		$\Delta H_{avg} =$	1.41	in H₂O
		Run 2:	ΔH@ =	1.869	unitless
Y _{run 1} =	0.957		T _m =	516.6667	°R
Y _{run 2} =	0.969		P _{bar} =	29.77	in H ₂ O
Y _{run 3} =	0.980		V _m =	61.10	dfc
Y _{qa (avg)} =	0.969		∆H _{avg} =	1.54	in H ₂ O
		Run 3:	ΔH@ =	1.869	unitless
			T _m =	514.6667	°R
			P _{bar} =	29.79	in H₂O
			V _m =	60.06	dcf
			$\Delta H_{avg} =$	1.53	in H ₂ O

Example Calcs for Run : Run 1 Coker Heater

Variable:	Description:
m _t	Total mass of particulates, mg
V _{std}	Standard gas volume, %
Q _{sd}	Dry standard stack flow rate, dscfh

Particulate Matter Mass Concentration, C_m

$$C_m = \frac{m_t}{453592} * \frac{1}{V_{std}}$$

Particulate Matter Mass Emission Rate per Hour, E_{d}

$$E_h = C_m * Q_{sd}$$

Particulate Matter Mass Emission Rate per Day, E_d

 $E_d = E_h * 24$

$$E_d = 9.99$$
 lb/day

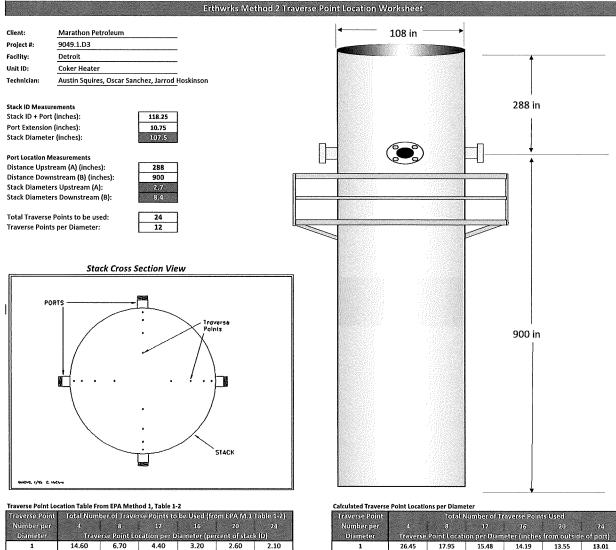
Particulate Matter Mass Emission Rate per process rate, $E_{ extsf{TC}}$

$$E_{TC} = \frac{E_h}{Process Rate}$$

Process Rate (E_h)= 253.0794 MMBtu/hr

m_t= 5.20

V_{std} = 80.09


 $Q_{sd} = 2.91E+06$ (dscfh)

(mg)

(dscf)

E_{TC} = 0.0016 lb/MMBtu

Attachment D Sampling Datasheets

1 MOTO AGAINED	· · · ·	•	1	100	- 40	
Diameter	Trave	erse Point Lo	cation per C	liameter (pei	rcent of stac	k ID)
1	14.60	6.70	4.40	3.20	2.60	2.10
2	85.40	25.00	14.60	10.50	8.20	6.70
3		75.00	29.60	19.40	14.60	11.80
4		93.30	70.40	32.30	22.60	17.70
5		1	85.40	67.70	34.20	25.00
6			95.60	80.60	65,80	35.60
7				89.50	77.40	64.40
8				96.80	85.40	75.00
9		1			91.80	82.30
10					97.40	88.20
11						93.30
12					1	97.90

Traverse Point		Total N	Number of Tr	averse Poin	ts Used	
Number per	4	8	12	26	20	24
Diameter	Traverse	Point Locati	ion per Diam	eter (inches	from outsid	e of port)
1	26.45	17.95	15.48	14.19	13.55	13.01
2	102.56	37.63	26.45	22.04	19.57	17.95
3		91.38	42.57	31.61	26.45	23.44
4		111.05	86.43	45.47	35.05	29.78
5			102.56	83.53	47.52	37.63
6			113.52	97.40	81.49	49.02
7				106.96	93.96	79.98
8				114.81	102.56	91.38
9					109.44	99.22
10					115.46	105.57
11						111.05
12					1	115.99

