1.0 INTRODUCTION

1.1 SUMMARY OF TEST PROGRAM

DTE Energy-Belle River Power Plant (BRPP) (State Registration Number: B2796) contracted Montrose Air Quality Services, LLC (Montrose) to perform a compliance test program on the Coal-Fired Boiler No. 2 (EU-BOILER2-BR) (part of FG-DSI/ACI-BR) at the DTE Energy-BRPP facility located in East China Township, Michigan. Testing was performed on September 20, 2021, for the purpose of satisfying the emission testing requirements pursuant to Michigan Department of Environment, Great Lakes, and Energy (EGLE) Renewable Operating Permit No. MI-ROP-B2796-2015c and 40 CFR Part 63, Subpart UUUUU.

The specific objectives were to:

- Verify the emissions of hydrogen chloride (HCl) at the electrostatic precipitator (ESP) serving EU-BOILER2-BR
- Conduct the test program with a focus on safety

Montrose performed the tests to measure the emission parameters listed in Table 1-1.

TABLE 1-1 SUMMARY OF TEST PROGRAM

Test Date(s)	Unit ID/ Source Name	Activity/ Parameters	Test Methods	No. of Runs	Duration (Minutes)
9/20/2021	EU-BOILER2-BR	O ₂ , CO ₂	EPA 3A	3	60
9/20/2021	EU-BOILER2-BR	Moisture	EPA 4	3	60
9/20/2021	EU-BOILER2-BR	HCI	EPA 26	3	60

To simplify this report, a list of Units and Abbreviations is included in Appendix D.1. Throughout this report, chemical nomenclature, acronyms, and reporting units are not defined. Please refer to the list for specific details.

This report presents the test results and supporting data, descriptions of the testing procedures, descriptions of the facility and sampling locations, and a summary of the quality assurance procedures used by Montrose. The average emission test results are summarized and compared to their respective permit limits in Table 1-2. Detailed results for individual test runs can be found in Section 4.0. All supporting data can be found in the appendices.

TABLE 1-2 SUMMARY OF AVERAGE COMPLIANCE RESULTS -EU-BOILER2-BR SEPTEMBER 20, 2021

Parameter/Units	Average Results	Emission Limits
Hydrogen Chloride (HCI) lb/MMBtu	0.00051	0.002

1.2 KEY PERSONNEL

A list of project participants is included below:

Facility Information

Source Location: DTE Energy - Belle River Power Plant

4901 Pointe Drive

East China Township, MI 48054

Project Contact: Mark Grigereit Fred Meinecke

Role: Principal Engineer Sr. Environmental Technician

Company: DTE Energy DTE Energy Telephone: 313-412-0305 313-897-0214

Email: mark.grigereit@dteenergy.com fred.meinecke@dteenergy.com

Agency Information

Regulatory Agency: EGLE

Agency Contact: Karen Kajiya-Mills Telephone: 517-335-3122

Frank Kalisa mills@miable

Email: kajiya-millk@michigan.gov

Testing Company Information

Testing Firm: Montrose Air Quality Services, LLC

Contact: Todd Wessel Shawn Jaworski

Title: Client Project Manager Senior Field Technician

Telephone: 248-548-8070 248-548-8070

Email: twessel@montrose-env.com sjaworski@montrose-env.com

Laboratory Information

Laboratory: Enthalpy Analytical, LLC

City, State: Durham, NC 27713

Method: EPA Method 26A

Test personnel and observers are summarized in Table 1-3.

TABLE 1-3 TEST PERSONNEL AND OBSERVERS

Affiliation	Role/Responsibility
Montrose	Senior Field Technician, QI
Montrose	Senior Field Technician
Montrose	Field Technician
DTE Energy	Observer/Client Liaison
	Montrose Montrose Montrose

2.0 PLANT AND SAMPLING LOCATION DESCRIPTIONS

2.1 PROCESS DESCRIPTION, OPERATING, AND CONTROL EQUIPMENT

The DTE Energy-BRPP employs the use of two coal-fired boilers (EU-BOILER1-BR and EU-BOILER2-BR) to produce power. Boilers No. 1 (EU-BOILER1-BR) and No. 2 (EU-BOILER2-BR) are Electric Generating Units (EGU) (FG-DSI/ACI-BR). EU-BOILER2-BR has a nominally rated capability of 697 MW, and its emissions are controlled by an ESP. EU-BOILER2-BR was in operation for this test event.

2.2 FLUE GAS SAMPLING LOCATION

Information regarding the sampling location is presented in Table 2-1.

TABLE 2-1 SAMPLING LOCATION

	and the second s	Distance from Ne	arest Disturbance	akki kikawa na manuka mana sa manusa manusa manusa manuka milika mahama hama hama manusa miliha kik
Sampling Location	Stack Inside Diameter (in.)	Downstream EPA "B" (in./dia.)	Upstream EPA "A" (in./dia.)	Number of Traverse Points
EU-BOILER2-BR ESP Exhaust Stack	306.0	4,920 / 16.1	1,920 / 6.3	Gaseous: 1

See Appendix A.1 for more information.

2.3 OPERATING CONDITIONS AND PROCESS DATA

Emission tests were performed while EU-BOILER2-BR and the ESP were operating at the conditions required by the permit.

Plant personnel were responsible for establishing the test conditions and collecting all applicable unit-operating data. The process data that was provided is presented in Appendix B.

3.0 SAMPLING AND ANALYTICAL PROCEDURES

3.1 TEST METHODS

The test methods for this test program were presented previously in Table 1-1. Additional information regarding specific applications or modifications to standard procedures is presented below.

3.1.1 EPA Method 3A, Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)

EPA Method 3A is an instrumental test method used to measure the concentration of O_2 and CO_2 in stack gas. The effluent gas is continuously or intermittently sampled and conveyed to analyzers that measure the concentration of O_2 and CO_2 . The performance requirements of the method must be met to validate data.

For the purpose of this test event, Tedlar bags were utilized to collect exhaust gas from the ESP exhaust stack. Then, the Tedlar bags were analyzed using EPA Method 3A. The typical sampling system is detailed in Figure 3-1.

DATA OUTPUT

DAS

O2 AND/OR CO2 ANALYZER

Sample / Calibration Gas

Exhaust

Sample / Calibration Gas

ROTAMETER WITH
FLOW CONTROL VALVE

EPA Protocol
Calibration Gases

MASS FLOW CONTROLLER /
CALIBRATION GAS MANIFOLD

Tedlar Bag

FIGURE 3-1
EPA METHOD 3A (O₂/CO₂) TEDLAR BAG SAMPLING TRAIN

3.1.2 EPA Method 4, Determination of Moisture Content in Stack Gas

EPA Method 4 is a manual, non-isokinetic method used to measure the moisture content of gas streams. Gas is sampled at a constant sampling rate through a probe and impinger train. Moisture is removed using a series of pre-weighed impingers containing methodology-specific liquids and silica gel immersed in an ice water bath. The impingers are weighed after each run to determine the percent moisture.

The typical sampling system is detailed in Figure 3-2.

3.1.3 EPA Method 19, Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates

EPA Method 19 is a manual method used to determine (a) PM, SO₂, and NO_x emission rates; (b) sulfur removal efficiencies of fuel pretreatment and SO₂ control devices; and (c) overall reduction of potential SO₂ emissions. This method provides data reduction procedures, but does not include any sample collection or analysis procedures.

