CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 cleanalr.com

Marathon Petroleum Company 1300 South Fort Street Detroit, MI 48217

RECEIVED

JUN 1 0 2016 AIR QUALITY DIV.

REPORT ON RATA & COMPLIANCE TESTING

Performed for: MARATHON PETROLEUM COMPANY DETROIT REFINERY

ZURN BOILER STACK (SV22-BR7)

Client Reference No: 4100665755 CleanAir Project No: 12964-2 Revision 0: June 6, 2016

To the best of our knowledge, the data presented in this report are accurate, complete, error free and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Submitted by,

Andy Obuchowski Midwest Engineering Group Leader aobuchowski@cleanair.com (800) 627-0033 ext. 4537 Reviewed by,

Dan Pearson Project Engineer dpearson@cleanair.com (800) 627-0033 ext. 4674

RPTv4_6_9.dot 12964-2-Report_R0.docx 41062016 114100 12964-2

Client Reference No: 4100665755 CleanAir Project No: 12964-2

REVISION HISTORY

REPORT ON RATA & COMPLIANCE TESTING

DRAFT REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
D0a	05/24/16	All	Draft version of original document.
	·····		

FINAL REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
0	06/06/16	All	Final version of original document.

ii

Client Reference No: 4100665755 CleanAir Project No: 12964-2

1-1

PROJECT OVERVIEW

INTRODUCTION

Marathon Petroleum Company (MPC) contracted Clean Air Engineering (CleanAir) to perform emissions measurements at the Detroit Refinery for relative accuracy test audit (RATA) and compliance purposes.

All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (USEPA) and the Michigan Department of Environmental Quality (DEQ). These regulations are referenced in the Michigan Department of Environmental Quality, Air Quality Division Permit to install No. 63-08D, issued on May 12, 2014.

Key Project Participants

Individuals responsible for coordinating and conducting the test program were:

Crystal Davis – Marathon Petroleum Company Joe Reidy – Marathon Petroleum Company LP A. Obuchowski – CleanAir M. Cendana – CleanAir

Test Program Parameters

The testing was performed at the Zurn Boiler Stack on April 13-14, 2016, and included the following emissions measurements:

- particulate matter (PM), assumed equivalent to filterable particulate matter (FPM) only
- sulfuric acid mist (H₂SO₄)
- volatile organic compounds (VOCs), assumed equivalent to total hydrocarbons (THC) minus the following constituents:
 - methane (CH₄)
 - ethane (C_2H_6)
- nitrogen oxide (NO_X)
- carbon monoxide (CO)
- flue gas composition (e.g., O₂, CO₂, H₂O)
- flue gas flow rate
- flue gas temperature

RECEIVED

JUN 1 0 2016 AIR QUALITY DIV.

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

The on-site schedule followed during the test program is outlined in Table 1-1.

