FINAL REPORT RECEIVED

JUL 18 2023

AIR QUALITY DIVISION

CLEVELAND CLIFFS

DEARBORN, MICHIGAN

QUARTER 2 (Q2) 2023 SOURCE TESTING REPORT: BASIC OXYGEN FURNACE (EUBOF) AND BASIC OXYGEN FURNACE SHOP OPERATIONS (FGBOFSHOP)

RWDI #2303982 July 10, 2023

SUBMITTED TO

David Pate Senior Environmental Engineer David.Pate@Clevelandcliffs.com

Cleveland-Cliffs Dearborn Works 4001 Miller Rd Dearborn, Michigan 48120

Jeremy Howe Michigan Department of Environment, Great Lakes and Energy Air Quality Division Technical Programs Unit (TPU) Constitution Hall 2nd Floor, South 525 West Allegan Street Lansing, Michigan 48909-7760

SUBMITTED BY

Brad Bergeron, A.Sc.T., d.E.T. Senior Project Manager | Principal Brad.Bergeron@rwdi.com

Steve Smith, QSTI Project Manager Steve.Smith@rwdi.com

David Trahan, QSTI Senior Field Technician Dave.Trahan@rwdi.com

RWDI USA LLC Consulting Engineers & Scientists 2239 Star Court Rochester Hills, Michigan 48309 T: 248.841.8442 F: 519.823.1316

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. © RWDI name and logo are registered trademarks in Canada and the United States of America.

SY

RWDI#2303982 July 10, 2023

EXECUTIVE SUMMARY

RWDI USA LLC (RWDI) was retained by Cleveland-Cliffs Dearborn Works (CCDW) to complete the Quarter 2 (Q2) 2023 emission sampling program at their facility located at 4001 Miller Road, Dearborn, Michigan. The purpose of the emissions test program was to verify emissions required by Michigan Department of Environment, Great Lakes, and Energy (EGLE) Renewable Operating Permit MI-ROP-A8640-2016a, and to comply with the testing requirements specified within the current draft First Material Modification to the consent decree, Civil Action No. 15-cv-11804, DJ # 90-5-2-1-10702. The test program consisted of testing for particulate matter, particulate matter less than 10 microns (PM₁₀), particulate matter less than 2.5 microns (PM_{2.5}), lead (Pb), manganese (Mn), and visible emissions (VE) from the Electrostatic Precipitator (ESP) (SVBOFESP) and Pb and Mn from the Secondary Emission Control (SEC) Baghouse (SVBOFBH). In addition, visible emission observations were conducted on the BOF Roof Monitor at the request of EGLE. Pb and Mn testing was performed simultaneously on the ESP and the SEC Baghouse. Condensable Particulate Emissions (CPM) was measured from the ESP along with the FPM testing and PM_{2.5} and PM₁₀ emissions are reported as the sum of FPM and CPM.

		Concentration			
Source	Parameter	Average Emission Rate	Emission Limit		
	DNA (Filterable anti)	0.0030 gr/dscf	0.0152 gr/dscf		
	PM (Filterable only)	10.9 lb/hr	62.6 lb/hr		
	PM ₁₀ (Filterable + Condensable)	15.4 lb/hr	47.5 lb/hr		
BOF ESP	PM _{2.5} (Filterable + Condensable)	15.43 lb/hr	46.85 lb/hr		
	Lead	0.014 lb/hr			
	Manganese	0.049 lb/hr			
	Visible Emissions	3%, 6-minute average (1)(2)	20%, 6-minute average (1)		
POT SEC Paghausa	Lead	0.0039 lb/hr			
BOF SEC Bagnouse	Manganese	0.0092 lb/hr	0.07 lb/hr		
BOF ESP & SEC Baghouse	Lead	0.018 lb/hr	0.067 lb/hr		
Combined	Manganese	0.058 lb/hr	0.10 lb/hr		
			15% 3-minute Average		
POE Poof Monitor	Visible Emissions	196 2 minuto Avorago	(FGBOFSHOP)		
BOF ROOT MONITOR		470, 3-11111012 AVELAGE(2)	20% 3-minute Average		
			(EUBOF)		

Executive Table i: Test Results

Notes:

(1) One 6-minute average opacity of up to 27% is exempt per hour

(2) Reported as maximum 3-minute average observed for BOF Roof Monitor and 6-minute average for ESP during all observations

