

3352 128th Avenue Holland, Michigan 49424 Telephone: +1 616 399 3500

www erm com

17 March 2022

Ms. Karen Kajiya-Mills Michigan Department of Environment, Great Lakes, and Energy Constitution Hall 525 West Allegan Street Lansing, MI 48913

Re: Stack Testing Results for

American Chemical Solutions LLC (SRN B4302)

2406 Roberts St., Muskegon, MI

Dear Ms. Kajiya-Mills,

At the request of American Chemical Solutions LLC (ACS), Environmental Resources Management Michigan, Inc. (ERM) is providing results (attached) for the stack testing conducted on November 10, 2021 on EU-WWStripper for the above referenced facility. The testing was conducted in accordance with the requirements in PTI No.17-19, Special Condition V.1 for EU-WWStripper.

ACS is located in Muskegon, Michigan and is a chemical manufacturing operation. The facility consists of four process lines. The process lines will produce products or materials in semi-continuous batch operations and will utilize toluene and/or methanol. The lines will be equipped with heat exchanges to condense toluene or methanol vapors at the process vessels. Any residual vapors from the heat exchangers will be directed to the VOC condenser for further removal. The condensed toluene and methanol will be recycled back into the process.

Two air strippers were used to treat waste water from the facility to ensure that waste water discharges to the municipal sewer system comply with the federal discharge standards for the organic chemical, plastic, and synthetic (OPSF) industry discharge standards for waste water. The waste water will originate from the process but stormwater may also be processed. The process waste water is expected to contain toluene and methanol.

The attached testing report summarizes the results and presents the sampling and analytical procedures. Also attached are the operating data collected during the testing: scrubber water flow rate and tower air flow.

The purpose of the testing was to determine an emission rate for VOC, toluene and methanol. The previous stack test conducted February 6 and 7th, 2020 was not able to determine reliable emission rates of Methanol and Toluene due to frozen water in the wastewater storage tank, resulting in a higher concentration of Methanol and Toluene being sent to the strippers. The stack test was repeated November 10, 2021 to determine emission rates for VOC, toluene and methanol. The test results are summarized in the table below but please note that the results are still undergoing internal review.

Page 2 of 2

Table 1 – Results Summary

Stack Testing Results Summary

		North	South	
	Pollutant	Scrubber	Scrubber	Total
	Methanol	13.470	9.947	23.417
Emissions,	Toluene	0.132	0.0009	0.133
lbs/hr	VOC	8.877	3.6240	12.501

Please contact me at (616) 283-7157 if you have any questions.

Sincerely,

Rob Adams, CSP ERM Senior Consultant

Attachments:

- 1. Stack Testing Report
- 2. Operating Data

cc: ACS (electronic copy)

File

3352 128th Avenue Holland, Michigan 49424 Telephone: +1 616 399 3500 Fax: +1 616 399 3777

www.erm.com

Attachment A

Stack Testing Report

Chicago Office: 1500 Boyce Memorial Dr. Ottawa, IL 61350 Phone 815-433-0545 888 STACK TEST Fax 815-433-0592

REPORT OF VOC, TOLUENE AND METHANOL EMISSIONS TESTING ON THE NORTH AND SOUTH SCRUBBER EXHAUST STACKS AT THE AMERICAN CHEMICAL SOLUTIONS FACILITY LOCATED IN MUSKEGON, MI

Prepared for:

ERM 3352 128th AVENUE HOLLAND, MI 49424

Prepared by:

STACK TEST GROUP, INC. 1500 BOYCE MEMORIAL DRIVE OTTAWA, IL 61350

NOVEMBER 10, 2021 STACK TEST GROUP, INC. PROJECT NO. 21-3399

Report Prepared By:

Bill J. Byczynski

Principal

TABLE OF CONTENTS

				Page #			
1.0		Execu	tive Summary	1			
2.0	2.0 Introduction						
3.0		Sampl	ampling and Analytical Procedures				
	3.1	3.1.1 3.1.2 3.1.3	ast Gas Parameters Traverse and Sampling Points Velocity Traverse Gas Composition Moisture Content	1 1 2 2			
	3.2	3.2.1 3.2.2 3.2.3	ne & Methanol Sampling Method Sample Duration and Frequency Calibrations Analytical Procedures	2 2 2 2 3			
	3.3	3.3.1	VOC Testing Sampling Method Sample Duration and Frequency Calibrations	2 3 3 3			
4.0		Discus	rable 4.1 – North Scrubber Test Results Table 4.2 – South Scrubber Test Results	3 5 6			
APP	ENDIX A	Λ	EXAMPLE CALCULATIONS				
APP	ENDIX E	3	FIELD DATA SHEETS				
APP	ENDIX C	2	FIELD PARAMETER SHEET				
APP	ENDIX [)	CALIBRATION DATA				
APP	ENDIX E	Ç.	LABORATORY REPORT				
APP	ENDIX F		RAW DATALOGGER DATA				

1.0 EXECUTIVE SUMMARY

On November 10, 2021, The Stack Test Group, Inc. performed volatile organic compound (VOC), toluene and methanol emission testing on the north and south scrubber exhaust stacks at the American Chemical Solutions facility located in Muskegon, MI. Three one-hour tests were conducted on each source in order to determine the VOC, toluene and methanol emission rates. Presented below are the average results of these tests.

North Scrubber Exhaust Stack:

Toluene Emissions:	0.132 lb/hr
Methanol Emissions:	13.47 lb/hr
Total VOC Emissions:	8.877 lb/hr

South Scrubber Exhaust Stack:

Toluene Emissions:	0.0009 lb/hr
Methanol Emissions:	9.947 lb/hr
Total VOC Emissions:	3.624 lb/hr

2.0 INTRODUCTION

On November 10, 2021, The Stack Test Group, Inc. performed VOC, toluene and methanol emission testing on the north and south scrubber exhaust stacks at the American Chemical Solutions facility located in Muskegon, MI. Testing was performed to determine the emission rates of the above mentioned compounds.

Testing was conducted while American Chemical Solutions personnel operated the process at normal rate and the scrubbers at normal conditions.

Testing was supervised by Mr. Bill J. Byczynski, Mr. Ryan Schueller and Mr. Gary Kohnke of the Stack Test Group, Inc. Testing was coordinated by Mr. Rob Adams of ERM. Testing was witnessed by Ms. Lindsey Wells from EGLE.

All testing followed the guidelines of U.S. EPA Reference Methods 1 through 4, 18 and 25A. This report contains a summary of results for the above mentioned tests and all the supporting field, process, and computer generated data.

3.0 SAMPLING AND ANALYTICAL PROCEDURES

3.1 Exhaust Gas Parameters

3.1.1 Traverse and Sampling Points

Testing was conducted on the north and south scrubber exhaust stacks. The number of velocity traverse and sample measurement points for each stack was determined using EPA Method 1.

The two exhaust stack inside diameters measured 23 inches. The test ports were located approximately 20 feet (greater than 2.0 diameters) downstream and 15 feet (greater than 0.5 equivalent diameters) upstream of the nearest flow disturbances. Velocity measurements were taken at each of 16 points, 8 points in each of the two ports set at 90 degrees to each other.

3.1.2 Velocity Traverse

Velocity measurements were performed during each emission test in accordance with EPA Method 2. An "S" type Pitot Tube with an attached type "K" thermocouple was used to conduct the velocity traverse.

3.1.3 Gas Composition

Gas composition for oxygen, carbon dioxide, and nitrogen was determined employing EPA Method 3. An integrated gas sample was collected during each emission test. Gas analysis was conducted using a calibrated Servomex Model 1440C O₂/CO₂ analyzer.

3.1.4 Moisture Content

The north and south scrubber exhaust gas moisture content was determined using the wet bulb/dry bulb technique. The temperatures for the wet bulb/dry bulb are included on the field data sheets.

3.2 TOLUENE & METHANOL EMISSION TESTING

3.2.1 Sample Collection

Testing on the north and south scrubber exhaust stacks for toluene and methanol was performed using U.S. EPA Reference Method 18. This method is titled:

U.S. EPA Reference Method 18 Measurement of Gaseous Organic Compound Emissions from Stationary Sources

A sample was transported to a set of charcoal and silica gel tubes through a Teflon line from the exhaust stack. The dry gas meter was calibrated prior to the test series. The pump was set at 0.50 liters per minute. Immediately following the test, the sample tubes were removed from the stack, capped-off, placed on ice and sent overnighted to the laboratory for analysis.

Samples were collected in duplicate with one set of tubes pre-spiked with a known amount of toluene and methanol.

3.2.2 Sample Duration and Frequency

The Method 18 samples were collected in triplicate with each test lasting sixty minutes in duration. Testing on the north and south exhaust stacks were conducted simultaneously.

3.2.3 Calibrations

All sampling equipment was calibrated according to the procedures outlined in EPA Reference Method 18.

3.2.4 Analytical Procedures

The samples were analyzed per the specifications of U.S. EPA Reference Method 18. A recovery study following the guidelines of U.S. EPA Reference Method 18 was performed on the samples. The results of this recovery study is included in the laboratory Appendix of the report.

3.3 VOLATILE ORGANIC COMPOUND (VOC) TESTING

3.3.1 Sample Collection

Testing for total VOC's on the north and south scrubber exhaust stacks was performed using U.S. EPA Reference Method 25A. A J.U.M. Model 3-300 Flame Ionization Detector (FID) was used to determine the emission concentrations at each location. A sample was transported through a heated Teflon line from the exhaust stack and inlet duct to the FIDs which analyzed the samples continuously. The output signal from the FIDs were then recorded at one minute averages throughout the test. Copies of this data may be found in Appendix E.

At the beginning of the test series, the analyzers were calibrated and then checked for calibration error by introducing zero, low-range, mid-range and high-range calibration gases to the back of the analyzers. Before and after each individual test run, a system bias was performed by introducing a zero and mid-range propane calibration gas to the outlet of the probes. Calibration gases used were U.S. EPA Protocol 1 certified.

3.3.2 Sample Duration and Frequency

The Method 25A train samples were collected in triplicate with each test lasting sixty minutes in duration. Testing on the north and south scrubber exhaust stacks was conducted simultaneously.

3.3.3 Calibrations

All sampling equipment was calibrated according to the procedures outlined in EPA Reference Method 25A. Copies of the FID calibrations are included in Appendix D.

4.0 TEST RESULTS

Presented in this section are the results of this test series. Test results are reported in Tables 4.1 and 4.2. Table 4.1 reports the results for the north scrubber exhaust including stack gas temperature, percent carbon dioxide and oxygen, percent moisture, molecular weight of the stack gas dry and wet, and flow rate in actual cubic feet per minute (acfm), standard cubic feet per minute (scfm), and dry standard cubic feet per minute (dscfm).

Tables 4.1 also presents the VOC, toluene and methanol results for the north scrubber exhaust stack. The toluene and methanol results are presented in terms of pounds per dry standard cubic feet (lb/DSCF) and pounds per hour (lb/hr). The total VOC results are presented in terms of ppm as propane, lb/DSCF and lb/hr.

Table 4.2 presents the results for the south scrubber exhaust stack in the same manner and format as Table 4.1.

Copies of the calculations used to determine these emission rates may be found in Appendix A. Copies of the field data sheets are presented in Appendix B. Copies of the laboratory report are presented in Appendix E.

Table 4.1

VOC, Toluene & Methanol Results American Chemical Solutions Muskegon, MI 11/10/21 North Scrubber Exhaust Stack

Test No:	<u>T1</u>	T2	<u>T3</u>	Avg.
Start Time:	10:30 AM	01:46 PM	04:07 PM	
Finish Time:	11:30 AM	02:46 PM	05:07 PM	
Stack Gas Temperature, oF:	98.3	99.4	108.3	102.0
% Carbon Dioxide:	0.1	0.1	0.1	0.1
% Oxygen:	20.90	20.90	20.90	20.90
% Moisture:	2.90	2.80	2.80	2.83
Molecular Weight dry, lb/lb-Mole:	28.85	28.85	28.85	28.85
Molecular Weight wet, lb/lb-Mole:	28.54	28.55	28.55	28.54
Velocity and Flow Results:				
Average Stack Gas Velocity FPS:	13.76	14.22	14.61	14.20
Stack Gas Flow Rate, ACFM:	2,386	2,466	2,533	2,462
Stack Gas Flow Rate, SCFM:	2,229	2,299	2,325	2,285
Stack Gas Flow Rate, DSCF/HR:	129,881	134,097	135,618	133,199
Stack Gas Flow Rate, DSCFM:	2,165	2.235	2,260	2,220
	-,	_,	-,	
VOC Results:				
PPM as Propane:	412.5	482.7	798.7	564.6
LBS/DSCF:	4.71E-05	5.51E-05	9.12E-05	6.45E-05
LBS/HR:	6.301	7.605	12.726	8.877
Toluene Results:				
Grains Per DSCF:	7.38E-03	6.12E-03	7.38E-03	6.96E-03
LBS/DSCF:	1.06E-06	8.75E-07	1.06E-06	9.95E-07
LBS/HR:	0.137	0.117	0.143	0.132
Methanol Results:				
Grains Per DSCF:	1.77E+04	2.24E+04	3.06E+04	2.35E+04
LBS/DSCF:	5.17E-01	6.03E-01	8.97E-01	6.72E-01
LBS/HR:	0.000	0.000	0.000	0.000
	10.19	12.23	17.99	13.47

Table 4.2

VOC, Toluene & Methanol Results
American Chemical Solutions
Muskegon, MI
11/10/21
South Scrubber Exhaust Stack

Test No:	<u>T1</u>	<u>T2</u>	<u>T3</u>	Avg.
Start Time:	10:30 AM	01:46 PM	04:07 PM	
Finish Time:	11:30 AM	02:46 PM	05:07 PM	
Stack Gas Temperature, oF:	88.3	99.0	97.1	94.8
% Carbon Dioxide:	0.1	0.1	0.1	0.1
% Oxygen:	20.90	20.90	20.90	20.90
% Moisture:	2.90	2.80	2.80	2.83
Molecular Weight dry, lb/lb-Mole:	28.85	28.85	28.85	28.85
Molecular Weight wet, lb/lb-Mole:	28.54	28.55	28.55	28.54
Velocity and Flow Results:				
Average Stack Gas Velocity FPS:	13.76	14.22	14.61	14.20
Stack Gas Flow Rate, ACFM:	2,386	2,466	2,533	2,462
Stack Gas Flow Rate, SCFM:	2,229	2,299	2,325	2,285
Stack Gas Flow Rate, DSCF/HR:	129,881	134,097	135,618	133,199
Stack Gas Flow Rate, DSCFM:	2,165	2,235	2,260	2,220
VOC Results:				
PPM as Propane:	196.8	176.3	287.2	220.1
LBS/DSCF:	2.25E-05	2.01E-05	3.28E-05	2.51E-05
LBS/HR:	3.197	2.938	4.738	3.624
Toluene Results:				
Grains Per DSCF:	4.82E-05	4.32E-05	4.41E-05	4.52E-05
LBS/DSCF:	6.89E-09	6.18E-09	6.30E-09	6.46E-09
LBS/HR:	0.0010	0.0009	0.0009	0.0009
Methanol Results:				
Grains Per DSCF:	3.45E-01	4.32E-01	7.11E-01	4.96E-01
LBS/DSCF:	4.93E-05	6.18E-05	1.02E-04	7.09E-05
LBS/HR:	6.811	8.765	14.266	9.947
	0.011	0.700	11.200	0.017