EPA Method 19 is used to calculate mass emission rates in units of lb/MMBtu. EPA Method 19, Table 19-2 contains a list of assigned fuel factors for different types of fuels, which can be used for these calculations.

3.1.4 EPA Method 26, Determination of Hydrogen Halide and Halogen Emissions from Stationary Sources Non-Isokinetic Method

An integrated sample is extracted from the source and passed through a pre-purged heated probe and filter into dilute sulfuric acid and dilute sodium hydroxide solutions which collect the gaseous hydrogen halides and halogens, respectively. The filter collects particulate matter including halide salts but is not routinely recovered and analyzed. The hydrogen halides are solubilized in the acidic solution and form chloride (Cl⁻), bromide (Br⁻), and fluoride (F⁻) ions. The halogens have a very low solubility in the acidic solution and pass through to the alkaline solution where they are hydrolyzed to form a proton (H⁺), the halide ion, and the hypohalous acid (HClO or HBrO). Sodium thiosulfate is added in excess to the alkaline solution to assure reaction with hypohalous acid to form a second halide ion such that 2 halide ions are formed for each molecule of halogen gas. The halide ions in the separate solutions are measured by ion chromatography (IC).

For the purpose of this test, non-isokinetic sampling was performed. The typical sampling system is detailed in Figure 3-2.

THERMOCOUPLES THERMOCOUPLE THERMOCOUPLE HEATED PROBE VACUUM --- LINE ADAPTOR p) 200-300g Silica Gel (modified/no tip) 0.1N H₂SO4 (standard tip) 0.1N H₂SO4 (standard (b) _VACUUM LINE BY-PASS VALVE

Form indicated UNCUUM GAUGE THERMOCOUPLES 0 MAIN MANOMETER 0 DRY GAS AIR TIGHT

FIGURE 3-2 EPA METHOD 26 (HALIDES) SAMPLING TRAIN

3.2 PROCESS TEST METHODS

Process samples of coal were taken by DTE Energy personnel and analyzed for Proximate and Ultimate fuel analysis.

4.0 TEST DISCUSSION AND RESULTS

4.1 FIELD TEST DEVIATIONS AND EXCEPTIONS

No field deviations or exceptions from the test plan or test methods occurred during this test program.

4.2 PRESENTATION OF RESULTS

The average results are compared to the permit limits in Table 1-2. The results of individual compliance test runs performed are presented in Table 4-1. Emissions are reported in units consistent with those in the applicable regulations or requirements. Additional information is included in the appendices as presented in the Table of Contents.

TABLE 4-1 HCI EMISSIONS RESULTS -EU-BOILER2-BR

Run Number	1	2	3	Average
Date	9/20/2021	9/20/2021	9/20/2021	
Time	9:55-10:55	11:00-12:00	12:05-13:05	
Process Data				
F-Factor, dscf/MMBtu	9694.8	9694.8	9694.8	9694.8
Flue Gas Parameters				
O ₂ , % volume dry	9.74	8.69	9.06	9.16
CO ₂ , % volume dry	10.31	11.12	10.35	10.59
flue gas temperature, °F	314.0	316.0	318.3	316.1
moisture content, % volume	11.04	10.96	11.35	11.12
Hydrogen Chloride (HCI)				
ppmvd	0.29	0.24	0.41	0.31
lb/MMBtu	0.00050	0.00038	0.00066	0.00051

5.0 INTERNAL QA/QC ACTIVITIES

5.1 QA/QC AUDITS

The meter box and sampling train used during sampling performed within the requirements of their respective methods. All post-test leak checks, minimum metered volumes met the applicable QA/QC criteria.

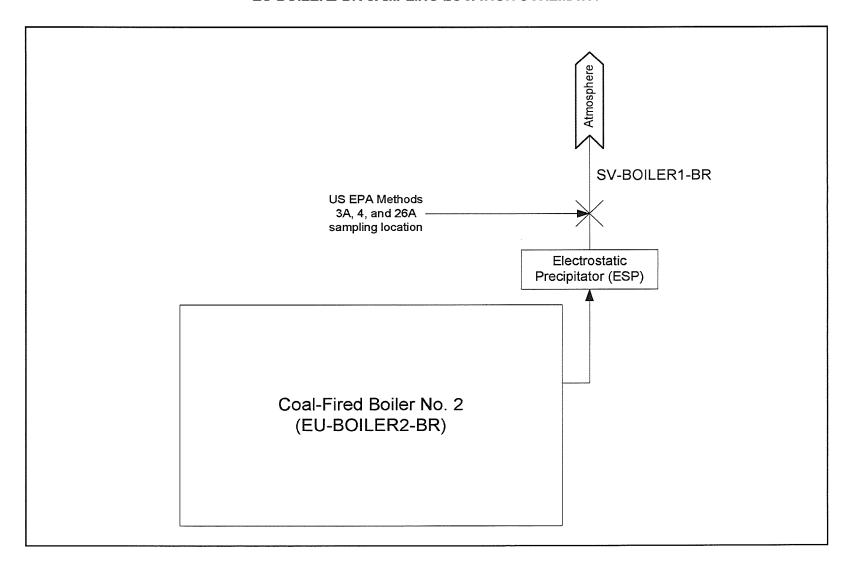
EPA Method 3A calibration audits were all within the measurement system performance specifications for the calibration drift checks, system calibration bias checks, and calibration error checks.

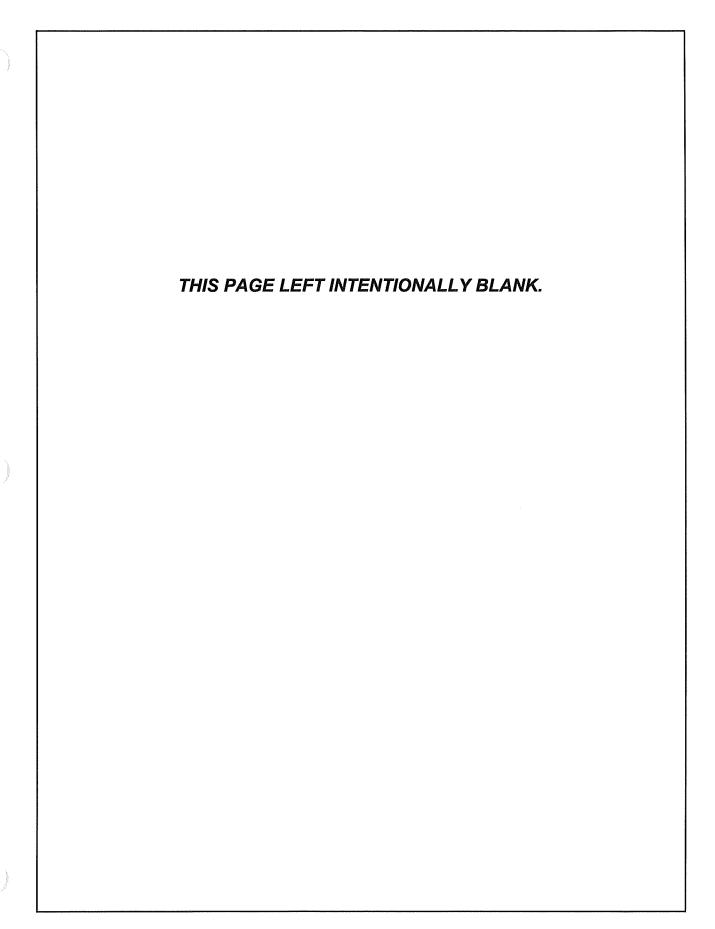
EPA Method 26A analytical QA/QC results are included in the laboratory report. The method QA/QC criteria were met.

