1.0 INTRODUCTION

1.1 SUMMARY OF TEST PROGRAM

DTE-St. Clair Power Plant (SCPP) (State Registration Number: B2796) contracted Montrose Air Quality Services, LLC (Montrose) to perform a compliance test program on the Coal-Fired Boiler No. 7 (EU-BOILER7-SC) at the DTE-SCPP facility located in East China Township, Michigan. Testing was performed on September 28, 2021, for the purpose of satisfying the emission testing requirements pursuant to Michigan Department of Environment, Great Lakes, and Energy (EGLE) Renewable Operating Permit No. MI-ROP-B2796-2015c and 40 CFR Part 63, Subpart UUUUU.

The specific objectives were to:

- Verify the emissions of hydrogen chloride (HCI) at the electrostatic precipitator (ESP) serving EU-BOILER7-SC
- Conduct the test program with a focus on safety

Montrose performed the tests to measure the emission parameters listed in Table 1-1.

TABLE 1-1 SUMMARY OF TEST PROGRAM

Test Date(s)	Unit ID/ Source Name	Activity/ Parameters	Test Methods	No. of Runs	Duration (Minutes)
9/28/2021	EU-BOILER7-SC	Moisture	EPA 4	3	60
9/28/2021	EU-BOILER7-SC	HCI	EPA 26	3	60

To simplify this report, a list of Units and Abbreviations is included in Appendix D.1. Throughout this report, chemical nomenclature, acronyms, and reporting units are not defined. Please refer to the list for specific details.

This report presents the test results and supporting data, descriptions of the testing procedures, descriptions of the facility and sampling locations, and a summary of the quality assurance procedures used by Montrose. The average emission test results are summarized and compared to their respective permit limits in Table 1-2. Detailed results for individual test runs can be found in Section 4.0. All supporting data can be found in the appendices.

TABLE 1-2 **SUMMARY OF AVERAGE COMPLIANCE RESULTS -EU-BOILER7-SC SEPTEMBER 28, 2021**

Parameter/Units	Average Results	Emission Limits
Hydrogen Chloride (HCI) lb/MMBtu	0.0022	0.0020

1.2 **KEY PERSONNEL**

A list of project participants is included below:

Facility Information

Source Location: DTE-St. Clair Power Plant

4400 River Road East China, MI 48054

Project Contact: Mark Grigereit Fred Meinecke

> Role: Principal Engineer Sr. Environmental Technician

Company: DTE DTE

Telephone: 313-412-0305 313-897-0214

Email: Mark.grigereit@dteenergy.com fred.meinecke@dteenergy.com

Agency Information

Regulatory Agency: EGLE

Agency Contact: Karen Kajiya-Mills Telephone: 517-335-3122

Email: kajiya-millk@michigan.gov

Testing Company Information

Testing Firm: Montrose Air Quality Services, LLC

Contact: Todd Wessel David Trahan

Field Project Manager

Title: Client Project Manager Telephone: 248-548-8070 248-548-8070

Email: twessel@montrose-env.com dtrahan@montrose-env.com

Laboratory Information

Laboratory: Enthalpy Analytical, LLC City, State: Durham, NC 27713 Method: EPA Method 26A

Test personnel and observers are summarized in Table 1-3.

TABLE 1-3 TEST PERSONNEL AND OBSERVERS

Name	Affiliation	Role/Responsibility
David Trahan	Montrose	Field Project Manager, QI
Michael Nummer	Montrose	Senior Field Technician
Mark Grigereit	DTE	Observer/Client Liaison

2.0 PLANT AND SAMPLING LOCATION DESCRIPTIONS

2.1 PROCESS DESCRIPTION, OPERATING, AND CONTROL EQUIPMENT

The DTE-SCPP employs the use of four coal-fired boilers (EU-BOILER2-SC, EU-BOILER6-SC, and EU-BOILER7-SC) to produce power throughout SE Michigan. Boiler No. 7 (EU-BOILER7-SC) is a combustion engineering boiler which operates as a base loaded unit capable of producing 3,580,000 pounds of steam per hour. The boiler's turbine generator was manufactured by Westinghouse and has a nominally rated capability of 460 MW.

EU-BOILER7-SC emissions are controlled by an American Standard ESP which has a collection efficiency of 99.6%. EU-BOILER7-SC was in operation for this test event.

2.2 FLUE GAS SAMPLING LOCATION

Information regarding the sampling location is presented in Table 2-1.

TABLE 2-1 SAMPLING LOCATION

Distance from Nearest Disturbance							
Sampling Location	Stack Inside Diameter (in.)	Downstream EPA "B" (in./dia.)	Upstream EPA "A" (in./dia.)	Number of Traverse Points			
EU-BOILER7-SC ESP Exhaust Stack	192.0	3,384 / 17.6	3,192 / 16.6	Gaseous: 1			

See Appendix A.1 for more information.

2.3 OPERATING CONDITIONS AND PROCESS DATA

Emission tests were performed while EU-BOILER7-SC and the ESP were operating at the conditions required by the permit.

Plant personnel were responsible for establishing the test conditions and collecting all applicable unit-operating data. The process data that was provided is presented in Appendix B.

3.0 SAMPLING AND ANALYTICAL PROCEDURES

3.1 TEST METHODS

The test methods for this test program were presented previously in Table 1-1. Additional information regarding specific applications or modifications to standard procedures is presented below.

3.1.1 EPA Method 4, Determination of Moisture Content in Stack Gas

EPA Method 4 is a manual, non-isokinetic method used to measure the moisture content of gas streams. Gas is sampled at a constant sampling rate through a probe and impinger train. Moisture is removed using a series of pre-weighed impingers containing methodology-specific liquids and silica gel immersed in an ice water bath. The impingers are weighed after each run to determine the percent moisture.