APPENDIX A SAMPLE CALCULATIONS

SAMPLE CALCULATIONS

STG PROJECT No: 21-3399

The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Volume of water collected (wscf)

$$V_{wstd} = (0.04707)(V_{lc})$$

Where:

 V_{1c} total volume of liquid collected in impingers and silica gel (ml)

 V_{wstd} volume of water collected at standard conditions (ft³)

0.04707 conversion factor (ft³/ml)

2. Volume of gas metered, standard conditions (dscf)

$$V_{mstd} = \frac{(17.64)(V_m)(P_{bar} + \frac{\Delta H}{13.6})(Y_d)}{(460 + T_m)}$$

Where:

Pbar barometric pressure (in. Hg)

 $T_{\rm m}$ average dry gas meter temperature (°F)

 V_{m} volume of gas sample through the dry gas meter at meter conditions (ft³)

volume of gas sample through the dry gas meter at standard conditions (ft³) V_{mstd}

gas meter correction factor (dimensionless) Y_d

average pressure drop across meter box orifice (in. H2O) ΔH

17.64 conversion factor (°R/in. Hg)

conversion factor (in. H₂O/in. Hg) 13.6

460 °F to °R conversion constant

3. Volume of gas metered, standard conditions (dscm)

$$V_{mstd(m)} = \frac{\left(V_{mstd(ft)}\right)}{35.35}$$

Where:

 $V_{mstd(ft)}$ volume of gas sample through the dry gas meter at standard conditions (ft³)

 $V_{mstd(m)}$ volume of gas sample through the dry gas meter at standard conditions (m³)

conversion factor (ft³ to m³) 35.35

13.6 conversion factor (in. H2O/in. Hg)

4. Sample gas pressure (in. Hg)

$$P_s = P_{bar} + \left(\frac{P_g}{13.6}\right)$$

Where:

barometric pressure (in. Hg) Phar

sample gas static pressure (in. H₂O) P_g

AMERICAN CHEMICAL SOLUTIONS MUSKEGON, MI

STG PROJECT No: 21-3399

SAMPLE CALCULATIONS (CONTINUED)

P_s absolute sample gas pressure (in. Hg) 13.6 conversion factor (in. H₂O/in. Hg)

5. Actual vapor pressure (in. Hg)¹

 $P_{\nu} = P_{s}$

Where:

P_v vapor pressure, actual (in. Hg)

P_s absolute sample gas pressure (in. Hg)

6. Moisture content (%)

 $B_{wo} = \frac{V_{wstd}}{V_{mstd} + V_{wstd}}$

Where:

B_{wo} proportion of water vapor in the gas stream by volume (%)

V_{mstd} volume of gas sample through the dry gas meter at standard conditions (ft³)

V_{wstd} volume of water collected at standard conditions (ft³)

7. Saturated moisture content (%)

 $B_{ws} = \frac{\left(P_{\nu}\right)}{\left(P_{s}\right)}$

Where:

B_{ws} proportion of water vapor in the gas stream by volume at saturated conditions (%)

 P_s absolute sample gas pressure (in. Hg)

P_v vapor pressure, actual (in. Hg)

Whichever moisture value is smaller is used for B_{wo} in the following calculations.

8. Molecular weight of dry gas stream (lb/lb·mole)

 M_d = $M_{CO_2} \frac{(CO_2)}{(100)} + M_{O_2} \frac{(O_2)}{(100)} + M_{CO+N_2} \frac{(CO+N_2)}{(100)}$

Where:

Md dry molecular weight of sample gas (lb/lb·mole)

M_{CO₂} molecular weight of carbon dioxide (lb/lb·mole)

M_{O2} molecular weight of oxygen (lb/lb·mole)

M_{CO}+N₂ molecular weight of carbon monoxide and nitrogen (lb/lb·mole) CO₂ proportion of carbon dioxide in the gas stream by volume (%)

O₂ proportion of oxygen in the gas stream by volume (%)

CO+N₂ proportion of carbon monoxide and nitrogen in the gas stream by volume (%)

100 conversion factor (%)

¹ For effluent gas temperatures over 212°F, P_v is assumed to be equal to P_s.

SAMPLE CALCULATIONS (CONTINUED)

STG PROJECT No: 21-3399

9. Molecular weight of sample gas (lb/lb·mole)

$$M_s = (M_d)(1 - B_{wo}) + (M_{H_2O})(B_{wo})$$

Where:

 B_{wo} proportion of water vapor in the gas stream by volume

M_d dry molecular weight of sample gas (lb/lb·mole)

M_{H₂O} molecular weight of water (lb/lb·mole)

M_s molecular weight of sample gas, wet basis (lb/lb·mole)

10. Velocity of sample gas (ft/sec)

$$V_{s} = \left(K_{p}\right)\left(\overline{\sqrt{\Delta P}}\right)\left(\sqrt{\frac{\left(\overline{T_{s}} + 460\right)}{\left(M_{s}\right)\left(P_{s}\right)}}\right)$$

Where:

K_p velocity pressure coefficient (dimensionless)

C_p pitot tube constant

Ms molecular weight of sample gas, wet basis (lb/lb·mole)

P_s absolute sample gas pressure (in. Hg) T_s average sample gas temperature (°F)

V_s sample gas velocity (ft/sec)

 $\sqrt{\Delta P}$ average square roots of velocity heads of sample gas (in. H₂O)

460 °F to °R conversion constant

11. Total flow of sample gas (acfm)

$$Q_a = (60)(A_s)(V_s)$$

Where:

A_s cross sectional area of sampling location (ft²)
Q_a volumetric flow rate at actual conditions (acfm)

V_s sample gas velocity (ft/sec) 60 conversion factor (sec/min)

12. Total flow of sample gas (dscfm)

$$Q_{std} = \frac{(Q_a)(P_s)(17.64)(1 - B_{wo})}{(\overline{T_s} + 460)}$$

Where:

B_{wo} proportion of water vapor in the gas stream by volume

P_s absolute sample gas pressure (in. Hg)

Qa volumetric flow rate at actual conditions (acfm)

Q_{std} volumetric flow rate at standard conditions, dry basis (dscfm)

T_s average sample gas temperature (°F)

17.64 conversion factor (°R/in. Hg) 460 °F to °R conversion constant

STG PROJECT No: 21-3399

SAMPLE CALCULATIONS (CONTINUED)

13. VOC concentration (lb/scf)

$$E_{lb/scf} = \frac{(ppm)(MW)}{(385.3 \times 10^6)}$$

Where:

E_{lb/scf}

emission rate

 C_{ppm}

measured concentration in the gas stream (ppm_v)

MW

molecular weight of Methane (16)

385.3

conversion factor

14. VOC emission (lb/hr)

$$E_{lb/hr} = (lb/scf)(60)(scfm)$$

Where:

E_{lb/hr}

emission rate

E_{lb/scf}

concentration

SCFM

flow rate

 $60_{min/hr}$

conversion factor

APPENDIX B
FIELD DATA SHEET

A

FLOW AND MOISTURE DATA SHEET

Location: Unit:	ACS NORTH S	CRUBBER	Run:	1	100'5	Testing	Method 1-4	, 18,25A	Pro	oject Number	21-33	99
Client:	ERM		Meter Lk Ck Pre	: .001 @ S	п		Met	hod 1		Bar. Press. (in. I	Hg): 29.51	
	MUSK EGON		Meter Lk Ck Pos		n		A			Probe ID No.:\$1		
Meter Operato			Pitot Lk Ck: +	@ - @	W	1	N				0.84	
Probe Operato			Start Time (appr			[Xxxx	* *** *			O ₂ (dry, vol. %):		
Date: [1]	10 202 1		Stop Time (appr	rox.): [1:30		B				CO ₂ (dry, vol. %): LOGE	元化
Meter Box No.	308 -	A SIDE	Static Press. (in.							H ₂ O (condensat	e, ml):	
Y _d :	ΔΗ:		First Point (all th	e way): (out)		Duct Dimension	ns (in.):23	Port Length (in.):	Total H ₂ O (g):		
											_	
900000000000000000000000000000000000000	Pre Velocity	Traverse	anneste de constant			Moisture Trai	n www.com			Post Velocity	y Traverse	
Traverse	Pitot	Stack Temp	Min./Pt	Metered Vol.	Sample	Dry Ga	s Meter	Exit Temp.	Pump	Pitot	Stack Temp	Notes
Point	ΔP	Ts	5	4) \#	Ž¥ €	Tmi	Tme		Vac	ΔP	Ts	
Number	(in.H2O)	(°F) ,	Etapsed Time	0.000	-(in.H20) -	(°F)	(°F)	(°F)	(in. H20)	(in.H2O)	(°F)	
A-1	DM8	1 97 h	5	4.356	1.0	74	1		a .0	0.040	93	
A-2	0/09/	98/	10	6.558	1.0	75			2.0	0.045	99	
A-3	0.095	97	15	13.000	1.0	75			20	0.050	100	
A-4	0.09\$	97	20	16.532	1.0	75			2.0	0.050	100	
A-5	0.095	9/1m0	25	21.132	1.0	75			2.0	0.050	100	
A-6	MODE	M90	30	25. 20%	0.8	75			2.0	0.055	99	
A-7	0.10	87	35	29.300	0.8	75			2.0	0.055	99	
A-8	0.1/0	80	40	33.370	0.8	75			2.0	0.055	98	
B-1	0.105	93	45	37.654	0.8	75			2.0	0.045	૧ ৪	
B-2	0.0	97	50	41.798	0.40	15			2.0	0.050	98	
B-3	0/105	98	55	46-174	0.8	75			7.0	0.060	97	
B-4	0/105	99	60	50.504	0.8	75			2.0	0.065	95	
B-5	0.105	99								0.075	97	
B-6	d.105	99								0.070	98	
B-7	0.105	198								0.065	98	
B-8	0.105	95								0.065	98	
	1		(10000000000000000000000000000000000000	N100000 1000000 1000000	,	12:01		1000000000000	00000000000	22.50	1000	
Ava	1	I .			1	75.75		F145-3414-3414-3414-3414-3414-3414-3414-3		1.2356	98.25	

FLOW AND MOISTURE DATA SHEET

Location: Unit:		Scoul J Outlet	≪V Run: _	2	1005	Testing	Method 1-4,	_(8	Pro	oject Number	21-33	199
Client:	ERM		Meter Lk Ck Pre	. 001 @ 9	U.		Meti	hod 1		Bar. Press. (in. l	Hg): 29.51	/
Plant: MV	15 Kegen, 1	MI	Meter Lk Ck Pos		н		AN AN			Probe ID No.:	40	
Meter Operator	"AIL!	MD	Pitot Lk Ck: +	@ - @	н		1			Pitot Coef.:	0.64	
Probe Operator	12	EF	Start Time (appr			BAKKK	XXXX			O ₂ (dry, vol. %): CO ₂ (dry, vol. %		Ξh
Date: Meter Box No.:	300	21	Stop Time (appr Static Press. (in.							H ₂ O (condensat		UC
-	ΔH:		First Point (all th			Duct Dimension	ns (in.): 12	Port Length (in.): 4°	Total H ₂ O (g):	0, <i>,</i> .	
							/					
F	> Velocity	Traverse			N	Moisture Trai	n	(/		Post Velocit	y Traverse	
Traverse	Pitot	Stack Temp	Min./Pt	Metered Vol.	Sample	Dry Ga	s Meter	Exit Temp.	Pump	Pitot	Stack Temp	Notes
Point	ΔP	Ts	5	(fi³)	ΔĦ	Tmi	Tmo		Vac	ΔР	Ts	
Number	(in.H2O)	(°F)	Elapsed Time	6.000	(in.H2O)	(°F)	(°F)	(°F)	(in. H20)	(in.H2O)	(°F)	
A-1	0.050	98	5	4.439	1.0	77			2.0			
A-2	0.050	98	10	8.617	0.82	77			2.0			
A-3	0.060	98	15	12.841	0.82	77			2.0			
A-4	0.065	97	20	17.032	0.82	77			2.0			
A-5	0.055	98	25	21. 163	0.82	77			2.0			
A-6	0.050	99	30	25.460	0.82	77			2.0			
A-7	0.055	98	35	19.739	0.80	77			2.0			
A-8	0.055	100	40	33.889	0.80	77			2.0			
B-1	0.055	/02	45	38.046	0.80	77			2.0			
B-2	0.060	102	50	42. 264	0.80	77			2.0			
B-3	0.060	102	55	46.453	6.80	77			2.0			
B-4	0.065	102	60	50.675	0.81	77			2.0			
B-5	0.065	100										
B-6	0.070	100										
B-7	0.070	98										
B-8	6.065	98										
Avg.	.2433	99.38				17.00						

Probe Operator:

Meter Box No.:

Date:

EF BS

30B- ASIDE

0.075

B-8

106

11/10/204

ΔΗ:

FLOW AND MOISTURE DATA SHEET

Location: AC5 Unit: North Inlet Outlet	Run: 3 VOC'S	Testing Method 1-4,	Project Number 21-3399
Client: ERM	Meter Lk Ck Pre: .002 @ /0 "	Method 1	Bar. Press. (in. Hg): 29,51
Plant: Muskegan, MT	Meter Lk Ck Post: @ "	3 4	Probe ID No.: 4C
Meter Operator: Mol GK	Pitot Lk Ck: + @ - @ "] / j	Pitot Coef.: 0.84

Duct Dimensions (in.): 23"

O₂ (dry, vol. %):

Total H₂O (g):

Port Length (in.): Y"

CO2 (dry, vol. %):

H₂O (condensate, ml):

Start Time (approx.): 14:07-65 16:07

(out)

Stop Time (approx.):

Static Press. (in. H2O):

First Point (all the way):

17:07

Se Velocity Traverse						Moisture Train				Post Velocity Traverse				
Traverse	Pitot	Stack Temp	Min./Pt	Metered Vol.	Sample	Dry Ga	Meter	Exit Temp.	Pump	Pitot	Stack Temp	Notes		
Point	ΔP	Ts	5	(ft³):	ΔĦ	Tmi	Tmo		Vac	ΔP	Ts			
Number	(in.H2O)	(°F)	Elapsed Time	0-000	(in.H2Q)	(°F)	(°F)	(°F)	(in. H20)	(in.H2O)	(°F)			
A-1	0.045	110	5	3.986	.80	76			20					
A-2	0.055	108	10	7.968	.40	76			2.0					
A-3	0.065	109	15	11.943	.40	76			20					
A-4	0.070	103	20	16.482	.78	76			2.0					
A-5	0.065	107	25	19.900	.78	76			20					
A-6	0.060	105	30	23.856	.78	76			2.0					
A-7	0.055	105	35	27.032	.78	76			20					
A-8	0.055	104	40	31.788	.78	76			2.0					
B-1	0.045	111	45	35.696	.78	76			20					
B-2	0.055	110	50	39.606	78	76			20					
B-3	0.055	112	55	43.552	.78	76			2.0					
B-4	6.060	112	60	47:434	.78	76	1		2.0					
B-5	6.075	110												
B-6	0.080	109												
B-7	0.075	107												

,2479 108.31 76,00

Stack Test Group, Inc.