Measurements in bold will be the traverse points used for the emission test

mpling Field Data and Cal	

1404002

1.0003

1.869

A9533

Nozzle ID: EW-04-13

Meterbox ID:

DGM AH @:

DGM Y Factor:

S-Type Pitot ID:

Client:	Marathon Petroleum
Project #:	9049.1.D3
Facility:	Detroit
Unit ID:	Coker Heater

Run ID:

Amb Temp:

Baro. Press:

1

40

29.78

Date: 11/28/22

all and the second	Pre and Post	DGM Leak C	hecks	
Pre	0.00	ft3/min @	15	inHg
Post	0.00	ft3/min @	8	inHg
P	itot Not Damaged	8 Leak Che	cks Good?	
Pre	Yes	Post	ser and the	res

(Y_{qa})

0.957

Post -Test Meter Cal (M.5 §16.3)

Isokin	Post Sample Moisture Determination				Post Sampling Moisture and MW Determination						
Meter K Factor	(NA)	13.31	unitless		Impinger W	/eights (g)		O ₂ Concentration	(%O ₂)	5.09	%
Pitot Tube Factor	(C _{ps})	0.84	unitless	Impinger ID	contents	Pre Run	Post Run	CO ₂ Concentration	(%CO ₂)	9.56	%
Stack Static Pressure	(P _{static})	0.20	in H2O	Impinger 1	Empty	358.1	564.1	Sample Volume Metered	(V _m)	79.03	dcf
Dry Gas Fraction	(NA)	0.870	unitless	Impinger 2	Empty	610.4	620.0	Standard Volume at STP	(V _{std})	80.09	dscf
Stack Gas Wet MW	(Ms)	28.13	lb/lb-mole	Impinger 3	DI H2O	638.4	642.3	Moisture Content	(B _{ws})	12.443	%
Actual Nozzle Area	(NA)	8.78E-04	ft²	Impinger 4	Silica Gel	921.1	943.0	Final Dry Gas Fraction	(B _{ws})	0.876	unitless
Total Sample Time	(NA)	120	min	1	otal Weights	2528.0	28.0 2769.4	Stack Gas Wet MW	(Ms)	28.27	lb/lb-mole
Number of Traverse Points	(NA)	24	points	1				Stack Gas Velosity	(v _s)	23.52	ft/sec
Time per Traverse Point	(NA)	0:05:00	time		Filter ID:	51888	1	Stack Gas Vol. Flow Rate	(Qd)	2.91E+06	dscfh
				-			4	Final Isokinetic Calc	(%iso)	98.9	%