The typical sampling system is detailed in Figure 3-1.

3.1.2 EPA Method 19, Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

EPA Method 19 is a manual method used to determine (a) PM, SO₂, and NO_x emission rates; (b) sulfur removal efficiencies of fuel pretreatment and SO₂ control devices; and (c) overall reduction of potential SO₂ emissions. This method provides data reduction procedures, but does not include any sample collection or analysis procedures.

EPA Method 19 is used to calculate mass emission rates in units of lb/MMBtu. EPA Method 19, Table 19-2 contains a list of assigned fuel factors for different types of fuels, which can be used for these calculations.

3.1.3 EPA Method 26, Determination of Hydrogen Halide and Halogen Emissions from Stationary Sources Non-Isokinetic Method

An integrated sample is extracted from the source and passed through a pre-purged heated probe and filter into dilute sulfuric acid and dilute sodium hydroxide solutions which collect the gaseous hydrogen halides and halogens, respectively. The filter collects particulate matter including halide salts but is not routinely recovered and analyzed. The hydrogen halides are solubilized in the acidic solution and form chloride (Cl¯), bromide (Br¯), and fluoride (F¯) ions. The halogens have a very low solubility in the acidic solution and pass through to the alkaline solution where they are hydrolyzed to form a proton (H⁺), the halide ion, and the hypohalous acid (HClO or HBrO). Sodium thiosulfate is added in excess to the alkaline solution to assure reaction with hypohalous acid to form a second halide ion such that 2 halide ions are formed for each molecule of halogen gas. The halide ions in the separate solutions are measured by ion chromatography (IC).

For the purpose of this test, non-isokinetic sampling was performed. The typical sampling system is detailed in Figure 3-1.

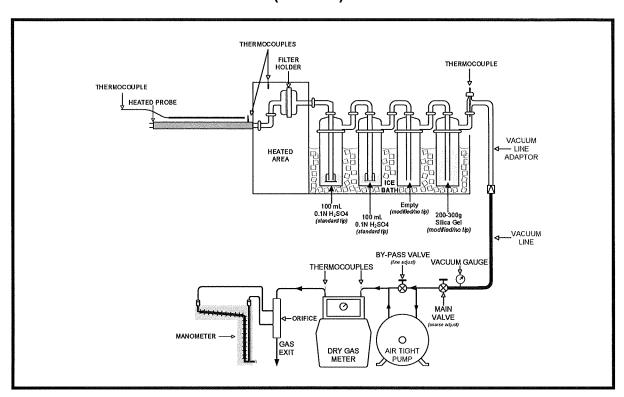


FIGURE 3-1 EPA METHOD 26 (HALIDES) SAMPLING TRAIN

3.2 PROCESS TEST METHODS

Process samples of coal were taken by DTE personnel and analyzed for Proximate and Ultimate fuel analysis.

4.0 TEST DISCUSSION AND RESULTS

4.1 FIELD TEST DEVIATIONS AND EXCEPTIONS

Initially, EPA Method 3A was performed during this test event. However, the Run 3 oxygen (O_2) and carbon dioxide (CO_2) results were determined to be outside of the acceptable ratio. It was then decided that Montrose would use CO_2 data provided by DTE-Saint Clair Power Plant CEMS to determine the HCl emissions (lb/MMBtu).

4.2 PRESENTATION OF RESULTS

The average results are compared to the permit limits in Table 1-2. The results of individual compliance test runs performed are presented in Table 4-1. Emissions are reported in units consistent with those in the applicable regulations or requirements. Additional information is included in the appendices as presented in the Table of Contents.

TABLE 4-1 HCI EMISSIONS RESULTS -EU-BOILER7-SC

Run Number	1	2	3	Average
Date	9/28/2021	9/28/2021	9/28/2021	
Time	11:10-12:10	12:25-13:25	13:35-14:35	
Process Data F-Factor, scf/MMBtu	1843.2	1843.2	1843.2	1843.2
Flue Gas Parameters				
CO ₂ , % volume wet*	10.67	10.64	10.63	10.65
flue gas temperature, °F	276.0	275.4	275.0	275.5
moisture content, % volume	8.52	9.12	9.17	8.94
Hydrogen Chloride (HCI)				
ppmvw	1.35	1.24	1.37	1.32
İb/MMBtu	0.0022	0.0020	0.0023	0.0022

^{*} The CO₂ % volume wet data was provided by facility personnel

5.0 INTERNAL QA/QC ACTIVITIES

5.1 QA/QC AUDITS

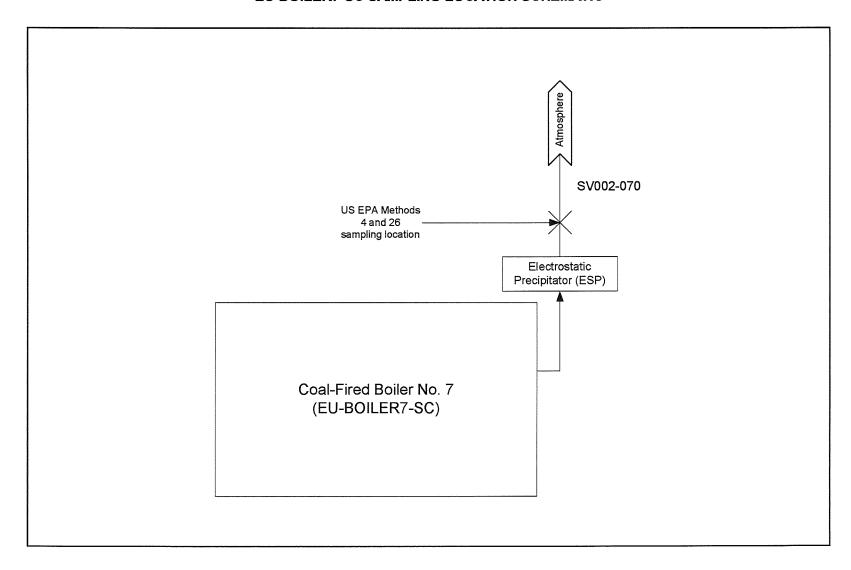
The meter box and sampling train used during sampling performed within the requirements of their respective methods. All post-test leak checks, minimum metered volumes met the applicable QA/QC criteria.