FLOW AND MOISTURE DATA SHEET

Unit: SOUTH SCRUBER Run: VOC Testing Method 1-4, 18, 25A

Project Number_	21-3399

Client: ERM	Meter Lk Ck Pre: 001 @ 4 "	Method 1	Bar. Press. (in. Hg): 29.57
Plant: Moike CON MT	Meter Lk Ck Post: @ "	X A P7	Probe ID No.: 57 GA-4 C
Meter Operator: No / GK	Pitot Lk Ck: +0.0 @ 6 - 0.0 "		Pitot Coef.: 6.84
Probe Operator: EF \$5	Start Time (approx.): 10 : 30	T(XXXX) XXXX) DOF	O ₂ (dry, vol. %):
Date: 11 10 2021	Stop Time (approx.): 11:30		CO2 (dry, vol. %): 1066EL
Meter Box No.: 308 - 8-Side	Static Press. (in. H2O): - O. OB	WA ON OT TO SLAVE TO	H ₂ O (condensate, ml):
Y _{d:} ΔH:	First Point (all the way): (out)	Duct Dimensions (in.): 23 Port Length (in.): 4	Total H ₂ O (g):

-	Velocity Traverse Velocity Traverse					Moisture Train				Post Velocity Traverse			
Traverse	Pitot	Stack Temp	Min./Pt	Metered Vol.	Sample	Dry Ga	s Meter	Exit Temp.	Pump	Pitot	Stack Temp	Notes	
Point	ΔP	Ts	5	(ft²)	- /12	Tmi	Tme		Vac	ΔΡ	Ts		
Number	(in.H2O)	(°F)	Elapsed Time	0.600	1 / h . m² (III:1120)	(°F)	(°F)	(°₹)	(in. H20)	(in.H2O)	(°F)		
A-1	0.045	88	5	4.903	1.0	82			2.5				
A-2	0.055	88	10	10.058	1.0	82			2.5				
A-3	0.060	88	15	15.115	1.0	83			2.5				
A-4	0.065	89	20	19-332	1-0	93			2.5				
A-5	0.070	89	25	24.284	1.0	83			2.5				
A-6	0.070	89	30	29-179	6.8	84			2.5				
A-7	0.065	89	35	33.975	0.8	84			25				
A-8	0.068	89	40	38.632	0.81	84			25				
B-1	0.040	87	45	43.462	0.81	84			1.5				
B-2	0.045	98	50	48.194	0.8	84			2.5				
B-3	0.055	ଡ ବ	55	53.058	0.81	94			25				
B-4	0.065	88	60	57.823	0.82	84)		2.5				
B-5	0.070	99											
B-6	0.075	88											
B-7	0.070	98											
B-8	0.080	87											

Avg. 1.2483 88.25 83.47

23.3.3

Stack Test Group, Inc.

5	FLOW AND MOISTURE DATA SHEET											
Location: Unit:	A65 South	Seral !	∢√ Run:	<u>2</u>	06	_Testing	Method 1-4,	18	Pro	oject Number	21.	3399
Client:	ERM		Meter Lk Ck Pre				Meth	od 1		Bar. Press. (in.	Hg): 29.5	-1
Plant: Mu	skeepn ,	MI	Meter Lk Ck Po	st: @	n		4			Probe ID No.:	40	
Meter Operator:	MIL	IMO	Pitot Lk Ck: +	@ - @			14			Pitot Coef.:	0.84	
Probe Operator	10.00	EF	Start Time (app			a Axxx	XXXX			O ₂ (dry, vol. %):		
	-10-21		Stop Time (appr							CO ₂ (dry, vol. %		GER
Meter Box No.:	30 B			. H2O): -0.08		-	JA A 2			H₂O (condensat	e, ml):	
Y _d :	ΔH: /		First Point (all th	ne way): (in) (out)		Duct Dimension	ns (in.): 75	Port Length (in.): 4	Total H ₂ O (g):		
	Rese Velocity	Traverse				Moisture Trai	n			Post Velocit	y Traverse	
Traverse	Pitot	Stack Temp	Min:/Pt	Metered Vol.	Sample	Dry Ga	a Meter	Exit Temp.	Pump	Pitot	Stack Temp	Notes
Point	ΔP	Ts	5	(ftc)	ΔH	Tmi	Tmo		Vac	ΔP	Ts	
Number	(in.H2O)	(°F)	Elapsed Time	0.000	(in. H 2O)	(°F)	(°F)	(° F)	(in. H20)	(in.H2O)	(°F)	
A-1	0.050	101	5	6.057	1.0	86			4.0			
A-2	0.060	102	10	11.668	1.0	86			4.0			
A-3	0.065	101	15	17.362	1.0	25			40			
A-4	0.065	161	20	23.022	1.0	85			4.0			
A-5	0.070	100	25	28.644	1.0	85			4.0			
A-6	0.065	59	30	34.342	1.0	85			4.0			
A-7	0.070	98	35	40.722	1.0	85			4.0			
A-8	0.070	98	40	45.728	1.0	85			40			
B-1	0.065	৭ ৪	45	51.289	1.0	95			40			
B-2	0.065	99	50	56.952	1.0	85			4.0			
B-3	6.060	98	55	67.592	1.0	95			4.0			

Avg2571	99	85.17	

85

4.0

1.0

68.188

98

97

98

98

60

0.065

0.070

6.070

0.075

0.075

B-4

B-5

B-6

B-7

B-8

B

0.075

FLOW AND MOISTURE DATA SHEET

Location: Unit:	7 (5 u 1		Run:	3 V	oc's	Testing	Method 1-4,	_18_	Pro	oject Number	21-3399	7
Client: ERN	1		Meter Lk Ck Pre	1,001 @ 8	11		Meti	nod 1		Bar. Press. (in.	Hg): 29.5	3
Plant: Musk		t	Meter Lk Ck Pos		u.		A	0.55		Probe ID No.:	STG-PT40	
Meter Operator			Pitot Lk Ck: +	@ - @	п		× /n	SEE		Pitot Coef.:	0.84	
Probe Operator	, -		Start Time (appr		:07	EXXXX	x XxAR	Run	,	O ₂ (dry, vol. %):		
	11 10 2021		Stop Time (appr		7:07	8	2	1	i	CO ₂ (dry, vol. %): Lo6	GER
Meter Box No.:	300	/S,0 c		. H2O): -0.08		A.	<u> </u>		7.118	H ₂ O (condensat	e, ml):	
Y _d :	ΔН:		First Point (all th	ne way): (out)		Duct Dimension	ons (in.):	Port Length (in.)	: 9"	Total H ₂ O (g):		
	Pre Velocity	Traverse				Moisture Tra	iin			Post Velocit	y Traverse	
Traverse	Pitot	Stack Temp	Min./Pt	Metered Vol.	Sample	Dry G	as Meter	Exit Temp.	Pump	Pitot	Stack Temp	Notes
Point	ΔР	Ts	5	(ft ²)	ΔĦ	Tmi	Tmo		Vac	ΔР	Ts	
Number	(in.H2O)	(%F)	Elapsed Time	0.000	(in.H2O)	(°F)	(°F)	(°E)	(in. H20)	(in:H2O)	(°F)	
A-1	0.045	97	5	5.486	1-0	84	1		4-0			
A-2	0.050	98	10	10.976	1.0	84			4-0			
A-3	6.060	96	15	16.384	1.0	84			4.0			
A-4	0.670	99	20	21.043	1.0	84			4.0			
A-5	0.075	102	25	27.308	1.0	84			4.0			
A-6	0.070	101	30	32.768	1.0	84			4.0			
A-7	6.070	100	35	38.239	1.0	85			40			
A-8	0.065	100	40	43.588	1.0	85			4.0			
B-1	0.050	98	45	419.156	1.0	86			4.0			
B-2	0.060	97	50	54.558	1.0	85			4.0			
B-3	0.065	96	55	59.998	1.0	85			4.0			
B-4	0.065	95	60	65.441	1.0	85			40			
B-5	0.075											
B-6	0.075	95										
B 7	0 070	93	1									

Avg. 354 97. \ 7 Extraction 84.50 Extraction 184.50 Extraction 184.50	
---	--

		So	uth (Toluene)			
Run#	Side	<u>Start</u>	<u>Finish</u>	Avg	Total (cc)	Total (L)
Run 1	spiked	267.4	300.7	284.1	17043	17.04
Kull I	unspiked	284.5	266.0	275.3	16515	16.52
Run 2	spiked	246.4	246.7	246.6	14793	14.79
Ruii Z	unspiked	305.0	308.0	306.5	18390	18.39
Run 3	spiked	241.0	234.4	237.7	14262	14.26
Rull 3	unspiked	299.5	300.5	300.0	18000	18.00

		<u>No</u>	orth (Toluene)		7.	
Run#	<u>Side</u>	Start	<u>Finish</u>	Avg	Total (cc)	Total (L)
Run 1	spiked	361.9	381.8	371.9	22311	22.31
Null I	unspiked	307.0	304.2	305.6	18336	18.34
Run 2	spiked	286.6	291.1	288.9	17331	17.33
Rull 2	unspiked	287.9	288.8	288.4	17301	17.30
Run 3	spiked	260.7	220.0	240.4	14421	14.42
Kull 3	unspiked	270.1	261.3	265.7	15942	15.94

		Soi	uth (Methanol)		
Run#	<u>Side</u>	Start	<u>Finish</u>	Avg	Total (cc)	Total (L)
Run 1	spiked	194.3	208.7	201.5	12090	12.09
Ruff I	unspiked	267.0	264.5	265.8	15945	15.95
Run 2	spiked	322.5	320.1	321.3	19278	19.28
Rull Z	unspiked	289.1	289.1	289.1	17346	17.35
Run 3	spiked	329.7	329.8	329.8	19785	19.79
Rull 3	unspiked	262.2	268.9	265.6	15933	15.93

		<u>No</u>	rth (Methanol)	1		
Run#	<u>Side</u>	<u>Start</u>	<u>Finish</u>	Avg	Total (cc)	Total (L)
Run 1	spiked	235.2	236.2	235.7	14142	14.14
Rull I	unspiked	353.8	365.0	359.4	21564	21.56
Run 2	spiked	345.5	348.9	347.2	20832	20.83
Ruit Z	unspiked	267.7	269.0	268.4	16101	16.10
Run 3	spiked	339.3	341.2	340.3	20415	20.42
Rull 3	unspiked	234.1	243.4	238.8	14325	14.33

S	outh (Methanol)		
Run#	Side	Total (L)	
Run 1	spiked	12.09	
Run I	unspiked	15.95	
Run 2	spiked	19.28	
Ruli Z	unspiked	17.35	
Run 3	spiked	19.79	
Kuli 3	unspiked	15.93	

N	orth (Methanol)		
Run#	Side	Total (L)	
Run 1	spiked	14.14	
Kuli i	unspiked	21.56	
Run 2	spiked	20.83	
Ruii 2	unspiked	16.10	
Run 3	spiked	20.42	
Kuli 3	unspiked	14.33	

S	outh (Toluene)	
Run#	Side	Total (L)
Run 1	spiked	17.04
Kun I	unspiked	16.52
Run 2	spiked	14.79
Run Z	unspiked	18.39
Dun 2	spiked	14.26
Run 3	unspiked	18.00

<u>N</u>	lorth (Toluene)	
Run #	Side	Total (L)
Run 1	spiked	22.31
Rull 1	unspiked	18.34
Run 2	spiked	17.33
Run Z	unspiked	17.30
Run 3	spiked	14.42
Rull 3	unspiked	15.94

APPENDIX C FIELD PARAMETER SHEET

VOC, Toluene Sampling Train Calculations						
1700, Totaline dampning train datempoons				<u></u>		
Client:	American Chemical Solutions					
Project No:	21-3399					
Date:	11/10/21					
Source:	North Scrubber E	xhaust Stack				
Test No:	<u>T1</u>	<u>T2</u>	<u>T3</u>	Avg.		
Start Time	10:30 AM	01:46 PM	04:07 PM			
Finish Time	11:30 AM	02:46 PM	05:07 PM			
Pitot Cal. Factor	0.84	0.84	0.84			
Meter Calibration Factor:	0.975	0.975	0.975			
Stack Length, inches:	0	0	0			
Stack Width, inches:	0	0	0			
Stack Diameter, inches:	23	23	23			
Barometric Pressure, inches Hg:	29.57	29.57	29.57			
Static Pressure in Stack, Inches H2O:	-0.08	-0.08	-0.08			
Duration of Sample, minutes:	60	60	60			
Meter Start Volume:	0.000	0.000	0.000			
Meter Final Volume:	0.611	0.648	0.563			
Average Meter Pressure, Inches H2O:	0.8000	0.8000	0.8000	0.8000		
Average Meter Temperature, degrees F:	75.8	77.0	76.0	76.3		
Average Sqrt. Velocity Pressure:	0.2356	0.2433	0.2479	0.2423		
Stack Gas Temperature, degrees F:	98.3	99.4	108.3	102.0		
% Carbon Dioxide:	0.1	0.1	0.1	0.1		
% Oxygen:	20.9	20.9	20.9	20.9		
% Carbon Monoxide:	0.0	0.0	0.0	0.0		
Sample Train Calculations						
Meter Volume, Actual:	0.611	0.648	0.563	0.607		
Meter Volume, STP:	0.581	0.615	0.535	0.577		
% Moisture:	2.90	2.80	2.80	2.83		
Area of Stack, Square Feet:	2.89	2.89	2.89	2.89		
Molecular Weight dry, lb/lb-Mole:	28.85	28.85	28.85	28.85		
Molecular Weight wet, lb/lb-Mole:	28.54	28.55	28.55	28.54		
Absolute Stack Gas Pressure, in Hg:	29.56	29.56	29.56	29.56		
Velocity and Flow Calculations	BURNED CONTRACTOR					
Average Stack Gas Velocity FPS:	13.76	14.22	14.61	14.20		
Stack Gas Flow Rate, ACFM:	2,386	2,466	2,533	2,462		
Stack Gas Flow Rate, SCFM:	2,229	2,299	2,325	2,285		
Stack Gas Flow Rate, DSCF/HR:	129,881	134,097	135,618	133,199		
Stack Gas Flow Rate, DSCFM:	2,165	2,235	2,260	2,220		
Toluene Calculations:	0.000					
T. I	070.0	044.0	0500			
Toluene Concentration, ug:	278.0	244.0	256.0	259.3		
Grains Per DSCF:	7.38E-03	6.12E-03	7.38E-03	6.96E-03		
LBS/DSCF:	1.06E-06	8.75E-07	1.06E-06	9.95E-07		
LBS/HR:	0.137	0.117	0.143	0.132		
VOC Calculations:						
PPM as Propane:	412.5	482.7	798.7	564.6		
LBS/DSCF:	4.71E-05	5.51E-05	9.12E-05	6.45E-05		
LBS/HR:	6.301	7.605	12.726	8.877		
tenter type 1 of 34	0.001	7.000	12.720	0.077		

