

Compliance Assurance Monitoring Plan

Facility Information

November 2013, Revised November 2020

Prepared For:

Cadillac Castings, Inc. Cadillac, Michigan

Prepared By:

TRC 660 Cascade West Pkwy Suite 105 Grand Rapids, MI 49546

TABLE OF CONTENTS

List	of Ac	ronyms	ii
1.0	Intro	duction	1
2.0	CAN	I Requirement Applicability	2
3.0	CAN	I Plans by Type of Emission Control Device	4
	3.1	Thermal Oxidizer (Afterburner) for CO Control	4
	3.2	Baghouse for PM Control	4
	3.3	Wet Scrubber for PM Control	4
	3.4	Regenerative Thermal Oxidizer for VOC and CO Control	4

TABLES

IADLLO	
Table 1	CAM Applicability Summary
Table 2	Maximum Potential Emissions Summary
Table 3	CAM Plan for PSEU's Utilizing a Thermal Oxidizer (Afterburner) as the Control Device for CO
Table 4	CAM Plan for PSEU's Utilizing a Baghouse as the Control Device for PM
Table 5	CAM Plan for PSEU's Utilizing a Wet Scrubber as the Control Device for PM
Table 6	CAM Plan for PSEU's Utilizing a Venturi Scrubber as the Control Device for PM
Table 7	CAM Plan for PSEU's Utilizing a Regenerative Thermal Oxidizer as the Control
	Device for VOC and CO

APPENDICES

- Appendix A Afterburner Temperature Monitoring Data
- Appendix B Baghouse Differential Pressure
- Appendix C Wet Scrubber Liquid Flow Rate Data
- Appendix D Venturi Scrubber Liquid Flow Rate Data
- Appendix E RTO Temperature Monitoring Data

List of Acronyms

CAM	Compliance Assurance Monitoring
CCI	Cadillac Castings, Inc.
CD	Control Device
CFR	Code of Federal Regulations
CMS	Continuous Monitoring System
CO	Carbon Monoxide
DRE	Destruction Efficiency
EU	Emission Unit
HAP	Hazardous Air Pollutant
Inches w. g.	Inches of Water, Gauge Pressure
MPAP	Malfunction, Prevention and Abatement Plan
NSPS	New Source Performance Standards
PM	Particulate Matter
PSEU	Pollutant-Specific Emission Unit
QA/QC	Quality Assurance/Quality Control
QIP	Quality Improvement Plan
RTO	Regenerative Thermal Oxidizer
SCFM	Standard Cubic Feet per Minute
SV	Stack/Vent
USEPA	United States Environmental Protection Agency
VE	Visible Emissions
VOC	Volatile Organic Compound

1.0 Introduction

This Compliance Assurance Monitoring (CAM) Plan addresses the requirements of 40 CFR Part 64 and satisfies the CAM requirements for the Cadillac Castings, Inc. (CCI) facility located in Cadillac, Michigan.

CCI operates a ductile iron foundry in Cadillac, Michigan, under Permit Number 199700043. Equipment within the facility is grouped by process operations into emission units for permitting purposes. The emission units identified by the existing permit for CCI include:

- EUMELTING Metal melting system consisting of the cupola, three electric holding furnaces, a desulfurization ladle, four tundish ladles, and the cupola charging system.
- EUCOREMOLDMAKING Catalyzed core and mold making. The process uses sand, binders, and catalysts to produce cores and molds for use in the foundry.
- EUSPOPOURANDCOOL Iron pouring process.
- EUSPOGREENSAND Line used to produce iron castings from molten iron using green sand molds and set cores.
- EUSPOBREAKANDSORT Breaking and sorting line.
- EUSPOSHAKEOUT Shakeout and molding system and Spomatic mold line.
- EUALINE Iron pouring and cooling line used to produce iron castings from molten iron using air set molds.
- EUALINEMOLD A-Line core and mold making processes.
- EUFINISHING Metal finishing operations for removing flashing, oxides, and residual sand from castings using shotblast and grinding machines.
- EUCOLDCLEANER Three immersion cold cleaners with covers and drains used to clean metal parts.

2.0 CAM Requirement Applicability

Per 40 CFR 64.2(a), the CAM requirement applies to each pollutant-specific emission unit (PSEU) at a major source that is required to obtain a Part 70 permit if the unit satisfies all of the following criteria:

- 1. The unit is subject to an emissions limitation or standard for the applicable regulated air pollutant.
- 2. The unit uses a control device to achieve compliance with any such emission limitation or standard.
- 3. The unit has "potential pre-control device emissions" of the applicable regulated air pollutant that are equal to or greater than 100 percent of the amount, in tons per year, required for a source to be classified as a major source.
- 4. The unit is not exempted by the rule, or has emission limitations or standards not exempted by the rule.

