LINE 2 GLASS PROCESSING PARTICULATE MATTER, AMMONIA, HAP METALS, AND SULFURIC ACID MIST **EMISSIONS TEST REPORT GUARDIAN INDUSTRIES CORPORATION CARLETON, MICHIGAN**

Test Dates: July 21 and 22, 2015

Report Date: September 30, 2015

RECEIVED

OCT 0 2 2015

AIR QUALITY DIV.

Prepared for:

Guardian Industries Corp. 14600 Romine Road Carleton, Michigan 48117

Prepared by:

Air/Compliance Consultants, Inc. 1050 William Pitt Way Pittsburgh, Pennsylvania 15238 412-826-3636

PA Lab Registration #02-04775

Project Number: 15-081

Air/Compliance Consultants, Inc.

LINE 2 GLASS PROCESSING PARTICULATE MATTER, AMMONIA, HAP METALS, AND SULFURIC ACID MIST EMISSIONS TEST REPORT GUARDIAN INDUSTRIES CORPORATION CARLETON, MICHIGAN

TEST RESULTS SUMMARY

Permit Number: PTI 105-14 **Source Name:** Line 2 Glass Production **Source ID:** EU00080

	_	
Average Result	Limit	Compliant/ Non-compliant
0.136 lb/ton	0.45 lb/ton	Compliant
2.39 lb/hr	12.2 lb/hr	Compliant
2.39 lb/hr	12.2 lb/hr	Compliant
13.3 lb/hr	1.6 lb/hr	Non-compliant
24.9 ppm _{dv}	NA	NA
< 0.0182 lb/ton	0.02 lb/ton	Compliant
0.313 lb/hr	2.03 lb/hr	Compliant
	0.136 lb/ton 2.39 lb/hr 2.39 lb/hr 13.3 lb/hr 24.9 ppm _{dv} < 0.0182 lb/ton	0.136 lb/ton 0.45 lb/ton 2.39 lb/hr 12.2 lb/hr 2.39 lb/hr 12.2 lb/hr 13.3 lb/hr 1.6 lb/hr 24.9 ppm _{dv} NA < 0.0182 lb/ton

2 INTRODUCTION

Guardian Industries Corporation (Guardian) contracted Air/Compliance Consultants, Inc. (ACCI), an affiliate of Montrose Air Quality Services, LLC. (Montrose), to perform an evaluation of emissions at their facility located in Carleton, Michigan. Testing was conducted on the Line 2 Glass Production (Line 2) in accordance with Michigan Department of Environmental Quality (MDEQ) requirements, and United States Environmental Protection Agency (USEPA), Title 40 CFR, Part 60, Appendices A and B, and procedures outlined in the March 2015 Test Protocol, to determine filterable particulate matter (FPM), sulfuric acid mist (H₂SO₄), ammonia (NH₃), and metal (Antimony [Sb], Arsenic [As], Cadmium [Cd], Chromium [Cr], Cobalt [Co], Lead [Pb], Manganese [Mn], Mercury [Hg], Nickel [Ni], and Selenium [Se] hazardous air pollutants (HAP) compliance with the Permit to Install (PTI) 105-14. A copy of the March 2015 Test Protocol is contained in Appendix A.

RECEIVED OCT 0 2 2015 AIR QUALITY DIV.

3 CONTACT INFORMATION

Facility Contact	Testing Firm
Ms. Laura Rye	Mr. Paul A. Jadlowiec, QSTI
Compliance Engineer	Senior Project Manager
Guardian Industries Corporation	Air/Compliance Consultants, Inc.
14600 Romine Road	1050 William Pitt Way
Carleton, Michigan 48117	Pittsburgh, Pennsylvania 15238
(734)-654-4381 – Telephone	(412) 826-3636 – Telephone
lrye@guardian.com	pjadlowiec@montrose-env.com

4 TEST DATES AND PERSONNEL INFORMATION

Emissions testing for FPM and NH_3 was conducted on July 21, 2015. The emissions testing for H_2SO_4 was conducted on July 22, 2015.