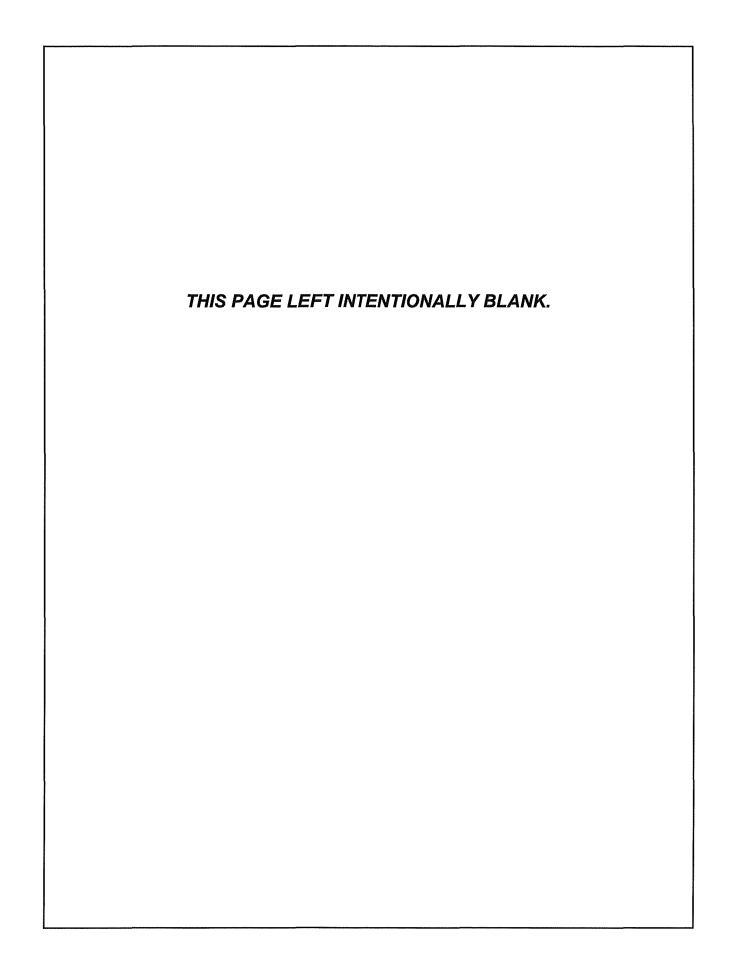
EPA Method 26A analytical QA/QC results are included in the laboratory report. The method QA/QC criteria were met.

5.2 QA/QC DISCUSSION

All QA/QC criteria were met during this test program.

5.3 QUALITY STATEMENT


Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is included in the report appendices. The content of this report is modeled after the EPA Emission Measurement Center Guideline Document (GD-043).