CCI is a major source and is required to obtain a Part 70 permit. Permit Number 199700043, issued by the Michigan Department of Environmental Quality, identifies emission units based on process groupings. For example, Unit/Group ID EUMELTING consists of several individual emission units that are grouped together based on being part of the melting process. In many cases, there are several process units in an individual grouping that are controlled with one control device. In these cases, pre-control potential emissions are based on the entire collection of process units controlled by a common control device. This approach is consistent with the emission limits specified in Permit Number 199700043. The emission units subject to the CAM requirements are summarized in Table 1.

Potential pre-control device emissions from the EUCOREMOLDMAKING and EUALINEMOLD emission units can be broken down to the individual core or mold machines within each grouping. For these emission units, scrubbers are used to control the volatile organic compound (VOC) emissions of the catalyst used by the core and mold machines. Each core or mold machine uses less than

100 tons per year of the catalyst. As this is less than the quantity required for this pollutant to be classified as a major source, under the third requirement listed above, CAM is not applicable to these emission units.

Similarly, PM emissions from the desulfurization ladle can be calculated separate from the remaining EUMELTING PM emissions. Based on maximum charge of metal to the cupola of 180,000 tons per year, and the AP-42 emission factor of 1.09 pounds of PM emissions at the desulfurization ladle per ton of metal charged, the potential pre-control device emissions from the desulfurization ladle are 98.10 tons per year. As this is less than the quantity required for this pollutant to be classified as a major source, under the third requirement listed above, CAM is not applicable to this emission unit.

EUSPOPOURANDCOOL and EUCOLDCLEANER do not use a control device to meet an emission limitation or standard and, therefore, are not subject to CAM requirements under the first and second requirements listed above.

The remaining emission units identified in the operating permit were all determined to have maximum potential pre-control device emissions of at least one pollutant greater than the major source threshold. These emissions were conservatively determined by dividing the maximum post-controlled emission limit for each pollutant by the quantity of one minus the efficiency of the specific device used to control the pollutant emission. As an example, an afterburner is used to control carbon monoxide (CO) emissions from EUMELTING. The permit limit for CO emissions is 806.0 tons per year and the afterburner's efficiency is estimated at 98 percent destruction. The pre-controlled maximum potential emission of CO for EUMELTING are then calculated as 806.0 tons per year post-controlled emissions divided by the quantity of one minus the 98 percent efficiency expected of the oxidizer, [806.6/(1-0.98)], which yields a pre-controlled maximum potential to emit CO of 40,300 tons per year. Table 2 contains the results of this analysis.

As a result of the CAM applicability review, the emission units that require CAM Plans include the following:

- EUMELTING CAM Plan required for CO emission limits that utilize a thermal oxidizer (afterburner) as control devices. The cupola scrubber controlling particulate emissions is exempt from CAM requirements per 40 CFR Part 64.2(b)1, as this scrubber is subject to the iron foundry MACT standards of 40 CFR Part 63, Subpart EEEEE.
- EUSPOGREENSAND CAM Plan required for PM emission limit that utilizes a wet scrubber and baghouse as control devices.
- EUSPOBREAKANDSORT CAM Plan required for PM emission limit that utilizes a baghouse as a control device.
- EUSPOSHAKEOUT CAM Plan required for PM emission limit that utilizes an impingement wet scrubber as a control device.
- EUALINE CAM Plan required for VOC and CO emission limits that utilizes a regenerative thermal oxidizer as a control device.
- EUFINISHING CAM Plan required for PM emission limit that utilize a baghouse as a control device.

A summary of the CAM applicability is presented in Table 1.

3.0 CAM Plans by Type of Emission Control Device

3.1 Thermal Oxidizer (Afterburner) for CO Control

EUMELTING utilizes an oxidizer to achieve the control of CO missions required under R 336.1201(3). Oxidizer temperature will be used as the compliance indicator. The details of the CAM Plan for this PSEU are shown in Table 3.

3.2 Baghouse for PM Control

EUPOGREENSAND, EUPOBREAKANDSORT, and EUINISHING processes utilize baghouses to achieve the control of particulate matter under R 336.1331. Baghouse differential pressure will be used as the compliance indicators. The details of the CAM Plan for these PSEUs are shown in Table 4.

3.3 Wet Scrubber for PM Control

EUSPOGREENSAND and EUSPOSHAKEOUT utilize an impingement wet scrubber to achieve the control of particulate matter under R 336.1331. Liquid flow rate will be used as the compliance indicator. The details of the CAM Plan for this PSEU are shown in Table 5.