5.2 QA/QC DISCUSSION

All QA/QC criteria were met during this test program.

5.3 QUALITY STATEMENT


Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is included in the report appendices. The content of this report is modeled after the EPA Emission Measurement Center Guideline Document (GD-043).


APPENDIX A FIELD DATA AND CALCULATIONS

Appendix A.1 Sampling Locations

EU-BOILER2-BR SAMPLING LOCATION SCHEMATIC

Appendix A.2 EU-BOILER2-BR ESP Exhaust Stack Data Sheets

TEST DATA

Number of Test Runs	3			
Traverse Points	12			
	Run 1	<u>Run 2</u>	Run 3	Average
Stack Cross-Sectional Diameter 1 (circular) (in)	306.0	306.0	306.0	306.0
Stack Cross-Sectional Diameter 2 (circular) (in)	306.0	306.0	306.0	306.0
Barometric Pressure <u>at Ground Leve</u> l (Pbar) (in Hg)	30.10	30.10	30.10	30.10
Elevation Difference Between Ground Level and Meter Box Locations (ft)	500	500	500	500
Elevation Difference Between Ground Level and Sampling Locations (ft)	1000	1000	1000	1000
Initial Dry Gas Meter Reading (ft3)	584.460	629.858	675.138	
Final Dry Gas Meter Reading (ft3)	629.708	674.998	720.677	
Dry Gas Meter Calibration Factor (Gamma)	1.018	1.018	1.018	1.018
Dry Gas Meter Calibration Coefficient (Delta H@)[1.84	1.84	1.84	1.84
Total Sampling Run Time (Theta) (min)	60	60	60	60
Volume of Water Vapor Condensed in the Impingers (g)	100.1	94.3	110.2	101.5
Weight of Water Vapor Collected in Silica Gel (g)	16.4	19.7	9.0	15.0
Air Percent by Volume Oxygen in Stack Gas (%-dry)	9.74	8.69	9.06	9.16
Air Percent by Volume Carbon Dioxide in Stack Gas (%-dry)	10.31	11.12	10.35	10.59
Air Percent by Volume Nitrogen In Stack Gas (%-dry)	79.96	80.18	80.59	80.24
/ in rotation by volume randger in class. Cas (/c ary)		331.3		
Test Run Start Time (hrmin)[9/20/2021 9:55	9/20/2021 11:00	9/20/2021 12:05	
Test Run Stop Time (hrmin)	9/20/2021 10:55	9/20/2021 12:00	9/20/2021 13:05	
DETAILED RESULTS				
Stack Gas Conditions	<u>Run 1</u>	<u>Run 2</u>	Run 3	<u>Average</u>
Stack Cross-Sectional Area (A) (ft2)	510.71	510.71	510.71	510.71
Barometric Pressure at Sampling Location (in Hg)	29.10	29.10	29.10	29.10
Dry Molecular Weight of Stack Gas (Md) (lb/lb-mole)	30.04	30.13	30.02	30.06
Wet Molecular Weight of Stack Gas (Ms) (lb/lb-mole)	28.71	28.80	28.66	28.72
Average Stack Gas Temperature (ts) (°F)	314.0	316.0	318.3	316.1
Average Stack Gas Temperature (Ts) (°R)	774.0	776.0	778.3	776.1
Percent by Volume Moisture as measured in Stack Gas (%H2O)	11.04	10.96	11.35	11.12
Test Results	Run 1	Run 2	Run 3	_
				Average
Volume of Dry Gas Sampled at Standard Conditions (Vmstd) (dscf)	44.276	43.667	43.887	43.943
Rate of Dry Gas Sampled at Standard Conditions (dscfm)	0.738	0.728	0.731	0.732
Dry Mole Fraction of Flue Gas (Mfd)	0.890	0.890	0.886	0.889
Average Pressure Differential of Orifice Meter (Delta H) (In H2O)	2.00	2.00	2.00	2.00
Average DGM Temperature (tm) (°F)	85.8	92.1	94.2	90.7
Average Dry Gas Meter Temperature (Tm) (°R)	545.8	552.1	554.2	550.7
Volume of Metered Gas Sample (Vm) (dry) (acf)	45.248	45.140	45.539	45.309
SAMPLING QA				
	<u>Run 1</u>	Run 2	Run 3	Average
Post-Test Meter Calibration Check Value (Yqa)	1.031	1.037	1.032	1.033
Post-Test/Pre-Test Calibration Factor Difference (%)	-1.24	-1.91	-1.39	-1.51
1 oct 10001 to 1000 Odilbration 1 dotor Difference (70)	, ema [™] T	1.01		
Allowable Post-Test Leak Rate (dscfm)	0.020	0.020	0.020	0.020
Current Sampling Rate Status	ОК	OK	OK	
1-Hour Sample Volume Based on Current Sampling Rate (dscf)	44.276	43.667	43.887	43.943

FUEL ANALYSIS

	<u>Run 1</u>	Run 2	<u>Run 3</u>	Average
Enter Fuel Type	Coal	Coal	Coal	
Examples: (Coal, NG, Wood, NA)	Valid Fuel Type	Valid Fuel Type	Valid Fuel Type	
Fuel Factor	<u>Run 1</u>	<u>Run 2</u>	Run 3	Average
Measured Fuel Factor Value (F0)	1.083	1.097	1.144	1.108
Corrected Values				
Corrected %CO2	10.31	11.12	10.35	10.59
Corrected %O2	9.74	8.69	9.06	9.16
Measured Fuel Factor Value (Corrected for CO) (Fo)	1.08	1.10	1.14	1.11
Fuel Factor QA	<u>Run 1</u>	Run 2	Run 3	Average
Fo Low Range Value for Fuel Type of Coal	1.083	1.083	1.083	1.083
Fo High Range Value for Fuel Type of Coal	1.230	1.230	1.230	1.230
Fo Range Check	In Range	In Range	In Range	
Ultimate F Factor				
Ultimate Analysis (Fuel) (Dry)	Run 1	Run 2	Run 3	Average
Percent Hydrogen (%H)	5.05	5.05	5.05	5.05
Percent Carbon (%C)	72.48	72.48	72.48	72.48
Percent Sulfur (%S)	0.43	0.43	0.43	0.43
Percent Nitrogen (%N)	1.10	1.10	1.10	1.10
Percent Oxygen (%O)	15.78	15.78	15.78	15.78
Percent Ash	5.17	5.17	5.17	5.17
Gross Caloric Value (GCV) (dry)		12627	12627	12627
Determined F-Factor at 0% Oxygen and 68°F (Fd) (dscf/million BTU)	9694.8	9694.8	9694.8	9694.8

Exhaust Stack (SV-BOILER2-BR)