Methanol Sampling Train Calculations					
Client:	American Chemic	al Solutions			
Project No:	21-3399	ai oolullons			
Date:	11/10/21				
Source:	North Scrubber E	xhaust Stack			
Test No:	<u>T1</u>	<u>T2</u>	<u>T3</u>	Avg.	
Start Time	10:30 AM	01:46 PM	04:07 PM		
Finish Time	11:30 AM	02:46 PM	05:07 PM		
Pitot Cal. Factor	0.84	0.84	0.84		
Meter Calibration Factor:	0.975	0.975	0.975		
Stack Length, inches:	0	0	0		
Stack Width, inches:	0	0	0		
Stack Diameter, inches:	23	23	23		
Barometric Pressure, inches Hg:	29.57	29.57	29.57		
Static Pressure in Stack, Inches H2O:	-0.08	-0.09	-0.08		
Duration of Sample, minutes:	60	60	60		
Meter Start Volume:	0.000	0.000	0.000		
Meter Final Volume:	0.563	0.613	0.563		
Average Meter Pressure, Inches H2O:	0.8000	0.8000	0.8000	0.8000	
Average Meter Temperature, degrees F:	83.4	85.2	84.5	84.4	
Average Sqrt. Velocity Pressure:	0.2483	0.2571	0.2542	0.2532	
Stack Gas Temperature, degrees F:	88.3	99	97.1	94.8	
% Carbon Dioxide:	0.1	0.1	0.1	0.1	
% Oxygen:	20.9	20.9	20.9	20.9	
% Carbon Monoxide:	0.0	0.0	0.0	0.0	
Sample Train Calculations	Principal Principal				
Meter Volume, Actual:	0.563	0.613	0.563	0.579	
Meter Volume, STP:	0.528	0.573	0.526	0.542	
% Moisture:	2.90	2.80	2.80	2.83	
Area of Stack, Square Feet:	2.89	2.89	2.89	2.89	
Molecular Weight dry, lb/lb-Mole:	28.85	28.85	28.85	28.85	
Molecular Weight wet, lb/lb-Mole:	28.54	28.55	28.55	28.54	
Absolute Stack Gas Pressure, in Hg:	29.56	29.56	29.56	29.56	
Velocity and Flow Calculations	(8)4-451-451-451-461)				
en men en e					
Average Stack Gas Velocity FPS:	14.37	15.03	14.83	14.74	
Stack Gas Flow Rate, ACFM:	2,492	2,606	2,572	2,556	
Stack Gas Flow Rate, SCFM:	2,371	2,432	2,408	2,404	
Stack Gas Flow Rate, DSCF/HR:	138,113	141,837	140,427	140,126	
Stack Gas Flow Rate, DSCFM:	2,302	2,364	2,340	2,335	
Methanol Calculations:	Billia Hilbin	Silan			
Methanol Concentration, ug:	17675.0	22401.0	30563.0	23546.3	
Grains Per DSCF:	5.17E-01	6.03E-01	8.97E-01	6.72E-01	
LBS/DSCF:	7.38E-05	8.62E-05	1.28E-04	9.60E-05	
LBS/HR:	10.195	12.227	17.992	13.471	

VOC, Toluene Sampling Train Calculations						
011		1.5.1.1				
Client:	American Chemic	cal Solutions				
Project No:	21-3399					
Date:	11/10/21					
Source:	South Scrubber E	xhaust Stack				
Test No:	<u>T1</u>	<u>T2</u>	<u>T3</u>	Avg.		
Start Time	10:30 AM	01:46 PM	04:07 PM			
Finish Time	11:30 AM	02:46 PM	05:07 PM			
Pitot Cal. Factor	0.84	0.84	0.84			
Meter Calibration Factor:	0.975	0.975	0.975			
Stack Length, inches:	0	0	0			
Stack Width, inches:	0	0	0			
Stack Diameter, inches:	23	23	23			
Barometric Pressure, inches Hg:	29.57	29.57	29.57			
Static Pressure in Stack, Inches H2O:	-0.08	-0.08	-0.08			
Duration of Sample, minutes:	60	60	60			
Meter Start Volume:	0.000	0.000	0.000			
Meter Final Volume:	0.583	0.649	0.636			
Average Meter Pressure, Inches H2O:	0.8000	0.8000	0.8000	0.8000		
Average Meter Temperature, degrees F:	83.4	85.2	84.5	84.4		
Average Sqrt. Velocity Pressure:	0.2483	0.2571	0.2542	0.2532		
Stack Gas Temperature, degrees F:	88.3	99	97.1	94.8		
% Carbon Dioxide:	0.1	0.1	0.1	0.1		
% Oxygen:	20.9	20.9	20.9	20.9		
% Carbon Monoxide:	0.0	0.0	0.0	0.0		
Sample Train Calculations		100 page 1				
Mater Velime Actuals	0.500	0.640	0.000	0.000		
Meter Volume, Actual:	0.583	0.649	0.636	0.623		
Meter Volume, STP: % Moisture:	0.547	0.607	0.595	0.583		
	2.90 2.89	2.80	2.80	2.83		
Area of Stack, Square Feet:		2.89	2.89	2.89		
Molecular Weight dry, lb/lb-Mole:	28.85	28.85	28.85	28.85		
Molecular Weight wet, lb/lb-Mole:	28.54	28.55	28.55	28.54		
Absolute Stack Gas Pressure, in Hg:	29.56	29.56	29.56	29.56		
Velocity and Flow Calculations	5 (18 B)					
Average Stack Gas Velocity FPS:	14.37	15.03	14.83	14.74		
Stack Gas Flow Rate, ACFM:	2,492	2,606	2,572	2,556		
Stack Gas Flow Rate, SCFM:	2,371	2,432	2,408	2,404		
Stack Gas Flow Rate, DSCF/HR:	138,113	141,837	140,427	140,126		
Stack Gas Flow Rate, DSCFM:	2,302	2,364	2,340	2,335		
Toluene Calculations:				000000		
Toluene Concentration, ug:	1.7	1.7	1.7	1.7		
Grains Per DSCF:	4.82E-05	4.32E-05	4.41E-05	4.52E-05		
LBS/DSCF:	6.89E-09	6.18E-09	6.30E-09	6.46E-09		
LBS/HR:	0.0010	0.0009	0.0009	0.0009		
VOC Calculations:						
DDM on Days and	400.0	470.0	007.0	252		
PPM as Propane:	196.8	176.3	287.2	220.1		
LBS/DSCF:	2.25E-05	2.01E-05	3.28E-05	2.51E-05		
LBS/HR:	3.197	2.938	4.738	3.624		

Methanol Sampling Train Calculations							
Client:	American Chemic	al Solutions					
	ai Solutions						
Project No:	11/10/21	21-3399					
Date:	South Scrubber E	Sybourt Stock					
Source:	South Scrubber E	xnaust Stack					
Test No:	<u>T1</u>	<u>T2</u>	<u>T3</u>	Avg.			
Start Time	10:30 AM	01:46 PM	04:07 PM				
Finish Time	11:30 AM	02:46 PM	05:07 PM				
Pitot Cal. Factor	0.84	0.84	0.84				
Meter Calibration Factor:	0.975	0.975	0.975				
Stack Length, inches:	0	0	0				
Stack Width, inches:	0	0	0				
Stack Diameter, inches:	23	23	23				
Barometric Pressure, inches Hg:	29.57	29.57	29.57				
Static Pressure in Stack, Inches H2O:	-0.08	-0.08	-0.08				
Duration of Sample, minutes:	60	60	60				
Meter Start Volume:	0.000	0.000	0.000				
Meter Final Volume:	0.563	0.613	0.563				
Average Meter Pressure, Inches H2O:	0.8000	0.8000	0.8000	0.8000			
Average Meter Temperature, degrees F:	83.4	85.2	84.5	84.4			
Average Sqrt. Velocity Pressure:	0.2483	0.2571	0.2542	0.2532			
Stack Gas Temperature, degrees F:	88.3	99	97.1	94.8			
% Carbon Dioxide:	0.1	0.1	0.1	0.1			
% Oxygen:	20.9	20.9	20.9	20.9			
% Carbon Monoxide:	0.0	0.0	0.0	0.0			
Sample Train Calculations							
Meter Volume, Actual:	0.563	0.613	0.563	0.579			
Meter Volume, STP:	0.528	0.573	0.526	0.542			
% Moisture:	2.90	2.80	2.80	2.83			
Area of Stack, Square Feet:	2.89	2.89	2.89	2.89			
Molecular Weight dry, lb/lb-Mole:	28.85	28.85	28.85	28.85			
Molecular Weight wet, lb/lb-Mole:	28.54	28.55	28.55	28.54			
Absolute Stack Gas Pressure, in Hg:	29.56	29.56	29.56	29.56			
Velocity and Flow Calculations			· · · · · · · · · · · · · · · · · · ·				
Average Stack Gas Velocity FPS:	14.37	15.03	14.83	14.74			
Stack Gas Flow Rate, ACFM:	2,492	2,606	2,572	2,556			
Stack Gas Flow Rate, SCFM:	2,371	2,432	2,408	2,404			
Stack Gas Flow Rate, DSCF/HR:	138,113	141,837	140,427	140,126			
Stack Gas Flow Rate, DSCFM:	2,302	2,364	2,340	2,335			
Methanol Calculations:							
Mathemal Concentration ::-	44000.0	16059.0	24234.0	17366.7			
Methanol Concentration, ug:	11808.0	16058.0					
Grains Per DSCF:	3.45E-01	4.32E-01	7.11E-01	4.96E-01			
LBS/DSCF:	4.93E-05	6.18E-05	1.02E-04	7.09E-05			
LBS/HR:	6.811	8.765	14.266	9.947			

APPENDIX D

CALIBRATIONS

American Chemical Solutions

VOC Span 1000.0

3

VOC Calibration Data

11/10/21

North Scubber

CALIBRATION	GAS	CONCENTRATIONS,	mag

	Zero	Mid-Range		High-Range Low Range
0		505.9		916.0 307.4
Syatem Bias	Check			
505.9				
PRE-TEST AN	ALYZER CALI	BRATION DATA	AND ERROR	
Test No.	Cal. Gas	Analyzer	Absolute	Calibration Error
	Cylinder	Calibration	Difference	
	Value	Response		
	(ppm)	(ppm)	(ppm)	Percent of Span
1	0.0	0.4	0.4	0.04
1	307.4	302.1	-5.3	-0.53
1	505.9	503.2	-2.7	-0.27
1	916.0	915.7	-0.3	-0.03
2	0.0	0.4	0.4	0.04
2	307.4	302.1	-5.3	-0.53
2	505.9	503.2	-2.7	-0.27
2	916.0	915.7	-0.3	-0.03
3	0.0	0.4	0.4	0.04
3	307.4	302.1	-5.3	-0.53
3	505.9	503.2	-2.7	-0.27

SYSTEM CALIBRATION BIAS AND DRIFT DATA

915.7

916.0

	SISTEM CALIBRATION BIAS AND DRIFT DATA								
Test No.	Analyzer	Initial	Init	ial	Final	1	Final	Gas	Calibration
	Calibration	System	Calibrat	ion	System	Calib:	ration	Range	Drift
	Response	Calibration	Bia	s (Calibration		Bias		
		Response]	Response				
	(ppm)	(ppm)	(%of Spa	n)	(ppm)	(%of :	Span)		(% of Span)
1	0.4	0.4	0.	00	6.4		0.60	Zero	0.60
1	503.2	503.2	0.	00	503.7		0.05	Mid	0.05
2	0.4	2.3	0.	19	11.2		1.08	Zero	0.89
2	503.2	500.6	-0.	26	510.7		0.75	Mid	1.01
3	0.4	1.0	0.	06	4.3		0.39	Zero	0.33
3	503.2	513.7	1.	05	514.3		1.11	Mid	0.06

-0.3

-0.03

American Chemical Solutions

VOC Span 1000.0 VOC Calibration Data

11/10/21

South Scubber

CALIBRATION	GAS	CONCENTRATIONS.	nnm

	Zero	Mid-Range		High-Range Low Range
0		505.9		916.0 307.4
Syatem Bias	Check			
505.9				
PRE-TEST ANA	ALYZER CALI	BRATION DATA	AND ERROR	
Test No.	Cal. Gas	Analyzer	Absolute	Calibration Error
	Cylinder	Calibration	Difference	
	Value	Response		
	(ppm)	(ppm)	(ppm)	Percent of Span
1	0.0	0.5	0.5	0.05
1	307.4	307.0	-0.4	-0.04
1	505.9	505.3	-0.6	-0.06
1	916.0	916.2	0.2	0.02
2	0.0	0.5	0.5	0.05
2	307.4	307.0	-0.4	-0.04
2	505.9	505.3	-0.6	-0.06
2	916.0	916.2	0.2	0.02
3	0.0	0.5	0.5	0.05
3	307.4	307.0	-0.4	-0.04
3	505.9	505.3	-0.6	-0.06
3	916.0	916.2	0.2	0.02

SYSTEM CALIBRATION BIAS AND DRIFT DATA

Test No.	Analyzer	Initial	Initial	Final	Final	Gas	Calibration
	Calibration	System	Calibration	System	Calibration	Range	Drift
	Response	Calibration	Bias	Calibration	Bias		
		Response		Response			
	(ppm)	(ppm)	(%of Span)	(ppm)	(%of Span)		(% of Span)
1	0.5	0.5	0.00	6.2	0.57	Zero	0.57
1	505.3	505.3	0.00	520.5	1.52	Mid	1.52
2	0.5	0.4	-0.01	6.0	0.55	Zero	0.56
2	505.3	510.7	0.54	521.3	1.60	Mid	1.06
3	0.5	0.8	0.03	6.6	0.61	Zero	0.58
3	505.3	509.0	0.37	522.8	1.75	Mid	1.38

Pitot Tube Calibration Sheet

STG Project No. 21-3399

Client:

Probe No.

ACS

Plant:

Muskegon, MI

P-4C (S-Type)

Date Calibrated:

7/1/2021

Calibrated By:

M. Oleszko

External Tubing Diameter Base To Opening Plane Distance(P_a) Base To Opening Plane Distance(Pb)

0.375 inches 0.522 inches 0.522 inches

Pitot Cofficient

0.84

	Measured	Allowable
P _a /D _t	1.389	1.05-1.50
P _b /D _t	1.389	1.05-1.50
Angle a1°	0.0	10.0
Angle a1 ^o	0.0	10.0
Angle b1°	0.0	5.0
Angle b1°	0.0	5.0
z (inches)	0	0.125 in.
w(inches)	0.000	0.031 in.

Pyrometer Calibration Sheet

STG Project No. 21-3399

Client:

ACS

Plant: Probe No.

Muskegon, MI P-4C (S-Type) Date Calibrated:

Temperature Scale Used: oF

Reference Used: Calibrated By:

7/1/2021

Mercury Thermometer

M. Oleszko

Calibration Reference Settings °F	Pyrometer Reading °F	Difference +/-
30	30	0
78	77	1
220	221	-1

APPENDIX E LABORATORY REPORT

Stack Test Group, Inc.

1500 Boyce Memorial Drive Ottawa, IL 61350

American Chemical

Client Project # 21.3399

Analytical Report (1121-025)

EPA Method 18 (Adsorbents)

Methanol Toluene

Enthalpy Analytical, LLC

Phone: (919) 850 - 4392 / Fax: (919) 850 - 9012 / www.enthalpy.com 800-1 Capitola Drive Durham, NC 27713-4385 I certify that to the best of my knowledge all analytical data presented in this report:

- Have been checked for completeness
- Are accurate, error-free, and legible
- Have been conducted in accordance with approved protocol, and that all deviations and analytical problems are summarized in the appropriate narrative(s)

This analytical report was prepared in Portable Document Format (.PDF) and contains 395 pages.