3.4 Regenerative Thermal Oxidizer for VOC and CO Control

EUALINE utilizes a regenerative thermal oxidizer (RTO) to achieve the control of volatile organic compounds and carbon monoxide under R 336.1702(c), R 336.1201(3) and 40 CFR 336.1201(3). RTO temperature will be used as the compliance indicator. The details of the CAM Plan for this PSEU are shown in Table 6.

Tables

Table 1
CAM Applicability Summary

Emission Point	Emission Source Description	Control Device	Subject to Emission Limit or Standard?	Maximum Potential Emission Uncontrolled (Ton/Year)	Potential Emissions Greater Than Major Source Threshold ⁽¹⁾ ?	CAM Applicable?
EUMELTING	Metal melting system consisting of cupola, three electric holding furnaces, a desulfurization ladle, four tundish ladles, and the cupola charging system.	Oxidizer Baghouse Venturi Scrubber	Yes Yes Yes	40,300 (CO) 98.10 (PM) 774 (PM)	Yes No Yes	YES NO NO ²
EUCOREMOLDMAKING	Catalyzed core and mold making. The process uses sand, binders, and catalysts to produce cores and molds for use in the foundry in the production of iron castings.	Packed Tower Scrubber	Yes	Each Machine < 100 tpy VOC (catalyst)	No	NO
EUSPOPOURANDCOOL	Iron pouring.	None				NO
EUSPOGREENSAND	Sand separation.	Wet Scrubber Baghouse	Yes Yes	3,200 (PM)	Yes	YES
EUSPOBREAKSORT	Breaking and sorting line.	Baghouse	Yes	2,400 (PM)	Yes	YES
EUSPOSHAKEOUT	Shakeout and molding system and Spomatic mold line.	Impingement Wet Scrubber	Yes	480 (PM)	Yes	YES
EUALINE	Iron pouring and cooling line used to produce iron castings from molten iron using air set molds.	Oxidizer	Yes	1.335 (VOC) 1,455 (CO)	Yes	YES YES
EUALINEMOLD	A-Line core and mold making processes.	Packed Tower Scrubbers (2)	Yes	Each Machine < 100 tpy VOC (catalyst)	No	NO
EUFINISHING	Metal finishing operations for removing flashing, oxides, and residual sand from castings using shotblast and grinding machines. Also includes annealing ovens for heat treating castings. Includes A-Line finishing.	Baghouses (2)	Yes	2,980 (PM)	Yes	YES
EUCOLDCLEANER	Three immersion cold cleaners with covers and drains used to clean metal parts for maintenance purposes. The air/vapor interface of each cleaner is less than 10 square feet. Only non-halogenated solvent is used.	Degreaser/Cold Cleaner	No			NO

Notes:

Major Source Threshold: 100 tons per year for criteria pollutants.
 Exempt per 40 CFR 64.2(b)1, as this scrubber is subject to the iron foundry MACT standards of 40 CFR Part 63, Subpart EEEEE.

Table 2 **Maximum Potential Emissions Summary**

Emission Point	Emission Source Description	Control Device	Control Efficiency(2)	Permit Emission Limits (TPY)	Maximum Potential Emission Uncontrolled (Ton/Year)
EUMELTING	Metal melting system consisting of cupola, three electric holding furnaces, a desulfurization ladle,	Oxidizer (CO) Venturi Scrubber	98%	806.0	40,300
	four tundish ladles, and the cupola charging system.	(PM)	95%	38.7	774
EUCOREMOLDMAKING	Catalyzed core and mold making. The process uses sand, binders, and catalysts to produce cores and molds for use in the foundry in the production of iron castings.	Wet Scrubber (VOC) ⁽¹⁾	95%	1.1	<100 ⁽¹⁾
EUSPOGREENSAND	Sand separation.	Wet Scrubber (PM) Baghouse (PM)	95% 99%	32.0	3,200
EUSPOBREAKANDSORT	Breaking and sorting line.	Baghouse (PM)	99%	24.0	2,400
EUSPOSHAKEOUT	Shakeout and molding system and Spomatic mold line.	Wet Scrubber (PM)	95%	24.0	480
EUALINE	Iron pouring and cooling line used to produce iron castings from molten iron using air set molds.	Oxidizer (VOC) (CO)	98% 98%	26.7 29.1	1,335 1,455
EUALINEMOLD	A-Line core and mold making processes.	Wet Scrubbers (VOC) ⁽¹⁾	95%	35.3	<100 ⁽¹⁾
EUFINISHING	Metal finishing operations for removing flashing, oxides, and residual sand from castings using shotblast and grinding machines. Also includes annealing ovens for heat treating castings. Includes A-Line finishing.	Three Baghouses (PM)	99%	29.8	2,980

Notes: 1. Scrubbers are for control of catalyst only. Each machine uses less than 100 tons per year of catalyst.