		-Table 1 Schedule of A				
Run Number	Location	Method	Analyte	Date	Start Time	End Time
1	Zurn Boiler Stack	USEPA Method 5	FPM	04/13/16	09:52	11:58
2	Zurn Boiler Stack	USEPA Method 5	FPM	04/13/16	12:50	14:54
3	Zurn Boiler Stack	USEPA Method 5	FPM	04/13/16	15:30	17:35
1	Zurn Boiler Stack	USEPA Method 3A/7E/10	O2/CO2/NO2/CO	04/13/16	09:47	10:08
2	Zurn Boiler Stack	USEPA Method 3A/7E/10	O2/CO2/NO2/CO	04/13/16	10:21	10:42
3	Zurn Boiler Stack	USEPA Method 3A/7E/10	O ₂ /CO ₂ /NO ₂ /CO	04/13/16	10:53	11:14
4	Zurn Boiler Stack	USEPA Method 3A/7E/10	O2/CO2/NOX/CO	04/13/16	11:25	11:46
5	Zurn Boiler Stack	USEPA Method 3A/7E/10	O2/CO2/NO2/CO	04/13/16	11:55	12:16
6	Zurn Boiler Stack	USEPA Method 3A/7E/10	O2/CO2/NO/CO	04/13/16	12:33	12:54
7	Zurn Boiler Stack	USEPA Method 3A/7E/10	O2/CO2/NO2/CO	04/13/16	13:09	13:30
8	Zurn Boiler Stack	USEPA Method 3A/7E/10	O2/CO2/NO2/CO	04/13/16	13:40	14:01
9	Zurn Boiler Stack	USEPA Method 3A/7E/10	O2/CO2/NO/CO	04/13/16	14:13	14:34
10	Zurn Boiler Stack	USEPA Method 3A/7E/10	O ₂ /CO ₂ /NO _x /CO	04/13/16	14:45	15:06
1	Zurn Boiler Stack	USEPA 3A/18/25A	O2/CO2/CH4/C2H6/THC	04/13/16	09:47	11:14
2	Zurn Boiler Stack	USEPA 3A/18/25A	O2/CO2/CH4/C2H6/THC	04/13/16	11:25	12:54
3	Zurn Boiler Stack	USEPA 3A/18/25A	O ₂ /CO ₂ /CH ₄ /C ₂ H ₆ /THC	04/13/16	13:09	14:34
0	Zurn Boiler Stack	Draft ASTM CCM	H ₂ SO ₄	04/14/16	08:23	09:23
1	Zurn Boiler Stack	Draft ASTM CCM	H₂SO₄	04/14/16	10:28	11:28
2	Zurn Boiler Stack	Draft ASTM CCM	H₂SO₄	04/14/16	12:14	13:14
3	Zurn Boiler Stack	Draft ASTM CCM	H₂SO₄	04/14/16	13:56	14:56

Client Reference No: 4100665755 CleanAir Project No: 12964-2

Client Reference No: 4100665755 CleanAir Project No: 12964-2

PROJECT OVERVIEW

Results Summary

Table 1-2 summarizes the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown on pages 2-1 through 2-12.

	Summ	Table 1-2: ary of Test Resu	ilts	
<u>Source</u> Constituent	Samplin Method		erage ission	Permit Limit ¹
Zurn Boiler Stack				
PM (lb/MMBtu)	USEPA	5 0.	0008	0.0019
H ₂ SO ₄ (ppmdv) Draft ASTM (CCM 0.	0136	N/A
H ₂ SO ₄ (Ib/MME	Btu) Draft ASTM	CCM 5.4	4E-05	N/A
VOC (Ib/MM	Btu) USEPA 18/	25A <0	.0006	0.0055
NO _x (Ib/MMBtu) USEPA7	E ().18	0.20
CO (lb/MMBtu)	USEPA1	0 0).03	0.10
¹ Permit limits obta	ained from MDEQ Pe	ermit To Install No.	63-08D.	052016 095735
	Summa	Table 1-3: ary of RATA Res	ults	
urce Constituent	Reference Method	Relative Accuracy (%) ¹	Applicable Specification	Specification Limit ²
n Boiler Stack				
O2 (% dv)	EPA 3A	0.14	PS3	±1.0 % dv
NOx (lb/MMBtu)	EPA 7E, 3A, 19	0.00	PS2	20% of RM
		0.00	004	400/

¹ Relative Accuracy is expressed in terms of comparison to the reference method (% RM) or applicable emission standard (% Std.) The specific expression used depends on the specification limit cited. 052016 081959

0.00

PS4

10% of RM

² Specification limits obtained from 40 CFR 60, Appendix B, Performance Specifications.

EPA 10, 3A,19

CO (Ib/MMBtu)

Client Reference No: 4100665755 CleanAir Project No: 12964-2

PROJECT OVERVIEW

Discussion of Test Program

FPM Testing - EPA Method 5

For this test program, PM emission rate is assumed equivalent to FPM emission rate. Three 120-minute Method 5 test runs were performed on April 13, 2016. The final result was expressed as the average of three valid runs.

H₂SO₄ Testing - Draft ASTM Controlled Condensation Method

Three 60-minute test runs were performed on April 14, 2016. The final result was expressed as the average of three valid runs.

O₂ and NO_X Emissions / RATA Testing - EPA Methods 3A and 7E; Performance Specifications 2 and 3

Minute-average data points for O_2 , CO_2 and NO_X (dry basis) were collected over a period of 21 minutes for each RATA Reference Method (RM) run. The average result for each RM run was calculated and compared to the average result from the facility CEMS over an identical time interval in order to calculate relative accuracy (RA).