AMCross

Digitally signed by Alexa Cross DN: dc=com, dc=montroseenv, dc=meg, ou=meg, ou=Sites, ou=053-Durham, ou=Users, cn=Alexa Cross, email=alexa.cross@enthalpy.c om

Date: 2021.12.31 15:14:11

-05'00'

Report Issued: 12/31/21

Summary of Results

Company: Stack Test Group

Job No.: 1121-025 - EPA Method 18 (SiGel Tubes)

Client No.: 21.3399 Site: American Chemical

Summary Table - Methanol

Catch Weight (ug)
17,675
22,401
30,563
Adjusted Catch Weight (ug)
11,808
16,058
24,234

Company: Stack Test Group

Job No.: 1121-025 - EPA Method 18 (A747 Tubes)

Client No.: 21.3399 Site: Americal Chemical

Summary Table - Toluene

Sample ID	Catch Weight (ug)
North Scrubber Run 1	278
North Scrubber Run 2	244
North Scrubber Run 3	256
South Scrubber Run 1	1.71 ND
South Scrubber Run 2	1.71 ND
South Scrubber Run 3	1.71 ND
Blank	1.66 ND

Results

Company: Stack Test Group

Job No.: 1121-025 - EPA Method 18 (SiGel Tubes)
Client No.: 21.3399 Site: American Chemical

Methanol

Sample ID	Filename #1	Filename #2	Filename #3	MDL	Curve Min	Curve Max	Ret Time (min)	Ret Time (min)	Ret Time (min)	%dif RT	Conc #1 (ug/mL)	Conc #2 (ug/mL)	Conc #3 (ug/mL)	%dif conc	Avg Conc (ug/mL)	DF	Liquid Vol (mL)	Catch Weight (ug)	Rec Eff (%)	Catch Weight (ug)	Flaç
North Scrubber Run 1 SPK.Cond	032B0201.D	032B0202.D	032B0203.D	0.394	3.94	1,977	3.42	3.41	3.42	0.1	434	410	436	3.9	427	1	41.5	17,715	100	17,715	
North Scrubber Run 1 SPK.SG-FH	046B1701.D	046B1702.D	046B1703.D	0.394	3.94	1,977	3.41	3.41	3.41	0.0	169	172	172	1.1	171	1	5.00	857	100	857	
North Scrubber Run 1 SPK.SG-BH	040B1001.D	040B1002.D	040B1003.D	0.394	3.94	1,977	NA	NA	NA	NA	0.394	0.394	0.394	0.0	0.394	1	5.00	1.97	100	1.97	NE
																				18,572	
North Scrubber Run 1.Cond	014F0601.D	014F0602.D	014F0603.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	423	418	418	0.8	419	1	41.5	17,399	100	17,399	
North Scrubber Run 1.SG-FH	026F1901.D	026F1902.D	026F1903.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	32.8	33.4	33.8	1.6	33.3	1	5.00	167	100	167	
North Scrubber Run 1.SG-BH	020F1301.D	020F1302.D	020F1303.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	22.0	21.9	21.7	0.9	21.9	1	5.00	109	100	109	
		•																		17,675	
North Scrubber Run 2 SPK.Cond	034B0401.D	034B0402.D	034B0403.D	0.394	3.94	1,977	3.41	3.41	3.41	0.0	770	768	767	0.2	768	1	42.0	32,264	100	32,264	Γ
North Scrubber Run 2 SPK.SG-FH	048B1901.D	048B1902.D	048B1903.D	0.394	3.94	1,977	3.41	3.41	3.41	0.0	193	194	206	4.2	197	1	5.00	987	100	987	
North Scrubber Run 2 SPK.SG-BH	041B1101.D	041B1102.D	041B1103.D	0.394	3.94	1,977	3.41	3.41	3,41	0.0	34.7	35.0	34.9	0.4	34.9	1	5.00	174	100	174	
			•																	33,426	
North Scrubber Run 2.Cond	015F0701.D	015F0702.D	015F0703.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	527	515	521	1.2	521	1	42.5	22,150	100	22,150	
North Scrubber Run 2.SG-FH	027F2001.D	027F2002.D	027F2003.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	51.2	49.9	49.5	2.0	50.2	1	5.00	251	100	251	
North Scrubber Run 2.SG-BH	021F1401.D	021F1402.D	021F1403.D	0.394	3.94	1,977	NA	NA	NA	NA	0.394	0.394	0.394	0.0	0.394	1	5.00	1.97	100	1.97	N
																				22,401	
North Scrubber Run 3 SPK.Cond	035B0501.D	035B0502.D	035B0503.D	0.394	3.94	1,977	3.41	3.41	3.41	0.0	1,182	1,178	1,190	0.6	1,183	1	43.0	50,876	100	50,876	
North Scrubber Run 3 SPK.SG-FH	049B2001.D	049B2002.D	049B2003.D	0.394	3.94	1,977	3.41	3.41	3.41	0.0	263	281	260	4.9	268	1	5.00	1,341	100	1,341	
North Scrubber Run 3 SPK.SG-BH	042B1301.D	042B1302.D	042B1303.D	0.394	3.94	1,977	3.41	3.41	3.42	0.2	0.975	0.939	0.924	3.1	0.946	1	5.00	4.73	100	4.73	
																				52,222	
North Scrubber Run 3.Cond	016F0801.D	016F0802.D	016F0803.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	716	736	716	1.8	723	1	42.0	30,357	100	30,357	
North Scrubber Run 3.SG-FH	028F2101.D	028F2102.D	028F2103.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	41.4	41.5	40.9	0.9	41.3	1	5.00	206	100	206	
North Scrubber Run 3.SG-BH	022F1501.D	022F1502.D	022F1503.D	0.394	3.94	1,977	NA	NA	NA	NA	0.394	0.394	0.394	0.0	0.394	1	5.00	1.97	100	1.97	N
																				30,563	

Company: Stack Test Group

Job No.: 1121-025 - EPA Method 18 (SiGel Tubes)
Client No.: 21.3399 Site: American Chemical

Methanol

Sample ID	Filename #1	Filename #2	Filename #3	MDL	Curve Min	Curve Max	Ret Time (min)	Ret Time (min)	Ret Time (min)	%dif RT	Conc #1 (ug/mL)	Conc #2 (ug/mL)	Conc #3 (ug/mL)	%dif conc	Avg Conc (ug/mL)	DF	Liquid Vol (mL)	Catch Weight (ug)	Rec Eff (%)	Catch Weight (ug)	Flag
South Scrubber Run 1 SPK.Cond	036B0601.D	036B0602.D	036B0603.D	0.394	3.94	1,977	3.42	3.42	3.42	0.0	278	276	276	0.5	277	1	42.0	11,618	100	11,618	
South Scrubber Run 1 SPK.SG-FH	050B2101.D	050B2102.D	050B2103.D	0.394	3.94	1,977	3.41	3.41	3.41	0.0	189	197	187	3.0	191	1	5.00	955	100	955	
South Scrubber Run 1 SPK.SG-BH	043B1401.D	043B1402.D	043B1403.D	0.394	3.94	1,977	NA	NA	NA	NA	0.394	0.394	0.394	0.0	0.394	1	5.00	1.97	100	1.97	NE
				72																12,573	
South Scrubber Run 1.Cond	017F0901.D	017F0902.D	017F0903.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	232	229	232	0.9	231	1	43.0	9,933	85.8	11,577	
South Scrubber Run 1.SG-FH	029F2201.D	029F2202.D	029F2203.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	24.6	25.3	25.0	1.3	25.0	1	5.00	125	85.8	146	
South Scrubber Run 1.SG-BH	023F1601.D	023F1602.D	023F1603.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	14.3	14.9	14.8	2.7	14.7	1	5.00	73.3	85.8	85.4	
																				11,808	
South Scrubber Run 2 SPK.Cond	038B0801.D	038B0802.D	038B0803.D	0.394	3.94	1,977	3.42	3.42	3.41	0.0	452	441	439	1.7	444	1	42.0	18,642	100	18,642	
South Scrubber Run 2 SPK.SG-FH	052B2401.D	052B2402.D	052B2403.D	0.394	3.94	1,977	3.41	3.41	3.41	0.0	174	175	173	0.6	174	1	5.00	871	100	871	
South Scrubber Run 2 SPK.SG-BH	044B1501.D	044B1502.D	044B1503.D	0.394	3.94	1,977	3.41	3.41	3.41	0.0	13.8	13.9	13.9	0.7	13.9	1	5.00	69.3	100	69.3	
																				19,582	
South Scrubber Run 2.Cond	018F1001.D	018F1002.D	018F1003.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	321	331	321	2.0	324	1	42.0	13,617	85.8	15,871	
South Scrubber Run 2.SG-FH	030F2401.D	030F2402.D	030F2403.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	32.3	31.7	32.2	1.1	32.1	1	5.00	160	85.8	187	
South Scrubber Run 2.SG-BH	024F1701.D	024F1702.D	024F1703.D	0.394	3.94	1,977	NA	NA	NA	NA	0.394	0.394	0.394	0.0	0.394	1	5.00	1.97	85.8	2.30	NE
						1														16,058	
South Scrubber Run 3 SPK.Cond	039B0901.D	039B0902.D	039B0903.D	0.394	3.94	1,977	3.41	3.42	3.41	0.0	659	682	677	2.0	672	1	42.5	28,574	100	28,574	
South Scrubber Run 3 SPK.SG-FH	053B2501.D	053B2502.D	053B2503.D	0.394	3.94	1,977	3.41	3.41	3.41	0.0	209	210	201	2.8	207	1	5.00	1,033	100	1,033	
South Scrubber Run 3 SPK.SG-BH	045B1601.D	045B1602.D	045B1603.D	0.394	3.94	1,977	3.41	3.42	3.41	0.0	1.98	1.95	1.98	0.9	1.97	1	5.00	9.86	100	9.86	J
																				29,617	
South Scrubber Run 3.Cond	019F1101.D	019F1102.D	019F1103.D	0.394	3.94	1,977	3.28	3.28	3.28	0.0	489	479	485	1.2	484	1	42.5	20,583	85.8	23,989	
South Scrubber Run 3.SG-FH	031F2501.D	031F2502.D	031F2503.D	0.394	3.94	1,977	3.28	3.28	3.28	0.1	43.0	39.8	43.2	5.1	42.0	1	5.00	210	85.8	245	
South Scrubber Run 3.SG-BH	025F1801.D	025F1802.D	025F1803.D	0.394	3.94	1,977	NA	NA	NA	NA	0.394	0.394	0.394	0.0	0.394	1	5.00	1.97	85.8	2.30	N
		***																	*	24,234	

Company: Stack Test Group

Job No.: 1121-025 - EPA Method 18 (SiGel Tubes)

Client No.: 21,3399 Site: American Chemical

Spike and Recovery Calculations

Anal	140.

Analyte:	Methanol					
	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
North Scrubber Run 1	5,034	Spiked Train		18,572	14.14	4200/
,		Un-spiked Train		17,675	21.56	139%
	,					
	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
North Scrubber Run 2	5,034	Spiked Train		33,426	20.83	88.3%
		Un-spiked Train		22,401	16.10	00.570
	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
North Scrubber Run 3	5,034	Spiked Train		52,222	20.42	172%
		Un-spiked Train		30,563	14.33	17270
					Average Recovery	133%

Analyte:

Methanol

	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
South Scrubber Run 1	5,034	Spiked Train		12,573	12.09	97.2%
) 54		Un-spiked Train		10,131	15.95	97.276
	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
South Scrubber Run 2	5,034	Spiked Train		19,582	19.28	84.9%
		Un-spiked Train		13,778	17.35	04.976
	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
South Scrubber Run 3	5,034	Spiked Train		29,617	19.79	75.2%
		Un-spiked Train		20,793	15.93	13.270

Average Recovery

85.8%

Company: Stack Test Group

Job No.: 1121-025 - EPA Method 18 (SiGel Tubes)

Client No.: 21.3399 Site: American Chemical

QC Samples

QC Type	QC Sample Name		Methanol
Spiked Blank Solvent	GCPREP4462 #LCS-AQ	catch (ug)	4,508
	spiked:	spike (ug)	4,508
	Spikeprep1580.SP * 300uL	recovery	100%
Spiked Blank Tube	GCPREP4462 #LCS-SG	catch (ug)	484
	spiked:	spike (ug)	526
	Spikeprep1580.SP * 35uL	recovery	92.1%
Lab Dup	N-R1-SPK-LD.COND	ug/mL	418
	N-R1-SPK.COND	ug/mL	427
		RD	2.2%
Lab Dup	S-R1-SPK-LD.COND	ug/mL	275
	S-R1-SPK.COND	ug/mL	277
		RD	0.7%
Lab Dup	N-R1-SPK-LD.SGFH	ug/mL	181
	N-R1-SPK.SGFH	ug/mL	171
		RD	5.6%
Lab Dup	S-R1-SPK-LD.SGFH	ug/mL	196
	S-R1-SPK.SGFH	ug/mL	191
		RD	2.4%
Blank Solvent	GCPREP4462 #AQ-MB	ug/mL	ND
Blank Media	GCPREP4462 #SG-MB	ug/mL	ND

Company: Stack Test Group

Job No.: 1121-025 - EPA Method 18 (A747 Tubes)

Client No.: 21,3399 Site: Americal Chemical

Toluene

Sample ID	Filename #1	Filename #2	Filename #3	MDL	Curve Min	Curve Max	Ret Time (min)	Ret Time (min)	Ret Time (min)	%dif RT	Conc #1 (ug/mL)	Conc #2 (ug/mL)	Conc #3 (ug/mL)	%dif conc	Avg Conc (ug/mL)	DF	Liquid Vol (mL)	Catch Weight (ug)	Rec Eff (%)	Catch Weight (ug)	Flag
North Scrubber Run 1,A747-FH	079F0501.D	079F0502.D	079F0503.D	0.333	2.59	1,038	1.18	1.18	1.18	0.0	49.8	49.7	49.5	0.4	49.7	1	5.00	248	89.4	278	
North Scrubber Run 1.A747-BH	080F0601.D	080F0602.D	080F0603.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	89.4	1.86	ND
																				278	
North Scrubber Run 1 SPK.A747-FH	094F2001.D	094F2002.D	094F2003.D	0.333	2.59	1,038	1.18	1.18	1.18	0.0	74.5	74.6	74.4	0.2	74.5	1	5.00	372	100	372	
North Scrubber Run 1 SPK.A747-BH	096F2201.D	096F2202.D	096F2203.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	100	1.66	ND
																				372	
North Scrubber Run 2.A747-FH	081F0701.D	081F0702.D	081F0703.D	0.333	2.59	1,038	1.18	1.18	1.18	0.0	43.8	43.8	43.5	0.4	43.7	1	5.00	218	89.4	244	
North Scrubber Run 2.A747-BH	082F0801.D	082F0802.D	082F0803.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	89.4	1.86	ND
														*		7,1				244	
North Scrubber Run 2 SPK.A747-FH	097F2301.D	097F2302.D	097F2303.D	0.333	2.59	1,038	1.18	1.18	1.18	0.0	52.1	53.0	52.5	0.8	52.5	1	5.00	263	100	263	
North Scrubber Run 2 SPK.A747-BH	099F2501.D	099F2502.D	099F2503.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	100	1.66	ND
												**								263	
North Scrubber Run 3.A747 - FH	083F0901.D	083F0902.D	083F0903.D	0.333	2.59	1,038	1.18	1.18	1.18	0.0	46.0	45.6	45.9	0.6	45.8	1	5.00	229	89.4	256	
North Scrubber Run 3.A747 - BH	084F1001.D	084F1002.D	084F1003.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	89.4	1.86	ND
																				256	
North Scrubber Run 3 SPK.A747	100F2601 D	100F2602.D	100E2603 D	0.333	2.59	1,038	1.18	1.18	1.18	0.1	47.6	47.7	47.5	0.2	47.6	1	5.00	238	100	238	T

Company: Stack Test Group

Job No.: 1121-025 - EPA Method 18 (A747 Tubes)

