CleanAir Engineering 110 Technology Drive Pittsburgh, PA 15275 800-632-1619 cleanair.com

REPORT ON MERCURY RELATIVE ACCURACY TEST AUDIT

Belle River Power Plant Unit 2 Stack

DTE Electric Company One Energy Plaza Detroit, Michigan 48226

DTE Energy – Belle River Power Plant 4505 King Road East China Township, Michigan 48054 Client Reference No. 4701883446 CleanAir Project No. 15223 A2LA ISO 17025 Certificate No. 4342.01 A2LA / STAC Certificate No. 4342.02 Revision 0, Final Report April 30, 2024

15223-Report_R0 - No Logo.docx 43024 032000 15223

Copyright © 2024 Clean Air Engineering, Inc., Palatine, Illinois. All rights reserved.

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit CleanAir Project No. 15223 Revision 0, Final Report Page ii

COMMITMENT TO QUALITY

To the best of our knowledge, the data presented in this report are accurate, complete, error free and representative of the actual emissions during the test program. Clean Air Engineering operates in conformance with the requirements of ASTM D7036-04 Standard Practice for Competence of Air Emission Testing Bodies.

Report Submittal:

im Stroud @ 5/1/24

Jim Stroud Technical Leader, Advanced Monitoring Solutions jstroud@cleanair.com (800) 632-1619 ext. 2150

4/30/24

Date

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit CleanAir Project No. 15223 Revision 0, Final Report Page iii

REPORT REVISION HISTORY

Version	Revision	Date	Pages	Comments
Draft	D0a	04/18/24	All	Draft version of original document.
Final	0	04/30/24	All	Final version of original document.

PROJECT PERSONNEL

Name	Affiliation	Project Responsibility
Mark Grigereit	DTE Energy	Client Contact
Jim Stroud	CleanAir	Project Manager / Project Field Leader / Report Submittal
Alex Winter	CleanAir	Field Engineer
Jennifer Wright	CleanAir	Report Coordinator

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit

TABLE OF CONTENTS

1.	Project Overview	. 1
-	Test Program Summary	. 1
-	Test Program Details	. 2
	Mercury Monitoring System Information	. 2
	Parameters	. 2
	Schedule	. 2
	Discussion	. 3
2.	Results	. 4
3.	Description of Installation	. 6
I	Process Description	. 6
9	STMS Description	. 6
	Test Location	. 8
4.	Methodology	10
ſ	Procedures and Regulations	10
	Title 40 CFR Part 60, Appendix A	10
	Title 40 CFR Part 60, Appendix B Performance Specifications	10
	Title 40 CFR Part 63, Appendix A	10
١	Methodology Discussion	10
	Introduction	10
	Reference Method Sampling System	11
	Sampling Procedures	13
	Calibration and QA/QC Requirements	14
5.	Appendix	15
,	Appendix A: Test Method Specifications	.Α
,	Appendix B: Sample Calculations	. В
,	Appendix C: Parameters	. C
,	Appendix D: QA/QC Data	.D
,	Appendix E: Field Data	. E
,	Appendix F: Laboratory Data	. F
,	Appendix G: CleanAir Resumes and Certifications	.G

DTE Energy	CleanAir Project No. 15223
Belle River Power Plant	Revision 0, Final Report
Report on Mercury Relative Accuracy Test Audit	Page v

LIST OF TABLES

Table 1-1: Summary of Results / Permit Limits	. 1
Table 1-2: Mercury Monitoring System Information	. 2
Table 1-3: Parameters and Test Methods Summary	. 2
Table 1-4: Test Schedule	. 3
Table 2-1: BRPP Unit 2 – Mercury RATA Results Generated by DTE	. 4
Table 2-2: Summary of RM 30B QA/QC Results – Unit 2 STMS (Probe 1)	. 5
Table 3-1: Sampling Information	. 8
Table 4-1: EPA Method 30B Sorbent Trap Construction	12
Table 4-2: Summary of EPA 30B Operational Parameters	13

LIST OF FIGURES

Figure 3-1: MET-80XR Dual Probe STMS Schematic (Unit 2 Stack)	7
Figure 3-2: Unit 2 Stack Sample Point Layout (EPA Method 30A, Section 8.1.3.2 and 8.1.3.2.2)	9
Figure 4-1: EPA Method 30B Sampling System1	1