RM NO_X and CO RATA results were also presented to demonstrate compliance with permit limits. The final result was expressed as the average of all 10 RATA runs.

VOC Testing - EPA Methods 25A and 18

Three VOC test runs were performed concurrently with the RATA testing. Nine 21-minute Method 25 test runs for THC were performed concurrently with three Method 18 bag collections for CH_4 and C_2H_6 , with each Method 18 sample collected over a period of about 63 minutes. Method 18 samples were collected as follows:

- Method 18 Run 1: Collected during RATA Runs 1, 2 and 3
- Method 18 Run 2: Collected during RATA Runs 4, 5 and 6
- Method 18 Run 3: Collected during RATA Runs 7, 8 and 9

Client Reference No: 4100665755 CleanAir Project No: 12964-2

PROJECT OVERVIEW

The VOC emission rate is normally equivalent to THC emission rate, minus CH₄ and C_2H_6 emission rate. The calculated emission rate of CH₄ and C_2H_6 detected through analysis of each Method 18 sample bag exceeded the amount of THC measured by the on-line THC analyzer.

This is likely due to variations in the calibration standards, measurement and analytical technique. Therefore, VOC emissions are reported as a value "less than" 1% of the calibration span of THC instrument. The final results were calculated using the average of three valid test runs, all using a concentration of 1% of the instrument span and reported as "less than" the amount.

Calculation of Final Results

Emission results in units of dry volume-based concentration (lb/dscf, ppmdv) were converted to units of pounds per million Btu (lb/MMBtu) using the oxygen-based fuel factor (F_d) for natural gas in EPA Method 19, Table 19-2.

End of Section 1 - Project Overview

Client Reference No: 4100665755 CleanAir Project No: 12964-2

2-1

RES	ULTS				
		le 2-1:			
Run No	Zurn Boiler Stack – FP	M Emissions (<u>USEPA 5)</u> 2	3	Average
		-			Attingo
Date (2	-	Apr 13	Apr 13	Apr 13	
	me (approx)	09:52	12:50	15:30	
Stop Ti	me (approx.)	11:58	14:54	17:35	
	s Conditions				
Pi	Fuel gas flow rate (Mscf/day)	271	269	272	271
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,710	8,710	8,710	8,710
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	onditions				
O ₂	Oxygen (dry volume %)	5.3	5.3	5.2	5.3
CO_2	Carbon dioxide (dry volume %)	8.8	8,9	8.9	8.9
T,	Sample temperature (°F)	356	363	361	360
Bw	Actual water vapor in gas (% by volume)	14.7	14.0	14.2	14.3
Gas Flo	w Rate				
Qa	Volumetric flow rate, actual (acfm)	56,700	62,400	62,300	60,500
Q_s	Volumetric flow rate, standard (scfm)	36,300	39,800	39,700	38,600
\mathbf{Q}_{std}	Volumetric flow rate, dry standard (dscfm)	31,000	34,200	34,100	33,100
Q_a	Volumetric flow rate, actual (acf/hr)	3,400,000	3,750,000	3,740,000	3,630,000
Q_s	Volumetric flow rate, standard (scf/hr)	2,180,000	2,390,000	2,380,000	2,320,000
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	1,860,000	2,050,000	2,040,000	1,990,000
Sampli	ng Data				
V _{mstd}	Volume metered, standard (dscf)	64.02	68.42	67.71	66.71
%1	Isokinetic sampling (%)	101.4	98.1	97.5	99.0
Labora	tory Data				
m	Total FPM(g)	0.00194	0.00230	0.00161	
n _{MDL}	Number of non-detectable fractions	N/A	N/A	N/A	
DLC	Detection level classification	ADL	ADL	ADL	
FPM Re	sults				
C _{sd}	Particulate Concentration (Ib/dscf)	6.68E-08	7.41E-08	5.24E-08	6.45E-08
Elib/har	Particulate Rate (Ib/hr)	0.124	0.152	0.107	0.128
ETAr	Particulate Rate (Ton/yr)	0.544	0.667	0.470	0.560
E _{Fd}	Particulate Rate - F _d based (Ib/MMBtu)	7.80E-04	8.65E-04	6.08E-04	7.51E-04
1.4	u ()				

Average includes 3 runs.