APPENDIX A FIELD DATA AND CALCULATIONS

Appendix A.1 Sampling Locations

EU-BOILER7-SC SAMPLING LOCATION SCHEMATIC

Appendix A.2 EU-BOILER7-SC ESP Exhaust Stack Data Sheets

TEST DATA

Number of Test Runs	3			
Traverse Points	12			
	Run 1	Run 2	Run 3	<u>Average</u>
Stack Cross-Sectional Diameter 1 (circular) (in)	192.0	192.0	192.0	192.0
Stack Cross-Sectional Diameter 2 (circular) (in)	192.0 30.01	192.0 30.03	192.0	192.0
Barometric Pressure <u>at Ground Leve</u> l (Pbar) (in Hg) Elevation Difference Between Ground Level and Meter Box Locations (ft)	580	580	30.02 580	30.02 580
Elevation Difference Between Ground Level and Sampling Locations (ft)	880	880	880	880
Initial Dry Gas Meter Reading (ft3)	454.880	500.190	546.100	000
Final Dry Gas Meter Reading (ft3)	500.050	545.920	591.670	
Dry Gas Meter Calibration Factor (Gamma)	1.026	1.026	1.026	1.026
Dry Gas Meter Calibration Coefficient (Delta H@)	1.84	1.84	1.84	1.84
Total Sampling Run Time (Theta) (min)	60	60	60	60
Volume of Water Vapor Condensed in the Impingers (g)	80.0	81.8	85.7	82.5
Weight of Water Vapor Collected in Silica Gel (g)	8.3	13.8	9.9	10.7
Test Run Start Time (hrmin)	9/28/2021 11:10	9/28/2021 12:25	9/28/2021 13:35	
Test Run Start Time (himin)		9/28/2021 12:25	9/28/2021 14:35	
rest run diep rinie (rinnin) (3/23/2021 12.10	3/20/2021 13.23	3/20/2021 14.33	
DETAILED RESULTS				
Stack Gas Conditions	Run 1	Run 2	<u>Run 3</u>	Average
Stack Cross-Sectional Area (A) (ft2)	201.06	201.06	201.06	201.06
Barometric Pressure at Sampling Location (in Hg)	29.13	29.15	29.14	29.14
Average Stack Gas Temperature (ts) (°F)	276.0	275.4	275.0	275.5
Average Stack Gas Temperature (Ts) (°R)	736.0	735.4	735.0	735.5
Percent by Volume Moisture as measured in Stack Gas (%H2O)	8.52	9.12	9.17	8.94
Test Results	<u>Run 1</u>	Run 2	Run 3	Average
Volume of Dry Gas Sampled at Standard Conditions (Vmstd) (dscf)	44.691	44.950	44.648	44.763
Rate of Dry Gas Sampled at Standard Conditions (dscfm)	0.745	0.749	0.744	0.746
Dry Mole Fraction of Flue Gas (Mfd)	0.915	0.909	0.908	0.911
Average Pressure Differential of Orifice Meter (Delta H) (in H2O)	2.00	2.00	2.00	2.00
Average DGM Temperature (tm) (°F)	80.9	84.8	86.4	84.1
Average Dry Gas Meter Temperature (Tm) (°R)	540.9	544.8	546.4	544.1
Volume of Metered Gas Sample (Vm) (dry) (acf)	45.170	45.730	45.570	45.490
SAMPLING QA				
	<u>Run 1</u>	Run 2	Run 3	Average
Post-Test Meter Calibration Check Value (Yqa)	1.048	1.038	1.043	1.043
Post-Test/Pre-Test Calibration Factor Difference (%)	-2.10	-1.18	-1.70	-1.66
Allowable Post-Test Leak Rate (dscfm)	0.020	0.020	0.020	0.020
Current Sampling Rate Status	OK	OK	OK	
1-Hour Sample Volume Based on Current Sampling Rate (dscf)	44.691	44.950	44.648	44.763
FUEL ANALYSIS		 -		
Enter Fuel Type	Run 1 Coal	Run 2 Coal	Run 3 Coal	<u>Average</u>
Examples: (Coal, NG, Wood, NA)		Valid Fuel Type	Valid Fuel Type	
Ultimate F Factor	Bur 4	D C	Marco 6	A
Ultimate Analysis (Fuel) (Dry) Percent Hydrogen (%H)	Run 1 4.74	Run 2 4.74	Run 3 4.74	Average
Percent Hydrogen (%n)	72.70	72.70	72.70	4.74 72.70
Percent Carbon (%C)	0.91	0.91	0.91	0.91
Percent Nitrogen (%N)	1.02	1.02	1.02	1.02
Percent Oxygen (%0)	14.85	14.85	14.85	14.85
Percent Ash	5.78	5.78	5.78	5.78
Gross Caloric Value (GCV) (dry)	12661	12661	12661	12661
Determined Fc Factor (scf/million BTU)	1843.2	1843.2	1843.2	1843.2

MEASURED DATA FROM TEST RUNS

		Run	Orifice	DGM	Average	
Point		Time	Delta H	Temp	DGM	Stack
Count	Run#	(min)	(in H2O)	OUT (°F)	Temp (°F)	Temp (°F)
1	1	0	2.00	79	79.00	277
2	1	5	2.00	79	79.00	277
3	1	10	2.00	79	79.00	276
4	1	15	2.00	80	80.00	276
5	1	20	2.00	80	80.00	276
6	1	25	2.00	80	80.00	276
7	1	30	2.00	81	81.00	276
8	1	35	2.00	82	82.00	276
9	1	40	2.00	82	82.00	276
10	1	45	2.00	82	82.00	276
11	1	50	2.00	83	83.00	276
12	1	55	2.00	84	84.00	274
13	2	0	2.00	84	84.00	275
14	2	5	2.00	84	84.00	276
15	2	10	2.00	84	84.00	276
16	2	15	2.00	84	84.00	276
17	2	20	2.00	84	84.00	276
18	2	25	2.00	85	85.00	275
19	2	30	2.00	85	85.00	276
20	2	35	2.00	85	85.00	274
21	2	40	2.00	85	85.00	276
22	2	45	2.00	86	86.00	275
23	2	50	2.00	86	86.00	275
24	2	55	2.00	86	86.00	275
25	3	0	2.00	86	86.00	275
26	3	5	2.00	86	86.00	275
27	3	10	2.00	86	86.00	276
28	3	15	2.00	86	86.00	276
29	3	20	2.00	86	86.00	276
30	3	25	2.00	86	86.00	275
31	3	30	2.00	86	86.00	275
32	3	35	2.00	87	87.00	275
33	3	40	2.00	87	87.00	275
34	3	45	2.00	87	87.00	274
35	3	50	2.00	87	87.00	274
36	3	55	2.00	87	87.00	274

DTE - St. Clair Power Plant Coal-Fired Boiler No. 7 (EU-BOILER7-SC) Exhaust Stack (SV002-070)

TEST DATA - CO₂

CONCENTRATION CALCULATIONS - WET SYSTEM

Calculate the Average Effluent Carbon Dioxide CO ₂ Concentration*	<u>Run 1</u>	<u>Run 2</u>	Run 3	<u>Average</u>
Average CO ₂ Concentration Indicated by Gas Analyzer, wet basis (%-wet)	10.67	10.64	10.63	10.65