The following table details the contact personnel regarding this test program:

Organization	Personnel	Responsibility
Guardian	Joe Ventline	Test Liaison
MDEQ	Mark Dziadosz	Agency Observer
	Joshua S. Varner, QSTI, Project Scientist	Instrumental Methods and Sample Recovery
	Justin G. Bryan, QSTI, Scientist I	RMs 1, 2, 4, 5, 013B, 027, and 29
ACCI/Montrose	John E. Wilson, QSTI, Technician II	RMs 1, 2, 4, 5, 013B, 027, and 29
	Owen H. Daly, Scientist I	RMs 1, 2, 4, 5, 013B, 027, and 29

2

Guardian Industries Line 2 PM, Ammonia, HAP and SO2 Report 15-081 Page 7 of 249

5 ANAYLTICAL LABORATORY INFORMATION

Samples were collected and analyzed according to the applicable method. Audit samples metals and sulfuric acid were provided by ERA. Analyses were performed by the following:

(412) 826-3636 – Telephone (905) 817-5769 – Telephone PA Lab Registration #02-04775 cjohnson@maxxam.ca	•	USEPA Method 5	USEPA CTM 013B / USEPA CTM027 / USEPA Method 29
choupagemonuose-env.com		Air/Compliance Consultants, Inc. 1050 William Pitt Way Pittsburgh, Pennsylvania 15238 (412) 826-3636 – Telephone	Mr. Clayton Johnson 6740 Campbello Road Mississauga, Ontario, Canada L5N 2LB (905) 817-5769 – Telephone

6 PROCESS DESCRIPTION AND PROCESS DATA

6.1 **Process Description**

Guardian manufactures flat glass at the Carleton, Michigan facility. Line 2 (EU00080) consists of a raw material melting furnace, glass forming and finishing, and glass cutting. Line 2 produces flat glass using the float method. Raw materials of sand, soda ash, dolomite, limestone and other minor constituents are weighed and mixed with water in the batch-house before entering the natural gas fired furnace. The percentages of the raw material mixes varies depending on the product type desired. Glass then enters the tin bath to be formed and drawn, and then it enters a lehr to reduce its temperature. Line 2 rated capacity is 650 tons of glass pulled per day.

Line 2 emissions are controlled by a newly installed control system consisting of a dry scrubber, particulate filter, and selective catalytic reduction (SCR). The dry scrubber uses hydrated lime stored in a 3,000 cubic foot storage silo with a passive bin vent for injection into the scrubber to remove gaseous pollutants. Aqueous NH_3 , stored in a 20,000 gallon pressurized storage tank, is injected into the gas stream to treat the exhaust gas for NO_X control. An UltraCat Filter System removes particulate after the dry scrubber control. The final control is selective catalyst reduction that uses high temperature, light weight ceramic filters impregnated with catalyst to remove remaining gaseous emissions which a component of the UltraCat Filter Control System.

Y:\Guardian Industries\15-081 - Carleton MI - Stack Testing\Reports\Comp\Report 15-081.docx

6.2 Process Data

Guardian personnel were responsible for recording pertinent process data at a minimum of once every 15 minutes during each emission testing period. The specific process data recorded was:

- Glass pull rate (tph & tpd)
- Natural gas usage

Plant process data is contained in Appendix B.

7 TEST PROCEDURES

Testing was performed in accordance with USEPA Methods and the procedures outlined in USEPA 40 CFR, Part 60, Appendices A and B and the March 2015 Test Protocol. All field data sheets are contained in Appendix C.

7.1 Testing Stations and Traverse Locations – USEPA Method 1

USEPA Method 1, *Sample and Velocity Traverses for Stationary Sources*, was utilized to determine the number and location of the traverse points. Figure 1 provides a schematic of the sampling and traverse point locations as measured in the field. A copy of the cyclonic flow check data can be found in Appendix C.

7.2 Gas Velocity and Moisture – USEPA Method 2

The gas flow and temperature measurements followed the principles of USEPA Method 2, *Determination of Stack Gas Velocity and Volumetric Flow Rate (S-Type Pitot Tube).* The gas flow rate and temperature profiles for the gas stream were measured by conducting simultaneous velocity and temperature traverses during each sampling run. Gas velocity head was measured using a calibrated S-Type Pitot tube that was connected to a manometer. The static pressure was measured using the same Pitot tube and manometer. A Chrome-Alumel thermocouple attached to a digital indicator was used to measure the gas temperature at each of the traverse points.