Client No.: 21.3399 Site: Americal Chemical

Toluene

Toluene						whi															
Sample ID	Filename #1	Filename #2	Filename #3	MDL	Curve Min	Curve Max	Ret Time (min)	Ret Time (min)	Ret Time (min)	%dif RT	Conc #1 (ug/mL)	Conc #2 (ug/mL)	Conc #3 (ug/mL)	%dif	Avg Conc (ug/mL)	DF	Liquid Vol (mL)	Catch Weight (ug)	Rec Eff (%)	Catch Weight (ug)	Flag
South Scrubber Run 1.A747-FH	085F1101.D	085F1102.D	085F1103.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	97.5	1.71	ND
South Scrubber Run 1.A747-BH	086F1201.D	086F1202.D	086F1203.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	97.5	1.71	ND
																				1.71	ND
South Scrubber Run 1 SPK.A747-FH	002F2701.D	002F2702.D	002F2703.D	0.333	2.59	1,038	1.18	1.18	1.18	0.1	21.2	21.0	21.1	0.4	21.1	1	5.00	105	100	105	
South Scrubber Run 1 SPK.A747-BH	004F2901.D	004F2902.D	004F2903.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	100	1.66	ND
											-		Ŷ.							105	
South Scrubber Run 2,A747-FH	088F1401.D	088F1402.D	088F1403.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	97.5	1.71	ND
South Scrubber Run 2.A747-BH	089F1501.D	089F1502.D	089F1503.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	97.5	1.71	ND
																				1.71	ND
South Scrubber Run 2 SPK.A747-FH	005F3001.D	005F3002.D	005F3003.D	0.333	2.59	1,038	1.18	1.18	1.18	0.1	20.7	21.2	21.3	1.7	21.1	1	5.00	105	100	105	
South Scrubber Run 2 SPK.A747-BH	006F3101.D	006F3102.D	006F3103.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	100	1.66	ND
																			1	105	
South Scrubber Run 3.A747-FH	090F1601.D	090F1602.D	090F1603,D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	97.5	1.71	ND
South Scrubber Run 3.A747-BH	091F1701.D	091F1702.D	091F1703.D	0,333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	97.5	1.71	ND
																				1.71	ND
South Scrubber Run 3 SPK.A747-FH	007F3201.D	007F3202.D	007F3203.D	0.333	2.59	1,038	1.18	1.18	1.18	0.0	21.2	21.0	21.0	0.8	21.1	1	5.00	105	100	105	
South Scrubber Run 3 SPK.A747-BH	008F3301.D	008F3302.D	008F3303.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	100	1.66	ND
			•			•		•												105	
Blank	078F0401.D	078F0402.D	078F0403.D	0.333	2.59	1,038	NA	NA	NA	NA	0.333	0.333	0.333	0.0	0.333	1	5.00	1.66	100	1.66	ND

Company: Stack Test Group

Job No.: 1121-025 - EPA Method 18 (A747 Tubes)

Client No.: 21.3399 Site: Americal Chemical

Spike and Recovery Calculations

Ana	lvte:

Toluene

	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
North Scrubber Run 1	54.1	Spiked Train		372	22.31	130%
		Un-spiked Train		248	18.34	130%
	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
North Scrubber Run 2	54.1	Spiked Train		263	17.33	81,2%
		Un-spiked Train		218	17.30	01.270
	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
North Scrubber Run 3	54.1	Spiked Train		238	14.42	57.1%
				229	15,94	1 51.1%

Average Recovery

89.4%

Analyte:

Toluene

	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
South Scrubber Run 1	108	Spiked Train		105	17.04	97.5%
	Un-spiked Train		ND	1.66	16.52	91.5%
	**				110	
17	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
South Scrubber Run 2	108	Spiked Train		105	14.79	97.5%
114/		Un-spiked Train	ND	1.66	18.39	31.5%
	,					
	Spike Amount		"ND"	Catch (ug)	Sample Volume	Recovery (%)
South Scrubber Run 3	108	Spiked Train		105	14.26	97.5%
-		Un-spiked Train	ND	1.66	18.00	31.576

Average Recovery

97.5%

Company: Stack Test Group

Job No.: 1121-025 - EPA Method 18 (A747 Tubes)

Client No.: 21.3399 Site: Americal Chemical

QC Samples

QC Type	QC Sample Name		Toluene
Spiked Blank Tube	gcprep4462 #LCS-Low	catch (ug)	52.5
	spiked:	spike (ug)	54.1
	Spikeprep1581.SP * 25uL	recovery	97.1%
Spiked Blank Tube	gcprep4462 #LCS-High	catch (ug)	104
	spiked:	spike (ug)	108
	Spikeprep1581.Sp * 50uL	recovery	96.0%
Lab Dup	N-R1-SPK-LD.747FH	ug/mL	75.1
	N-R1-SPK.747FH	ug/mL	74.5
·		RD	0.8%
Lab Dup	S-R1-SPK-LD.747FH	ug/mL	21.2
	S-R1-SPK.747FH	ug/mL	21.1
		RD	0.4%
Blank Media	gcprep4462 #MB-Tube	ug/mL	ND

Narrative Summary

Enthalpy Analytical Narrative Summary

Company	Stack Test Group
Job #	1121-025 - EPA Method 18 (Silica Gel)
Client #	21.3399 Site: American Chemical

Custody

Alyssa Miller received the samples on 11/23/21 at 1.0°C after being relinquished by Stack Test Group. The samples were received in good condition.

Prior to, during, and after analysis, the samples were kept under lock with access only to authorized personnel by Enthalpy Analytical, LLC.

Analysis

The samples were analyzed for methanol using the analytical procedures in EPA Method 18, Measurement of Gaseous Organic Compound Emissions by Gas Chromatography (40 CFR Part 60, Appendix A).

The standards and samples were analyzed following the procedures specified in section 8.2.4, Adsorption Tube Procedure.

Each sample train consisted of one condensate and two SKC silica gel (Cat# 226-10-03) tubes, the only exception being Run 1 which had one SKC silica gel tube.

The tubes were desorbed in two fractions: the front half (FH) consisting of the whole first tube combined with the front section of the second tube in series and the back half (BH) consisting of the rear section of the second tube. The *Run 1* tubes were desorbed in two fractions: front half (FH) and back half (BH). All fractions were desorbed using 5 mL of a solvent and were shaken. The tubes were desorbed on 11/23/21.

The Gas Chromatograph ("Disco Stu") was equipped with Flame Ionization Detectors for these analyses.

Calibration

The calibration curves are located in the back of this report. For each calibration curve used, the first page of the curve contains all method specific parameters (i.e., curve type, origin, weight, etc.) used to quantify the samples. The calibration curve section also includes a table with the Retention Time (RetTime), Level (Lvl), Amount (corresponding units), Area, Response Factor (Amt/Area) and the analyte Name. The calibration table is used to identify (by retention time) and quantify each target compound.

Chromatographic Conditions

A copy of the acquisition method (DISCO_STU_P407.M) may be made available upon request.

Enthalpy Analytical Narrative Summary (continued)

QC Notes

Methanol was not identified at levels greater than their detection limit in the analysis of the laboratory method blank.

Laboratory Duplicates (LD) were analyzed using aliquots of samples North Scrubber Run 1 Spike.Cond, South Scrubber Run 1 Spike.Cond, North Scrubber Run 1 Spike.SG-FH, and South Scrubber Run 1 Spike.SG-FH. The original and duplicate analyses differed by 5.6% or less.

As required by section 8.4.3, Recovery Study for Adsorption Tube Sampling, a recovery study is performed for the compounds of interest during the field test.

The laboratory prepared 12 aqueous spikes containing 4,508 μ g/mL of methanol and 12 tube spikes containing 526 μ g of methanol. Ten (of each) of the spikes were provided to the client prior to sample collection while two were retained by the lab to be used as a Laboratory Control Samples (LCS).

The train collection efficiency (R) was calculated using equations 18-7, 18-8, and 18-9 in EPA Method 18. The recovery efficiency values met the method-required limits of 70% - 130% for the South Scrubber. However, the North scrubber did not pass. The reported results for the South Scrubber have been adjusted using the average recovery efficiency value. The North scrubber results are being reported as measured.

One of the retained aqueous LCS vials was analyzed with the samples, yeilding a percent recovery value of 100%.

One of the retained tube LCS vials was nalyzed with the samples, yielding a percent recovery value of 92%.

Reporting Notes

These analyses met the requirements of the TNI Standard. Any deviations from the requirements of the reference method or TNI Standard have been stated above.

The results presented in this report are representative of the samples as provided to the laboratory.

Enthalpy Analytical Narrative Summary

Company	Stack Test Group
Job#	1121-025 - EPA Method 18 (Silica Gel)
Client #	21.3399 Site: American Chemical

Custody

Alyssa Miller received the samples on 11/23/21 at 1.0°C after being relinquished by Stack Test Group. The samples were received in good condition.

Prior to, during, and after analysis, the samples were kept under lock with access only to authorized personnel by Enthalpy Analytical, LLC.

Analysis

The samples were analyzed for toluene using the analytical procedures in EPA Method 18, Measurement of Gaseous Organic Compound Emissions by Gas Chromatography (40 CFR Part 60, Appendix A).

The standards and samples were analyzed following the procedures specified in section 8.2.4, Adsorption Tube Procedure.

Each sample train consisted of two SKC anasorb 747 (Cat# 226-84) tubes.

The tubes were desorbed in two fractions: front half (FH) and back half (BH). All fractions were desorbed using 5 mL of a solvent and were shaken. The tubes were desorbed on 11/23/21.

The back-half portion of sample North Scrubber Run 3 Spike was missing upon receipt. The tubes for samples North Scrubber Run 3, North Scrubber Run 3 Spike, North Scrubber Run 2, and South Scrubber Run 3 were received wet.

The Gas Chromatograph ("Lucy") was equipped with Flame Ionization Detectors for these analyses.

Calibration

The calibration curve is located in the back of this report. For each calibration curve used, the first page of the curve contains all method specific parameters (i.e., curve type, origin, weight, etc.) used to quantify the samples. The calibration curve section also includes a table with the Retention Time (RetTime), Level (Lvl), Amount (corresponding units), Area, Response Factor (Amt/Area) and the analyte Name. The calibration table is used to identify (by retention time) and quantify each target compound.

Enthalpy Analytical Narrative Summary (continued)

Chromatographic Conditions

A copy of the acquisition method (LUCY0301.M) may be made available upon request.

QC Notes

Toluene was not identified at levels greater than their detection limit in the analyses of the client's blank or laboratory method blank.

Laboratory Duplicates (LD) were analyzed using aliquots of samples *North Scrubber Run 1 Spike.A747-FH*, and *South Scrubber Run 1 Spike.A747-FH*. The original and duplicate analyses differed by 0.8% or less.

As required by section 8.4.3, Recovery Study for Adsorption Tube Sampling, a recovery study is performed for the compounds of interest during the field test.

The laboratory prepared seven tube spikes containing $54.14~\mu g$ of toluene and seven tube spikes containing $108~\mu g$ of tube spikes. Five (of each) of the spikes were provided to the client prior to sample collection while two were retained by the lab to be used as a Laboratory Control Samples (LCS).

The train collection efficiency (R) was calculated using equations 18-7, 18-8, and 18-9 in EPA Method 18. The recovery efficiency values met the method-required limits of 70% - 130% for both sources. The results have been adjusted using the average recovery efficiency values for the corresponding source.

One of each of the retained tube LCS vials were analyzed with the samples. They yielded percent recovery values of 97% and 96%.

Reporting Notes

These analyses met the requirements of the TNI Standard. Any deviations from the requirements of the reference method or TNI Standard have been stated above.

The results presented in this report are representative of the samples as provided to the laboratory.

General Reporting Notes

The following are general reporting notes that are applicable to all Enthalpy Analytical, LLC data reports, unless specifically noted otherwise.

- Any analysis which refers to the method as "Type" represents a planned deviation from the
 reference method. For instance a Hydrogen Sulfide assay from a Tedlar bag would be labeled
 as "EPA Method 16-Type" because Tedlar bags are not mentioned as one of the collection
 options in EPA Method 16.
- The acronym *MDL* represents the Minimum Detection Limit. Below this value the laboratory cannot determine the presence of the analyte of interest reliably.
- The acronym **LOQ** represents the Limit of Quantification. Below this value the laboratory cannot quantitate the analyte of interest within the criteria of the method.
- The acronym **ND** following a value indicates a non-detect or analytical result below the MDL.
- The letter **J** in the Qualifier or Flag column in the results indicates that the value is between the MDL and the LOQ. The laboratory can positively identify the analyte of interest as present, but the value should be considered an estimate.
- The letter *E* in the Qualifier or Flag column indicates an analytical result exceeding 100% of the highest calibration point. The associated value should be considered as an estimate.
- Sample results are presented 'as measured' for single injection methodologies, or an average value if multiple injections are made. If all injections are below the MDL, the sample is considered non-detect and the ND value is presented. If one, but not all, are below the MDL, the MDL value is used for any injections that are below the MDL. For example, if the MDL is 0.500 and LOQ is 1.00, and the instrument measures 0.355, 0.620, and 0.442 the result reported is the average of 0.500, 0.620, and 0.500 - i.e. 0.540 with a J flag.
- When a spike recovery (Bag Spike, Collocated Spike Train, or liquid matrix spike) is being calculated, the native (unspiked) sample result is used in the calculations, as long as the value is above the MDL. If a sample is ND, then 0 is used as the native amount (not the MDL value).
- The acronym **DF** represents Dilution Factor. This number represents dilution of the sample during the preparation and/or analysis process. The analytical result taken from a laboratory instrument is multiplied by the DF to determine the final undiluted sample results.
- The addition of MS to the Sample ID represents a Matrix Spike. An aliquot of an actual sample is spiked with a known amount of analyte so that a percent recovery value can be determined. The MS analysis indicates what effect the sample matrix may have on the target analyte, i.e. whether or not anything in the sample matrix interferes with the analysis of the analyte(s).

General Reporting Notes

(continued)

- The addition of *MSD* to the Sample ID represents a Matrix Spike Duplicate. Prepared in the same manner as a MS, the use of duplicate matrix spikes allows further confirmation of laboratory quality by showing the consistency of results gained by performing the same steps multiple times.
- The addition of *LD* to the Sample ID represents a Laboratory Duplicate. The analyst prepares an additional aliquot of sample for testing and the results of the duplicate analysis are compared to the initial result. The result should have a difference value of within 10% of the initial result (if the results of the original analysis are greater than the LOQ).
- The addition of **AD** to the Sample ID represents an Alternate Dilution. The analyst prepares an additional aliquot at a different dilution factor (usually double the initial factor). This analysis helps confirm that no additional compound is present and coeluting or sharing absorbance with the analyte of interest, as they would have a different response/absorbance than the analyte of interest.
- The Sample ID *LCS* represents a Laboratory Control Sample. Clean matrix, similar to the client sample matrix, prepared and analyzed by the laboratory using the same reagents, spiking standards and procedures used for the client samples. The LCS is used to assess the control of the laboratory's analytical system. Whenever spikes are prepared for our client projects, two spikes are retained as LCSs. The LCSs are labeled with the associated project number and kept in-house at the appropriate temperature conditions. When the project samples are received for analysis, the LCSs are analyzed to confirm that the analyte could be recovered from the media, separate from the samples which were used on the project and which may have been affected by source matrix, sample collection, and/or sample transport.
- Significant Figures: Where the reported value is much greater than unity (1.00) in the units expressed, the number is rounded to a whole number of units, rather than to 3 significant figures. For example, a value of 10,456.45 ug catch is rounded to 10,456 ug. There are five significant digits displayed, but no confidence should be placed on more than two significant digits. In the case of small numbers, generally 3 significant figures are presented, but still only 2 should be used with confidence. Many neat materials are only certified to 3 digits, and as the mathematically correct final result is always 1 digit less than all its pre-cursors 2 significant figures are what are most defensible.
- Manual Integration: The data systems used for processing will flag manually integrated peaks with an "M". There are several reasons a peak may be manually integrated. These reasons will be identified by the following two letter designations on sample chromatograms, if provided in the report. The peak was not integrated by the software "NI", the peak was integrated incorrectly by the software "II" or the wrong peak was integrated by the software "WP". These codes will accompany the analyst's manual integration stamp placed next to the compound name on the chromatogram.