Detection level classifications are defined as follows:

ADL = Above Detection Level - all fractions are above detection limit

ŧ

Client Reference No: 4100665755 CleanAir Project No: 12964-2

2-2

		Uncer		ble 2-2: ysis – FPM (USEI	PA 5)	
<u> </u>		FPM Results	anty zera	FPM Results	<u></u>	FPM Results
		(lb/MMBtu)		(lb/hr)		(Ton/yr)
Method		5		5		5
Run No.	1	7.80E-04	1	0.124	1	0.544
	2	8.65E-04	2	0.152	2	0.667
	3	6.08E-04	3	0.107	3	0.470
SD		1.31E-04		0.023		0.0995
AVG		7.51E-04		0.128		0.560
RSD		17.4%		17.8%		17.8%
N		3		3		3
SE		7.56E-05		1.3115E-02		0.0574
RSE		10.1%		10.3%		10.3%
Р		95.0%		95.0%		95.0%
TINV		4.303		4.30		4.303
Cl +		1.08E-03		1.84E-01		0.807
AVG		7.51E-04		1.28E-01		0.560
Cl -		4.26E-04		7.15E-02		0.313
TB +		1.75E-03		3.02E-01		1.32

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distribution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of the time.

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

Client Reference No: 4100665755 CleanAir Project No: 12964-2

RES	······································	ole 2-3:			
	Zurn Boiler Stack – H ₂ SO ₄		raft ASTM (CCM)	
Run No		1	2	3	Average
Date (2	2016)	Apr 14	Apr 14	Apr 14	
Start Ti	me (approx.)	10:28	12:14	13:56	
Stop Ti	me (approx.)	11:28	13:14	14:56	
Proces	ss Conditions				
P ₁	Fuel gas flow rate (Mscf/day)	247	385	425	352
Fd	Oxygen-based F-factor (dscf/MMBtu)	8,710	8,710	8,710	8,710
Gas Co	onditions				
O ₂	Oxygen (dry volume %)	5.3	5.2	5.3	5.3
CO_2	Carbon dioxide (dry volume %)	8.9	8.9	8.9	8.9
T_s	Sample temperature (°F)	363	368	372	367
B _w	Actual water vapor in gas (% by volume)	14.97	15.17	14.53	14.55
Sampli	ing Data				
V _{mstd}	Volume metered, standard (dscf)	26.35	26.53	26.10	26.33
Labora	itory Data (Ion Chromatography)				
mn	Total H2SO4 collected (mg)	0.0482	0.0701	0.0469	
‴ Sulfuri	c Acid Vapor (H2SO4) Results				
C_{sd}	H2SO4 Concentration (lb/dscf)	4.04E-09	5.826E-09	3.962E-09	3.456E-09
C_{sd}	H2SO4 Concentration (ppmdv)	0.0159	0.0229	0.0156	0.0136
E_{Fd}	H2SO4 Rate - Fd-based (Ib/MMBtu)	4.71E-05	6,755E-05	4.623E-05	5.363E-05

Average includes three runs.

051916 091308

Client Reference No: 4100665755 CleanAir Project No: 12964-2

2-4

	lineart	Table 2		
	Uncerta	ainty Analysis – H ₂ SO ₄ Ei H2SO4 Results	missions (Drait A	H2SO4 Results
		(ppmdv)		(lb/MMBtu)
Method		ССМ		CCM
Run No.	1	1.59E-02	1	4.71E-05
	2	2.29E-02	2	6.76E-05
	3	1.56E-02	3	4.62E-05
SD		4.15E-03		1.21E-05
٨VG		1.81E-02		5.36E-05
RSD		22.9%		22.5%
N I		3		3
SE		2.39E-03		6.97E-06
RSE		13.2%		13.0%
,		95.0%		95.0%
ΓΙΝν		4.303		4.303
CI +		2.84E-02		8.36E-05
AVG		1.81E-02		5.36E-05
Ci -		7.81E-03		2.37E-05
ГВ +		0.050		1.46E-04

AVG (average) is the mean value of the runs; N is the number of individual runs.