MEASURED DATA FROM TEST RUNS

		Run	Orifice	DGM	DGM	Average	
Point		Time		Temp IN	Temp	DGM	Stack
Count	Run#	(min)	(in H2O)	(°F)	OUT (°F)	Temp (°F)	Temp (°F)
1	1	0	2.00	81	79	80.00	314
2	1	5	2.00	81	79	80.00	314
3	1	10	2.00	84	80	82.00	314
4	1	15	2.00	87	81	84.00	314
5	1	20	2.00	88	82	85.00	314
6	1	25	2.00	90	83	86.50	314
7	1	30	2.00	90	83	86.50	314
8	1	35	2.00	91	84	87.50	314
9	1	40	2.00	92	85	88.50	314
10	1	45	2.00	93	86	89.50	314
11	1	50	2.00	93	86	89.50	314
12	1	55	2.00	94	87	90.50	314
13	2	0	2.00	93	88	90.50	315
14	2	5	2.00	93	88	90.50	315
15	2	10	2.00	94	88	91.00	316
16	2	15	2.00	94	89	91.50	316
17	2	20	2.00	95	89	92.00	316
18	2	25	2.00	95	89	92.00	316
19	2	30	2.00	95	89	92.00	316
20	2	35	2.00	96	89	92.50	316
21	2	40	2.00	96	90	93.00	316
22	2	45	2.00	96	90	93.00	316
23	2	50	2.00	96	90	93.00	317
24	2	55	2.00	97	91	94.00	317
25	3	0	2.00	93	91	92.00	316
26	3	5	2.00	95	91	93.00	318
27	3	10	2.00	96	91	93.50	318
28	3	15	2.00	97	91	94.00	318
29	3	20	2.00	97	91	94.00	318
30	3	25	2.00	97	91	94.00	318
31	3	30	2.00	97	92	94.50	318
32	3	35	2.00	98	92	95.00	318
33	3	40	2.00	98	92	95.00	319
34	3	45	2.00	98	92	95.00	319
35	3	50	2.00	98	92	95.00	319
36	3	55	2.00	98	92	95.00	320

DTE Energy - Belle River Power Plant Coal-Fired Boiler No. 1 (EU-BOILER2-BR) ESP Exhaust Stack (SV-BOILER2-BR)

TEST DATA - EPA Method 3A (O₂)

Number of Concentration Runs 3

Analyzer Calibration	Run 1	Run 2	Run 3	Average
Actual Concentration of the Mid-Level Calibration Gas (%)	9.728	9.728	9.728	9.73
Actual Concentration of the High-Level Calibration Gas (%)	20.48	20.48	20.48	20.48
Analyzer Span During Test Run (%)	20.48	20.48	20.48	20.48
Calibration Gas QA	GOOD	GOOD	GOOD	
Analyzer Calibration Response for Zero Gas (%)	0.05	0.05	0.05	0.05
Analyzer Calibration Response for Mid-Level Gas (%)	9.76	9.76	9.76	9.76
Analyzer Calibration Response for High Level Gas (%)	20.47	20.47	20.47	20.47
Initial System Calibration Response for Zero Gas (%)	0.05	0.05	0.05	0.05
Initial System Calibration Response for Upscale Gas (%)	9.76	9.76	9.76	9.76
Final System Calibration Response for Zero Gas (%)	0.03	0.03	0.03	0.03
Final System Calibration Response for Upscale Gas (%)	9.70	9.70	9.70	9.70
Analyzer Calibration QA	<u>Run 1</u>	<u>Run 2</u>	<u>Run 3</u>	Average
Initial System Calibration Bias for Zero Gas (% of Span)	0.00	0.00	0.00	0.00
Initial System Calibration Bias for Upscale Gas (% of Span)	0.00	0.00	0.00	0.00
Final System Calibration Bias for Zero Gas (% of Span)	-0.10	-0.10	-0.10	-0.10
Final System Calibration Bias for Upscale Gas (% of Span)	-0.29	-0.29	-0.29	-0.29
System Drift for Zero Gas (% of Span)	-0.10	-0.10	-0.10	-0.10
System Drift for Upscale Gas (% of Span)	-0.29	-0.29	-0.29	-0.29
Analyzer Calibration Error for Zero Gas (% of Span)	0.24	0.24	0.24	0.24
Analyzer Calibration Error for Mid-Level Gas (% of Span)	0.16	0.16	0.16	0.16
Analyzer Calibration Error for High-Level Gas (`% of Span)	-0.05	-0.05	-0.05	-0.05
CONCENTRATION CALCULATIONS - DRY SYSTEM				
Calculate the Average Effluent Oxygen O ₂ Concentration	Run 1	Run 2	Run 3	Average
Average O ₂ Concentration Indicated by Gas Analyzer, dry basis (%-dry)	9.74	8.70	9.06	9.17
Average of Initial and Final System Calibration Bias Check Responses for the Zero Gas (%)	0.04	0.04	0.04	0.04
Average of Initial and Final System Calibration Bias Check Responses for the Upscale Calibration Gas (%)	9.73	9.73	9.73	9.73
Average Effluent O ₂ Concentration, dry basis (%-dry)	9.74	8.69	9.06	9.16

DTE Energy - Belle River Power Plant Coal-Fired Boiler No. 1 (EU-BOILER2-BR) ESP Exhaust Stack (SV-BOILER2-BR)

TEST DATA - EPA Method 3A (CO₂)

Number of Concentration F	Runs	3

Analyzer Calibration	<u>Run 1</u>	Run 2	Run 3	Average
Actual Concentration of the Mid-Level Calibration Gas (%)	10.11	10.11	10.11	10.11
Actual Concentration of the High-Level Calibration Gas (%)	20.65	20.65	20.65	20.65
Analyzer Span During Test Run (%)	20.65	20.65	20.65	20.65
Calibration Gas QA	GOOD	GOOD	GOOD	
Analyzer Calibration Response for Zero Gas (%)	0.05	0.05	0.05	0.05
Analyzer Calibration Response for Mid-Level Gas (%)	10.44	10.44	10.44	10.44
Analyzer Calibration Response for High Level Gas (%)	20.74	20.74	20.74	20.74
Initial System Calibration Response for Zero Gas (%)	0.05	0.05	0.05	0.05
Initial System Calibration Response for Upscale Gas (%)	10.44	10.44	10.44	10.44
Final System Calibration Response for Zero Gas (%)	0.10	0.10	0.10	0.10
Final System Calibration Response for Upscale Gas (%)	10.47	10.47	10.47	10.47
Analyzer Calibration QA	Run 1	Run 2	Run 3	Average
Initial System Calibration Bias for Zero Gas (% of Span)	0.00	0.00	0.00	0.00
Initial System Calibration Bias for Upscale Gas (% of Span)	0.00	0.00	0.00	0.00
Final System Calibration Bias for Zero Gas (% of Span)	0.24	0.24	0.24	0.24
Final System Calibration Bias for Upscale Gas (% of Span)	0.15	0.15	0.15	0.15
System Drift for Zero Gas (% of Span)	0.24	0.24	0.24	0.24
System Drift for Upscale Gas (% of Span)	0.15	0.15	0.15	0.15
Analyzer Calibration Error for Zero Gas (% of Span)	0.24	0.24	0.24	0.24
Analyzer Calibration Error for Mid-Level Gas (% of Span)	1.60	1.60	1.60	1.60
Analyzer Calibration Error for High-Level Gas (% of Span)	0.44	0.44	0.44	0.44
CONCENTRATION CALCULATIONS - DRY SYSTEM				
Calculate the Average Effluent Carbon Dioxide CO ₂ Concentration	<u>Run 1</u>	Run 2	Run 3	<u>Average</u>
Average CO ₂ Concentration Indicated by Gas Analyzer, dry basis (%)	10.66	11.50	10.70	10.95
Average of Initial and Final System Calibration Bias Check Responses for the Zero Gas (%)	0.08	0.08	0.08	0.08
Average of Initial and Final System Calibration Bias Check Responses for the Upscale Calibration Gas (%)	10.46	10.46	10.46	10.46
Average Effluent CO ₂ Concentration, dry basis (%)	10.31	11.12	10.35	10.59