Sample Custody

CHAIN OF CUSTODY RECORD

Project Name:

American Chemical

Project Manager:

Mike Oleszko

Project No.:

21.3399

TRC Office:

Ottawa

Sampling Date(s):

11/10/21

Phone No.:

(815)433-0545

Laboratory: Shipping Date(s): Enthalpy 11/22/21 PM Email:

MikeO@stacktestgroup.com

Shipper's Name:

Fed Ex

Sample Code	Sampled	Cont	tainer				Вох	
	Date	Size	G/P	MATRIX	Description	ANALYSIS	No.	Comments
North Scrubber R1	11/10/21	40ml	Glass	Air	Spiked side Imp Solution	Methanol		Method 18
North Scrubber R1	11/10/21	Tube	Glass	Air	Spiked Side Tube A #9131402533	Methanol		Method 18
North Scrubber R1	11/10/21	Tube	Glass	Air	Spiked Side Tube B #9131403017	Methanol		Method 18
North Scrubber R1	11/10/21	40ml	Glass	Air	Unspiked side Imp Solution	Methanol		Method 18
North Scrubber R1	11/10/21	Tube	Glass	Air	Unspiked Side Tube A #9131402851	Methanol		Method 18
North Scrubber R2	11/10/21	40ml	Glass	Air	Spiked side Imp Solution	Methanol		Method 18
North Scrubber R2	11/10/21	Tube	Glass	Air	Spiked Side Tube A M9131402528	Methanol		Method 18
North Scrubber R2	11/10/21	Tube	Glass	Air	Spliked Side Tube 8 #9131402846	Methanol		Method 18
North Scrubber R2	11/10/21	40ml	Glass	Air	Unspiked side Imp Solution	Methanol		Method 18
North Scrubber R2	11/10/21	Tube	Glass	Air	Unspiked Side Tube A #9131402#55	Methanol		Method 18
North Scrubber R2	11/10/21	Tube	Glass	Air	Unspiked Side Tube B #9131402857	Methanol		Method 18
North Scrubber R3	11/10/21	40ml	Glass	Air	Spiked side Imp Solution	Methanol		Method 18
North Scrubber R3	11/10/21	Tube	Glass	Air	Spiked Side Tube A N9131402529	Methanol		Method 18
North Scrubber R3	11/10/21	Tube	Glass	Air	Spiked Side Tube 8 #9131402853	Methanol		Method 18
North Scrubber R3	11/10/21	40ml	Glass	Air	Unspiked side Imp Solution	Methanol		Method 18
North Scrubber R3	11/10/21	Tube	Glass	Alr	Unspiked Side Tube A #9131409012	Methanol		Method 18
North Scrubber R3	11/10/21	Tube	Glass	Air	Unspiked Side Tube 8 #9131409015	Methanol		Method 18

1.0°C Raytek 2, good condition Amons 11.23.21

CHAIN OF CUSTODY RECORD

roject Name:							Mike Oleszko		
Project No.:	21.3399				TRC Office:	Ottawa			
Sampling Date(s):	11/10/21		_		Phone No.:	(815)433-0545			
Shipping Date(s):	Shipping Day				PM Email:	MikeO@stacktestgroup.com			
Shipper's Name:	Fed Ex		-						
	Sample	Cor	tainer				Вох		
Sample Code	Date	Size	G/P	MATRIX	Description	ANALYSIS	No.	Comments	
South Scrubber R1	11/10	21 40ml	Glass	Air	Spliked side Imp Solution	Methanol		Method 18	
South Scrubber R1	11/10	21 Tube	Glass	Alr	Spiked Side Tube A #9131402536	Methanol		Method 18	
South Scrubber R1	11/10	21 Tube	Glass	Air	Spiked Side Tube B #9131403010	Methanol		Method 18	
South Scrubber R1	11/10	21 40ml	Glass	Alr	Unspiked side Imp Solution	Methanol		Method 18	
South Scrubber R1	11/10	21 Tube	Glass	Air	Unspiked Side (ube A #9131402854	Methanol		Method 18	
South Scrubber R2	11/10	21 40ml	Glass	Air	Spiked side imp Solution	Methanol		Method 1B	
South Scrubber R2	11/10	21 Tube	Glass	Air	Spiked Side Tube A #9131402535	Methanol		Method 18	
South Scrubber R2	11/10	21 Tube	Glass	Air	Spiked Side (ube 8 #9131402852	Methanol		Method 18	
South Scrubber R2	11/10	21 40ml	Glass	Air	Unspiked side Imp Solution	Methanol		Method 18	
South Scrubber R2	11/10	21 Tube	Glass	Air	Unspiked Side Tube A #9131403014	Methanol		Method 18	
South Scrubber R2	11/10,	21 Tube	Glass	Air	Unspiked Side Tube B #9131403016	Methanol		Method 18	
South Scrubber R3	11/10	21 40ml	Glass	Air	Spiked side Imp Solution	Methanol		Method 18	
South Scrubber R3	11/10	21 Tube	Glass	Air	Spiked Side Tube A #9131402569	Methanol		Method 18	
South Scrubber R3	11/10	21 Tube	Glass	Air	Spiked Side Tube B #9131403011	Methanol		Method 18	
South Scrubber R3	11/10	21 40ml	Glass	Air	Unspiked side imp Solution	Methanol		Method 18	
South Scrubber R3	11/10,	21 Tube	Glass	Air	Unspiked Side Tube A #9131402848	Methanol		Method 18	
South Scrubber R3	11/10,	21 Tube	Glass	Air	Unspiked Side Tube B #9131402850	Methanol		Method 18	
Relinguished by:	me a-	Date/Tim	e: ///>>	1210 150	Relinquished by:				
	manullu		e: 1123	21 1120	Received by:				
Remarks (*):	c Raytik ?			EI IID	Incessed by				

CHAIN OF CUSTODY RECORD

	¥.		
Project Name:	American Chemical	Project Manager:	Mike Oleszko
Project No.:	21.3399	Office	Ottawa
Sampling Date(s):	11/10/21	Phone No.:	[815]433-0545
Laboratory:	Enthalpy	PM Email:	MikeO a stacktestgroup.com
Shipping Date(s):	11/22/21		
Shinner's Name	Fod Fy		

	Sampled	Conta	iner				Box	
Sample Code	Date	Size	G/P	MATRIX	Description	ANALYSIS	No.	Comments
North Scrubber R1	11/10/21	Tube	Glass	Air	Spiked Tuber9928000062	Toluene		Method 18
North Scrubber R1	11/10/21	Tube	Glass	Air	Umplked Tube#9779200247	Toluene		Method 18
North Scrubber R2	11/10/21	Tube	Glass	Air	Spiked Tube#9928000092	Toluene		Method 18
North Scrubber R2	11/10/21	Tube	Glass	Air	Unspiked Tube#977920091	Toluene		Method 18
North Scrubber R3	11/10/21	Tube	Glass	Air	Spiked Tube#9928000037	Toluene		Method 18
North Scrubber R3	11/10/21	Tube	Glass	Air	Unspiked Tube#9779200263	Toluene		Method 18
South Scrubber R1	11/10/21	Tube	Glass	Air	Spiked Tube#9928000073	Toluene		Method 18
South Scrubber R1	11/10/21	Tube	Glass	Air	Unspiked Tube#9779200179	Toluene		Method 18
South Scrubber R2	11/10/21	Tube	Glass	Air	Spiked Tuba#9928000077	Toluene		Method 18
South Scrubber R2	11/10/21	Tube	Glass	Air	Unspiked Tube#9779200029	Toluene		Method 18
South Scrubber R3	11/10/21	petri	Plastic	Air	Spiked Tube#9928000086	Toluene		Method 18
South Scrubber R3	11/10/21	Tube	Glass	Air	Unspiked Tube#9779200186	Toluene		Method 18
BLANK	11/10/4	Tube	GLAN	AIR	BIAN 1- TUbe	Tologia		M18
Relinquished by:				€ 1530	Relinquished by:			
Received by: Our Carrier Remarks (*):	nuller	Date/Time:	11.23.2	1030	Received by:			
1.000	antik 2,	040	d con	dition	Amm3 11-28-71			

APPENDIX F RAW VOC DATALOGGER DATA

American Chemical Solutions Muskegon, MI Test 1 VOC as PPM Propane

vocaci i ii i i opalic				North	South
Date	Time	O2 %	CO2 %	PPM	PPM
2021/11/10	10:30:00	20.9	0.1	412.4	308.1
2021/11/10	10:31:00	20.9	0.1	334.2	221.4
2021/11/10	10:32:00	20.9	0.1	361.3	182.0
2021/11/10	10:33:00	20.9	0.1	438.4	155.9
2021/11/10	10:34:00	20.9	0.1	629.6	162.5
2021/11/10	10:35:00	20.9	0.1	486.7	184.8
2021/11/10	10:36:00	20.9	0.1	359.0	193.8
2021/11/10	10:37:00	20.9	0.1	374.6	186.6
2021/11/10	10:38:00	20.9	0.1	388.2	731.4
2021/11/10	10:39:00	20.9	0.1	506.7	139.0
2021/11/10	10:40:00	20.9	0.1	568.8	145.3
2021/11/10	10:41:00	20.9	0.1	479.6	164.3
2021/11/10	10:42:00	20.9	0.1	303.1	176.0
2021/11/10	10:43:00	20.9	0.1	319.8	176.0
2021/11/10	10:44:00	20.9	0.1	382.4	147.9
2021/11/10	10:45:00	20.9	0.1	467.1	819.7
2021/11/10	10:46:00	20.9	0.1	463.3	173.6
2021/11/10	10:47:00	20.9	0.1	448.2	180.6
2021/11/10	10:48:00	20.9	0.1	270.2	187.8
2021/11/10	10:49:00	20.9	0.1	363.6	193.7
2021/11/10	10:50:00	20.9	0.1	392.2	144.7
2021/11/10	10:51:00	20.9	0.1	418.8	147.4
2021/11/10	10:52:00	20.9	0.1	513.2	158.0
2021/11/10	10:53:00	20.9	0.1	353.2	184.2
2021/11/10	10:54:00	20.9	0.1	259.6	174.0
2021/11/10	10:55:00	20.9	0.1	437.3	169.4
2021/11/10	10:56:00	20.9	0.1	398.7	156.2
2021/11/10	10:57:00	20.9	0.1	480.9	159.6
2021/11/10	10:58:00	20.9	0.1	430.7	174.0
2021/11/10	10:59:00	20.9	0.1	403.9	191.1
2021/11/10	11:00:00	20.9	0.1	408.1	180.5
2021/11/10	11:01:00	20.9	0.1	313.8	174.0
2021/11/10	11:02:00	20.9	0.1	406.1	178.3
2021/11/10	11:03:00	20.9	0.1	396.4	157.4
2021/11/10	11:04:00	20.9	0.1	407.1	162.2
2021/11/10	11:05:00	20.9	0.1	516.4	165.7
2021/11/10	11:06:00	20.9	0.1	240.7	184.6
2021/11/10	11:07:00	20.9	0.1	346.5	155.2
2021/11/10	11:08:00	20.9	0.1	400.7	148.7
2021/11/10	11:09:00	20.9	0.1	409.5	185.6
2021/11/10	11:10:00	20.9	0.1	324.0	187.6
2021/11/10	11:11:00	20.9	0.1	1023.2	185.7
2021/11/10	11:12:00	20.9	0.1	215.8	175.1
2021/11/10	11:13:00	20.9	0.1	340.1	166.4
2021/11/10	11:14:00	20.9	0.1	373.0	132.9
2021/11/10	11:15:00	20.9	0.1	291.5	125.1

2021/11/10	11:16:00	21.0	0.1	351.4	127.3
2021/11/10	11:17:00	20.9	0.1	395.3	141.7
2021/11/10	11:18:00	20.9	0.1	390.0	162.4
2021/11/10	11:19:00	20.9	0.1	399.2	172.5
2021/11/10	11:20:00	20.9	0.1	409.5	193.7
2021/11/10	11:21:00	20.9	0.1	395.8	190.5
2021/11/10	11:22:00	20.9	0.1	405.9	200.2
2021/11/10	11:23:00	21.1	0.1	396.8	204.9
2021/11/10	11:24:00	21.1	0.1	402.2	197.0
2021/11/10	11:25:00	21.2	0.1	457.0	203.0
2021/11/10	11:26:00	21.2	0.1	333.8	214.3
2021/11/10	11:27:00	21.2	0.1	362.8	195.6
2021/11/10	11:28:00	21.3	0.1	837.7	190.3
2021/11/10	11:29:00	21.3	0.1	355.5	262.2
	Avg.	20.9	0.1	412.5	196.8
	es				

American Chemical Solutions Muskegon, MI Test 2 VOC as PPM Propane

				North	South	
Date	Time	O2 %	CO2 %	PPM	PPM	
2021/11/10	13:46:00		21.3	0.1	125.8	89.9
2021/11/10	13:47:00		21.3	0.1	135.9	76.8
2021/11/10	13:48:00		21.4	0.1	147.9	70.5
2021/11/10	13:49:00		21.4	0.1	125.1	83.5
2021/11/10	13:50:00		21.3	0.1	140.7	75.1
2021/11/10	13:51:00		21.3	0.1	138.7	73.2
2021/11/10	13:52:00		21.3	0.1	146.9	83.9
2021/11/10	13:53:00		21.3	0.1	165.6	76.4
2021/11/10	13:54:00		21.3	0.1	146.5	91.7
2021/11/10	13:55:00		21.3	0.1	176.4	92
2021/11/10	13:56:00		21.3	0.1	174.9	86.9
2021/11/10	13:57:00		21.3	0.1	196.2	98.7
2021/11/10	13:58:00		21.3	0.1	231.3	97.1
2021/11/10	13:59:00		21.3	0.1	196.6	114.3
2021/11/10	14:00:00		21.3	0.1	226.6	119.8
2021/11/10	14:01:00		21.3	0.1	242.4	109.5
2021/11/10	14:02:00		21.3	0.1	251.6	118.3
2021/11/10	14:03:00		21.3	0.1	276.5	118.8
2021/11/10	14:04:00		21.3	0.1	272.6	134.5
2021/11/10	14:05:00		21.3	0.1	321.7	143
2021/11/10	14:06:00		21.3	0.1	345.7	142.3
2021/11/10	14:07:00		21.3	0.1	332	169.3
2021/11/10	14:08:00		21.3	0.1	367.3	164.7
2021/11/10	14:09:00		21.3	0.1	446.5	159.3
2021/11/10	14:10:00		21.3	0.1	347.8	182.7
2021/11/10	14:11:00		21.3	0.1	433.4	181.6
2021/11/10	14:12:00		21.3	0.1	508.9	180.3
2021/11/10	14:13:00		21.3	0.1	570.8	200.1
2021/11/10	14:14:00		21.3	0.1	664.6	240.2
2021/11/10	14:15:00		21.3	0.1	452.4	266.2
2021/11/10	14:16:00		21.3	0.1	392.1	259.4
2021/11/10	14:17:00		21.3	0.1	655.8	222.5
2021/11/10	14:18:00		21.3	0.1	522.6	165.9
2021/11/10	14:19:00		21.3	0.1	658.8 680.2	157.8 203.7
2021/11/10	14:20:00		21.3	0.1 0.1		203.7 262.6
2021/11/10	14:21:00		21.3 21.3	0.1	650.7 475.8	278.7
2021/11/10	14:22:00 14:23:00		21.3	0.1	400.5	252.9
2021/11/10 2021/11/10	14:24:00		21.3	0.1	547.3	204.8
	14:25:00		21.3	0.1	703.5	183.3
2021/11/10 2021/11/10	14:25:00		21.3	0.1	855.9	205.7
2021/11/10	14:26:00		21.3	0.1	729.9	234.6
2021/11/10	14:27:00		21.3	0.1	545	275.8
2021/11/10	14:28:00		21.2	0.1	455.7	249.2
2021/11/10	14:29:00		21.2	0.1	553.3	249.2
2021/11/10	14:30:00		21.2	0.1	772.7	171.9
2021/11/10	14.51.00		21.4	U. I	114.1	171.9