2. Control Efficiencies are typical design expectations and have been used only to demonstrate inclusion for CAM requirements.

Table 3CAM Plan for PSEU's Utilizing a Thermal Oxidizer (Afterburner) as the Control Device for CO

Ι	Bac	ackground						
	Α.	Emissions Unit						
		Description	Metal melting system					
		Identification	EUMELTING					
	В.	Applicable Regulation, Emission Limit, and Monitoring Requirements						
		Regulation Nos.	R 336.1201(3), R 336.1213(3), R 336.2004, R 336.1910, R 336.1224(1)					
		Emissions Limits						
		Carbon Monoxide	CO – 375.0 lbs/hour, 67.0 tons/month, 806.0 tons/year (12-month rolling time period)					
		Standard	Permittee shall not operate EU-MELTING unless a minimum temperature of 1,350 degrees Fahrenheit and a minimum retention time of 0.5 second in the afterburner are maintained.					
		Monitoring Requirements	Monitor and record the temperature of the cupola off-gas on a continuous basis in a manner and with instrumentation acceptable to the Air Quality Division.					
	C.	C. Control Technology						
	Recuperative Thermal Oxidizer (Afterburner)							
П		Ionitoring Approach						
	The	he key elements of the monitoring approach are presented below:						
	Α.	Indicator	Afterburner temperature as measured in the cupola off-gas will be used as the indicator of afterburner operation.					
	В.	Measurement Approach	Temperature will be monitored and recorded continuously using a temperature measurement device.					
	C.	Indicator Range	Temperature will be maintained greater than or equal to 1,350 degrees Fahrenheit.					
	D.	QIP Threshold	The QIP threshold for the afterburner is five temperature excursions in a six month reporting period.					

	E.	Performance Criteria				
		Data Representativeness	Measurements are being made directly in the stack or combustion chamber.			
		Verification of Operational Status	Periodic review of the afterburner temperature reading by an operator and automatic alarming for low temperature.			
		QA/QC Practices and Criteria	The temperature measurement device will be maintained based on the plant's standard procedures which have been developed in part from the manufacturer's recommendations.			
		Monitoring Frequency and Data Collection Procedure	Afterburner temperature will be monitored and recorded continuously using a temperature measurement device.			
III	Just	tification				
	Α.	Background				
		of the cupola, three electric h	bundry in Cadillac, Michigan. Part of the foundry process is the metal melting system consisting nolding furnaces, a desulfurization ladle, four tundish ladles, and the cupola charging system. CCI trol the emission of carbon monoxide from this system.			
	В.	Rationale for Selection of Performance Indicator				
		-	direct measure at the control device of the variable most closely associated with effectiveness of emissions. Therefore, temperature is an indicator of performance of the afterburner.			
	C.	Rationale for Selection of Pe	rformance Indicator Level			
		regulation and represents the	evel of a minimum temperature of 1,350 degrees Fahrenheit is taken directly from the applicable e temperature measured at the control device that is deemed to effectively control carbon temperature falls below this value, corrective action will be initiated to return the afterburner adition.			

Table 4CAM Plan for PSEU's Utilizing a Baghouse as the Control Device for PM

I Ba	ic <mark>kground</mark>					
Α.	Emissions Units					
	Descriptions	Sand separation, Breaking and sorting line, Metal finishing operations				
	Identifications	EUSPOGREENSAND, EUSPOBREAKANDSORT, EUFINISHING				
В.	Applicable Regulation, Emis	ssion Limit, and Monitoring Requirements				
	Regulation Nos.	R 336.1331, R 336.1910, R 336.1213, R 336.1301(1)(c), R 336.2004, R 336.1702				
	Emissions Limits					
	Particulate Matter	PM (EUSPOGREENSAND)– 0.36 lbs/ton metal processed; 32.07 tons/year (12-month rolling time period).				
		PM (EUSPOBREAKANDSORT)– 0.27 lbs/ton metal processed; 24.0 tons/year (12-month rolling time period).				
		PM (EUFINISHING)– 0.03 lbs/1,000 lbs of exhaust gas; 7 lbs/hour; 2.5 tons/month calculated on dry gas basis; 29.8 tons/year (12-month rolling time period).				
	Monitoring Requirements	EUSPOGREENSAND, EUSPOBREAKANDSORT, EUFINISHING - Continuously monitor and record once per day the differential pressure across the baghouse during operation.				
C.	Control Technology					
	Baghouses (fabric filters): Carter Day Baghouse (EUSPOGREENSAND), 80,000 CFM Baghouse #1 (EUSPOBREAKANDSORT), 80,000 CFM Baghouse #2 (EUSPOBREAKANDSORT), 40,000 CFM Baghouse (EUFINISHING), 12,000 CFM Baghouse (EUFINISHING), Sly Baghouse (EUFINISHING). Both the 12,000 CFM Baghouse and the Sly Baghouse are exhausted through HEPA filters and the exhaust is returned inside the facility.					
II Mo	onitoring Approach					