^{*} Provided by facility personnel

TEST DATA - EPA Method 26A

DETAILED RESULTS

Emission Results:	<u>Run 1</u>	<u>Run 2</u>	<u>Run 3</u>	<u>Average</u>
Hydrogen Chloride (HCI) Emission Rate (lb/MMBtu)	0.00221	0.00204	0.00225	0.00217
LAB RESULTS HCL	Run 1	<u>Run 2</u>	Run 3	<u>Average</u>
HCl Total Mass in sample, (mHCl) (mg)	2.83	2.64	2.90	2.79
Volume of Dry Gas Sampled at Standard Conditions (Vmstdm) (dscm)	1.27	1.27	1.26	1.27
HCl Concentration, dry basis (ConcHCl) (mg/dscm)	2.24	2.07	2.29	2.20
HCl Concentration (ppmvd) Dry @ 68°F	1.48	1.37	1.51	1.45
HCI Concentration (ppmvw) Wet @ 68°F	1.35	1.24	1.37	1.32

US EPA Method 1 Traverse Point Determination

Relative Port Location	Left	Right
From Far Wall to Outside of Port (in.)	200.0	200.0
Nipple Length or Wall Thickness (in.)	8.0	8.0
Port Protrusion Length (opt) (in.)	0.0	0.0
Depth of Stack or Duct (in.)	192.0	192.0
Stack or Duct Type	Circular	
Port Hole Inner Diameter (in.)		
Stack or Duct Width (If Rectangular) (in.)		
Stack Outer Circumference (in.)		
Number of Ports Traversed	4	
Elevation of Meter Box from Ground Level (ft)	580	
Elevation of Ports from Ground Level (ft)	880	
Stack Build-up (in.)	0.0	
Stack Cross-Sectional Diameter 1 (in)	192.0	
Stack Cross-Sectional Diameter 2 (in)	192.0	

"Vertical" or "Horizontal" Flow	
Direction of Flow	Up
"Velocity" or "Isokinetic" Traverse	isokinetic

Port Distance Upstream from Flow Disturbance (in.)	3192.0
Diameters Upstream from Flow Disturbance (* 0.5 De)	16.6
Minimum Traverse Points Needed for a Velocity Traverse *	12
Minimum Traverse Points Needed for a Isokinetic Traverse *	12

Port Distance Downstream from Flow Disturbance (in.)	3384.0
Diameters Downstream from Flow Disturbance (3 2.0 De)	17.6
Minimum Traverse Points Needed for a Velocity Traverse *	12
Minimum Traverse Points Needed for a Isokinetic Traverse *	12

Minimum Traverse Points per Method 1	12
Number of Traverse Points for this Circular Stack or Duct	12
Point Overide	

Duct Area - in² 28952.92 Duct Area - ft² 201.0619

Note:

Add nipple protrusion length to Point 1 only.

Actual nipple length = (length - protrusion)

Relocate to a distance equal to the inside diameter of the nozzle being used or to the above minimum distances, whichever is larger.

This Stack having a diameter greater than 24-inches, shall have no traverse points located within 1.0-inch of the stack wall.

New Method 1 verified on 8/11/2021 by:

MN/MY

		% of	Dist. From	Dist. From	
Port	Point	Duct	Inside Wall	Outside Wall	
		Depth	(Decimal)	(Decimal)	
1	1	4.4	8.4	16.4	
1	2	14.6	28.0	36.0	
1	3	29.6	56.8	64.8	
2	1	4.4	8.4	16.4	
2	2	14.6	28.0	36.0	
2	3	29.6	64.8		
3	1	4.4	8.4	8.4	
3	2	14.6	28.0	28.0	
3	3	29.6	56.8	56.8	
4	1	4.4	8.4	8.4	
4	2	14.6	28.0	28.0	
4	3	29.6	56.8	56.8	

Sample Recovery & Calibration Check Data

⊃age	 of	

	· · · · · · · · · · · · · · · · · · ·											
Project Info				005 N	Equipment Identification							
Date: 9-7	0-1	S/ DO	Project #: §	8002-00	104(1)		Ref. Thermometer: (ALV) 4 Hygrometer:					
Customer /	Facility: DTD	>4P	7	······································								
Unit ID / Sa	mple Location	: <u> </u>		5-7		TAYOU TO THE STATE OF THE STATE	Field Balan	ice: <u>SCA</u>	UE 1	4		
Run #:	,2,3		Operator: _	01				ghts: <u> </u>		1		
							Calipers; _					
Balance Au	ıdit: (Field ba		be within 0.	5g of check	weight mas	s)	Ambient C	onditions (I	Mobile Lab)		
	Date:	9-28-21		T	τ	1	Relative hu	ımidity, %:		***************************************		
Standard m	ass, g	500. O					Temperatu	re, °F:		······································		
Field baland	ce mass, g	500.0	<u> </u>	<u> </u>	<u> </u>]	Mobile lab	#:				
Moisture D	etermination					100000000000000000000000000000000000000						
			Run 1			Run 2			Run 3			
	Contents	Initial	Final	Net Gain	Initial	Final	Net Gain	Initial	Final	Net Gain		
Knockout				punts			-3 . 1					
Impinger 1	In 17, 50y		754.0	51.2	715.0	773.4	58.4	711.9	776.8	64,9		
Impinger 2	In 14,504	276.1	748,1	3),0	731.8	70.8	16.0	774.8	755.3	15.5		
Impinger 3		654.5	661.3	6.8	659, J	666.6	7,4	660.2	662. 2	5.3		
Impinger 4				:80			581.8			= 05.7		
Impinger 5												
Impinger 6							<u> </u>					
Impinger 7												
Impinger 8						2						
Silica Gel		942.0	950,3	8.3	909,7	923.5	13.8	936.5	946.4	9,9		
Train Net G	ain (VIc)			88.3]		95.6			95.6		
Nozzle Mea	asurements (Difference b	etween any	/ two measu	rements mu	ust not be m	ore than 0.0	004 in (0.1 m	m))			
Nozzle 1 di	ameters		D1		D2	***************************************	D3Average					
Nozzle 2 di	ameters		_D1		D2	W-115-04-10						
Nozzle 3 di	ameters		_D1	*****	D2		Norage					
Nozzie Mat	erial: 🗆 qua	ntz 🗆 gla	iss □ ste	el 🗆 titai	nium 🗆 it	nconel 🗵	l-other <u>ル</u> ツ	11 <u>E</u>				
Probe Type	e: 🗵 heated	□ unhea	ited □ ai	r-cooled	□ water-co	oled 🗆 o	ther					
Probe Line	r: 🗆 quartz	🛭 glass	□ steel	☐ Teflon	□ other_							
Filter Infor	mation											
	□ Quartz Fi	ber □ GI	ass Fiber	☑ Teflon	☐ Teflon/	'Quartz [Other:		**********			
Filter Numb	er: Run 1: _		Run 2: _		Run 3:		Run	·				
Back Half:	□ Quartz Fil	ber □ Gl	ass Fiber	□ Teflon	☐ Teflon/	Quartz [Other:					
Reagent In	formation			***************************************	Sample O	bservation	s					
Туре		Lot Numb	er		Run 1							
					Run 2	,						
					Run 3							
					livuii 3							
										·····		
00/00 05	eck: Complete	marc: M	Logibility	T1 Appure	ov M s	polifications	. M					
					·							
Checked by	v::	.,	Tea	am Leader:_					001AS-0	PS-RBETA		