DTE Energy - Belle River Power Plant Coal-Fired Boiler No. 1 (EU-BOILER2-BR) ESP Exhaust Stack (SV-BOILER2-BR)

TEST DATA - EPA Method 26A

DETAILED RESULTS

Emission Results:	<u>Run 1</u>	<u>Run 2</u>	<u>Run 3</u>	<u>Average</u>
Hydrogen Chloride (HCl) Emission Rate (lb/MMBtu)	0.00050	0.00038	0.00066	0.00051
LAB RESULTS HCL	Run 1	Run 2	<u>Run 3</u>	<u>Average</u>
HCl Total Mass in sample, (mHCl) (mg)	0.557	0.452	0.771	0.593
Volume of Dry Gas Sampled at Standard Conditions (Vmstdm) (dscm)	1.25	1.24	1.24	1.24
HCl Concentration, dry basis (ConcHCl) (mg/dscm)	0.44	0.37	0.62	0.48
HCl Concentration (ppmvd) Dry @ 68°F	0.29	0.24	0.41	0.31
HCl Concentration (ppmvw) Wet @ 68°F	0.26	0.21	0.36	0.28

DTE Energy - Belle River Power Plant Coal-Fired Boller No. 1 (EU-BOILER2-BR) ESP Exhaust Stack (SV-BOILER2-BR)

US EPA Method 1 Traverse Point Determination - Performed on July 8, 2021

Relative Port Location	N	E	S	w
From Far Wall to Outside of Port (in.)	315.0	315.0	315.0	315.0
Nipple Length or Wall Thickness (in.)	9.0	9.0	9.0	9.0
Port Protrusion Length (opt) (in.)	0.0	0.0	0.0	0.0
Depth of Stack or Duct (in.)	306.0	306.0	306.0	306.0
Stack or Duct Type	Circular			
Port Hole Inner Diameter (in.)	_			
Stack or Duct Width (If Rectangular) (in.)				
Stack Outer Circumference (in.)				
Number of Ports Traversed	4			
Elevation of Meter Box from Ground Level (ft)	500			
Elevation of Ports from Ground Level (ft)	1000			
Stack Build-up (in.)	0.0			
Stack Cross-Sectional Diameter 1 (in)	306.0			
Stack Cross-Sectional Diameter 2 (in)	306.0			

"Vertical" or "Horizontal" Flow	Vertical
Direction of Flow	Up
"Velocity" or "Isokinetic" Traverse	Velocity

Port Distance Upstream from Flow Disturbance (in.)	1920.0
Diameters Upstream from Flow Disturbance (3 0.5 De)	6.3
Minimum Traverse Points Needed for a Velocity Traverse *	12
Minimum Traverse Points Needed for a Isokinetic Traverse *	12

Port Distance Downstream from Flow Disturbance (in.)	4920.0
Diameters Downstream from Flow Disturbance (*2.0 De)	16.1
Minimum Traverse Points Needed for a Velocity Traverse *	12
Minimum Traverse Points Needed for a Isokinetic Traverse *	12

Minimum Traverse Points per Method 1	12
Number of Traverse Points for this Circular Stack or Duct	12
Point Overide	

Duct Area - in² 73541.54 Duct Area - ft² 510.7052

Note:

Add nipple protrusion length to Point 1 only.

Actual nipple length = (length - protrusion)

Relocate to a distance equal to the inside diameter of the nozzle being used or to the above minimum distances, whichever is larger.

This Stack having a diameter greater than 24-inches, shall have no traverse points located within 1.0-inch of the stack wall.

		% of	Dist. From	Dist. From	
Port	Point	Duct	Inside Wall	Outside Wall	
		Depth	(Decimal)	(Decimal)	
1	1	4.4	13.5	22.5	
1	2	14.6	44.7	53.7	
1	3	29.6	90.6	99.6	
2	1	4.4	13.5	22.5	
2	2	14.6	44.7	53.7	
2	3	29.6	90.6	99.6	
3	1	4.4	13.5	22.5	
3	2	14.6	44.7	53.7	
3	3	29.6	90.6	99.6	
4	1	4.4	13.5	22.5	
4	2	14.6	44.7	53.7	
4	3	29.6	90.6	99.6	

Sample Recovery & Calibration Check Datasheet

Page _____ of ____

Project Info							Equipment Iden					
	-20-21		Project#		7		Ref. Thermomete	er	5			
Customer / F	acility	DIE /	BRPP				Hygrometer					
Unit ID / Sam	ple Location	u	nit2				Field Balance	233530	192			
	1 7							Check Weights				
							Calipers					
Balance Aug	dit (Field bala	ince must be	within 0.5g of	check weight	mass)		Ambient Condit	ions (Mobile La	b)			
	Date	9-20-		J			Relative humidity		•			
Stand	dard mass, g	500.0		······		-	Temperature, °F					
i	ince mass, g			***************************************		•	Mobile lab#					
<u> </u>												
Moisture De	termination		Run1		559-20	21 pun	2		Run 3			
	Contents	Initial	Final	Net	Initial	Fina		Initial	Final	Net		
Knockout	Contonio	7111101	7 (1)(2)	7,01	758.9				1			
Impinger 1	N H2SO4	762.8	810.0	47.2	758,4	788	0 29.1	767.1	844.2	77.1		
Impinger 2	11	744.3	790.2	40.9	761.6	807.		752.6	780.9	28,3		
Impinger 3	MY	650.1	662.1	17.0	656.1	675.		662.1	666.9	4.8		
Impinger 4												
Impinger 5												
Impinger 6												
Impinger 7												
Impinger 8												
Silica Gel		964.0	980.4	16.4	945.2	964.0	9 19.7	980.4	989.4	9.0		
Line Rinse			<u> </u>									
Train Net Ga	in (VIc)			116.5]		114 119.					
Nozzie Meas	surements (I	Difference be	ween any two	measuremen	nts must not be	more th	an 0.004 in (0.1 n	nm\)				
Nozzle 1 dia			-									
Nozzle 2 dia												
Nozzle 3 dia			D1	D2		D3		 Average				
Nozzie Mate	rial 🗆 oua						□ other					
Probe Type							other			•		
1 -					lon 🗆 ot					•		
Probe Liner	□ qua	anz □ gias	ss 🗀 stee	ı 🗀 ler	ion 🗀 oi	ner						
Filter Inform	nation						kingdigter (1000-100 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000					
Front Half:	□ quartz	fiber 🗆 glas	ss fiber 🖳	Teflon 🗆	Teflon/quartz		other					
								Run ·				
			-		Teflon/quartz			· ·		•		
Back Half:	□ quartz	tiber □ glas	ss tiber 🗀	Tetton □	l etion/quartz	· L	other					
Reagent Inf	ormation			Sar	mple Observa	tions						
Туре		Lot Number		<u>L</u>								
Recove	ry DI!	4103	302									
		***************************************					······································			***************************************		

QA/QC Che		_			Specification	s <u>~</u>						
Checked by:	Checked by: SS Team Leader: SS 001AS-QMS-FM-226											

US EPA Method 4 Gravimetric Determination for Moisture US EPA Method 26A Sampling Train