RWDI#2303982 July 10, 2023

TABLE OF CONTENTS

1	INTRODUCTION
1.1	Location and Dates of Testing1
1.2	Purpose of Testing1
1.3	Description of Source1
1.4	Personnel Involved in Testing2
2	SUMMARY OF RESULTS
2.1	Operating Data3
2.2	Applicable Permit Number
3	SOURCE DESCRIPTION
3.1	Description of Process and Emission Control Equipment3
3.2	Process Flow Sheet or Diagram (if applicable)3
3.3	Type and Quantity of Raw and Finished Materials3
3.4	Normal Rated Capacity of Process
3.5	Process Instrumentation Monitored During the Test4
4	SAMPLING AND ANALYTICAL PROCEDURES
4.1	Description of Sampling Train and Field Procedures54.1.1Stack Velocity, Temperature, and Volumetric Flow Rate Determination USEPA Method 1-454.1.2Oxygen and Carbon Dioxide USEPA Method 3A54.1.3Particulate Matter and Condensable Particulate Matter USEPA Method 5/20264.1.4Metals (Lead and Manganese) USEPA Method 2964.1.5Visible Emissions USEPA Method 974.1.6Method Deviations and Comments7
4.2	Description of Recovery and Analytical Procedures8
4.3	Sampling Port Description

QUAR BASIC CLEVE RWDI: July 10	TER 2 (Q2) SOURCE TESTING REPORT: COXYGEN FURNACE (EUBOF) AND BASIC OXYGEN FURNACE SHOP OPERATIONS (FGBOFSHOP) ELAND CLIFFS - DEARBORN WORKS #2303982 0, 2023
5	TEST RESULTS AND DISCUSSION
5.1	Detailed Results 9 5.1.1 Discussion of Results 9
5.2	Process Upset Conditions During Testing9
5.3	Maintenance Performed in Last Three Months9
5.4	Audit Samples10
5.5	Calibration Sheets
5.6	Field Data Sheets
5.7	Laboratory Data
5.8	Sample Calculations

LIST OF TABLES (IN REPORT)

Table 1.4:	List of Testing Personnel	١
Table 5.1:	Table of Results	ł

LIST OF TABLES (TABLE TAB)

- **Table 1:**Summary of Sampling Parameters and Methodology
- **Table 2A:**Sampling Summary and Sample Log (SVBOFESP)
- **Table 2B:**Sampling Summary and Sample Log (SVBOFBH)
- **Table 3A:**Sampling Summary Flow Characteristics SVBOFESP
- **Table 3B:**Sampling Summary Flow Characteristics SVBOFBH
- Table 4A:
 Total Particulate Matter and Metals Averaged Results SVBOFESP
- **Table 4B:**Metals Averaged Results SVBOFBH
- **Table 4C:**Metals Averaged Results SVBOFESP + SVBOFBH
- **Table 5:**Visible Emissions Results SVBOFESP

RWDI#2303982 July 10, 2023

" KY

1.4 Personnel Involved in Testing

Table 1.4: Testing Personnel

David Pate Senior Environmental Engineer	Cleveland-Cliffs Dearborn Works	(313) 323-1261 David.Pate@Clevelandcliffs.com
Jeremy Howe Supervisor, AQ Division, Technical Program Unit (TPU)	Michigan Department of Environment, Great Lakes, and Energy	(231) 878-6687 Howej1@michigan.gov
Katherine Koster	Michigan Department of Environment, Great Lakes, and Energy	KosterK1@michigan.gov
Jonathan Lamb	Michigan Department of Environment, Great Lakes, and Energy	LambJ1@michigan.gov
Brad Bergeron Senior Project Manager		(248) 234-3885 Brad.Bergeron@rwdi.com
Steve Smith Project Manager		(734) 751-9701 Steve.Smith@rwdi.com
Mason Sakshaug Senior Scientist		(989) 323-0355 Mason.Sakshaug@rwdi.com
Kirk Easto Principal	RWDI USA LLC	Kirk.Easto@rwdi.com
David Trahan Senior Field Technician		Dave.Trahan@rwdi.com
Mike Nummer Senior Field Technician	Rochester Hills, MI 48309	Michael.Nummer@rwdi.com
Benjamin Durham Senior Field Technician		Ben.Durham@rwdi.com
Cade Smith Field Technician		Cade.Smith@rwdi.com
Kate Strang Field Technician		Kate.Strang@rwdi.com
Hunter Griggs Field Technician		Hunter.Griggs@rwdi.com
Jeffrey Peitzsch	Montrose Air Quality Services	Jbpeitzsch@montrose-env.com

RWDI#2303982 July 10, 2023

2 SUMMARY OF RESULTS

2.1 Operating Data

CCDW personnel monitored the process during the course of the testing. All process data can be found in **Appendix A**. During the testing, production averaged 326.9 TPH of liquid steel. The ESP operated at 30 equivalent fields during the testing. This will be used as the ESP operating standard as defined by the draft consent decree from the date of completion of this test.