SD (standard deviation) and RSD (relative standard deviation) are measures of the variability of individual runs.

SE (standard error) and RSE (relative standard error) are measures of the variability of the average of the runs.

P (probability) is the confidence level associated with the two-tailed Student's t-distribution.

TINV (t-value) is the value of the Student's t-distribution as a function of P (probability) and N-1 (degrees of freedom).

CI (confidence interval) indicates that if the test is conducted again under the same conditions, the average would be expected to fall within the interval (CI- to CI+) about 95% of

TB+ (upper tolerance bound) is the value below which 95% of future runs are expected to fall (assuming testing at the same conditions).

RESULTS

MARATHON PETROLEUM COMPANY DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 12964-2

080410 164528

	Tabl Zurn Boiler Stack – THC, CH4, C2H6	e 2-5: and VOC Emissio	ons (LISEF	ρΔ 25Δ / 15	2) 2)
Run No.		1	2	3	Average
Date (20	16)	Apr 13	Apr 13	Apr 13	
•	e (approx.)	09:47	11:25	13:09	
	e (approx.)	11:14	12:54	14:34	
Process	Conditions				
P1	Natural gas flow rate (Mscf/day)	271	271	269	270
Fa	Oxygen-based F-factor (dscf/MMBtu)	8,710	8,710	8,710	8,710
Gas Con	ditions	-,	-,	-,	
	Oxygen (dry volume %)	5.2	5.1	5.2	5.2
CO ₂	Carbon dioxide (dry volume %)	9.0	9.0	9.0	9.0
B _w	Actual water vapor in gas (% by volume) ¹	14.7	14.0	14.2	14.3
THC Res	ulte				
C _{sd}	Concentration (ppmdvas C ₃ H ₈)	16.64	13.86	13.93	14.81
C _{sd}	Concentration (lb/dscf)	1.90E-06	1.59E-06	1.59E-06	1.70E-06
E _{Fd}	Emission Rate - F _c based (Ib/MMBtu)	0.0221	0.0183	0.0184	0.0196
Methane	Resulte				
C _{sd}	Concentration (ppmdv)	47.2	46.0	45.0	46.1
C _{sd}	Concentration (lb/dscf)	1.97E-06	1.92E-06	1.87E-06	1.92E-06
EFd	Emission Rate - Farbased (Ib/MMBtu)	0.0228	0.0221	0.0217	0.0222
Ethane R	Results				
C _{sd}	Concentration (ppmdv)	2.50	2.51	2.53	2.51
C _{sd}	Concentration (lb/dscf)	1.95E-07	1.96E-07	1.97E-07	1.96E-07
E _{Fd}	Emission Rate - Forbased (Ib/MMBtu)	2.27E-03	2.26E-03	2.28E-03	2.27E-03
VOC Res	alts				
E _{Fd}	Emission Rate - F _{er} based (Ib/MMBtu)	<5.54E-04	<5.51E-04	<5.52E-04	<5.52E-04

Average includes 3 runs,

 1 Moisture data used for ppmwv to ppm dv correction obtained from the average of nearly-concurrent Method 5 runs. For VOCs, '<' indicates a measured/calculated response below the detection limit (assumed to be 1% of the instrument calibration span.