DI	н	N	4
ĸ	JI	N	1

	Initial Tare	Final Tare	Net Weights
Impinger No. 1	762.8	810.0	47.2
Impinger No. 2	749.3	790.2	40.9
Impinger No. 3	650.1	662.1	12.0
	Total Condensed:	100.1	
Silica Gel	964.0	980.4	16.4
		Total Absorbed:	16.4
		Overall Total:	1165

Overall Total: 116.5

RUN 2

	Initial Tare	Final Tare	Net Weights					
Impinger No. 1	758.9	788.0	29.1					
Impinger No. 2	761.6	807.4	45.8					
Impinger No. 3	656.1	675.5	19.4					
		Total Condensed:						
Silica Gel	945.2	964.9	19.7					
		Total Absorbed:	10.7					

Total Absorbed: **Overall Total:** 114.0

RUN 3

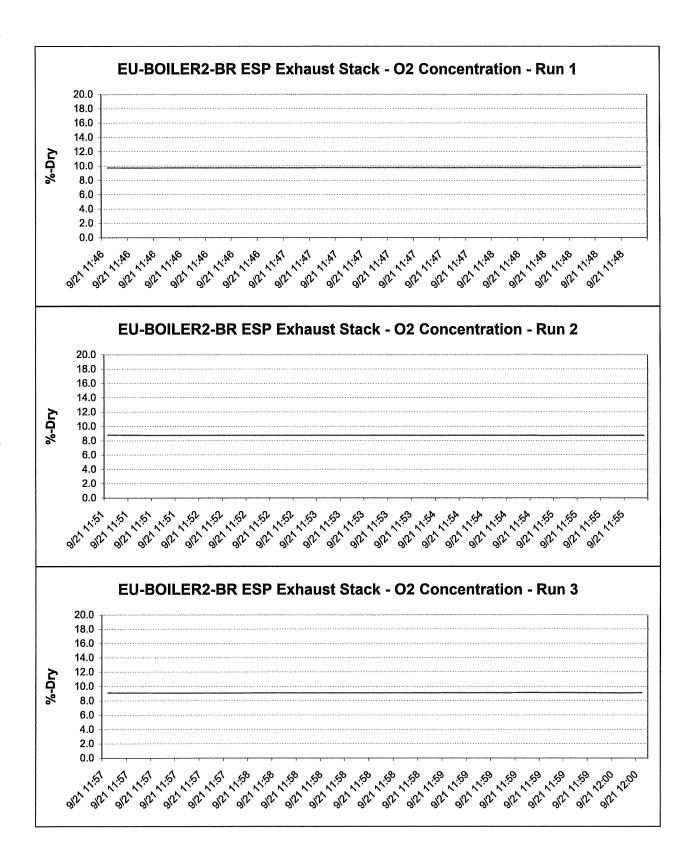
	Initial Tare	Final Tare	Net Weights		
Impinger No. 1	767.1	844.2	77.1		
Impinger No. 2	752.6	780.9	28.3		
Impinger No. 3	662.1	666.9	4.8		
		Total Condensed:	110.2		
Silica Gel	980.4	989.4	9.0		

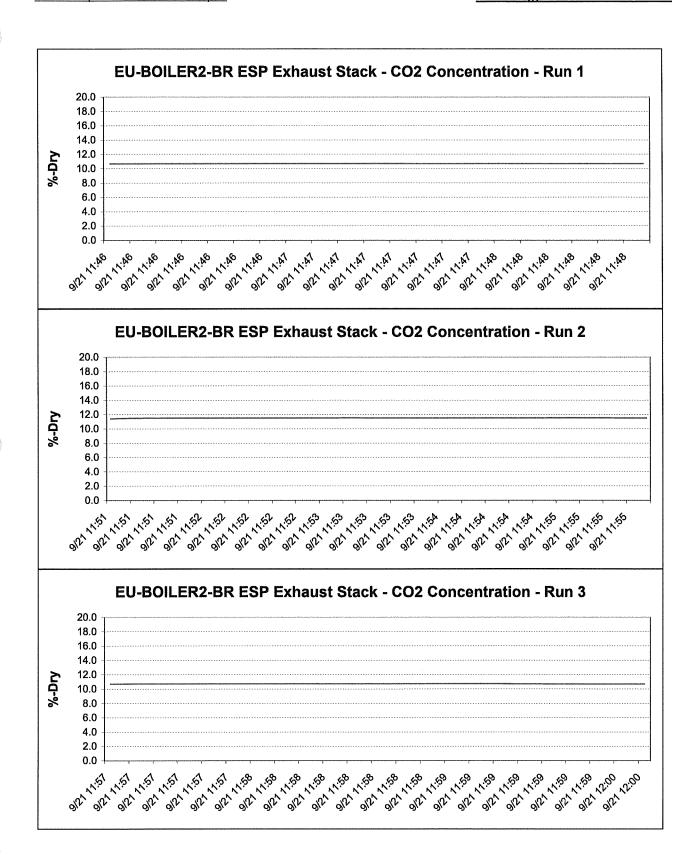
Total Absorbed: 9.0 **Overall Total:** 119.2

Project Info	rmation			s	ampling	Condi	ions	1					ALT 011	TC ID:	Ambient °F	Ref. °F
Date 9	120/21		PR05-011		atic Pres	ssure, ii	1. H ₂ O	<u>- Z.]</u>		nt Temp, °F	<u>73</u>			5/D	73	73
Customer/Fa	cility	DIE	Belle River	<u>′</u> В	arometric	c Press	ure, in. Hg	<u> 30: </u>	Ref. Ba	arometer ID	DAON		_	570	73	73
Unit ID/Samp	ole Location		7+ 7	v	ind Spec	ed / Dire	ection _		Precip	itation, Y / N typ	pe		Filter Box	HB 3		
Run# \		Operator	SOLWN	P	obe / Fil	ter Ten	p Range, °	F	2 42 ≥	273			Filter Exit			
Sampling E	_		Calibration	1 6			ent Checks		Pre	Mid			Meter outlet		73	73
Meterbox ID		183	Meterbox Y	1.018			pass @ in			@	□ @		Impinger Ex	it <u>FC\</u>	73	73
Umbilical ID	<u>\</u>	MB 4	Meterbox ΔH@, in	.H ₂ O <u>1.</u> &'			pass @ in.			□ @	□ @		Other			
Nozzie ID			Nozzle diameter, [F	itot vis	ual inspecti] pass	☐ pass		pass	Ref. Thermo	ometer ID	Coll A	545
Pitot / Probe		2,D	Pitot coefficient, C	p <u>'&Y</u>			risual inspe] pass	☐ pass			Continuity C	heck DC	ontinuity w/ Pr	oper Polarity
Manometer I		MB3	Manometer zero a	nd level ∑Hyes			fm @ in. Ho		O@ 12"	@	Ğ* ()CC	```ن @	Notes:			
Sensitivit	x 10,	" H20	K-Factor					neck volume, ft	3			1				
Traverse	Elapsed	Clock Time	DGM Reading,	Velocity Head,			ressure ntial, ΔH	Stack Tem		p, Filter T	emp, °F	Impinger E	ZXIT Tom	Gas Meter perature, °F		Pump Vacuum,
Point#	Time	24hr	Vm, ft ³	ΔP in H ₂ O		rget	Actual	°F	°F	Box	Exit	Temp, °1	Inle	Outle		in. Hg
	0	9:55	584,460		12.	.0	2.0	·3141	251	202		57	13	70		<u>S`</u>
	5		588.26		l		<u> </u>	314	250	264		SI	18	70)	5
	10		592.05					314	257	1/20		49	84			ζ
	is		595.82					314	240	1 260		21	87	181		ζ_
	٦٥_		599.58					1310	262	263		54	88	187		5
	25		<u> </u>					314	259	251		SF'	90	83		S
	30		607.07					314	240			102	90	83		S
	35		610.83					314	750	288		-E=7	(e) .	1 0 -		ς
	40		614.50			<u> </u>		314	257	763		101	97			<u>ځ</u>
	45		618.37					314	253	1260		101	93	86		5
	50		622,16					314	252	259		101	93			S
	22		625.24					314	270	763		ier	ু পূ।			5
	60	10:55	805.PSG		\perp	V	V	315	1500	201	1	100	90	(8	7	5
	•															
Averages	V049AS-0	11077-RT-9	38					28 of 173								
QA/QC Che	ck: Complet	teness Le	egibilityAccuracy	Specificatio	15 <u>v</u>	Checke	d By	53	Team L	eader	J				001AS-Q	MS-FM-225RB

