

RECEIVED

COMPLIANCE TEST REPORT

JUL 1 7 2017

AIR QUALITY DIV.

for

QUARTERLY HYDROGEN CHLORIDE (HCL) EMISSIONS

UNIT 9

(SRN: B2811)

2nd Quarter 2017

Trenton Channel Power Plant Trenton, Michigan

June 14, 2017

Prepared By: Environmental Management & Resources Environmental Field Services Group DTE Corporate Services, LLC 7940 Livernois H-136 Detroit, MI 48210

EXECUTIVE SUMMARY

DTE Energy's Environmental Management and Resources (EM&R) Field Services Group performed 2nd Quarter – 2017 Hydrogen Chloride (HCl) emissions testing on the exhaust of Unit 9 at the Trenton Channel Power Plant, located in Trenton, Michigan. The testing was required by the 40 CFR Part 63, Subpart UUUUU (Mercury and Air Toxics Standards - MATS) to document quarterly HCl stack emissions. The testing was conducted on June 14, 2017.

A summary of the emission test results are shown below:

Emissions Testing Summary Trenton Channel Power Plant Unit 9

Unit 9	6-14-17	214	0.0015
Source	Date	(GMW)	(lbs/MmBtu) ⁽¹⁾
		Load	HC

(1) MATS Limit 0.002 lbs/MMBtu

1.0 INTRODUCTION

DTE Energy's Environmental Management and Resources (EM&R) Field Services Group performed 2nd Quarter – 2017 Hydrogen Chloride (HCl) emissions testing on the exhaust of Unit 9 at the Trenton Channel Power Plant, located in Trenton, Michigan. The testing was required by the 40 CFR Part 63, Subpart UUUUU (Mercury and Air Toxics Standards - MATS) to document quarterly HCl stack emissions. The testing was conducted on June 14, 2017.

Testing was performed pursuant to USEPA Method 26A (Modified).

The fieldwork was performed in accordance with EPA Reference Methods and DTE Energy's Intent to Test¹, which was approved in a letter by Mr. Thomas Maza from the Michigan Department of Environmental Quality (MDEQ), dated January 20, 2017². DTE informed the MDEQ that the HCI emissions testing would be performed utilizing Method 26A (modified as a single point sample). The following DTE Energy personnel participated in the testing program: Mr. Thomas Snyder, Environmental Specialist, and Mr. Fred Meinecke, Senior Environmental Technician. Mr. Snyder was the project leader. Mr. Mark Nederveld, Senior Environmental Specialist at the plant provided process coordination for the testing program.

2.0 SOURCE DESCRIPTION

The Trenton Channel Power Plant (TCHPP) located at 4695 W. Jefferson Avenue, Trenton, Michigan, employs the use of one coal-fired boiler. Boiler 9A (Unit 9 Stack) is a Combustion Engineering Boiler, nominally rated at 520 net megawatts (NMW). However, the current operation reduces the capability of the U9 boiler to 460 NMW.

Boiler 9A is equipped with a Dry Sorbent Injection (DSI) and Activated Carbon Injection (ACI) air quality control system. The DSI system is used to control acid gas, PM, PM10, PM2.5, and NOx emissions from each unit. Trona is received at the plant where inline mills further refine the Trona. The ACI system is used to control Mercury emissions from each unit.

Testing was performed on Unit 9 while operating at normal load conditions, per Subpart UUUUU.

¹ MDEQ, Test Plan, Submitted January 5, 2017. (Attached-Appendix A)

² MDEQ, Approval Letter, dated January 20, 2017. (Attached-Appendix A)

3.0 SAMPLING AND ANALYTICAL PROCEDURES

DTE Energy obtained emissions measurements in accordance with procedures specified in the USEPA *Standards of Performance for New Stationary Sources* or listed as an approved *"Other Test Method"*. The sampling and analytical methods used in the testing program are indicated in the table below:

Sampling Method	Parameter	Analysis
USEPA Method 4	Moisture Content	Field data analysis and reduction
USEPA Method 26a	Hydrogen Chloride	Ion Chromatography
USEPA Method 19	Emission Rate Calculations	Stoichiometric Calculations

3.1 OXYGEN AND CARBON DIOXIDE

3.1.1 Sampling Method

Stack gas oxygen (O_2) and carbon dioxide (CO_2) emissions were evaluated using an Instrumental Analyzer. The O_2 / CO_2 analyzers utilize paramagnetic sensors.

3.1.2 O_2 / CO_2 Sampling Train

The O_2/CO_2 sampling system consisted of continuously collecting a gas sample from the stack into the exhaust of the meter sampling rig. The samples were then drawn through a Teflon[®] line into a ServomexTM 1400 O_2/CO_2 gas analyzer.

3.1.3 Sampling Train Calibration

The O_2 / CO_2 analyzer was calibrated before and after each test run. Zero, span, and mid range calibration gases were introduced directly into the analyzer to verify the instruments linearity. The O_2/CO_2 concentrations are recorded on the field data sheets.