7.3 Moisture Content Sampling – USEPA Method 4

Moisture content sampling was conducted concurrently with each sampling run using the principles and sampling apparatus presented in USEPA Method 4, *Determination of Moisture Content in Stack Gases*. The parameters evaluated to determine the gas-stream moisture content were sample gas volume, temperature and pressure, and impinger and silica gel moisture gain.

7.4 Determination of Particulate Matter and Metal Emissions – USEPA Method 5/29

For this project, USEPA Method 29, Determination of Metals Emissions from Stationary Sources was combined with the USEPA Method 5, Determination of Particulate Emissions from Stationary Sources to measure FPM and HAP metal emissions.

FPM results are presented as follows:

- FPM Method 5 Filter and Acetone Wash Weight Catch
- All FPM is assumed to be PM₁₀ and PM_{2.5}

Metal results are presented as follows:

- HAP Metals- The sum of Antimony, Arsenic, Cadmium, Chromium, Cobalt, Lead, Manganese, Mercury, Nickel, and Selenium
- Selenium-Reported separately

7.4.1 Method 5/29 Sampling Train Setup and Operation

The sampling apparatus contained a glass-lined temperature-controlled ($248^{\circ}F \pm 25^{\circ}F$) probe equipped with a S-Type Pitot tube and a sharp-edged glass button-hook nozzle. The probe liner and nozzle were connected utilizing a glass-coated stainless-steel union and graphite ferrules. The exit of the probe was connected to a tarred, high-efficiency quartz glass fiber filter supported in a glass-filter holder inside an oven heated so the exit of the filter holder maintained at $248^{\circ}F \pm 25^{\circ}F$. The exit of the filter holder was connected to a USEPA Method 29 impinger set.

Prior to sampling, all glassware was cleaned with soap and water, rinsed with tap water and deionized (DI) water. After cleaning, the glassware was soaked in a 10% nitric acid solution for at least 4 hours. Following soaking, the glassware was then rinsed with DI water, and then finally rinsed with acetone and allowed to air dry.

The exit of the filter holder was connected to a series of six impingers. The first (modified Greenburg-Smith) and second (standard Greenburg-Smith) impingers each contained 100 milliliters (ml) of 5% nitric acid (HNO₃) / 10% hydrogen peroxide (H₂O₂), the third (modified Greenburg-Smith) was empty, the fourth and fifth (both modified Greenburg-Smith) contained 100 ml of acidic potassium permanganate (KMnO₄), and the sixth impinger contained preweighed silica gel. The first five impingers were weighed to the nearest \pm 0.1 gram (g) using a calibrated field balance prior to the start of sampling for determination of moisture content in the gas stream. By weighing the impingers instead of measuring the liquid using a graduated cylinder, there was less potential for contamination of the sample.

The impinger train was connected to a commercially available metering system. Prior to sampling, the dry gas meter was calibrated utilizing the critical orifice procedures detailed in Section 16.2 of USEPA Method 5. A critical orifice set covering the sampling rates was utilized. Along with pre-test and post-test meter calibrations, the S-Type Pitot, thermocouple and nozzle were also calibrated prior to and following use in the field according to USEPA Method 5 procedures.

The sample train was assembled, allowed to reach operating temperature, and leak checked by plugging the nozzle with a rubber septum and pulling a vacuum of approximately 15" of Hg. Once an acceptable leak-check of less than 0.02 cubic feet per minute (cfm) was achieved, the sampling train was placed at the first traverse point and sampling began immediately. The sampling train was operated at an isokinetic rate with an isokinetic variation between 90% and 110%. Each test run was 120 minutes in duration and had a minimum sample volume of 72 dry standard cubic feet (DSCF). At the conclusion of each test run, the sample train was cooled sufficiently, utilizing ambient air or ice, to allow the nozzle to be plugged with the rubber septum. The sampling train was leak-checked at a vacuum equal to or greater than the maximum value reached during sampling. An acceptable leakage rate was less than 0.02 cfm or 4% of the average sampling rate (whichever was less).