Project Info	rmation		na	Sa	mpling Cond	litions				750			C ID:	Ambient °F	Ref. °F
Date			PROJ- OIL	077 Sta	atic Pressure,	in. H ₂ O	-2.1	Ambient 7	Temp, °F	/ >		Stack <u>S'Y</u>		73	73
Customer/Fa	cility	DE BO	198.7 K	Ba	rometric Pres	sure, in. Hg	30.10	Ref. Baro	meter ID	NOAL	4	(۱'ک Probe		13	73
Unit ID/Samp				w	ind Speed / Di	rection			tion, Y /N) type	·		Filter Box <u>H</u>	3 3		
Run# 7		Operator	Solwn	Pr	obe / Filter Te	mp Range, °F		2482	273			Filter Exit			
Sampling E			Calibration	1	1	ment Checks		re	Mid	Po		Meter outlet M		73	73
Meterbox ID		<u> 33 </u>	Meterbox Y	1.018		·), pass @ in. H			@	□ @		Impinger Exit _f	2	73	73
Umbilical ID	<u>`\J/</u>	nb 4	Meterbox ∆H@, in	. H20 1.8V), pass @ in. H			@	□ @		Other			
Nozzle ID	-		Nozzle diameter, D			sual inspection		pass	□ pass	□Р		Ref. Thermomet	er ID _		
Pitot / Probe		S.D	Pitot coefficient, C	P <u>\$4</u>		visual inspecti		pass	□ pass	□ P		Continuity Check	< □ Co	ntinuity w/ Pro	per Polarity
Manometer I		MB3	Manometer zero a	nd level 🗹 yes	1	cfm @ in. Hg		@ 15"	@	<u> 0.000@</u>	0 0	Notes:			
Sensitivit	y 10	1º 14-0	K-Factor	-		ediate leak che	ck volume, ft 3		1	/		D=: 0==	17-1		
Traverse Point#	Elapsed	Clock Time	DGM Reading,	Velocity Head,		Pressure ential, ΔH	Stack Temp,	Probe Temp,	Filter Ter	mp, °F i	Impinger E				Pump Vacuum,
Point#	Time	24hr	Vm, ft ³	ΔP in H ₂ O	Target		°F	°F	Box	Exit	Temp, °F	iniet	Outlet		in. Hg
	<u>Q</u>	11:00	629.858		7.0	7.0	315	250	2100		<u> </u>	93	88		S
	_5		653.70			1	315	751	260		<u> 56</u>	@3	88		5
	10		1037.49				316	255	201		53	গ্ৰ	88		5
	12		1041.26				316	271	261		<u>54</u>	94	20		5
	20		10.07 by			<u> </u>	316	258	159		<u>, 56</u>	38	80		5
	25		648.75				316	271	260		<u> 63'</u>	35	30		5
	30		W52.47				316	270	260		64	22	8.64		5
	35		<u> 696.22</u>				310	260	258		64	3.6	80		5
	40		650,05				316	264	260		<u>65</u>	90	<u>0</u> 0		5
	45		1063.69			<u> </u>	316	2100	7.58		<u>64</u>	96	<u> </u>		5
	50		1067.43				317	271	760		64	୍ଦ୍ର	3		5
	55		671.21	}		 . . 	317	272	760	-	<u>65</u>	57	21		5
	७०	12:00	674,998		V	1	317	765	508		<u>e) vi</u>	97	91		
	-					ļ			ļ						
									<u> </u>						
				·									***		
					4				ļ						
					1										
Averages	V049AS-0	11077-RT-83	8				29 of 173		<u> </u>						<u> </u>
OA/OC Cher	ck: Comple	teness 🗸 La	nibility . Accuracy	Specification	e Check	ed Rv	(5	Team Lear	der 57	7				0014.5-01	MS-FM-225RR

EPA Method 4264 Field Datasheet (Isokinetic)


Page) of


Project Info			0	Sa	ampling (Conditi	ons	_				770		ALT 011	TC ID: /	Ambient °F	Ref. °F
Date 3		Project#	PROJ-OIL	077 St	atic Press	sure, in.	H ₂ O	-2.1	Ambi	ient Te	emp, °F	, ,		Stack	•		
Customer/Fa		DTE	Belle Rive		arometric	Pressu	re, in. Hg	30.10			**********	4044		Probe			
Unit ID/Sample Location いんづ こ W					Wind Speed / Direction Precipitation, Y / No type							Filter Box	500	$-\Omega$			
Run# 3		Operator S	DIWN	Pr	obe / Filte	er Temp	Range, °F		248	22	73			Filter Exit	750	_ "	- \
Sampling E			Calibration	1			nt Checks		re	1	Mid		ost	Meter outlet			
Meterbox ID		193	Meterbox Y	1,018		tot (+),	pass @ in. H	120 □ @			@	□ @		Impinger Exit			
Umbilical ID	<u></u>	MB 4	Meterbox ΔH@, in.	.H ₂ O 1.8√	Pi	tot (-), p	ass @ in. H	20 □ @			@	□ @		Other			
Nozzie ID			Nozzle diameter, D	n, in	Pi	tot visu	al inspection		pass	1	□ pass		pass	Ref. Thermorr	eter ID		
Pitot / Probe		<u>5~D</u>	Pitot coefficient, Cr	<u> </u>	No.	ozzle vi:	sual inspecti		pass		pass		pass	Continuity Che	ck 🗆 Cont	inuity w/ Pro	per Polarity
Manometer I		133	Manometer zero ar	nd level [*] ⊠yes			n @ in. Hg	<u> </u>	@ 14"	<u> </u>	@	0.000	@ b^\	Notes:			
Sensitívit	y 10	1120	K-Factor					ck volume, ft 3			1		1				
Traverse	Elapsed	Clock Time	DGM Reading,	Velocity Head,		rifice Propriet		Stack Temp,		mp,	Filter Ter	mp, °F	Impinger I	ZXII Tempo	as Meter rature, °F		Pump Vacuum,
Point#	Time	24hr	Vm, ft ³	ΔP in H ₂ O		get	Actual	°F	°F		Box	Exit	Temp, °	F Inlet	Outlet	1	in. Hg
	0	12100	675.138		2.0	\Box	て. ე	316	251	u]	260		64	9,3	01		5
	5		678,94					318	16-	عا	250		46	95	91		5
	10		682.72	ŀ			\	315	270		267		47	96	ai		5
	i 5		10.0190					3129	25		260		44	97	@ 1		S
	50		15.0Rd					318	261	Ч	761		45	97	21		ζ
	25		694.03					318	279		261		45	97	91		Š
	30		697,80					318	250	,	25%		46	97	97		\$
	32		701,55					318	250	\setminus	2 50)		44	MS	97		5
	40		705 3 U				1	319	259		260		480	93	92		5
	45		709.17					318	25	21	761		42	26	97		5
	SO		713.00					3 P)	26	6	760		1 ua	90	197		5
	S5		716,84	\	1		1	320	255		260		40	90	97		S
	40	13:05	720.677		14		Ψ	320	120	1	267		40	108	0/7		S
			•														
										\neg							
Averages	V04945-0	11077-RT-83						30 of 173									
QA/QC Che	ck: Complet	enessLeg	gibilityAccuracy	Specification	1S(C	hecked	I Ву	SĪ	Team	Leade	er	5				001AS-Q	VIS-FM-225RB