3.2 MOISTURE DETERMINATION (USEPA Method 4)

3.2.1 Sampling Method

Determination of the moisture content of the exhaust gas was performed using the method described in USEPA Method 4, "Determination of Moisture Content in Stack Gases". The exhaust gas condensate was collected in glass impingers and the percentage of moisture was derived from calculations outlined in USEPA Method 4.

3.3 HYDROGEN CHLORIDE (USEPA Method 26A)

3.3.1 HCl Sampling Method

USEPA Method 26A, "Determination of Hydrogen Halide and Halogen Emissions" (Method 26A) was used to measure the Hydrochloric Acid (HCl) emissions (see Figure 2 for a schematic of the sampling train). Method 26A uses impingers containing 0.1N H₂SO₄ to capture the HCl. Triplicate, 60-minute test runs were conducted. The Method 26A sampling was performed as a single point sample according to Method 26 procedures.

The Method 26A stack sampling system (Figure 2) consisted of the following:

- (1) Heated glass-lined probe (Maintained >250 °F)
- (2) Heated 3" glass filter holder with a PTFE filter (maintained at a temperature of >250 °F)
- (3) Set of impingers for the collection HCl and condensate for moisture determination (Impingers containing 0.1N H₂SO₄)
- (4) Length of sample line
- (5) Environmental Supply[®] control case equipped with a pump, dry gas meter, and calibrated orifice.

All sampling was conducted at a single point according to Method 26.

After completion of each run, a leak test was conducted. All of the impingers were measured for moisture gain. Impingers 1, 2 and 3 were rinsed with water and their contents and associated rinses were collected in a pre-cleaned sample container. The containers were labeled with the test number, test location, test date, and the level of liquid marked on the outside of the container. Immediately after recovery, the sample containers were placed in a cooler for storage.

Collected field blanks consisted of a $0.1N H_2SO_4$ solution blank. 250ml of $0.1N H_2SO_4$ was collected and diluted with DI water, from the same bottle used in sample recovery, to the liquid level of the three test runs. The blank was collected and analyzed following the same procedures used to recover and analyze the field samples.

Analysis of the Method 26A samples and blanks were conducted by Maxxaam Analytics. All analysis followed the procedures listed in USEPA Method 26A. A complete laboratory report is located in Appendix E.

Field data sheets for the Method 26A sampling are located in Appendix B.

3.3.2 Quality Control and Assurance

All sampling and analytical equipment was calibrated according to the guidelines referenced in EPA Method 5 and 26A.

3.3.3 Data Reduction

The HCl emissions data collected during the testing were calculated and reported as parts per million (ppm) and pounds per million Btu (lb/MMBtu).

4.0 OPERATING PARAMETERS

The test program included the collection of boiler load and stack emissions CEMs data during each test run. Parameters recorded included gross Megawatts (GMW) and CEMs data (SO₂, NO_x, CO₂, and opacity). Additionally, dry sorbent injection rates (DSI) and activated carbon injection rates (ACI), in pounds per hour (lb/hr), are reported. Operational Data collected during the testing is presented in Appendix C.

During each day of emissions sampling, a representative coal sample was collected from the unit and analyzed for ultimate and proximate analysis, including % Sulfur, % Ash, and heat content. The results of the coal analysis was used to calculate an Fc value for each day of testing and used in the lb/MMBtu calculations. Results of the fuel analysis can be referred to in Appendix E.

5.0 DISCUSSION OF RESULTS

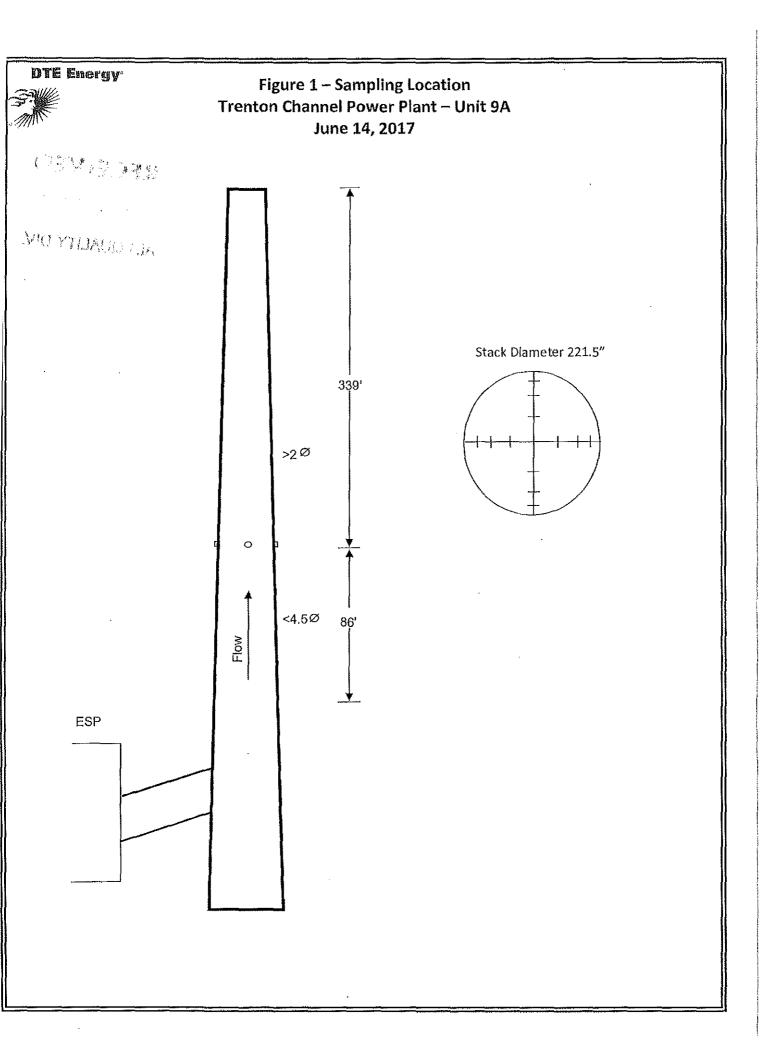
Table 1 presents the HCl emission testing results from Unit 9. HCl emissions are presented in parts per million on a wet basis (ppm_w) and pounds per million BTU (lbs/MMBtu). The Unit 9 HCl emissions during the testing averaged 0.92 ppm. Unit 9 demonstrated average HCl emissions below the Subpart UUUUU limit of 0.002 lb/MMBtu.