2.2 Applicable Permit Number

MI-ROP-A8640-2016a

3 SOURCE DESCRIPTION

3.1 Description of Process and Emission Control Equipment

Primary emissions from oxygen blowing are controlled by an ESP (SVBOFESP). The emissions enter the ESP where the particulate is electrically charged. The charged particles then flow over positively charged collector plates, where the particles are collected. Vibration to both the discharge electrodes and the collection plates dislodge the particulate matter. The exhaust gas is then discharged from the ESP outlet.

The BOF also utilizes a secondary emission control (SEC) baghouse (SVBOFBH). The SEC baghouse controls particulate emissions during the hot metal charging, tapping, and reladling operations during the steel making process.

3.2 **Process Flow Sheet or Diagram (if applicable)**

Process flow diagram can be provided upon request.

3.3 Type and Quantity of Raw and Finished Materials

Approximately 250 tons of molten steel and 30 tons of slag is produced at the BOF during each heat. A typical heat will process approximately 200 tons of liquid iron and 60-80 tons of scrap. Lime is added as a flux and various alloys are added based on the final specifications of the steel being produced.

RECEIVED

JUL 18 2023 Page 3 AIR QUALITY DIVISION

RWDI#2303982 July 10, 2023

The run commenced after the completion of the scrap charge. However, an additional scrap charge was sampled for the following heat prior to the end of the test run. The VE conducted during run 2 captured the initial scrap charge through the end of the heat. Production for run 2 is calculated using the times for the initial heat.

The following additional comments are noted:

5. EGLE requested in the test plan approval letter that lead concentration be measured in the hot metal per heat. The samples to be analyzed for lead were inadvertently disposed of by Cleveland-Cliffs and could not be analyzed. Correspondence with EGLE in relation to this is presented in Appendix I.

4.2 Description of Recovery and Analytical Procedures

The recovery followed USEPA Method 5, 202, and 29.

4.3 Sampling Port Description

EUBOF ESP (SVBOFESP) is a circular stack with an inner diameter of 204". 4 ports are used for testing.

FGBOFSHOP (SVBOFBH) is a circular stack with an inner diameter of 222". 4 ports are used for testing.

RWDI#2303982 July 10, 2023

5 TEST RESULTS AND DISCUSSION

5.1 Detailed Results

Table 5.1: Test Results

		Concentration		
Source	Parameter	Average Emission Rate	Emission Limit	
	PM	0.0030 gr/dscf	0.0152 gr/dscf	
	Filterable only	10.9 lb/hr	62.6 lb/hr	
	PM ₁₀ (Filterable + Condensable)	15.4 lb/hr	47.5 lb/hr	
BOF ESP	PM _{2.5} (Filterable + Condensable)	15.43 lb/hr	46.85 lb/hr	
	Lead	0.014 lb/hr		
	Manganese	0.049 lb/hr		
	Visible Emissions	1%, 6-minute average (1)(2)	20%, 6-minute average (1)	
BOE SEC Baghouse	Lead	0.0039 lb/hr		
BOF SEC Bagilouse	Manganese	0.0092 lb/hr	0.07 lb/hr	
BOF ESP & SEC Baghouse	Lead	0.018 lb/hr	0.067 lb/hr	
Combined	Manganese	0.058 lb/hr	0.10 lb/hr	
BOF Roof Monitor	Visible Emissions	4%, 3-minute average	15%, 3-minute average (FGBOFSHOP)	
			20%, 3-minute average (EUBOF)	

Notes: (1) One 6-minute average opacity of up to 27% is exempt per hour

(2) Reported as maximum 3-minute average observed for BOF Roof Monitor and 6-minute average for ESP during all observations

5.1.1 Discussion of Results

Detailed results for the program are provided in the following Appendices:

- SVBOFESP (ESP) Appendix B
- > SVBOFBH (Secondary Baghouse) Appendix B
- > 3rd Party Visible Emissions Appendix H

5.2 Process Upset Conditions During Testing

There were no process upsets during testing.

5.3 Maintenance Performed in Last Three Months

The final phase of the ESP Rebuild Project was completed on March 31, 2023 when ESP casing 3 was placed into service. Other than the completion of the ESP rebuild project, only routine maintenance was performed within the last three months.

RWDI#2303982 July 10, 2023

5.4 Audit Samples

This test did not require any audit samples.

5.5 Calibration Sheets

Calibration sheets can be found in Appendix D.