US EPA Method 4 Gravimetric Determination for Moisture US EPA Method 26 Sampling Train

RUN 1

	Initial Tare	Final Tare	Net Weights
Impinger No. 1	707.8	759.0	51.2
Impinger No. 2	726.1	748.1	22.0
Impinger No. 3	654.5	661.3	6.8
		Total Condensed:	80.0
Silica Gel	942.0	950.3	8.3
		Total Absorbed:	8.3
		Overall Total:	88.3

RUN 2

	Initial Tare	Final Tare	Net Weights
Impinger No. 1	715.0	773.4	58.4
Impinger No. 2	731.8	747.8	16.0
Impinger No. 3	659.2	7.4	
		Total Condensed:	81.8
Silica Gel	909.7	923.5	13.8
		Total Absorbed:	13.8

RUN 3

Overall Total:

95.6

_	Initial Tare	Final Tare	Net Weights
Impinger No. 1	711.9	776.8	64.9
Impinger No. 2	739.8	755.3	15.5
Impinger No. 3	660.2	5.3	
	•	Fotal Condensed:	85.7
Silica Gel	936.5	946.4	9.9
		Total Absorbed:	9.9
		Overall Total:	95.6

Test Date: September 28, 2021

	MONTROSE AIR QUALITY SERVICES	
, 🙉 . Ì.	AIR QUALITY SERVICES	

EPA Method 269 Field Datasheet (Isokinetic)

Page ______ of _____

Project Info	rmation		-	Sar	mpling Condi	tions							TC ID:		nt °F Ref. °F
Date 9	- 28-2	Project#	008915	Sta	itic Pressure, i		_		emp, °F	63			<u>5'K -</u>		
		DTE			rometric Press		30-01			NOF	1A		51K -		
		n <u> </u>	<u> </u>	Wir	nd Speed / Dir	rection	N 5 MO	n Precipitati	on, Y / 🚯 type	e		Filter Box	(HB 2		
Run# 1	,	Operator	Mike No	IMMEC Pro	be / Filter Ter	np Range, °F	248 +	25			_	Filter Exit	t		
Sampling E	quipment i	Ds	Calibration			ent Checks		re	Mid		ost	Meter out	tlet MB i	2	
Meterbox ID		B 12	Meterbox Y	1.020	Pitot (+)	, pass @ in. H	120 □ @		@	/□@		Impinger	Exit FC		
Umbilical ID	<u></u>	MB 15	_Meterbox ∆H@, in		1 Pitot (-),	pass @ in. H	₂ 0 □ @		@ /			Other			
Nozzie ID			Nozzle diameter, I	On, in	Pitot vis	ual inspection			□ pass		pass	Ref. The	rmometer ID	<u> </u>	
Pitot / Probe	ID	s' Κ	Pitot coefficient, C		Nozzie	visual inspecti	ion / 🗆	pass	pass			Continuit	y Check [] Continuity	w/ Proper Polarity
Manometer I	ID	MB 12	Manometer zero a	ind level 🖊 yes	1	fm @ in. Hg	ට. රැව	@ 15 /	@	0.000	@ Ç	Notes: _			
Sensitivi	ty	0-10	K-Factor				ck volume, ft3	7	1		1	<u> </u>			
Traverse	Elapsed	Clock Time	DGM Reading,	Velocity Head,		Pressure ntial, ΔH	Stack Temp,	Probe Temp,	Filter Te	mp, °F	Impinger	드지니 ㅜ,	Ory Gas Mel emperature,		Pump Vacuum,
Point#	Time	24hr	Vm, ft ³	ΔP in H₂O	Target	Actual	°F	°F	Box	Exit	Temp, °			utlet	in. Hg
	0	11:10	454.83	1	1	ن. 2	277	258	258		62		-	19	ス
	5		458.71	7		20	スコフ	2.00	258		57			9	2
	10		462.48	1		2.0	276	260	Z j q		55		1 -	9	2
	15		466.23			2.0	776	Z 60	762		56		1 3	?ઇ	2
	20		470.11			7.0	Z76	761	259		59		1 3	ટ	Z
	25		473_87			2 - 0	276	760	258		61		1	70	2
	30		477-63			7.0	276	261	260		59		5	}!	Z
	35		481.43			7.0	ZnC	266	261		53			32	Z
	40		485-19			2.0	216	260	259		54			32	Z
	45		488.92			Z.0	276	260	260		55		1	} 2	7
	50		492.65			7 - 0	276	260	260		55		(3	2
	55		496-38			2.6	274	260	260		55		6	4	7.
	60	12=10	500.05											1	

															l
								·							
Averages															
QA/QC Che	ck: Comple	teness Le	gibility <u>/</u> Accurac	cy Specificatio	ons <u>/</u> Chec	ked By Mi	Ke Num	<u>^∕/</u> Team L	eader <u>Da</u>	ra Tro	akan			001.	AS-QMS-FM-225F