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit

ACRONYMS & ABBREVIATIONS

AAS (atomic absorption spectrometry) acfm (actual cubic feet per minute) ACI (activated carbon injection) ADL (above detection limit) AIG (ammonia injection grid) APC (air pollution control) AQCS (air quality control system(s)) ASME (American Society of Mechanical Engineers) ASTM (American Society for Testing and Materials) BDL (below detection limit) Btu (British thermal units) CAM (compliance assurance monitoring) CARB (California Air Resources Board) CCM (Controlled Condensation Method) CE (capture efficiency) °C (degrees Celsius) CEMS (continuous emissions monitoring system(s)) CFB (circulating fluidized bed) CFR (Code of Federal Regulations) cm (centimeter(s)) COMS (continuous opacity monitoring system(s)) CT (combustion turbine) CTI (Cooling Technology Institute) CTM (Conditional Test Method) CVAAS (cold vapor atomic absorption spectroscopy) CVAFS (cold vapor atomic fluorescence spectrometry) DI H₂O (de-ionized water) %dv (percent, dry volume) DLL (detection level limited) DE (destruction efficiency) DCI (dry carbon injection) DGM (dry gas meter) dscf (dry standard cubic feet) dscfm (dry standard cubic feet per minute) dscm (dry standard cubic meter) ESP (electrostatic precipitator) FAMS (flue gas adsorbent mercury speciation) °F (degrees Fahrenheit) FB (field blank) FCC (fluidized catalytic cracking) FCCU (fluidized catalytic cracking unit) FEGT (furnace exit gas temperatures) FF (fabric filter) FGD (flue gas desulfurization) FIA (flame ionization analyzer) FID (flame ionization detector) FPD (flame photometric detection) FRB (field reagent blank) FSTM (flue gas sorbent total mercury) ft (feet or foot) ft² (square feet)

ft³ (cubic feet) ft/sec (feet per second) FTIR (Fourier Transform Infrared Spectroscopy) FTRB (field train reagent blank) g (gram(s)) GC (gas chromatography) GFAAS (graphite furnace atomic absorption spectroscopy) GFC (gas filter correlation) gr/dscf (grains per dry standard cubic feet) > (greater than) \ge (greater than or equal to) g/s (grams per second) H₂O (water) HAP(s) (hazardous air pollutant(s)) HI (heat input) hr (hour(s)) HR GC/MS (high-resolution gas chromatography and mass spectrometry) HRVOC (highly reactive volatile organic compounds) HSRG(s) (heat recovery steam generator(s)) HVT (high velocity thermocouple) IC (ion chromatography) IC/PCR (ion chromatography with post column reactor) ICP/MS (inductively coupled argon plasma mass spectroscopy) ID (induced draft) in. (inch(es)) in. H₂O (inches water) in. Hg (inches mercury) IPA (isopropyl alcohol) ISE (ion-specific electrode) kg (kilogram(s)) kg/hr (kilogram(s) per hour) < (less than)/ \leq (less than or equal to) L (liter(s)) lb (pound(s)) lb/hr (pound per hour) lb/MMBtu (pound per million British thermal units) lb/TBtu (pound per trillion British thermal units) lb/lb-mole (pound per pound mole) LR GC/MS (low-resolution gas chromatography and mass spectrometry) m (meter) m³ (cubic meter) MACT (maximum achievable control technology) MASS® (Multi-Point Automated Sampling System) MATS (Mercury and Air Toxics Standards) MDL (method detection limit) μg (microgram(s)) min. (minute(s)) mg (milligram(s)) ml (milliliter(s))

MMBtu (million British thermal units)

CleanAir Project No. 15223

Revision 0, Final Report

Page vi

MW (megawatt(s)) NCASI (National Council for Air and Stream Improvement) ND (non-detect) NDIR (non-dispersive infrared) NDO (natural draft opening) NESHAP (National Emission Standards for Hazardous Air Pollutants) ng (nanogram(s)) Nm³ (Normal cubic meter) % (percent) PEMS (predictive emissions monitoring systems) PFGC (pneumatic focusing gas chromatography) pg (picogram(s)) PJFF (pulse jet fabric filter) ppb (parts per billion) PPE (personal protective equipment) ppm (parts per million) ppmdv (parts per million, dry volume) ppmwv (parts per million, wet volume) PSD (particle size distribution) psi (pound(s) per square inch) PTE (permanent total enclosure) PTFE (polytetrafluoroethylene) QA/QC (quality assurance/quality control) QI (qualified individual) QSTI (qualified source testing individual) QSTO (qualified source testing observer) RA (relative accuracy) RATA (relative accuracy test audit) RB (reagent blank) RE (removal or reduction efficiency) RM (reference method) scf (standard cubic feet) scfm (standard cubic feet per minute) SCR (selective catalytic reduction) SDA (spray dryer absorber) SNCR (selective non-catalytic reduction) STD (standard) STMS (sorbent trap monitoring system) TBtu (trillion British thermal units) **TEOM (Tapered Element Oscillating** Microbalance) TEQ (toxic equivalency quotient) ton/hr (ton per hour) ton/yr (ton per year) TSS (third stage separator) USEPA or EPA (United States Environmental Protection Agency) UVA (ultraviolet absorption) WFGD (wet flue gas desulfurization) %wv (percent, wet volume)

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit

1. PROJECT OVERVIEW

TEST PROGRAM SUMMARY

DTE Energy (DTE) contracted CleanAir Engineering (CleanAir) to perform a relative accuracy test audit (RATA) on a sorbent trap mercury (Hg) monitoring system (STMS) used for mercury compliance monitoring on the Unit 2 Stack at the Belle River Power Plant (BRPP) located in East China Township, Michigan.