7.4.2 Method 5/29 Sample Recovery and Analysis

Container No. 1 - Removed the filter from the filter holder and placed it in its labeled petri dish container.

Container No. 2 – The nozzle, probe, front-half of the filter holder and connections were rinsed with a total of 100 ml of acetone. The rinses were stored in a labeled, sealed glass bottle for shipment to the laboratory. The acetone catch with the net gain of the filter catch was used to determine the FPM emissions.

Y:\Guardian Industries\15-081 - Carleton MI - Stack Testing\Reports\Comp\Report 15-081.docx

Container No. 3 – The nozzle, probe, front-half of the filter holder and connections were rinsed with a total of 100 ml of 0.1 N HNO₃. The rinses were stored in a labeled, sealed glass bottle for shipment to the laboratory. The rinses repeated with water and acetone; both of these rinses were discarded.

Container No. 4 (Impingers 1 through 3) - The liquid was measured to the nearest \pm 0.5 ml using a graduated cylinder. The contents were then transferred to a glass sample bottle. The back half of the filter holder, connecting glassware and impingers were rinsed with 100 ml 0.1 N HNO₃; these rinses were added to the same sample bottle. The bottle was labeled and stored at ambient temperature for shipment to the laboratory for analysis.

Container No. 5A (0.1 N HNO₃) – Impinger 4 was measured to the nearest \pm 0.5 ml using a graduated cylinder. The liquid along with the 100 ml 0.1 N HNO₃ rinse of the impinger was transferred to a glass sample bottle, labeled and stored for shipment to the laboratory.

Container 5B (KMnO₄/H₂SO₄ absorbing solution) – Impingers 5 and 6 were measured to the nearest \pm 0.5 ml using a graduated cylinder. The contents were transferred to a labeled amber glass sample bottle. The impingers were rinsed with exactly 100 ml of fresh acidified KMnO₄ for all three rinses. These rinses were added to the same container. Similarly, three rinses of the same impingers were performed using exactly 100 ml of water. These rinses were also added to Container 5B. The sample bottle lid had a small hole to allow for pressure to release.

Container 5C (8 N HCl rinse and dilution) – If deposits remained on Impingers 5 and 6 following the rinses, a wash of 25 ml total of 8 N HCl was performed. The 25 ml of 8 N HCl was added to Impinger 5, swirled, and then transferred to Impinger 6 and swirled. This wash was added to a labeled sample bottle that contained 200 ml of water.

Container 6 (silica gel) - The silica gel was transferred to the original container and weighed to the nearest ± 0.5 g.

All samples were maintained at ambient temperature. Each fraction was recorded on the sample chain of custody and transported to the laboratory for analysis. USEPA Method 29 requires reagent blanks. The blanks were collected as described in §8.2 of USEPA Method 29,

specifically Containers 8A, 8B, 9, 10, 11, and 12. All blanks were analyzed with the samples. Analytical results, along with all method quality assurance/quality control data, is included in Appendix D.

Following the USEPA Guidelines for Audit Samples, audit samples were requested from ERA, A Waters Company, that meet the National Environmental Laboratory Accreditation Program (NELAP) for Audit Samples. USEPA Method 29 audit samples containing the HAP metals on filter paper and also in impinger solution were analyzed. The audit samples were shipped to ACCI to hold until testing was completed. They were then shipped to the laboratory for analysis alongside the field samples.

FPM, metals and metal audit sample laboratory results are contained in Appendix D. Selenium is reported separately. FPM, HAP metals and selenium emissions are reported on a lb/hr and lb/ton basis.

7.5 Determination of O₂ and CO₂ – USEPA Method 3A

The principles of USEPA Method 3A, Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure), were utilized for the determination of oxygen (O₂) and carbon dioxide (CO₂) for the test program. A paramagnetic analyzer was used to continuously measure O₂ concentrations and a nondispersive infrared (NDIR) analyzer was used to continuously measure CO₂ concentrations. Nitrogen (N₂) concentration was determined by the difference. The O₂, CO₂ and N₂ contents were used to calculate the gas density of the exhaust gas stream to calculate the exhaust gas flow rate. One-minute readings are included in Appendix C.