MW049AS-008915-RT-828

25 of 123

EPA Method 26a Field Datasheet (Isokinetic)

Page	1	of	1	
, age				

Project Info			_		iling Condi							ALT 011		Ambient °	F Ref. °F
			00891					Ambient T	emp, °F			Stack			
Customer/Fa		47 <i>a</i>		Baron	netric Press	ure, in. Hg	30.03	Ref. Baroi	meter ID			Probe			
		unit Unit						h Precipitati	on, Y / Ki_typ	e		Filter Box			
Run# 2			Mike Num	Mer Probe	/ Filter Ter	np Range, °F	248 -	25				Filter Exit			
Sampling E	quipment I	Ds	Calibration			ent Checks		re	Mid			Meter outle			
Meterbox ID		1B 12		1.026					<u>@</u>	<u> </u>			xit		
Umbilical ID	U	MB 15	Meterbox ∆H@, ir		⊣ i	pass @ in. H						Other		<u> </u>	
Nozzle ID			Nozzle diameter,			ual inspectior			pass				nometer ID		
Pitot / Probe		<u>5' K</u>	Pitot coefficient, C	p		isual inspect			pass	/ 0				ontinuity w/	Proper Polarity
Manometer l	ID <u></u> (′	13 12	Manometer zero a	and level 🛭 yes	Meter, c	fm@in.Hg	0.000	@ 15 /	@	0-000	<u>@ 6</u>	Notes:			
Sensitivi	ly	0-1037	K-Factor	~			ck volume, ft3				/				
Traverse		Clock Time	DGM Reading,	Velocity Head,		Pressure ntial, ΔH	1 ''	Probe Temp,	Filter Te	emp, °F	Impinger E	Ten	y Gas Meter nperature, °F	1 1	Pump Vacuum,
Point#	Time	24hr	Vm, ft ³	ΔP in H₂O		Actual	°F	°F	Box	Exit	Temp, °	Inle			in. Hg
	Ó	12:25	500.19		1	1. j	775	761	261	i	ide		8 प		7
	5		564.03			٧,٥	276	259	262		67		84		7
	lo		507.35			1.0	276	760	261		58		84		7
	15		511.74			1. G	276	760	754		58		84		ر ک
	20		515.48			2,0	276	761	260		58		34		ζ
	25		519.28			٥.٥	215	261	261		59		85		٦
	30		523.10			7.0	276	261	760		60		35		7
	95		526.90			۲.ن	274	261	260		60		3.2		ζ
	40		530,70			え.さ	276	260	259		61		25	$\bot\bot$	Z
	45		534.50			٧.٥	275	260	254		61		86		Z
	50		538.31			7.0	275	260	261		60		3.0		Z
	22		542.10			2.0	215	760	261		GI		86		2
	60	13:25	545,92												
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										

			·												
Averages															

QA/QC Check: Completeness / Legibility / Accuracy / Specifications / Checked By Miko Number Team Leader Dave Trahan

001AS-QMS-FM-225RB

<u>Ερρ</u> Method <u>26a</u> Field Datasheet (Isokinetic)

	}	_	1
age	- (af	•
-3-			

Project Info				San	npling Cond	itions						ALT 011		Ambient °F	Ref. °F
Date 9			008915	Stat	tic Pressure,	in. H ₂ O	_					Stack			
Customer/Fa		DTE				sure, in. Hg		Ref. Baro			4	Probe			
Unit ID/Samp	ple Location	n <u>Vr</u>	iit 7	Win	id Speed / Dii	rection	UNE 6 M	Precipita	ition, Y /N, typ	e		Filter Box			
Run# 3		Operator	Mike Nu	mm≀∫ Prol	be / Filter Ter	mp Range, °F	248 t	25				Filter Exit			
Sampling E			Calibration			ent Checks	Pi		Mid	Post		Meter outle	et		
Meterbox ID		B 12		1.021	Pitot (+)	, pass @ in. H	120 □ @		@	/ D @	4	Impinger E	xit		
Umbilical ID	<u> </u>	MB 15	Meterbox ∆H@, in		Pitot (-)	, pass @ in. H			<u>@</u> /	□ @ /		Other			
Nozzie ID			Nozzle diameter, I	Dn, in		sual inspection	<u> </u>	pass	□ pass	pas			nometer ID	***************************************	
Pitot / Probe		š' K	Pitot coefficient, C	:p		visual inspecti	<u> </u>		pass	/ □ pas				ontinuity w/ Pr	oper Polarity
Manometer I		MB 12	Manometer zero a	and level 💆 yes	1	efm @ in. Hg	0-00	@ 15 /	<u> </u>	ට ~ ඇර @	<i>(</i> ,	Notes:			
Sensitivi	ty	0-10.	K-Factor				ck volume, ft3		1						
Traverse	Elapsed	Clock Time	DGM Reading,	Velocity Head,		Pressure ential, ΔH	Stack Temp,	Probe Temp,	Filter To		pinger E	-XIII TAN	y Gas Meter nperature, °F		Pump Vacuum,
Point#	Time	24hr	Vm, ft ³	ΔP in H₂O	Target		°F	°F	Box	Exit	Temp, °l	Inle	t Outle		in. Hg
	0	13:35	546.10	1		2.0	275	761	760		<u>ζ</u>		86		2
	5		550-01	1		2.0	275	740	261	(60		86		7
	10		553,83			۲. ن	276	760	759		5 Z		80		Z
	15		557.60			20	276	7 ¢ C	758		51		25		ζ
	70		561.37			2.0	276	260	761		56		86		7
	25		565.13			7.0	275	259	261		51		86		2
	30		568.92			2.0	275	26c	259		51		86		ζ
	35		572.73			७ ७ ⋅	275	259	260		51		87	1	2
	40		576,51			7.0	275	259	763		51		87		2
	45		580-29			٥.٢	274	८७०	261		52		8 7		Z
	50		534.07			ાંગ	274	Z 6 6	262		57		क्षेत्र	1	ζ
	55		587.87			7.0	274	259	2G0		52		37		ζ
	G Ø	14:35	591.67	•											
Averages															