Client Reference No: 4100665755 CleanAir Project No: 12964-2

2-6

	Zurn Boiler Sta		e 2-6: Emissio	ons (USE	PA 7E)		
Run No.	· · ·	1	2	3	4	5	6
Date (20	16)	Apr 13	Apr 13	Apr 13	Apr 13	Apr 13	Apr 13
Start Tim	e (approx.)	09:47	10:21	10:5	3 11:25	11:55	12:3
Stop Tim	e (approx.)	10:08	10:42	2 11:1	4 11:46	12:16	12:5
Process	Conditions						
P ₁	Natural gas flow rate (Mscf/day)	271	271	271	271	271	271
Fđ	Oxygen-based F-factor (dscf/MMBtu)	8,710	8,710	8,710	8,710	8,710	8,710
Gas Con	ditions						
O ₂	Oxygen (dry volume %)	5.4	5.2	5.2	5.2	5.1	5.1
CO2	Carbon dioxide (dry volume %)	8.9	9.0	9.0	9.0	9.0	9.1
Nitrogen	Oxides Results						
Csd	Concentration (ppmdv)	124	128	128	3 130	130	131
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)	167	169	171	172	172	173
C_{sd}	Concentration (lb/dscf)	1.48E-05	1.52E-05	1.53E-05		1.55E-05	1.56E-05
E _{Fd}	Emission Rate - F _d -based (lb/MMBtu)	0.173	0.176	0.177	0.179	0.179	0.180
	ionoxide Results						
C_{sd}	Concentration (ppmdv)	37.40	37.06	37.22		37.50	37.80
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)	50.3	49.2	49.4		49.7	50.0
C _{sd}	Concentration (lb/dscf)	2.72E-06	2.69E-06	2.71E-06		2.73E-06	2.75E-06
E _{Fd}	Emíssion Rate - F _a -based (Ib/MMBtu)	0.0318	0.0312	0.0313	0.0308	0.0315	0.0317
Run No.			7	8	9	10	Averag
Date (20	016)	A	pr 13	Apr 13	Apr 13	Apr 13	
Start Tim	ne (арргох.)		13:0 9	13:40	14:13	14:45	
Stop Tim	ne (approx.)		13:30	14:01	14:34	15:06	
Process	s Conditions						
P ₁	Natural gas flow rate (Mscf/day)		269	269	269	269	270
Fd	Oxygen-based F-factor (dscf/MMBtu)	8	,710	8,710	8,710	8,710	8,710
-			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,7 10	0,110	0,110	0,110
Gas Con	Oxygen (dry volume %)		F 0	5.0	5.0	F O	e 0
O_2 CO_2	Carbon dioxide (dry volume %)		5.2	5.0	5.2	5.2	5.2
-			9.0	9.1	9.0	9.0	9.0
•	oxides Results						
C _{sd}	Concentration (ppmdv)		129	133	132	129	129.2
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)		172	175	175	172	171.7
C_{sd}	Concentration (Ib/dscf)			.59E-05	1.57E-05	1.54E-05	1.54E-05
EFq	Emission Rate - F _d -based (Ib/MMBtu)	0	.178	0.182	0.182	0.179	1.79E-01
Carbon l	Monoxide Results						
C _{sd}	Concentration (ppmdv)	3	7.64	37.20	37.18	38.18	37.38
C _{sd-x}	Concentration @ 0% O ₂ (ppmdv)		50.3	49.0	49.4	51.0	49.70
C _{sd}	Concentration (lb/dscf)	2.74		70E-06	2.70E-06	2.78E-06	2.72E-06
E _{Fd}	Emission Rate - F _d -based (Ib/MMBtu)		0318	0.0310	0.0313	0.0323	0.0315

Average includes 10 runs.

080410 154528

MARATHON PETROLEUM COMPANY DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 12964-2