Client Date Analyzer#	9-21-8	BRPP	n Field Data	Sheet	Operator Sampling Location Page_of_ Unit 2					
Range	~ 6 9E3	N = 7.2								
Cyinder Values	70.75 9.726	10.11				Environics # yes no				
Time	Pollutant	Pollutant	Pollutant	Pollutant	Pollutant	Notes: Run/Cal Info & File Name				
1130	.04	,05				* 9-21-21 Paccel				
1133	20.46	20.7(
1/37	9.76	10.44								
	9:7	10.6				* Pan1				
	8.7	11,5	nes Walter Banka (1800)			the Car Jan				
	9.0	10.7		and the second s		* (023				
1206	9.66	10.46				* Post Col				
1206	.82	.09								
Dissession of the second secon										
HOME STATE ASSESSMENT OF THE STATE OF THE ST					Managaran da					
iderates and the second se					ancertain property and a company of the					
THE PARTY OF THE P										
SOURCE SECURITION OF THE PERSON OF					M ************************************					
months (Colonial Colonial Colo										
				***************************************	***					
		4,12								
	l.	J.	1	1	1					

Cylinder Serial Numbers

San	02.05	CO2.05
	20,47	20.74
- American	9.74	10.60
(2	8.70	11.50
03	9.06	10.7
Posto-1	, 03 9. 7	0.10

Appendix A.3 Example Calculations

EPA Methods 3A, 4, and 26A Nomenclature and Sample Calculations

Run No. - 1

Constants

CO ₂ F _{wt} = 44.0	in wg= 0.073529	$NO_2F_{wt} = 46.01$	HCIF _w = 36.46
$O_2F_{wt} = 32.0$	gr= 0.000142857	COF _{wt} = 28.01	SO ₂ F _{wt} = 64.06
$CON_2F_{wt} = 28.0$	mmBtu= 1000000 Btu	H ₂ SO ₄ F _{wt} = 98.08	Cl ₂ F _{wt} = 70.91
H ₂ OF _{wt} = 18.015	CF _{wt} = 12.011	$T_{std} = 527.67$	P _{std} = 29.92
$ArF_{wt} = 40.0$	PF _{wt} = 44.0962		

Stack Variables

P _{bar} =	30.10 in. Hg	barometric pressure
$E_{box} =$	500 ft	elevation difference between ground level and meter box
E _{sam} =	1000 ft	elevation difference between ground level and sampling ports
$\gamma =$	1.0180	gamma, dry gas meter calibration factor (dimensionless)
$\theta =$	60.0 min	net run time (minutes)
$V_{lc} =$	116.5 g	total mass of liquid collected in impingers (g)
$%CO_2 =$	10.31 %	percent CO ₂ by volume (dry basis) (dimensionless)
$^{9}O_{2} =$	9.74 %	percent O ₂ by volume (dry basis) (dimensionless)
$%N_2 =$	79.96 %	percent N ₂ by volume (dry basis) (dimensionless)
A =	510.7052 ft²	stack cross-sectional area
$T_{savg} =$	774.00 R	average absolute flue gas temperature (460R+tsavg °F)
ΔH =	2.00 in. wg	average pressure differential of orifice meter
$T_m =$	545.79 R	dry gas meter temperature (460R+tsavg °F)
$V_m =$	45,25 ft³	volume of metered gas sample (dry actual cubic feet)
$F_d =$	9694.8365 ft ³ /mmBtu	F-factor, dry standard cubic feet per million BTU

Calculated Stack Variables

Barometric pressure at sampling location

NOTE: Barometric pressure recorded at ground level

$$P_{sam} = P_{bar} - [(E_{sam} / 100 \text{ ft}) * 0.1 \text{ in. Hg}]$$

$$P_{sam} = 30.10 - ((1,000.0 / 100) * 0.1)$$

$$P_{sam} = 29.10 \text{ in. Hg}$$

Volume of dry gas sampled at standard conditions (dscf)

$$V_{mstd} = \gamma * Vm * [P_{bar} - ([(E_{box} / 100 \text{ ft}) * 0.1 \text{ in. Hg}] + (\Delta H / 13.6)) / P_{std}] * (T_{std} / T_m)$$

$$V_{mstd} = 1.0180 * 45.248 * ((30.10 - ((500.0 / 100) * 0.1) + (2.0000 / 13.6)) / 29.92) * (527.7 / 545.792)$$

$$V_{mstd} = 44.276 \text{ ft}^3$$

Volume of water vapor at standard conditions (68 °F, scf)

$$V_{wstd} = (0.04716 \text{ ft}^3/\text{g}) * \text{VIc}$$

$$V_{wstd} = (0.04716 * 116.5)$$

$$V_{wstd} = 5.5 \text{ ft}^3$$

Exhaust Stack (SV-BOILER2-BR)

Percent moisture by volume as measured in flue gas

$$\%H_2O$$
 (Measured) = $100 * [V_{wstd} / (V_{wstd} + V_{mstd})]$
 $\%H_2O$ (Measured) = $100 * (5.494 / (5.494 + 44.276))$
 $\%H_2O$ (Measured) = 11.04
 $\%H_2O$ = 11.04

Dry mole fraction of flue gas (dimensionless)

$$M_{fd} = 1 - (\%H_2O / 100)$$
 $M_{fd} = 1 - (11.04 / 100)$
 $M_{fd} = 0.890$

Dry molecular weight of flue gas (lb/lb-mole)

Wet molecular weight of flue gas (lb/lb-mole)

$$M_s = M_d * M_{fd} + (H_2OF_{wl} * (%H_2O / 100))$$
 $M_s = 30.039 * 0.890 + 18.02 * (11.04 / 100)$
 $M_s = 28.71 \text{ lb/lb-mole}$

Percent Excess Air

Method 26A Calculations

HCI concentration (ppmvd)

HClppmvd = 0.29 ppmvd

HCI mass emission rate (ib/MMBtu)

```
 \begin{aligned} & \mathsf{MERHCl}_{\mathsf{IbMMBtu}} = (((ConcHClppwvd_1 * 36.461 * ultFd_1) / (385.3 * 10 ^ 6)) * (20.9 / (20.9 - O2_1))) \\ & \mathsf{MERHCl}_{\mathsf{IbMMBtu}} = 0.00050 \ \mathsf{Ib/MMBtu} \end{aligned}
```