2021/11/10	14:32:00	21.3	0.1	904.4	190.6
2021/11/10	14:33:00	21.3	0.1	1102.4	238.6
2021/11/10	14:34:00	21.3	0.1	637.2	281.9
2021/11/10	14:35:00	21.3	0.1	393.5	272.7
2021/11/10	14:36:00	21.3	0.1	579	226.7
2021/11/10	14:37:00	21.3	0.1	766.9	188.8
2021/11/10	14:38:00	21.3	0.1	870.1	194.7
2021/11/10	14:39:00	21.3	0.1	1333	226.8
2021/11/10	14:40:00	21.3	0.1	745.3	222.8
2021/11/10	14:41:00	21.3	0.1	398.6	255.4
2021/11/10	14:42:00	21.3	0.1	623.2	229
2021/11/10	14:43:00	21.3	0.1	803.3	199.3
2021/11/10	14:44:00	21.3	0.1	921.8	229.6
2021/11/10	14:45:00	21.2	0.1	974.1	246.1
		24.2	0.4	400 7	470.0
	Avg.	21.3	0.1	482.7	176.3

American Chemical Solutions Muskegon, MI Test 3 VOC as PPM Propane

				North	South	
Date	Time	O2 %	CO2 %	PPM	PPM	
2021/11/10	16:07:00		21.2	0.1	794.7	139.6
2021/11/10	16:08:00		21.2	0.1	874.1	253
2021/11/10	16:09:00		21.2	0.1	955.1	339
2021/11/10	16:10:00		21.3	0.1	1024.7	351.9
2021/11/10	16:11:00		21.2	0.1	603.9	341.9
2021/11/10	16:12:00		21.2	0.1	405.7	246
2021/11/10	16:13:00		21.2	0.1	666.9	150.4
2021/11/10	16:14:00		21.3	0.1	749.8	134.8
2021/11/10	16:15:00		21.3	0.1	796.5	220.1
2021/11/10	16:16:00		21.3	0.1	852.8	299
2021/11/10	16:17:00		21.3	0.1	577.1	327.1
2021/11/10	16:18:00		21.3	0.1	381.1	267.7
2021/11/10	16:19:00		21.3	0.1	622.3	178
2021/11/10	16:20:00		21.3	0.1	832.8	140.1
2021/11/10	16:21:00		21.2	0.1	879.8	181.1
2021/11/10	16:22:00		21.2	0.1	866.4	248.7
2021/11/10	16:23:00		21.3	0.1	579.6	286.8
2021/11/10	16:24:00		21.2	0.1	455.7	256.2
2021/11/10	16:25:00		21.2	0.1	1217.7	199.5
2021/11/10	16:26:00		21.3	0.1	830.5	182.3
2021/11/10	16:27:00		21.3	0.1	1219.3	214
2021/11/10	16:28:00		21.2	0.1	841.6	266.1
2021/11/10	16:29:00		21.3	0.1	586.1	303.6
2021/11/10	16:30:00		21.2	0.1	737.6	283.6
2021/11/10	16:31:00		21.2	0.1	701.4	237.9
2021/11/10	16:32:00		21.2	0.1	880.6	210.6
2021/11/10	16:33:00		21.3	0.1	1075.3	220.9
2021/11/10	16:34:00		21.2	0.1	891.3	257.9
2021/11/10	16:35:00		21.2	0.1	718.2	297.4 289.2
2021/11/10	16:36:00		21.3	0.1	408.8	269.2
2021/11/10	16:37:00		21.3 21.2	0.1 0.1	734.5 958.8	220.8
2021/11/10	16:38:00		21.3	0.1	972	225.1
2021/11/10	16:39:00 16:40:00		21.2	0.1	926	249.2
2021/11/10	16:41:00		21.3	0.1	629	231.7
2021/11/10 2021/11/10	16:42:00		21.3	0.1	423.3	205.9
2021/11/10	16:43:00		21.3	0.1	700.1	186.7
2021/11/10	16:44:00		21.3	0.1	983.1	197.2
2021/11/10	16:45:00		21.3	0.1	618.1	234.7
2021/11/10	16:46:00		21.2	0.1	863.4	238.8
2021/11/10	16:47:00		21.3	0.1	909.4	240
2021/11/10	16:48:00		21.3	0.1	1267.1	269.3
2021/11/10	16:49:00		21.3	0.1	1079.5	293.8
2021/11/10	16:50:00		21.3	0.1	642	475.7
2021/11/10	16:51:00		21.3	0.1	488.2	317.2
2021/11/10	10.01.00		_1.0		100.2	J.1.2

2021/11/10	16:52:00	21.3	0.1	642.9	247.3	
2021/11/10	16:53:00	21.3	0.1	900.1	219.5	
2021/11/10	16:54:00	21.3	0.1	944.6	234.6	
2021/11/10	16:55:00	21.3	0.1	1008.7	264.7	
2021/11/10	16:56:00	21.3	0.1	665.2	277.8	
2021/11/10	16:57:00	21.3	0.1	807.2	268.1	
2021/11/10	16:58:00	21.3	0.1	638.7	243.6	
2021/11/10	16:59:00	21.4	0.1	831.8	220.9	
2021/11/10	17:00:00	21.3	0.1	1025.5	230.3	
2021/11/10	17:01:00	21.3	0.1	1442.5	255.5	
2021/11/10	17:02:00	21.3	0.1	706.2	306.9	
2021/11/10	17:03:00	21.3	0.1	569.8	279	
2021/11/10	17:04:00	21.2	0.1	651.8	249.1	
2021/11/10	17:05:00	21.4	0.1	802.4	225.2	
2021/11/10	17:06:00	21.3	0.1	1064.9	1349.6	
	Avg.	21.3	0.1	798.7	267.2	

APPENDIX G CALIBRATION GAS CERTIFICATION SHEETS

Airgas Specialty Gases Airgas USA, LLC 12722 S. Wentworth Ave. Chicago, IL 60628

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Part Number:

E02NI99E15A0681

Reference Number: Cylinder Volume:

54-402111863-1

Cylinder Number:

CC346019

144.4 CF

Laboratory: PGVP Number: 124 - Chicago (SAP) - IL

2015 PSIG Cylinder Pressure:

Gas Code:

B12021

Valve Outlet:

350

PPN,BALN

Certification Date:

May 17, 2021

Expiration Date: May 17, 2029

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a mole/mole basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

ANALYTICAL RESULTS							
Component	Requested Concentrat		Protocol ration Method	Total Relative Uncertainty	Assay Dates		
PROPANE NITROGEN	300.0 PPM Balance	307.4 PPN	VI G1	+/- 0.8% NIST Trace	able 05/17/2021		
CALIBRATION STANDARDS							
Туре	Lot ID	Cylinder No	Concentration	Uncertainty	Expiration Date		
NTRM	10060515	CC281302	495.3 PPM PROPANE/AIR	+/- 0.5%	Jan 06. 2022		
ANALYTICAL EQUIPMENT							
Instrument/M	lake/Model	Analyti	cal Principle	Last Multipoint Ca	alibration		
Nicolet 6700 AF	-IR0801332	FTIR		May 03, 2021			

Triad Data Available Upon Request

Approved for Release

Page 1 of 54-402111863-1

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Airgas Specialty Gases

12722 South Wentworth Avenue

Chicago, IL 60628

(773) 785-3000 Fax: (773) 785-1928

Airgas.com

Part Number:

E02NI99E15A0932

CC154341

Reference Number:

54-124499779-12

Cylinder Number: Laboratory:

ASG - Chicago - IL

Cylinder Volume:

144.4 CF 2015 PSIG

PGVP Number:

B12015

Cylinder Pressure: Valve Outlet:

350

Gas Code:

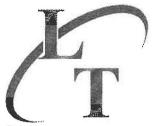
PPN, BALN

Certification Date:

Jun 22, 2015

Expiration Date: Jun 22, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.


Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals

		ANALYTI	CAL RESULT	S .	
Component	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
PROPANE NITROGEN	500.0 PPM Balance	505.9 PPM	G1	+/- 0.8% NIST Trace	able 06/22/2015
Туре	Lot ID Cv	CALIBRATI	ON STANDAR	LDS Uncertainty	Expiration Date
NTRM			M PROPANE/AIR	+/- 0.5%	Feb 19, 2016
		ANALYTIC	AL EQUIPME	NT	
Instrument/M	lake/Model	Analytical Princip	ole	Last Multipoint Ca	dibration
Nicolet 6700 Al-	IP0801333	FTIR		Jun D8, 2015	

Triad Data Available Upon Request

Alan Hurain

LIQUID TECHNOLOGY CORPORATION

"INDUSTRY LEADER IN SPECIALTY GASES"

Certificate of Analysis

- EPA PROTOCOL GAS -

Customer

Stack Test Group (Ottawa, IL)

Date

April 30, 2014

Delivery Receipt

DR-51311

Gas Standard

900 ppm Propane/Nitrogen - EPA PROTOCOL

Final Analysis Date

April 28, 2014

Expiration Date

April 28, 2022

Component

Propane

Balance Gas

Air

Analytical Data:

DO NOT USE BELOW 100 psig

EPA Protocol, Section No. 2.2, Procedure G-1

Reported Concentrations

Propane: 916 ppm +/- 3.0 ppm

Nitrogen: Balance

Reference Standards:

SRM/GMIS:

GMIS

GMIS

Cylinder Number:

CC-125618

CC-165614

Concentration:

497.23 ppm Propane/Nitrogen

1011.92 ppm Propane/Nitrogen

Expiration Date:

04/09/20

04/09/20

Certification Instrumentation

Component:

Propane

Make/Model:

Agilent 7890A

Serial Number:

CN10736166

Principal of Measurement:

GC-FID

Last Calibration:

April 09, 2014

Cylinder Data

Cylinder Serial Number:

CC-185323

Cylinder Outlet:

CGA 350

Cylinder Volume:

140 Cubic Feet

Cylinder Pressure:

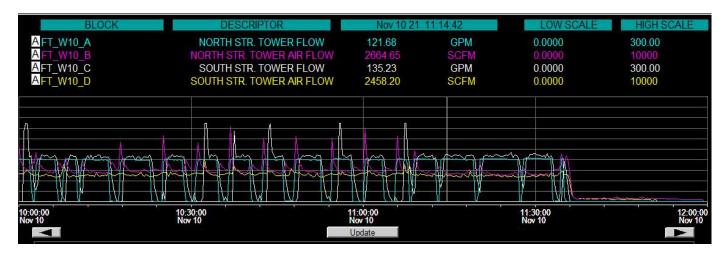
2000 psig, 70°F

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-12/531.

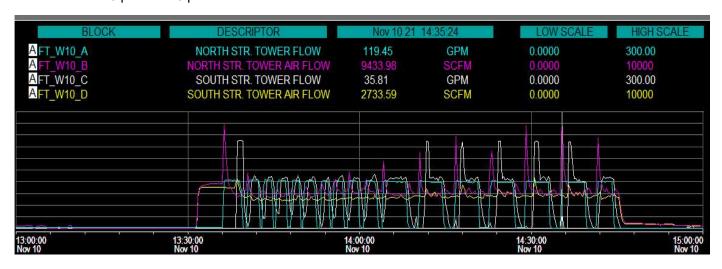
Certified by:

Cole Dylewski

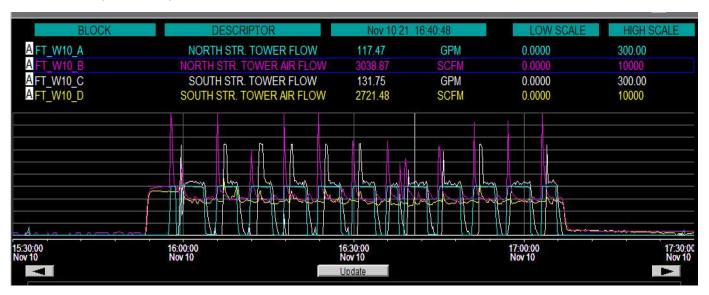
Cole Dylashi


PGVP Vendor ID: E12014

ERM	17 March 2022


Attachment 2

Operating Data


First Run 10:30 am to 11:30 am

Second Run 1:46 pm to 2:46 pm

Third Run 4:07 pm to 5:07 pm

Run 1

Time (minutes)	North Tower Water Flow (GPM)	North Tower Air Flow (SCFM)	South Tower Water Flow (GPM)	South Tower Water Flow (SCFM)
10:30	0	3068.95	5.8	2559.18
10:35	0	3650.2	54.54	2579.3
10:40	118.83	3356.05	128.42	2735.55
10:45	118.92	2732.62	128.21	2425.98
10:50	119.45	2908.79	130.14	2501.76
10:55	121.4	3754.49	0	2595.31
11:00	85.9	3280.66	0	2719.34
11:05	0	2984.57	4.02	2556.25
11:10	120.84	2916.02	131.7	2580.86
11:15	121.8	2602.15	131.52	2502.73
11:20	0.54	3028	56	2386.52
11:25	121.1	2520.9	128.17	2343.75
11:30	123.38	2529.1	131.92	2365.43
Averages	80.94	3025.58	79.26	2527.07

Run 2

Time (minutes)	North Tower Water Flow (GPM)	North Tower Air Flow (SCFM)	South Tower Water Flow (GPM)	South Tower Water Flow (SCFM)
1:46	123.39	2926.37	73.6	2500
1:51	122.44	2877.54	121.07	2377.34
1:56	122.08	4130.27	76.09	2537.89
2:01	106.19	4008.79	5.52	2581.25
2:06	118.77	2819.34	129.86	2606.84
2:11	121.18	3673.44	0	2720.12
2:16	0	2935.74	0	2687.3
2:21	0	3122.85	88.08	2640.82
2:26	119.19	2988.28	126.15	3111.72
2:31	118.43	3015.82	222.87	3100
2:36	119.7	3634.77	0	2582.62
2:41	0	2905.08	0	2757.81
2:46	0	757.42	0	547.27
Averages	82.41	3061.21	64.86	2519.31

Run 3

Time (minutes)	North Tower Water Flow (GPM)	North Tower Air Flow (SCFM)	South Tower Water Flow (GPM)	South Tower Water Flow (SCFM)
4:07	119	3439.65	99.6	2757.62
4:12	121.15	5284.18	0	2770.7
4:17	0	2880	0	2705
4:22	0	3220.51	84.37	2662.7
4:27	117.92	2754.3	134.5	2881.05
4:32	117.59	2857.81	132.44	2819.73
4:37	119.03	3173.63	126.53	2552.93
4:42	117.47	2882.81	127.96	2732.42
4:47	117.95	2973.83	126.87	2516.21
4:52	118.46	3153.91	7.04	2684.38
4:57	118.01	10017	0	2861.33
5:02	0	3001.76	24.69	2588.67
5:07	0	2543.16	0	2446.09
Averages	82.04	3706.35	66.46	2690.68