The	key elements of the monito	pring approach are presented below:	
Α.	Indicator	Differential pressure will be used as the indicator for all c	of the baghouses.
В.	Measurement Approach	Differential pressure across the baghouses will be contin	uously monitored.
C.	Indicator Range	The differential pressure will be maintained between the	following ranges:
		Carter Day Baghouse (EUSPOGREENSAND	1.5 to 5 inches water
		80,000 CFM Baghouse #1 (EUSPOBREAKANDSORT)	1 to 10 inches water
		80,000 CFM Baghouse #2 (EUSPOBREAKANDSORT)	1 to 9 inches water
		40,000 CFM Baghouse (EUFINISHING)	2 to 6 inches water
		12,000 CFM Baghouse (EUFINISHING)	1 to 8 inches water
		Sly Baghouse (EUFINISHING)	2 to 6 inches water
D.	QIP Threshold	For each baghouse, the QIP threshold is five excursions	in a six month reporting period.
E.	Performance Criteria		
	Data Representativeness	Measurements are being made directly at the emission p	points.
	Verification of Operational Status	Pressure drop will be monitored continuously and record verify operational status.	ed once per day during operation to
	QA/QC Practices and Criteria	The pressure instrumentation will be maintained based of which have been established in part from the manufacture	• •
	Monitoring Frequency and Data Collection Procedure	Pressure drop will be monitored continuously and record stored electronically.	ed on a daily basis, with the results
Jus	tification	1	

Α.	Background
	CCI operates a ductile iron foundry in Cadillac, Michigan. Sand separation, breaking and sorting line, and metal finishing operations are parts of the foundry process. CCI utilizes baghouses to control the emission of particulate matter from these operations.
В.	Rationale for Selection of Performance Indicator
	In general, baghouses are designed to operate at a relatively constant pressure drop. Monitoring pressure drop provides a means of detecting a change in operation that could lead to an increase in emissions. An increase in pressure drop can indicate that the cleaning cycle is not frequent enough, cleaning equipment is damaged, the bags are becoming inefficient, or the air flow has increased. A decrease in pressure drop may indicate broken or loose bags. A pressure drop across the baghouse also serves to indicate that there is airflow through the control device.
C.	Rationale for Selection of Performance Indicator Level
	Particulate emissions from the baghouse exhaust vary within a normal range dependent on process variables. So long as the differential pressure remains within this normal range, the baghouse is performing as expected. If the differential pressure is out of the allowable operating range, then baghouse performance is abnormal and corrective action will be initiated to return the baghouse performance to normal.