I	End	Stack	Probe	M.5 Filter	202 Filter	Exit	DGM	Pump			Target DGM	Obs. DGM	% ISO	% ISO
	Time	Temp	Temp	Temp	Temp	Temp	Temp	Vacuum	ΔΡ	ΔH	Reading	Reading	Point	Total
Port 1 Start →	11:52:00	(*F)	(*F)	(*F)	(*F)	(*F)	(*F)	(inHg)	in H2O	in H2O	ft ³	109.977	unitless	unitless
Point 1	11:57:00	381	251	265	68	53	47	1	0.13	1.66	113.548	113.700	104.3	104.3
Point 2	12:02:00	389	250	249	68	47	53	1	0.11	1.42	117.010	116.900	96.7	100.7
Point 3	12:07:00	384	247	242	68	47	54	1	0.10	1.30	120.072	119.800	91.4	97.8
Point 4	12:12:00	385	248	247	68	47	55	1	0.10	1.30	122.976	123.000	100.7	98.5
Point 5	12:17:00	379	251	247	68	49	57	1	0.10	1.30	126.200	126.000	93.7	97.6
Point 6	12:22:00	382	250	245	69	52	60	1	0.10	1.31	129.213	129.000	93.4	96.9
Port 2 Start →	12:27:00													
Point 7	12:32:00	380	249	256	69	51	60	1999 1 1993	0.11	1.44	132,373	132.400	100.8	97.4
Point 8	12:37:00	392	247	244	66	54	60	1	0.11	1.44	135,749	135.700	98.5	97.6
Point 9	12:42:00	389	250	247	72	55	60	1	0.10	1.31	138.900	138.700	93.8	97.2
Point 10	12:47:00	387	251	246	74	56	60	1	0.10	1.31	141.903	141.700	93.7	96.8
Point 11	12:52:00	380	248	242	73	57	61	100	0.10	1.31	144.923	145.100	105.5	97.6
Point 12	12:57:00	382	250	243	74	59	62	1	0.10	1.32	148.325	148.300	99.2	97.7
Port 3 Start →	13:00:00				(The Rest of the									
Point 13	13:05:00	380	247	251	72	56	65	1	0.11	1.46	151.705	151.900	105.7	98.4
Point 14	13:10:00	391	249	248	72	62	65	1	0.11	1.46	155.283	155.300	100.5	98.5
Point 15	13:15:00	391	247	252	73	62	64	1	0.11	1.45	158.676	158.900	106.6	99.1
Point 16	13:20:00	389	250	251	74	62	65	1	0.11	1.46	162.287	162.100	94.5	98.8
Point 17	13:25:00	384	250	246	73	62	65	1	0.10	1.32	165.340	165.400	101.9	99.0
Point 18	13:30:00	374	250	245	74	64	64	1	0.10	1.32	168.653	168.600	98.4	98.9
Port 4 Start →	13:35									and the second				
Point 19	13:40:00	378	250	250	68	54	63	1	0.11	1.45	171.996	172.000	100.1	99.0
Point 20	13:45:00	393	250	251	69	59	63	1	0.12	1.58	175.515	175.700	105.3	99.3
Point 21	13:50:00	393	248	251	69	57	63	1	0.13	1.71	179.357	179.400	101.2	99.4
Point 22	13:55:00	386	247	250	68	56	63	1	0.11	1.45	182.780	182.600	94.7	99.2
Point 23	14:00:00	386	250	250	68	56	62	1	0.10	1.32	185.818	186.000	105.7	99.5
Point 24	14:05:00	387	250	251	69	56	61	1	0.10	1.31	189.210	189.002	93.5	99.2
verage Values		385.1	249.2	248.7	70.3	55.5	60.5	1.0	0.11	1.41	The second second	79.025		99.2

Erthwrks Isokenetic Sampling Field Data and Calculation Worksheet

Client: Marathon Petroleum Project #: 9049.1.D3 Facility: Detroit Unit ID: Coker Heater

Run ID:	2	
Date:	11/28/22	
Amb Temp:	43	
Baro. Press:	29.77	

2	Meterb
/28/22	DGM Y F
43	DGM /
29.77	S-Type Pit

	Meterbox ID:	140400
22	DGM Y Factor:	1.0003
	DGM ΔH @:	1.869
7	S-Type Pitot ID:	A9533
	Nozzle ID:	EW-04-3

002		Pre and Post	DGM Leak C	hecks
03	Pre	0.01	ft3/min @	15
59	Post	0.00	ft3/min @	6
33	P	itot Not Damage	d & Leak Che	cks Good?
4-13	Pre	Yes	Post	

Post -Test Meter Cal (M.5 §16.3)

Pre	0.01	ft3/min @	15	inHg
Post	0.00	ft3/min @	6	inHg
Pi	tot Not Damage	ed & Leak Checks	Good?	
Pre	Yes	Post		Yes

(Y_{ga})

0.969

Isokin	etic Sampling Data			Post Sample Moisture Determination Post Sampling Moisture and MW Determination							on.
Meter K Factor	(NA)	13.31	unitless		Impinger W	Veights (g)		O ₂ Concentration	(%O ₂)	5.02	%
Pitot Tube Factor	(C _{pt})	0.84	unitless	Impinger ID	contents	Pre Run	Post Run	CO ₂ Concentration	(%CO ₂)	9.62	%
Stack Static Pressure	(P _{static})	0.20	in H2O	Impinger 1	Empty	364.3	512.2	Sample Volume Metered	(V _m)	61.10	dcf
Dry Gas Fraction	(NA)	0.870	unitless	Impinger 2	Empty	611.7	614.7	Standard Volume at STP	(V _{std})	62.39	dscf
Stack Gas Wet MW	(Ms)	28.13	lb/lb-mole	Impinger 3	DI H2O	644.8	645.5	Moisture Content	(B _{ws})	11.237	%
Actual Nozzle Area	(NA)	8.78E-04	ft²	Impinger 4	Silica Gel	885.2	901.1	Final Dry Gas Fraction	(B _{ws})	0.888	unitless
Total Sample Time	(NA)	90	min	Т	otal Weights	2506.0	2673.5	Stack Gas Wet MW	(Ms)	28.42	lb/lb-mole
Number of Traverse Points	(NA)	24	points					Stack Gas Velosity	(v,)	24.74	ft/sec
Time per Traverse Point	(NA)	0:03:45	time	1	Filter ID:	51889	7	Stack Gas Vol. Flow Rate	(Qd)	3.08E+06	dscfh
			A				-	Final Isokinetic Calc.	(%iso)	98.3	%