The purpose of the test program was to complete an annual RATA on the STMS as required by 40 CFR 63, Subpart UUUUU, National Emission Standards for Hazardous Air Pollutants: Coal- and Oil-Fired Electric Utility Steam Generating Units. The STMS is a CleanAir MET-80 STMS sorbent trap monitoring system that meets or exceeds 40 CFR 60, Appendix B, Performance Specification 12B (PS 12B) requirements.

All testing was performed in accordance with the regulations set-forth by the United States Environmental Protection Agency (USEPA) and the Michigan Department of Environment, Great Lakes, and Energy (EGLE). The reference method (RM) was USEPA Method 30B, detailed in 40 CFR 60, Appendix A.

All RATA testing was performed while the unit was operating at an appropriate operating level based on the unit condition on the day of each test.

A summary of the test program results is presented below. Section 2 Results provide a more detailed account of the test conditions and data analysis. The appendices contain detailed sampling and analytical parameters that were used to calculate both the reference method and the STMS results in Table 1-1.

Table 1-1: Summary of Results / Permit Limits											
Source Constituent	Reference Method	Applicable Specification ¹	Regulation	Relative Accuracy (%)	Limit ²						
<u>Unit 2 Stack (Probe 1)</u> Hg (_µ g/dscm)	EPA 30B	PS12B	40 CFR 63, Subpart UUUUU	2.4	≤20% RM _{avg}						

¹ Relative accuracy is expressed in terms of comparison to the reference method (% RM) - % or absolute µg/dscm difference.

² Specification limits included in Appendix B, Performance Specification 12B, Section 8.3.3 and Table 12B-1.

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit

TEST PROGRAM DETAILS

MERCURY MONITORING SYSTEM INFORMATION

The mercury monitoring system is a CleanAir MET-80 STMS that samples flue gas at the EPA monitoring level of Unit 2 Stack. A summary of STMS information including serial number is shown in Table 1-2.

Table 1-2: Mercury Monitoring System Information

Facility: DTE Energy - Belle River Power Plant

Pollutant: Mercury (Hg) Total Vapor Phase

Measurement Technology: Hg Sorbent Trap Monitoring System

Manufacturer: Clean Air Engineering

Model No. MET-80XR2

Serial No. Unit 2 System 12649107

PARAMETERS

The test program included reference method measurements of total vapor-phase Hg using EPA Method 30B sampling and analysis procedures.

A summary of test parameters and methods is shown in Table 1-3.

Table 1-3: Parameters and Test Methods Summary

Parameter	Test Method/Procedure
Mercury (Hg)	40 CFR 60, App A, M30B
Hg Relative Accuracy	MDEQ Air Pollution Control Rules, Part 11, R 336.2158 and Table 111
	40 CFR 60, App B, PS 2 and PS 12B
	40 CFR 63, Subpart UUUUU, App A, Section 4

SCHEDULE

Testing was performed on April 9, 2024. Table 1-4 outlines the on-site schedule followed during the test program.

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit

Table 1-4: Test Schedule

		PS 12B											
Run No.	Date/Time Start	Date/Time End	Trap A	Trap B	Trap C	Trap D							
1**	04/09/2024 06:38	04/09/2024 07:14	OLC134941	OLC134949	OL591560	OL701531							
2	04/09/2024 07:26	04/09/2024 08:02	OLC134199	OLC134437	OLC139190	OL597960							
3	04/09/2024 08:14	04/09/2024 08:50	OLC134447	OLC134476	OLC139158	OL591563							
4	04/09/2024 09:04	04/09/2024 09:40	OLC134494	OLC134618	OLC175295	OL597952							
5	04/09/2024 09:53	04/09/2024 10:29	OLC134625	OLC134637	OLC124974	OL591552							
6	04/09/2024 10:42	04/09/2024 11:18	OLC134643	OLC134652	OLC175938	OLC138998							
7	04/09/2024 11:30	04/09/2024 12:06	OLC134665	OLC134670	OL591622	OL597791							
8	04/09/2024 12:18	04/09/2024 12:54	OLC134751	OLC134880	OL591687	OL591707							
9	04/09/2024 13:06	04/09/2024 13:42	OLC134891	OLC134895	OLC139165	OL571143							
10	04/09/2024 13:54	04/09/2024 14:30	OLC134675	OLC134928	OLC138632	OLC139021							

** Indicates data from this run are valid but excluded from the RA determination.

DISCUSSION

Program Design

CleanAir performed the RM 30B sampling during the RATA tests. The RM 30B sorbent traps were manufactured by the Ohio Lumex Company. These traps contained two sections and included an iodinated, activated charcoal sorbent. A minimum of three traps, each spiked with 30 ng of mercury, were used to complete a spike recovery study in accordance with RM 30B requirements. The test run duration was 36 minutes to meet minimum sample mass (5 ng) and spike recovery study volume requirements.