7.5.1 Sampling System Setup

The sampling system contained a 3/8" heated stainless-steel or Inconel sheathed probe, a glass fiber 30 x 100 mm heated filter, a calibration "T", a heated sample line, a gas conditioner, a gas distribution manifold, and pollutant specific analyzers. Sampling components prior to the gas conditioner (i.e., probe, filter, sample line) were heated to maintain temperatures above the dew point of the exhaust gas. Prior to sampling, the entire system was leak checked by capping off the end of the sample probe and drawing a vacuum on the entire system.

0

7.5.2 Testing Procedures

To the extent practicable, analyzer spans were between 20% to 100% of the measured emissions. If, during pre-test determinations, concentration spikes were observed, instrument spans were set to accommodate the highest instantaneous spike value observed.

At the beginning of each sampling day, an internal calibration error (CE) check was performed; a zero gas and calibration gases at 40% to 60% of span and 100% of span were introduced to the analyzers. The internal calibration responses were then checked against the known cylinder gas values. The difference between the cylinder values and analyzer responses was divided by the span value of the gas to give the CE. An allowable CE is 2% of analyzer span. Each analyzer demonstrated acceptable CE at all times.

The analyzer was then placed in a system calibration bias mode. Zero and upscale gases were introduced at the probe exit to allow evaluation of the sampling line, gas conditioner, and analyzer in a normal sampling mode. No adjustments to the sampling system were made and the response of each gas was recorded. The difference between the sampling system response in the bias mode minus the analyzer response during the internal calibration check was divided by the analyzer span value. This calculated value represents the sampling system bias and did not exceed \pm 5% for any analyzer at any time per test run.

The sampling probe was traversed across three (3) points (at points of 16.7%, 50.0%, and 83.3% of the stack inner diameter), in a single port. Each point was sampled for two minutes. (See Appendix C for the results of this stratification check and the system response times for the applicable analyzer). When each individual test run was complete, a post-test sampling system bias check was conducted. No adjustments to the sampling system were made and the response of each gas was recorded. The difference between the sampling system response in the bias mode minus the analyzer response during the internal check was divided by the analyzer span value. This calculated value represents the sampling system bias and did not exceed \pm 5% for any analyzer at any time per test run.

The responses from the second bias check were compared with those from the pre-test system bias check. The difference between the post-test and pre-test bias check responses were divided

by the analyzer span value. This value was the amount of drift between the pre-test and post-test

bias checks. A calibration drift of $\leq 3\%$ is acceptable.

7.6 Determination of Sulfuric Acid Mist – USEPA Method CTM 013B

Sulfuric acid mist emissions were conducted in accordance with the procedures outlined in USEPA Method CTM 013B, Determination of Sulfuric Acid and Sulfur Dioxide Emissions from Combination Fuel Boilers, Recovery Furnaces, and Thermal Oxidizers – Isokinetic Method.

7.6.1 Sampling Train Setup and Operation

Prior to sampling, all glassware was cleaned with soap and water, rinsed with tap water, and DI water.

The sampling apparatus contained a quartz nozzle connected to a quartz-lined temperaturecontrolled (~400°F) probe using a glass-coated stainless steel union and graphite ferrules. The exit of the probe was connected to a quartz filter holder containing a 30 x 100 mm diameter quartz filter. The filter was inside an oven heated to > 500°F. The exit of the filter holder was connected to six Greenburg-Smith impingers. The first and second impingers contained 100 ml of 100% isopropyl alcohol (IPA). The outlet of the second impinger was connected to an unheated borosilicate glass filter holder with glass frit filter support containing a glass fiber filter. The third impinger was left empty and was followed by the fourth and fifth impingers contained 100 ml each of DI water. The sixth impinger contained a known quantity of silica gel.

The impinger train was connected to a commercially available metering system. Prior to sampling, the dry gas meter was calibrated utilizing the critical orifice procedures detailed in Section 16.2 of USEPA Method 5. A calibrated critical orifice set covering the anticipated sampling rates was utilized. Along with pre-test and post-test meter calibrations, the S-Type Pitot, thermocouple and nozzle were calibrated prior to and following use in the field according to USEPA Method 5 procedures.