QA/QC Check: Completeness / Legibility / Accuracy / Specifications / Checked By Mike Nummer Team Leader Dave Traihan

001AS-QMS-FM-225RB

Appendix A.3 Example Calculations

EPA Methods 4 and 26 Nomenclature and Sample Calculations

Run No. - 1

Constants

CO ₂ F _{wt} = 44.0	in wg= 0.073529	NO ₂ F _{wt} = 46.01	HCIF _{wt} = 36.46
$O_2F_{wt} = 32.0$	gr= 0.000142857	COF _{wt} = 28.01	SO ₂ F _{wt} = 64.06
$CON_2F_{wt} = 28.0$	mmBtu= 1000000 Btu	H ₂ SO ₄ F _{wt} = 98.08	Cl ₂ F _{wt} = 70.91
H ₂ OF _{wt} = 18.015	CF _{wt} = 12.011	$T_{std} = 527.67$	P _{std} = 29.92
ArF _w = 40.0	PF _{wt} = 44.0962		

Stack Variables

P _{bar} =	30.01 in, Hg	barometric pressure
	•	•
$E_{box} =$	580 ft	elevation difference between ground level and meter box
E _{sam} =	880 ft	elevation difference between ground level and sampling ports
γ =	1.0260	gamma, dry gas meter calibration factor (dimensionless)
θ =	60.0 min	net run time (minutes)
$V_{lc} =$	88.3 g	total mass of liquid collected in impingers (g)
%CO ₂ =	10.67 %	percent CO ₂ by volume (wet basis) (dimensionless)
A =	201.0619 ft ²	stack cross-sectional area
$T_{savg} =$	736.00 R	average absolute flue gas temperature (460R+tsavg °F)
ΔH =	2.00 in. wg	average pressure differential of orifice meter
$T_m =$	540.92 R	dry gas meter temperature (460R+tsavg °F)
$V_m =$	45.17 ft³	volume of metered gas sample (dry actual cubic feet)
Fc =	1843.1956 ft3/mmBtu	F-factor, standard cubic feet per million BTU

Calculated Stack Variables

Barometric pressure at sampling location

NOTE: Barometric pressure recorded at ground level

$$P_{sam} = P_{bar} - [(E_{sam} / 100 \text{ ft}) * 0.1 \text{ in. Hg}]$$

$$P_{sam} = 30.01 - ((880.0 / 100) * 0.1)$$

$$P_{sam} = 29.13 \text{ in. Hg}$$

Volume of dry gas sampled at standard conditions (dscf)

$$V_{mstd} = \gamma * Vm * [P_{bar} - ([(E_{box} / 100 \text{ ft}) * 0.1 \text{ in. Hg}] + (\Delta H / 13.6)) / P_{std}] * (T_{std} / T_m)$$

$$V_{mstd} = 1.0260 * 45.170 * ((30.01 - ((580.0 / 100) * 0.1) + (2.0000 / 13.6)) / 29.92) * (527.7 / 540.917)$$

$$V_{mstd} = 44.691 \text{ ft}^3$$

Volume of water vapor at standard conditions (68 °F, scf)

$$V_{wstd} = (0.04716 \text{ ft}^3/\text{g}) * \text{V/c}$$

$$V_{wstd} = (0.04716 * 88.3)$$

$$V_{wstd} = 4.2 \text{ ft}^3$$

Percent moisture by volume as measured in flue gas

$$\%H_2O$$
 (Measured) = $100 * [V_{wstd} / (V_{wstd} + V_{mstd})]$
 $\%H_2O$ (Measured) = $100 * (4.164 / (4.164 + 44.691))$
 $\%H_2O$ (Measured) = 8.52
 $\%H_2O$ = 8.52

Dry mole fraction of flue gas (dimensionless)

$$M_{fd} = 1 - (\%H_2O / 100)$$
 $M_{fd} = 1 - (8.52 / 100)$
 $M_{fd} = 0.915$

Method 26A Calculations

HCI concentration (ppmvd)

HClppmvd = 1.48 ppmvd

HCI concentration (ppmvw)

HCI mass emission rate (lb/MMBtu)

$$\begin{aligned} & \mathsf{MERHCl}_{\mathsf{IbMMBtu}} = (((\mathsf{ConcHClppw}_1 * 36.461 * \mathsf{ultFc}_1)/(385.3 * 10 ^ 6)) * (100 / \% \mathsf{CO}_2))) \\ & \mathsf{MERHCl}_{\mathsf{IbMMBtu}} = & 0.00221 \ \mathsf{Ib/MMBtu} \end{aligned}$$