		Zurn	Boiler St		fable 2-7: O₂ RATA (USE	PA 3A / PS3)	
Run	Start	Date					Difference
No.	Time	(2016)	RM Data	(%dv)	CEMS Data (%dv)	Difference (%dv)) Percent
1	09:47	Apr 13		5.36	5.50	-0.14	-2.6%
2 *	10:21	Apr 13		5.17	5.32	-0.15	-2.9%
3	10:53	Apr 13		5.17	5.31	-0.14	-2.7%
4	11:25	Apr 13		5.15	5.30	-0.15	-2.9%
5	11:55	Apr 13		5.14	5.28	-0.14	-2.7%
6	12:33	Apr 13		5.10	5.24	-0.14	-2.7%
7	13:09	Apr 13		5.25	5.39	-0.14	-2.7%
8	13:40	Apr 13		5.04	5.18	-0.14	-2.8%
9	14:13	Apr 13		5.18	5.31	-0.13	-2.5%
10	14:45	Apr 13		5.24	5.38	-0.14	-2.7%
	Average			5.18	5.32	-0.14	-2.7%
			Re	lative A	Accuracy Test Aud	it Results	
	Stand	ard Deviat	ion of Differ	rences	0.005		
			e Coefficier		0.004		
			le for 9 Dat	• •	2,306		
						Limit	
		Av	g.Abs.Diff.	. (%dv)	0.14	1.0	
EMS	= Contin	uous Emi		nitoring	System (Marathon	Pertroleum Corpo	051816 1048 pration Data)
RATA	= Contin calculatio	uous Emi	ssions Mor	nitoring	System (Marathon s.* indicates the e	Pertroleum Corpo	
RATA	= Contin	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
EMS RATA (= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
EMS RATA (= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
EMS RATA (= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
CEMS RATA (6	= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
CEMS RATA (6	= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
CEMS RATA (6 5	= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
CEMS RATA (6 5	= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
2EMS 2ATA (6 5 4 3	= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
2EMS 2ATA (6 5 4 3	= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
2EMS 2ATA (6 5 4 3	= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
2EMS 2ATA 0 6 5 4 3 2	= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
2EMS 2ATA 0 6 5 4 3 2	= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
CEMS RATA (6 5 4 3 2 2 1	= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	
CEMS RATA (6 5 4 3 2 2 1	= Contin calculatio	uous Emi	ssions Mor	nitoring	•	Pertroleum Corpo	

MARATHON PETROLEUM COMPANY DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 12964-2

D	Start	Date	RM Data	MMBtu) RATA CEMS Data	Difference	Difference
	Time	(2016)	(Ib/MMBtu)	(lb/MMBtu)	(lb/MMBtu)	Percent
1* (09:4 7	Apr 13	0.17	0.18	-0.01	-5.9%
2	10:21	Apr 13	0.18	0.18	0.00	0.0%
	10:53	Apr 13	0.18	0.18	0.00	0.0%
	11:25	Apr 13	0.18	0.18	0.00	0.0%
	11:55	Apr 13	0.18	0.18	0.00	0.0%
	12:33	Apr 13	0.18	0.18	0.00	0.0%
	13:09	Apr 13	0.18	0.18	0.00	0.0%
	13:40 14:13	Apr 13	0.18 0.18	0.18 0.18	0.00 0.00	0.0% 0.0%
	14:15	Apr 13 Apr 13	0.18	0.18	0.00	0.0%
	verage		0.18	0.18	0.00	0.0%
			Relative Acc	uracy Test Audit F	lesults	
	Stand	ard Deviation	n of Differences	0.000		
			Coefficient (CC)	0.000		
		t-Value	tor 9 Data Sets	2.306		
		t-Value	for 9 Data Sets	2.306	Limit	
EMS =	ferenc Contin	ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data) lions Monitoring Sy	0.0% stem (Marathon Pe		0586 0570 tion Data)
EMS = ATA ca	ferenc Contin Iculatio	ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data)	0.0% stem (Marathon Pe	20.0%	
EMS = ATA cal	ferenc Contin Iculatio	ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data) lions Monitoring Sy	0.0% stem (Marathon Pe	20.0%	
EMS = ATA cal 0.2 0.1	ference Contin Iculatio	ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data) lions Monitoring Sy	0.0% stem (Marathon Pe	20.0%	
EMS = ATA cal 0.2 0.1 0.1		ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data) lions Monitoring Sy	0.0% stem (Marathon Pe	20.0%	
EMS = ATA cal 0.2 0.1	ferenc Contin Iculatio	ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data) lions Monitoring Sy	0.0% stem (Marathon Pe	20.0%	
EMS = 0.2 0.1 0.1	ferenci Contin Iculatio	ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data) lions Monitoring Sy	0.0% stem (Marathon Pe	20.0%	
EMS = ATA cal 0.2 0.1 0.1 0.1	ference Contin Iculatio	ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data) lions Monitoring Sy	0.0% stem (Marathon Pe	20.0%	
EMS = ATA cal 0.2 0.1 0.1 0.1 0.1	ference Contin Iculation 8 6 4 2 2 8	ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data) lions Monitoring Sy	0.0% stem (Marathon Pe	20.0%	
EMS = ATA cal 0.2 0.1 0.1 0.1 0.1 0.1	ferenc Contin Iculatio	ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data) lions Monitoring Sy	0.0% stem (Marathon Pe	20.0%	
EMS = ATA cal 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0	ference Contin Iculation 8 4 4 2 0 8 4 6 4 4	ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data) lions Monitoring Sy	0.0% stem (Marathon Pe	20.0%	
EMS = ATA cal 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0	ference Contin Iculatio	ative Accura e Method (Cl uous Emiss	cy (as % of RM) leanAir Data) lions Monitoring Sy	0.0% stem (Marathon Pe r indicates the exclu-	20.0%	tion Data)