The sample train was assembled, allowed to reach operating temperature, and leak checked by plugging the nozzle with a rubber septum and pulling a vacuum of approximately 15" of mercury (Hg). Once an acceptable leak check of less than 0.02 cfm was achieved, the sampling train was

placed at the first traverse point and sampling began immediately. The sampling train was operated at an isokinetic rate with an isokinetic variation of 90% to 110%.

Each test run was 60-minutes in duration. At the conclusion of each test run, the sample train was cooled sufficiently, utilizing ambient air or ice, to allow the nozzle to be plugged with the rubber septum. The sampling train was leak-checked at a vacuum equal to or greater than the maximum value reached during sampling. An acceptable leakage rate was less than 0.02 cfm or 4% of the average sampling rate (whichever is less). In addition a post-test Pitot leak check was performed. At the conclusion of the leak checks, the probe was disconnected and the remaining parts of the train were purged with clean ambient air for 15 minutes at the average sampling rate used during sampling.

7.6.2 Sample Recovery and Analysis

The probe and front-half of the quartz filter holder were rinsed with 100% IPA and added to a high density polyethylene (HDPE) sample bottle along with the quartz filter (Container 1). The extract was analyzed for SO_4^{2-} by ion chromatography (IC).

The contents of impingers 1, 2 and 3 were quantitatively transferred to a HDPE sample bottle (Container 2). The back half of the filter holder, all connections, and the impingers were rinsed with a minimal amount of 100% IPA and these rinses were added to Container 2.

The unheated filter was transferred into a separate HDPE sample bottle (Container 3) containing approximately the same volume of 80% IPA as Container 2. The connections from the back of the third impinger and the front-half of the unheated filter holder were rinsed with a minimal amount of 100% IPA and added to Container 3. Container 4 contained the contents of the fourth and fifth impingers and the DI water rinses of these impingers and connections.

Field blanks of 25 ml of 80% IPA, 25 ml of 3% H_2O_2 , 200 ml DI water and one field train blank per batch of reagent were analyzed along with the samples by IC.

Sulfuric acid mist and audit sample laboratory results are contained in Appendix D. Sulfuric acid mist emissions are reported on a lb/hr and lb/ton basis.

11

7.7 Ammonia Emissions – USEPA Method CTM-027

Ammonia emissions were determined using the principles of USEPA CTM-027, Procedure for Collection and Analysis of Ammonia in Stationary Sources.

i. Sampling Train Setup and Operation

Prior to sampling, all glassware was cleaned with soap and water, rinsed with tap water, and DI water.

The sampling apparatus contained a glass-lined temperature-controlled probe equipped with a Type S Pitot tube and a sharp-edged glass button-hook nozzle and an in-stack filter holder and high-efficiency quartz glass fiber filter. The in-stack filter holder, nozzle and probe were connected utilizing glass-coated stainless-steel unions and graphite ferrules. The exit of the probe was connected to a series of four impingers. The first (standard Greenburg-Smith) and second (standard Greenburg-Smith) impingers each contained 100 ml of 0.1 N H₂SO₄, the third (modified Greenburg-Smith) contained 100 ml of 0.1 N H₂SO₄ to prevent breakthrough in the instance there is high ammonia concentrations or high flow rate requirements, and the fourth impinger contained pre-weighed silica gel. The first three impingers were weighed to the nearest \pm 0.1 g using a calibrated field balance prior to the start of sampling for determination of moisture content in the gas stream. By weighing the impingers instead of measuring the liquid using a graduated cylinder, there is less potential for contamination of the sample.

The impinger train was connected to a commercially available metering system. Prior to sampling, the dry gas meter was calibrated utilizing the critical orifice procedures detailed in Section 16.2 of USEPA Method 5. A calibrated critical orifice set covering the anticipated sampling rates was utilized. Along with pre-test and post-test meter calibrations, the Type S Pitot, thermocouple and nozzle were also calibrated prior to and following use in the field according to USEPA Method 5 procedures.

The sample train was assembled, allowed to reach operating temperature, and leak checked by plugging the nozzle with a rubber septum and pulling a vacuum of approximately 15" of Hg. Once an acceptable leak check on the entire system of less than 0.02 cfm is achieved, the sampling train was placed at the first traverse point and sampling began immediately.