BRPP technicians performed sorbent trap exchanges for the Unit 2 Hg STMS during the test program. The STMS traps contained the same type of sorbent (iodinated, activated charcoal) as is used during normal operation, except for the sorbent bed size being smaller (400 mg versus normally 1000 mg) to accommodate the short duration of the RATA runs. All PS 12B traps were spiked with 30 ng of mercury.

CleanAir performed sorbent trap analyses for both the EPA Method 30B and Performance Specification 12B (PS 12B) sorbent traps. Analysis was performed on-site using an Ohio Lumex model RA-915+ analyzer with RP-M324 detector, which utilizes thermal desorption with Zeeman atomic absorption spectrometry.

RATA Determination

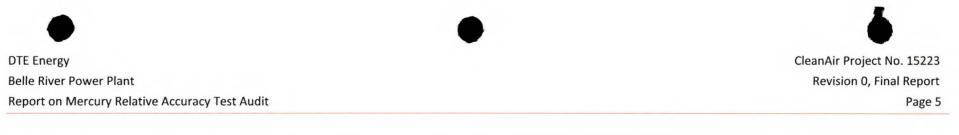
All test runs included collection and analysis of traps in pairs. Only relative accuracy runs which met all QA/QC criteria for both traps were used. The average concentration of each pair of associated traps is reported in units of μ g/dscm. The relative accuracy was calculated following the procedures specified in PS 12B, Section 8.3.

RATA Results Criteria

The criteria to evaluate the relative accuracy (RA) of the STMs is detailed in 40 CFR 63, Subpart UUUUU, Appendix A, Table A-2. A total of 10 sample runs were performed. The relative accuracy was based on nine valid sample runs following provisions allowed in 40 CFR 60, Appendix A, Performance Specification 12B, Section 8.3. The RA (3.05) passed the specification criteria of $\leq 20\%$ RM_{avg}.

Results

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit


2. RESULTS

This section summarizes the test program results. Additional results are available in the report appendices.

Table 2-1:

BRPP	Unit 2	- Mercury	RATA Results	Generated by DTE

around the labo	RATA Set Label	S. C. S. C. S.	P	1 Q2 2024 RATA	G	March Harry			
Run #	Start Date/Time	Duration	Ref Value	CEM Value	Run Used	Load			
1	04/09/2024 06:38	36	0.625	0.599	N	464			
2	04/09/2024 07:26	36	0.643	0.63	Y	548			
3	04/09/2024 08:14	36	0.648	0.657	Y	549			
4	04/09/2024 09:04	36	0.595	0.619	Y	549			
5	04/09/2024 09:53	36	0.712	0.727	Y	550			
6	04/09/2024 10:42	36	0.719	0.698	Y	550			
7	04/09/2024 11:30	36	0.681	0.673	Y	549			
8	04/09/2024 12:18	36	0.656	0.66	Y	549			
9	04/09/2024 13:06	36	0.682	0.702	Y	549			
10	04/09/2024 13:54	36	0.718	0.728	Y	549			
	Test #		Sale States						
	Average Load		The Lot of the						
	Operational Level			Н	TANK AND				
	Mean Of CEM			0.677					
	Mean Of Reference		1775-1825-1825-18	0.625 0.599 N 0.643 0.63 Y 0.648 0.657 Y 0.595 0.619 Y 0.712 0.727 Y 0.681 0.673 Y 0.656 0.666 Y 0.682 0.702 Y 0.718 0.728 Y 1 549 H					
-	Mean Of Difference		State State State	0.643 0.63 Y 0.648 0.657 Y 0.595 0.619 Y 0.712 0.727 Y 0.719 0.698 Y 0.681 0.673 Y 0.682 0.702 Y 0.718 0.728 Y 0.673 H 1 549 H 0.673 0.673 O.004 0.015 0.012 2.4 2.306 1 Passed 1					
Star	ndard Deviation Of Diff	erence	in standard in						
	Coefficient Of Confide	nce	all the factor of	0.012					
	Relative Accuracy			2.4	Contraction of the second				
	T-Value			2.306					
	Bias Adjustment Fact	or		1	The Contraction of the				
	Result		見るなどのない。	Passed					
	RATA Frequency			4QTRS					
	Testers		the State of Adams						