5.6 Field Data Sheets

Field data sheets can be found in **Appendix E**.

5.7 Laboratory Data

Laboratory data can be found in Appendix F.

5.8 Sample Calculations

Sample calculations can be found in **Appendix G**.

<u>S</u>Y

TABLES

[

Π

Ī

1

rwdi.com

•

Table 1: Summary of Sampling Parameters and Methodology

Source Location	No. of Tests per Stack	Sampling Parameter	Sampling Method
	3	Velocity, Temperature and Flow Rate	U.S. EPA ^[1] Methods 1-4
FOD	3	PM / PM ₁₀ / PM _{2.5}	U.S. EPA [1] Method 5/202
(SVBOFESP)	3	Lead / Manganese	U.S. EPA [1] Method 5/29
	3	Oxygen / Carbon Dioxide	U.S. EPA [1] Method 3A
	3	Visible Emission	U.S. EPA [1] Method 9
Secondary Baghouse (SVBOFBH)	3	Velocity, Temperature and Flow Rate	U.S. EPA ^[1] Methods 1, 2 and 4
	3	Lead / Manganese	U.S. EPA [1] Method 29
	3	Oxygen / Carbon Dioxide	U.S. EPA [1] Method 2

Notes:

[1] U.S. EPA - United States Environmental Protection Agency

Table 2A: Sampling Summary and Sample Log (SVBOFESP)

Source and Test #	Sampling Date	Start Time	End Time	Filter ID / Trap ID				
SVBOFESP - Velocity / Total Particulate								
Blank	17-May-23	-	-	QZ65				
Test #1	16-May-23	8:39 AM	11:46 AM	QZ92				
Test #2	16-May-23	1:44 PM	3:40 PM	QZ86				
Test #3	17-May-23	7:58 AM	9:35 AM	QZ82				
SVBOFESP - Velocity / Lead / Manganese								
Blank	17-May-23	-	-	QZ81				
Test #1	16-May-23	8:39 AM	11:46 AM	QZ87				
Test #2	16-May-23	1:44 PM	3:17 PM	QZ85				
Test #3	17-May-23	7:58 AM	9:35 AM	QZ83				
SVBOFESP - Visble Emissions	SVBOFESP - Visble Emissions							
Test #1	16-May-23	8:39 AM	9:38 AM					
Test #2	16-May-23	1:41 PM	2:40 PM					
Test #3	17-May-23	7:58 AM	8:57 AM					

Table 2B: Sampling Summary and Sample Log (SVBOFBH)

Source and Test #	Sampling Date	Start Time	End Time	Filter ID / Trap ID
SVBOFBH - Velocity / Lead / Manganese				
Blank	17-May-23	-	-	QZ81
Test #1	16-May-23	8:39 AM	11:44 AM	QZ89
Test #2	16-May-23	1:41 PM	3:38 PM	QZ80
Test #3	17-May-23	7:58 AM	9:31 AM	QZ84

,

Table 3A: Sampling Summary - Flow Characteristics - SVBOFESP

Stack Gas Parameter		Test No. 1		Test No. 2		Test No. 3		
		Particulate	Lead/Manganese	Particulate	Lead/Manganese	Particulate	Lead/Manganese	Average
	Testing Date	16-	-May-23	1	6-May-23	1	17-May-23	
Stack Temperature	°F	250	251	264	262	250	251	255
Moisture	%	13.1%	13.6%	15.5%	15.4%	14.1%	13.8%	14.3%
Velocity	ft/s	50.4	48.9	51.8	50.9	50.7	46.9	49.9
Referenced Flow Rate	CFM	432,265	416,647	424,135	417,934	430,742	409,842	421,928
Sampling Isokinetic Rate	%	99.9	99.6	102.8	95.7	101.1	96.7	99.3

Notes:

[1] Referenced flow rate expressed as dry at 101.3 kPa, 68 °F, and Actual Oxygen

Table 3B: Sampling Summary - Flow Characteristics - SVBOFBH

Stack Gas Parameter Testing Date		Test No. 1 Lead/Manganese	Test No. 1 Lead/Manganese	Test No. 3 Lead/Manganese	Average
		16-May-23	16-May-23	17-May-23	J
Stack Temperature	°F	100	109	85	98
Moisture	%	0.8%	1.0%	1.2%	1.0%
Velocity	ft/s	34.8	34.6	30.3	33.2
Referenced Flow Rate	CFM	509,655	498,550	456,178	488,128
Sampling Isokinetic Rate	%	100.3	98.6	98.6	99.2

Notes:

[1] Referenced flow rate expressed as dry at 101.3 kPa, 68 °F, and Actual Oxygen