1	End	Stack	Probe	M.5 Filter	202 Filter	Exit	DGM	Pump	I		Target DGM	Obs. DGM	% ISO	% ISO
	Time	Temp	Temp	Temp	Temp	Temp	Temp	Vacuum	ΔΡ	ΔH	Reading	Reading	Point	Total
Port 1 Start →	14:33:00	(*F)	(*F)	(*F)	(*F)	(*F)	(*F)	(inHg)	in H2O	in H2O	ft ³	190.597	unitless	unitless
Point 1	14:36:45	387	250	252	68	49	58	1	0.13	1.70	193.324	193.600	110.1	110.1
Point 2	14:40:30	388	249	250	68	45	56	1	0.13	1.69	196.315	196.000	88.4	99.3
Point 3	14:44:15	386	250	250	69	45	55	1	0.13	1.69	198.713	198.300	84.8	94.4
Point 4	14:48:00	385	251	250	68	45	56	1	0.11	1.43	200.803	200.900	103.9	96.7
Point 5	14:51:45	381	247	245	68	48	55	1	0.10	1.30	203.288	203.900	125.6	102.0
Point 6	14:55:30	381	248	246	68	49	55	1	0.10	1.30	206.288	206.200	96.3	101.1
Port 2 Start →	14:58:00							1						
Point 7	15:01:45	397	250	246	68	49	55	1	0.13	1.69	208.895	208.500	85.3	98.7
Point 8	15:05:30	397	251	247	69	48	55	1	0.13	1.69	211.195	211.300	103.9	99.4
Point 9	15:09:15	396	247	252	68	49	55	1	0.13	1.69	213.997	214.000	100.1	99.5
Point 10	15:13:00	395	248	253	68	50	55	1	0.13	1.69	216.698	216.800	103.8	99.9
Point 11	15:16:45	391	250	252	69	51	55	1	0.11	1.43	219.289	219.500	108.5	100.6
Point 12	15:20:30	390	251	249	68	52	56	1	0.10	1.30	221.880	221.800	96.6	100.3
Port 3 Start →	15:25:00													
Point 13	15:28:45	381	249	250	68	50	56	1	0.12	1.56	224.420	224.500	103.1	100.6
Point 14	15:32:30	395	250	247	69	53	57	1	0.13	1.69	227.209	226.900	88.6	99.7
Point 15	15:36:15	391	250	252	68	54	57	1	0.13	1.69	229.615	229.800	106.8	100.2
Point 16	15:40:00	393	249	251	69	55	57	1	0.12	1.56	232.406	232.200	92.1	99.7
Point 17	15:43:45	394	247	250	69	55	58	1	0.11	1.44	234.699	234.600	96.0	99.5
Point 18	15:47:30	398	250	251	69	56	58	1	0.11	1.44	237.094	236.900	92.2	99.1
Port 4 Start →	15:51:00													
Point 19	15:54:45	398	250	251	68	57	58	1	0.11	1.44	239.394	239.200	92.2	98.7
Point 20	15:58:30	401	250	247	69	56	58	1	0.14	1.83	242.006	242.000	99.8	98.8
Point 21	16:02:15	397	250	243	68	57	58	1	0.12	1.57	244.605	244.800	107.5	99.2
Point 22	16:06:00	395	251	231	69	56	59	1	0.11	1.44	247.303	247.100	91.9	98.9
Point 23	16:09:45	387	250	227	68	55	59	1	0.11	1.44	249.615	249.400	91.5	98.6
Point 24	16:13:30	388	247	229	68	55	59	1	0.10	1.31	251.797	251.700	96.0	98.5
verage Values		391.3	249.4	246.7	68.4	51.6	56.7	1.0	0.12	1.54		61.103		98.5