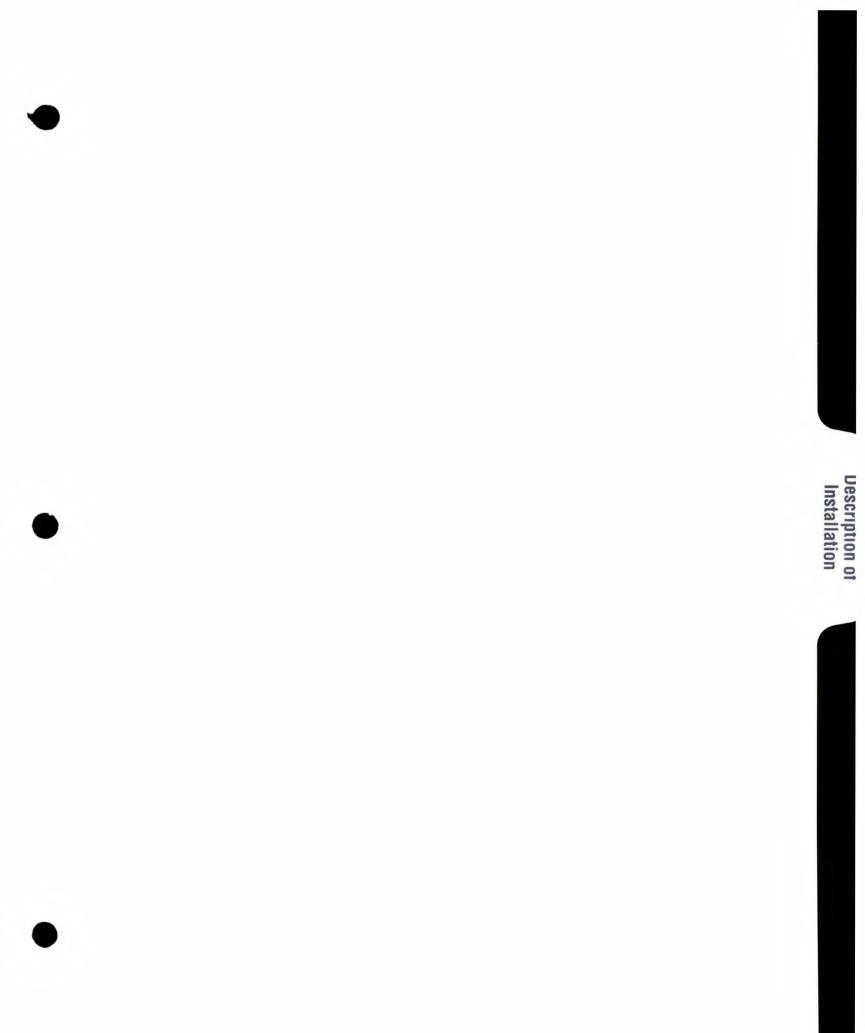

						(ii)		QA/QC	and	Per	formar	nce				
			%Break	through				%Spike	Recove		Spike R Study - V D	olume %	Spike Reco - Volume		Pre-Test Leak Check	Post-Test Leak Check
Run No.	Start Date/Time (EST)	Valid?	Trap A	Trap B	Valid?	Paired Trap Agreement	Valid?	Trap A	Tra	рВ	Trap A	Trap B	Trap A	Trap B	Trap A Trap B	Trap A Trap B
1	04/09/2024 06:38	PASS	0.0%	0.0%	PASS	0.006 (µg/dscm)	PASS	n/a	n	a	0.0%	0.1%	0.03578	0.03576	PASS	PASS
2	04/09/2024 07:26	PASS	0.0%	0.0%	PASS	0.003 (µg/dscm)	PASS	n/a	n	a	0.0%	0.0%	0.03579	0.03577	PASS	PASS
3	04/09/2024 08:14	PASS	0.0%	0.0%	PASS	0.034 (µg/dscm)	PASS	n/a	n	a	0.0%	0.0%	0.03579	0.03577	PASS	PASS
4	04/09/2024 09:04	PASS	0.0%	0.0%	PASS	0.025 (µg/dscm)	PASS	97.0%	* n.	a	n/a	0.0%	0.03579	0.03577	PASS	PASS
5	04/09/2024 09:53	PASS	0.0%	0.0%	PASS	0.005 (µg/dscm)	PASS	100.6%	* n.	a	n/a	0.0%	0.03578	0.03577	PASS	PASS
6	04/09/2024 10:42	PASS	0.0%	0.0%	PASS	0.004 (µg/dscm)	PASS	100.5%	* n	a	n/a	0.1%	0.03578	0.03576	PASS	PASS
7	04/09/2024 11:30	PASS	0.0%	0.0%	PASS	0.022 (µg/dscm)	PASS	n/a	n	a	0.0%	0.1%	0.03577	0.03576	PASS	PASS
8	04/09/2024 12:18	PASS	0.0%	0.0%	PASS	0.020 (µg/dscm)	PASS	n/a	n	a	0.0%	0.1%	0.03577	0.03576	PASS	PASS
9	04/09/2024 13:06	PASS	0.0%	0.0%	PASS	0.003 (µg/dscm)	PASS	n/a	n	a	0.0%	0.1%	0.03577	0.03575	PASS	PASS
10	04/09/2024 13:54	PASS	0.0%	0.0%	PASS	0.007 (µg/dscm)	PASS	n/a	n	a	0.0%	0.1%	0.03578	0.03576	PASS	PASS
								99.	4%			Avg.	0.03	3578		
								PA	SS						-	

Table 2-2: Summary of RM 30B QA/QC Results – Unit 2 STMS (Probe 1)

¹ "PASS" indicates the sample run is valid and all required QA/QC specifications were met.

End of Section

2

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit

3. DESCRIPTION OF INSTALLATION

PROCESS DESCRIPTION

DTE Energy (DTE) owns and operates the Belle River Power Plant located in East China Township, Michigan. The station consists of a total of two coal-fired units identified as Unit 1 and 2. The testing outlined in this report was performed on Unit 2.