Table 5CAM Plan for PSEU's Utilizing a Wet Scrubber as the Control Device for PM

Image: Control Technology Image: Control Technology Wet Scrubber: North Multiwash Scrubber, South Multiwash Scrubber II Monitoring Approach The key elements of the monitoring approach are presented below: A. Indicator B. Measurement Approach C. Indicator Range D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.	I Ba	ckground						
Identifications EUSPOGREENSAND, EUSPOSHAKEOUT B. Applicable Regulation, Emission Limit, and Monitoring Requirements Regulation No. R 336.1213, R 336.1910, R 336.1331, R 336.2004, R 336.1702 Emissions Limits Particulate Matter Particulate Matter EUSPOGREENSAND: PM - 0.36 lbs/ton metal processed, 32.0 tons/year (12-month rolling time period) EUSPOSHAKEOUT: PM - 0.27 lbs/ton metal processed, 24.0 tons/year (12-month rolling time period) Monitoring Requirements Monitor and record the liquid flow rate through the scrubber system on a continuous basis maner and with instrumentation acceptable to the Air Quality Division. C. Control Technology Wet Scrubber: North Multiwash Scrubber, South Multiwash Scrubber II Moritator A. Indicator A. Indicator B. Measurement Approach C. Indicator Range D. QIP Threshold The URP threshold for the indicator is five excursions in a six month reporting period.	A.	Emissions Units						
B. Applicable Regulation, Emission Limit, and Monitoring Requirements Regulation No. R 336.1213, R 336.1910, R 336.1331, R 336.2004, R 336.1702 Emissions Limits Particulate Matter Particulate Matter EUSPOGREENSAND: PM - 0.36 lbs/ton metal processed, 32.0 tons/year (12-month rolling time period) EUSPOSHAKEOUT: PM – 0.27 lbs/ton metal processed, 24.0 tons/year (12-month rolling time period) Monitoring Requirements Monitor and record the liquid flow rate through the scrubber system on a continuous basis manner and with instrumentation acceptable to the Air Quality Division. C. Control Technology Wet Scrubber: North Multiwash Scrubber, South Multiwash Scrubber II Monitoring Approach The key elements of the monitoring approach are presented below: A. Indicator Liquid flow rate through the scrubber will be used as the indicator. B. Measurement Approach C. Indicator Range D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.		Descriptions	Sand separation, shakeout and mold system and Spomatic mold line					
Regulation No. R 336.1213, R 336.1910, R 336.1331, R 336.2004, R 336.1702 Emissions Limits Particulate Matter EUSPOGREENSAND: PM - 0.36 lbs/ton metal processed, 32.0 tons/year (12-month rolling time period) EUSPOSHAKEOUT: PM - 0.27 lbs/ton metal processed, 24.0 tons/year (12-month rolling time period) EUSPOSHAKEOUT: PM - 0.27 lbs/ton metal processed, 24.0 tons/year (12-month rolling time period) Monitoring Requirements Monitor and record the liquid flow rate through the scrubber system on a continuous basis manner and with instrumentation acceptable to the Air Quality Division. C. Control Technology Wet Scrubber: North Multiwash Scrubber, South Multiwash Scrubber II Monitoring Approach The key elements of the monitoring approach are presented below: A. Indicator B. Measurement Approach C. Indicator Range D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.		Identifications	EUSPOGREENSAND, EUSPOSHAKEOUT					
Emissions Limits Particulate Matter EUSPOGREENSAND: PM - 0.36 lbs/ton metal processed, 32.0 tons/year (12-month rolling time period) EUSPOSHAKEOUT: PM - 0.27 lbs/ton metal processed, 24.0 tons/year (12-month rolling time period) Monitoring Requirements Monitor and record the liquid flow rate through the scrubber system on a continuous basis manner and with instrumentation acceptable to the Air Quality Division. C. Control Technology Wet Scrubber: North Multiwash Scrubber, South Multiwash Scrubber II Monitoring Approach The key elements of the monitoring approach are presented below: A. Indicator B. Measurement Approach C. Indicator Range D. QIP Threshold The QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.	В.	Applicable Regulation, Emission Limit, and Monitoring Requirements						
Particulate Matter EUSPOGREENSAND: PM - 0.36 lbs/ton metal processed, 32.0 tons/year (12-month rolling time period) EUSPOSHAKEOUT: PM - 0.27 lbs/ton metal processed, 24.0 tons/year (12-month rolling time period) Monitoring Requirements Monitor and record the liquid flow rate through the scrubber system on a continuous basis manner and with instrumentation acceptable to the Air Quality Division. C. Control Technology Wet Scrubber: North Multiwash Scrubber, South Multiwash Scrubber II Monitoring Approach The key elements of the monitoring approach are presented below: A. Indicator B. Measurement Approach C. Indicator Diquid flow rate through the scrubber will be used as the indicator. E. Liquid flow rate through the scrubber will be monitored using instrumentation typical for the parameter. C. Indicator Range The liquid flow rate to the scrubber must be maintained at a minimum of 150 gpm. D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.		Regulation No.	R 336.1213, R 336.1910, R 336.1331, R 336.2004, R 336.1702					
Image: constraint of the monitoring approach are presented below: A. Indicator B. Measurement Approach Liquid flow rate through the scrubber will be used as the indicator. B. Measurement Approach Liquid flow rate through the scrubber will be monitored using instrumentation typical for the parameter. C. Indicator Range D. QIP Threshold The QIP Threshold for the indicator is five excursions in a six month reporting period. A. In QIP Threshold		Emissions Limits						
Image: Monitoring Requirements (12-month rolling time period) Monitoring Requirements Monitor and record the liquid flow rate through the scrubber system on a continuous basis manner and with instrumentation acceptable to the Air Quality Division. C. Control Technology Wet Scrubber: North Multiwash Scrubber, South Multiwash Scrubber II Monitoring Approach The key elements of the monitoring approach are presented below: A. Indicator B. Measurement Approach C. Indicator Range D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.		Particulate Matter						
C. Control Technology Wet Scrubber: North Multiwash Scrubber, South Multiwash Scrubber II Monitoring Approach A. Indicator B. Measurement Approach Liquid flow rate through the scrubber will be used as the indicator. B. Measurement Approach C. Indicator Range D. QIP Threshold								
Wet Scrubber: North Multiwash Scrubber, South Multiwash Scrubber II Monitoring Approach The key elements of the monitoring approach are presented below: A. Indicator Liquid flow rate through the scrubber will be used as the indicator. B. Measurement Approach Liquid flow rate through the scrubber will be monitored using instrumentation typical for the parameter. C. Indicator Range The liquid flow rate to the scrubber must be maintained at a minimum of 150 gpm. D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.		Monitoring Requirements	Monitor and record the liquid flow rate through the scrubber system on a continuous basis in a manner and with instrumentation acceptable to the Air Quality Division.					
II Monitoring Approach The key elements of the monitoring approach are presented below: A. Indicator B. Measurement Approach Liquid flow rate through the scrubber will be monitored using instrumentation typical for the parameter. C. Indicator Range D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.	C.	C. Control Technology						
The key elements of the monitoring approach are presented below: A. Indicator Liquid flow rate through the scrubber will be used as the indicator. B. Measurement Approach Liquid flow rate through the scrubber will be monitored using instrumentation typical for the parameter. C. Indicator Range The liquid flow rate to the scrubber must be maintained at a minimum of 150 gpm. D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.		Wet Scrubber: North Multiw	ash Scrubber, South Multiwash Scrubber					
A. Indicator Liquid flow rate through the scrubber will be used as the indicator. B. Measurement Approach Liquid flow rate through the scrubber will be monitored using instrumentation typical for the parameter. C. Indicator Range The liquid flow rate to the scrubber must be maintained at a minimum of 150 gpm. D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.		Ionitoring Approach						
B. Measurement Approach Liquid flow rate through the scrubber will be monitored using instrumentation typical for the parameter. C. Indicator Range The liquid flow rate to the scrubber must be maintained at a minimum of 150 gpm. D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.	Th	he key elements of the monitoring approach are presented below:						
C. Indicator Range The liquid flow rate to the scrubber must be maintained at a minimum of 150 gpm. D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.	Α.	Indicator	Liquid flow rate through the scrubber will be used as the indicator.					
D. QIP Threshold The QIP threshold for the indicator is five excursions in a six month reporting period.	В.	Measurement Approach	Liquid flow rate through the scrubber will be monitored using instrumentation typical for the parameter.					
	C.	Indicator Range	The liquid flow rate to the scrubber must be maintained at a minimum of 150 gpm.					
	D.	QIP Threshold	The QIP threshold for the indicator is five excursions in a six month reporting period.					
E. Performance Criteria	E.	E. Performance Criteria						