Revision 0, Final Report

MARATHON PETROLEUM COMPANY DETROIT REFINERY

Client Reference No: 4100665755 CleanAir Project No: 12964-2

2-9

Run			r Stack - CO (I			
No.	Start Time	Date (2016)	RM Data (Ib/MMBtu)	CEMS Data (Ib/MMBtu)	Difference (Ib/MMBtu)	Difference Percent
1 *	09:47	Apr 13	0.03	0.03	0.00	0.0%
2	10:21	Apr 13	0.03	0.03	0.00	0.0%
3	10:53	Apr 13	0.03	0.03	0.00	0.0%
4	11:25	Apr 13	0.03	0.03	0.00	0.0%
5	11:55	Apr 13	0.03	0.03	0.00	0.0%
6	12:33	Apr 13	0.03	0.03	0.00	0.0%
7	13:09	Apr 13	0.03	0.03	0.00	0.0%
8	13:40	Apr 13	0.03	0.03	0.00	0.0%
9	14:13	Apr 13	0.03	0.03	0.00	0.0%
0	14:45	Apr 13	0.03	0.03	0.00	0.0%
	Average		0.03	0.03	0.00	0.0%
			Relative Acc	uracy Test Audit F	lesults	
	Stand	ard Deviation	n of Differences	0.000		
			Coefficient (CC)	0.000		
			for 9 Data Sets	2.306		
					Limit	
	Re	ative Accura	cy (as % of RM)	0.0%	10.0%	
ems	= Contin	uous Emiss	eanAir Data) ions Monitoring Sy id on 9 of 10 runs 1	stem (Marathon Pe	rtroleum Corpora	051816 10480: tion Data)
EMS ATA (= Contin calculatio	uous Emiss		stem (Marathon Pe	rtroleum Corpora	
EMS ATA o	= Contin	uous Emiss	ions Monitoring Sy	stem (Marathon Pe	rtroleum Corpora	
EMS ATA (= Contin calculatio	uous Emiss	ions Monitoring Sy	stem (Marathon Pe	rtroleum Corpora	
EMS ATA (0	= Contin calculatio	uous Emiss	ions Monitoring Sy	stem (Marathon Pe	rtroleum Corpora	
EMS ATA (0 0	Continuction	uous Emiss	ions Monitoring Sy	stem (Marathon Pe	rtroleum Corpora	
EMS ATA (0 0 0 0	= Contin calculatio	uous Emiss	ions Monitoring Sy	stem (Marathon Pe	rtroleum Corpora	
EMS ATA (0 0 0 0	= Contin calculatio	uous Emiss	ions Monitoring Sy	stem (Marathon Pe	rtroleum Corpora	
EMS ATA (0 0 0 0	= Contin calculatio	uous Emiss	ions Monitoring Sy	stem (Marathon Pe	rtroleum Corpora	
EMS 47A 0 0 0 0 0 0 0 0 0 0	= Contin calculation .04	uous Emiss	ions Monitoring Sy	stem (Marathon Pe	rtroleum Corpora	
EMS 474 0 0 0 0 0 0 0 0 0 0 0 0 0 0	= Contin calculation .04	uous Emiss ons are base	ions Monitoring Sy d on 9 of 10 runs. *	stem (Marathon Pe	rtroleum Corpora uded run.	tion Data)
EMS ATA C C C C C C C C C C C C C C C C C C C	= Contin calculation .04	uous Emiss	ions Monitoring Sy	stem (Marathon Pe	rtroleum Corpora	tion Data)

End of Section 2 - Results