Both units are coal-fired boilers that use low-sulfur western coal to minimize sulfur dioxide emissions. The units are nominally rated at 697.5 Megawatts each.

The sorbent trap probes for the unit are installed at the 1054 ft. elevation monitoring platform inside the annulus of the Unit 2 stack. Sample gas is transported through a separate extended heated sample line for each system to an environmentally controlled shelter at grade where the autosampler cabinets are located.

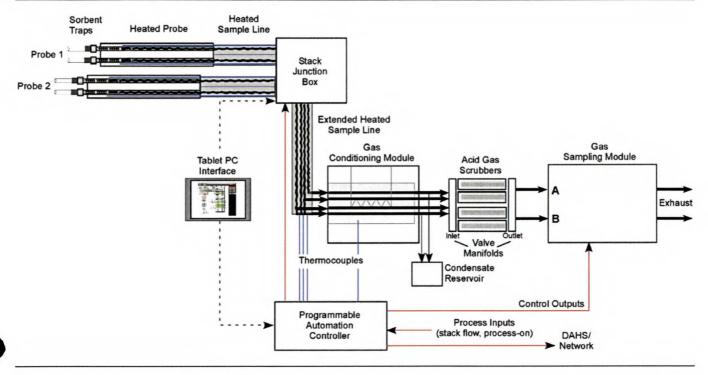
STMS DESCRIPTION

The STMS consists of a Clean Air Engineering MET-80 dual-probe sorbent trap monitoring system (Model: MET-80XR2). Aside from the sorbent traps, the MET-80 system consists of five major hardware components; two independent sorbent trap probes each with integrated heated sample lines (HSL) attached to a stack junction box (SJB), a single extended heated sample line containing six (four used and two spare) Teflon pathways for transport of sample gas, an automated gas sampler, and a logic control system. The automated gas sampler and logic control system are enclosed in an instrument rack and located in an environmentally controlled CEM shelter at the base of the stack.

The dual probe system is designed to sample through one sample probe based on process input conditions and switch to the second probe when desired based on an input from the DAHS. The sample probes are identified as Probe 1 and Probe 2, and both contain a dual path (A and B). The two probes are not collocated and are installed in two independent port locations at the monitoring level. A schematic of the system is shown in Table 3-1.

DTE Energy

Belle River Power Plant


CleanAir Project No. 15223 Revision 0, Final Report

Page 7

Report on Mercury Relative Accuracy Test Audit

Figure 3-1:

The four sample paths remain independent through the extended heated sample line and through the gas conditioner where the moisture is removed from the sample gas. After the gas conditioning module, an automated valve manifold selects the required sample probe for monitoring. Two sample paths leave the valve manifold and pass through a scrubber material for collection or residual moisture and acid gases. The sample gas then enters the gas sampling module where the sample volume is measured using thermal mass flow meter technology.

The gas sampling module contains two mass flow meters per pathway (A and B). The dual range meters allow for a wide sample flow rate range (nominally 50 cc/min to 2000 cc/min. Sample gas flows through only one mass flow meter per side (A or B) depending on the target flow that is selected by the user and required for proportional sampling.

EPA Performance Specification 12B requires that a sample gas be withdrawn proportionally to changes in the flue gas flow rate. The MET-80 system uses a programmable automation controller (PAC) and a plant-supplied digital flow signal to adjust the sampling rate set-point, while the controller continuously adjusts the control valves in the GSM to maintain the sample flow rate.

During long term monitoring, each trap consists of three equal-mass sections (~1000 mg) of iodinated activated charcoal. The charcoal sorbent is pre-checked to certify that mercury background levels are below the detection limit of the laboratory instruments. Each trap is uniquely numbered with a barcode and printed on the outside of the glass tube. The third sorbent section is pre-spiked with a known quantity of elemental mercury.

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit

TEST LOCATION

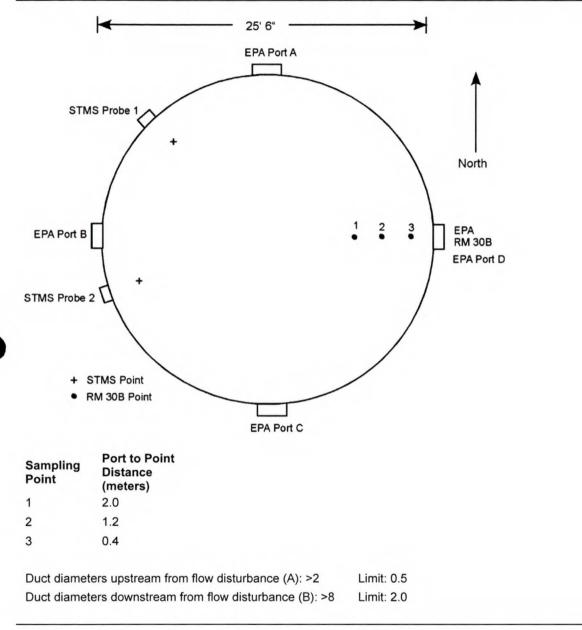
Based on facility Hg process monitor data just prior to the RATA and EPA M30B RA Runs 1 and 2, the mercury concentration was below 3 μ g/dscm at the time of the RATA, therefore the sampling location was exempt from stratification testing (EPA M30A, Section 8.1.3.2). Reference method sampling was performed at three sample points located at 0.4, 1.2, and 2.0 meters from the stack wall in accordance with EPA M30A, Section 8.1.3.2.2.