		Data Representativeness	Liquid flow is measured directly at the control device.
		Verification of Operational Status	Liquid flow rate will be monitored and recorded on a continuous basis to verify operational status.
		QA/QC Practices and Criteria	The flow instrumentation will be maintained based on the plant's standard procedures, which have been established in part from the manufacturer's recommendations.
		Monitoring Frequency and Data Collection Procedure	Liquid flow rate will be monitored and recorded on a continuous basis and results stored electronically.
Ξ			
	Α.	Background	
		CCI operates a ductile iron foundry in Cadillac, Michigan. Part of the foundry process is sand separation and part of the foundry process is the shakeout and mold system and Spomatic mold line. CCI utilizes two wet scrubbers to control the emission of particulate matter from these systems.	
	В.	Rationale for Selection of Performance Indicator	
		Liquid flow rate is selected a the control device.	s the performance indicator because it is the parameter that best determines effectiveness of
	C.	Rationale for Selection of Performance Indicator Level	
			els have been selected based on the level established in the applicable standards, which are control of particulate matter emissions.

Table 6CAM Plan for PSEU's Utilizing a Venturi Scrubber as the Control Device for PM

I			
	A.	Emissions Units	
		Descriptions	Metal melting system
		Identifications	EUMELTING
	В.	Applicable Regulation, Emission Limit, and Monitoring Requirements	
		Regulation No.	R 336.1331(1)(c), R 336.1910
		Emissions Limits	
		Particulate Matter	PM – 18.0 pounds per hour, 3.17 tons/month
		Monitoring Requirements	Monitor and record the liquid flow rate through the venturi scrubber system on a continuous basis in a manner and with instrumentation acceptable to the Air Quality Division.
	C.	Control Technology	
		Wet Scrubber: Venturi Scrubber	
Ш	Мог	nitoring Approach	
	The	e key elements of the monitoring approach are presented below:	
	Α.	Indicator	Liquid flow rate through the scrubber will be used as the indicator.
	В.	Measurement Approach	Liquid flow rate through the scrubber will be monitored using instrumentation typical for the parameter.
	C.	Indicator Range	The liquid flow rate to the scrubber must be maintained at a minimum of 115 gpm.
	D.	QIP Threshold	The QIP threshold for the indicator is five excursions in a six month reporting period.
	E.	Performance Criteria	