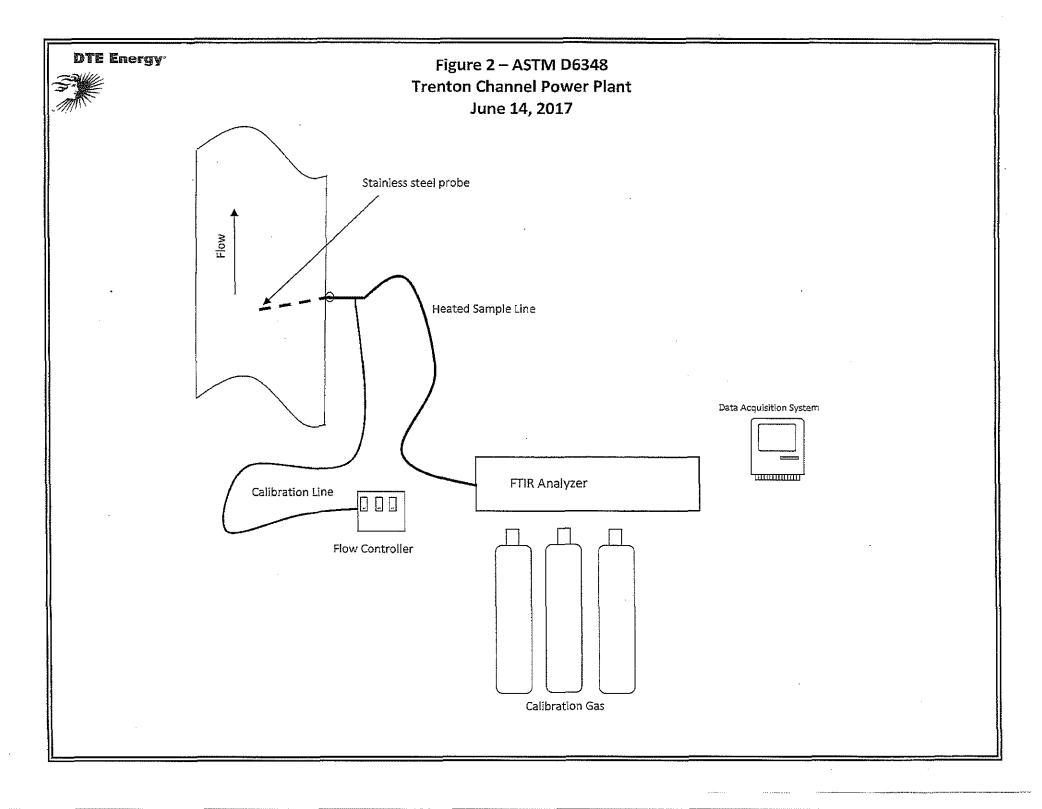
The auxiliary test data presented in the results table for each test includes the unit load in gross megawatts (GMW), DSI injection rate (lb/hr), ACI injection rate (lb/hr), and CO₂ concentration (%wet).

6.0 CERTIFICATION STATEMENT

"I certify that I believe the information provided in this document is true, accurate, and complete. Results of testing are based on the good faith application of sound professional judgment, using techniques, factors, or standards approved by the Local, State, or Federal Governing body, or generally accepted in the trade."

Mr. Thomas Snyder, QSTI


This report prepared by:


Mr. Thomas Snyder, QSTI Environmental Specialist, Field Services Group Environmental Management and Resources DTE Energy Corporate Services, LLC

This report reviewed by:

Mr. Mark Grigereit, QSTI

Principal Engineer, Field Services Group Environmental Management and Resources DTE Energy Corporate Services, LLC