Table 3-1 outlines the sampling point configurations. Figure 3-1 illustrates the sampling points and orientation of sampling ports for the test program.

Table 3-1: Sampling Information

Source / Constituent	Method	Run No.	Ports	Points per Port	Minutes per Point	Total Minutes	Figure
Unit 2 Stack / Vapor-phase Hg	USEPA RM 30B	1-10	1	3	12	36	3-1

DTE Energy


Belle River Power Plant

Report on Mercury Relative Accuracy Test Audit

CleanAir Project No. 15223 Revision 0, Final Report Page 9

Figure 3-2:

Unit 2 Stack Sample Point Layout (EPA Method 30A, Section 8.1.3.2 and 8.1.3.2.2)

End of Section

Methodology

T

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit

4. METHODOLOGY

PROCEDURES AND REGULATIONS

The test program sampling measurements followed procedures and regulations outlined by the USEPA and Michigan Department of Environment, Great Lakes, and Energy (EGLE). These methods appear in detail in Title 40 of the CFR and at https://www.epa.gov/emc.

Appendix A includes diagrams of the sampling apparatus, as well as specifications for sampling, recovery, and analytical procedures. Any modifications to standard test methods are explicitly indicated in this appendix. Modifications to standard methods are not covered by the ISO 17025 and TNI portions of CleanAir's A2LA accreditation.

CleanAir follows specific QA/QC procedures outlined in the individual methods and in USEPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods," EPA/600/R-94/038C. Appendix D contains additional QA/QC measures, as outlined in CleanAir's internal Quality Manual.

TITLE 40 CFR PART 60, APPENDIX A

Method 30B "Determination of Total Vapor Phase Mercury Emissions from Coal-Fired Combustion Sources Using Carbon Sorbent Traps"

TITLE 40 CFR PART 60, APPENDIX B PERFORMANCE SPECIFICATIONS

- PS2 "Specifications and Test Procedures for SO₂ and NOx Continuous Emission Monitoring Systems in Stationary Sources"
- PS12A "Specifications and Test Procedures for Total Vapor Phase Mercury Continuous Monitoring Systems in Stationary Sources"
- PS12B "Specifications and Test Procedures for Monitoring Total Vapor Phase Mercury Continuous Monitoring Systems in Stationary Sources Using a Sorbent Trap Monitoring System"

TITLE 40 CFR PART 63, APPENDIX A

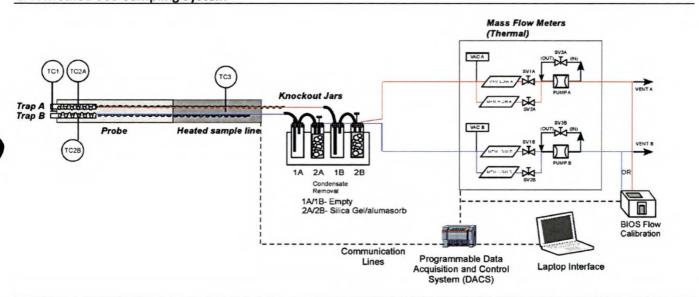
Section 4 "Certification and Recertification Requirements"

METHODOLOGY DISCUSSION

INTRODUCTION

Mercury measurements were made using sorbent trap technology and EPA 30B procedures. The following sections highlight the procedures used. Complete procedures and requirements of EPA 30B are found at http://www.epa.gov/ttn/emc/promgate/Meth30B.pdf.

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit CleanAir Project No. 15223 Revision 0, Final Report Page 11


EPA Method 30B sampling procedures use two (or three) section sorbent traps containing an iodated activated charcoal sorbent. Sorbent traps were manufactured and supplied by Ohio Lumex Company located in Solon, Ohio. Known volumes of flue gas were extracted and passed through the sorbent traps for capture of total vapor phase mercury (oxidized and elemental). Sampling was performed using simultaneous, collocated, paired automated sampling systems as per EPA 30B specifications.

The following sections provide additional details for the sampling equipment, sampling procedures and QA/QC tests performed.

REFERENCE METHOD SAMPLING SYSTEM

Figure 4-1 contains a diagram of the sampling system used for EPA RM 30B sampling.

Figure 4-1: EPA Method 30B Sampling System

System Overview

The sorbent trap sampling system conforms to EPA Method 30B specifications. The system included two independent sample paths (identified as A and B). Sample gas enters a single stainless steel or Hastelloy sample probe containing the two sorbent traps collocated in-situ to the flue gas. After passing through the traps, sample gas passes through a heated umbilical line, moisture removal components including an ice- bath condenser train and drierite scrubber, and an air-tight sample pump and a mass flow meter.