	1			
		Data Representativeness	Liquid flow rate is measured directly at the control device.	
		Verification of Operational Status	Liquid flow rate will be monitored and recorded on a continuous basis to verify operational status.	
		QA/QC Practices and Criteria	The flow instrumentation will be maintained based on the plant's standard procedures, which have been established in part from the manufacturer's recommendations.	
		Monitoring Frequency and Data Collection Procedure	Liquid flow rate will be monitored and recorded on a continuous basis and results stored electronically.	
ш	Just	stification		
	Α.	Background		
 CCI operates a ductile iron foundry in Cadillac, Michigan. Part of the foundry process is the metal melting syster of the cupola, three electric holding furnaces, a desulfurization ladle, four tundish ladles, and the cupola chargin CCI utilizes venturi scrubber to control PM emissions from the melt system. B. Rationale for Selection of Performance Indicator 			nolding furnaces, a desulfurization ladle, four tundish ladles, and the cupola charging system.	
			rformance Indicator	
		Liquid flow rate is a direct measure at the control device of the variable most closely associated with effectiveness of contro of particulate emissions. Therefore, liquid flow rate is an indicator of performance of the venturi scrubber.		
	C.	Rationale for Selection of Performance Indicator Level		
		•	els have been selected based on the level established in the applicable standards, which are control of particulate matter emissions.	

Table 7CAM Plan for PSEU's Utilizing a Regenerative Thermal Oxidizer as the Control Device for VOC and CO

1	Background				
	Α.	Emissions Units			
		Descriptions	Iron pouring and cooling line		
		Identifications	EUALINE		
	В.	Applicable Regulation, Emission Limit, and Monitoring Requirements			
		Regulation No.	R 336.1213(3), R 336.1910, R 336.1201(3), R 336.1331, R 336.1702, 40 CFR 52.21, R 336.2004		
		Emissions Limits			
		Volatile Organic Compounds	VOC – 26.7 tons/year (12-month rolling time period)		
		Carbon Monoxide			
			CO – 29.1 tons/year (12-month rolling time period)		
		Monitoring Requirements	Monitor and record the temperature in the regenerative thermal oxidizer on a continuous basis.		
	C. Control Technology				
		Regenerative Thermal Oxidizer			
П	Monitoring Approach				
	The key elements of the monitoring approach are presented below:				
	Α.	Indicator	RTO temperature will be used as the indicator of RTO operation.		
	В.	Measurement Approach	Temperature will be monitored and recorded continuously using a temperature measurement device.		
	C.	Indicator Range	Temperature will be maintained greater than or equal to 1,500 degrees Fahrenheit during operation of the process or maintain the minimum temperature established during the most recent emissions testing.		

	D.	QIP Threshold	The QIP threshold for the indicator is five excursions in a six month reporting period.
	E.	Performance Criteria	
		Data Representativeness	Measurements are being made directly in the stack or combustion chamber.
		Verification of Operational Status	Periodic review of the RTO temperature reading by an operator and automatic alarming for low temperature.
		QA/QC Practices and Criteria	The temperature measurement device will be maintained based on the plant's standard procedures which have been developed in part from the manufacturer's recommendations.
		Monitoring Frequency and Data Collection Procedure	Afterburner temperature will be monitored and recorded continuously using a temperature measurement device.
III	Justification		
	Α.	Background	
		CCI operates a ductile iron foundry in Cadillac, Michigan. Part of the foundry process is the iron pouring and cooling line. CCI utilizes a regenerative thermal oxidizer to control the emission of VOCs and CO from this system.	
	В.	Rationale for Selection of Performance Indicator	
		RTO temperature is a direct measure at the control device of the variable most closely associated with effectiveness of control of VOCs and CO emissions. Therefore, temperature is an indicator of performance of the RTO.	
	C.	Rationale for Selection of Performance Indicator Level	
		The performance indicator level of a minimum temperature of 1,500 degrees Fahrenheit (or the minimum temperature established during the most recent emissions testing) is taken directly from the applicable regulation and represents the temperature at the control device that is deemed to effectively control VOCs and CO emissions. If temperature falls below this value, corrective action will be initiated to return the afterburner performance to a normal condition.	

Appendix A Afterburner Temperature Monitoring Data

Appendix B Baghouse Differential Pressure

Appendix C Wet Scrubber Liquid Flow Rate Data

Appendix D Venturi Scrubber Liquid Flow Rate Data

Appendix E RTO Temperature Monitoring Data