All system sensors, control and function are managed by an automated data acquisition and control system that uses a programmable automated controller. One-minute data averages were recorded for each sample run to a text file located on flash memory on the controller.

The sampling is a batch process. Using the dry gas sample volume measured by the sampling system and the results of the sorbent trap laboratory analyses, the average Hg concentration in the stack gas was determined on a dry basis.

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit

Sorbent Traps

EPA 30B, Section 6.1.1, includes the specification for mercury sampling using sorbent traps that contain at least two sections and can capture gaseous total vapor phase mercury. The sorbent traps used to collect total vapor phase mercury typically contain activated charcoal that has been impregnated with a halogen such as iodine. Each sorbent trap section including applicable sorbent material is identified in Table 4-1. Each section is separated by quartz wool.

Table 4-1: EPA Method 30B Sorbent Trap Construction

Section	Material	Description
	lodinated	
	Activated Carbon	Primary capture of total vapor phase mercury (Hg ⁰ + Hg ⁺²). Contains
1	(1)	mercury spike for applicable QA/QC sample runs.
	lodinated	
	Activated Carbon	Secondary capture of elemental mercury (Hg ⁰). Results used to
2	(2)	determine Section 1 breakthrough.

Sample Probe and Flexible Sample Line

EPA 30B, Section 6.1.2, includes the specification for the sampling probe assembly. The sorbent trap probe consists of a 316 stainless steel or Hastelloy sheath covering a pair of thermally controlled trap retaining devices and a separately controlled heated sample line containing dual PTFE tubes. The design accommodates the 30B requirement for collocated sorbent traps. This system is also designed for easy and rapid exchange of the traps between sampling periods.

Moisture Removal – Gas Conditioning Module

Moisture collection was performed using a condenser train system. The system employs a set of four (4) knockout jars chilled in an ice bath.

Gas Sampling Module – Mass Flow Meters

After conditioning, the gas sample volume was measured in the gas sampling module. The module contains two independent gas paths, with each path containing a sampling pump (PTFE-coated diaphragm), two thermal mass flow meters and flow control solenoid valves.

Each flow meter has an independent solenoid valve for control of sample flow rate during sampling. Sampling is performed at a constant sampling rate during the test period (+/- 10%). A third solenoid control valve is used to adjust the system vacuum during leak checks.

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit

Programmable Automated Control System/User Interface

System operation is managed by a programmable automated controller (PAC). The flow control system keeps sampling at the set target flow rate (+/-10%). The set-point is based on collecting an appropriate amount of mercury on the sorbent traps. The controller continuously adjusts the control valves in the gas sampling system to maintain the sample flow rate at the set-point.

The controller also records data in one-minute averages to an electronic data file that is saved to the PAC memory.

SAMPLING PROCEDURES

RM 30B operational details are shown in Table 4-2.

Table 4-2:

Summary of EPA 30B Operational Parameters

Method	40 CFR Part 60, Appendix A, Method 30B			
Analyte Measured by Reference Method	Total vapor-phase mercury (Hg ⁰ + Hg ⁺²)			
Number of Valid RM Runs	10 (9 used for RA)			
Length of RM Runs	36 minutes			
Reference Method Traverse Points	Three points located at 0.4, 1.2, and 2.0 meters from the stack wall			
Reference Method Time per Point	12 minutes			
Reference Method Sampling Rate	1000 cc/min			
Number of RM Samples per Run	Two (paired, co-located samples), identified as samples C and D			
Sorbent Trap Manufacturer	Ohio Lumex			
Number of Sections in Sorbent Trap	2			
Sorbent Material	lodinated, activated charcoal, petroleum based			
Sorbent Quantity	400 mg per section (approximate)			
Sorbent Trap Tube Material	Glass			
Spiked Section in Sorbent Trap	First section of traps			
Spike Level	30 ng			
Probe and Sample Line Material	PTFE			
Probe Temperature Control	PID			
Sample Line Temperature Control	PID			
Gas Dryer Device	Condenser train knockout jars in ice bath			
Temperature of Gas Dryer Device	~250°F			
Analytical Method	Thermal Desorption / Zeeman atomic absorption spectrometry using high frequency modulation of light polarization			
Analytical Instrument	Ohio Lumex RA-915+ with RP-M324 detector			
Minimum Analytical Detection Limit	0.50 ng (nominal)			
Calibration Range	5 – 200 ng			
Method Validation Range (Based on Bias Tests	s) 5 – 4000 ng			

DTE Energy Belle River Power Plant Report on Mercury Relative Accuracy Test Audit CleanAir Project No. 15223 **Revision 0, Final Report** Page 14

CALIBRATION AND QA/QC REQUIREMENTS

QA/QC specifications for EPA Method 30B are summarized in Table 9-1 of the method. Results of system calibration and QA/QC performance are included in Appendix D.

End of Section