Each test run was 60 minutes in duration. The sampling train was operated at an isokinetic rate with an isokinetic variation of 90% to 110%. At the conclusion of each test run, the nozzle was cooled sufficiently, utilizing ambient air or ice, to allow it to be plugged with the rubber septum. The sampling train was leak-checked at a vacuum equal to or greater than the maximum value reached during sampling.

Sample Recovery and Analysis

ii.

Container 1 - At the end of the sampling duration, the filter was removed from the filter holder and placed in a labeled polystyrene Petri dish. Analysis of the filter catch is not required for the purpose of this method.

Container 2 - The nozzle was rinsed with DI water and discarded. The probe and connection to the filter holder was rinsed with a minimal amount of DI water and stored in a labeled, sealed HDPE sample bottle and kept chilled for shipment to the laboratory. The rinses were repeated with water and acetone; both of these rinses were discarded.

Containers 3, 4 and 5 - The liquid in the first three impingers were weighed to the nearest ± 0.1 g using a calibrated field balance. The contents of each impinger were transferred to separate HDPE sample bottles. Each impinger was rinsed with DI water; limiting the volume of the rinses to ensure the total volume of each impinger plus its rinses is no more than 230 ml, and added to their respective sample containers. The sample containers were labeled, sealed and chilled for shipment to the laboratory for analysis.

Container 6 - A field blank of 100 ml 0.1 N H_2SO_4 was prepared by placing it in an impinger, allowing it to be exposed to ambient conditions for a duration of 1 hour, and then collecting it using the same procedures as described above.

No audit sample is available for CTM-027. Laboratory results are contained in Appendix D. Emission results are reported as parts per million, dry volume (ppm_{dv}).

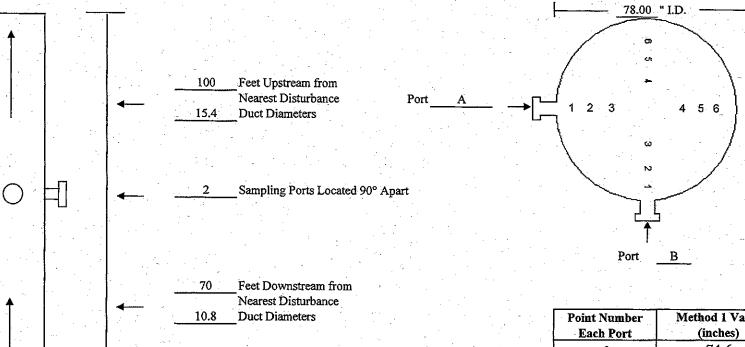
7.8 Quality Assurance and Quality Control

All quality assurance/quality control (QA/QC) procedures as required by each USEPA Method were followed with no modifications. Appendix E contains all related QA/QC information.

The following field equipment calibrations are contained in Appendix E:

- Nozzle
- Pitot Tubes
- Thermocouple (TC)
- Dry Gas Meter and Orifices
- Analyzer Interference Checks
- Calibration Gas Certificates
- Qualified Source Testing Individual (QSTI) Certifications

8 TEST RESULTS


FPM, HAP metals and selenium test results are contained in Table 1. Sulfuric acid mist test results are contained in Table 2. NH_3 test results are contained in Table 3. Table 4 contains the table nomenclature. Appendix F contains sample calculations for one complete testing run.

9 CONCLUSION

Air/Compliance Consultants, Inc. has completed FPM, HAP metals, selenium, sulfuric acid mist and NH₃ compliance emissions testing for the Guardian Industries Corporation, Glass Manufacturing Line 2, at their Carleton, Michigan facility. ACCI believes the test results are representative of the prevailing operating conditions at the time of testing.

REPORT – FIGURE

Point Number Each Port	Method 1 Value (inches)
. 6	74.6
5	66.6
4	54.9
3	23.1
2	11.4
1	3.4

		Figure
Air/Compliance Consultants, Inc.	Glass Manufacturing Line 2 Sampling Stack Diagram	1
ETEM Consultants, Inc.	Guardian Industries Corporation, Carleton, MI	

\\SERVER1\aproject\Guardian Industries\15-081 - Carleton MI - Stack Testing\Reports\Comp\Figures.xlsx\Figure 1

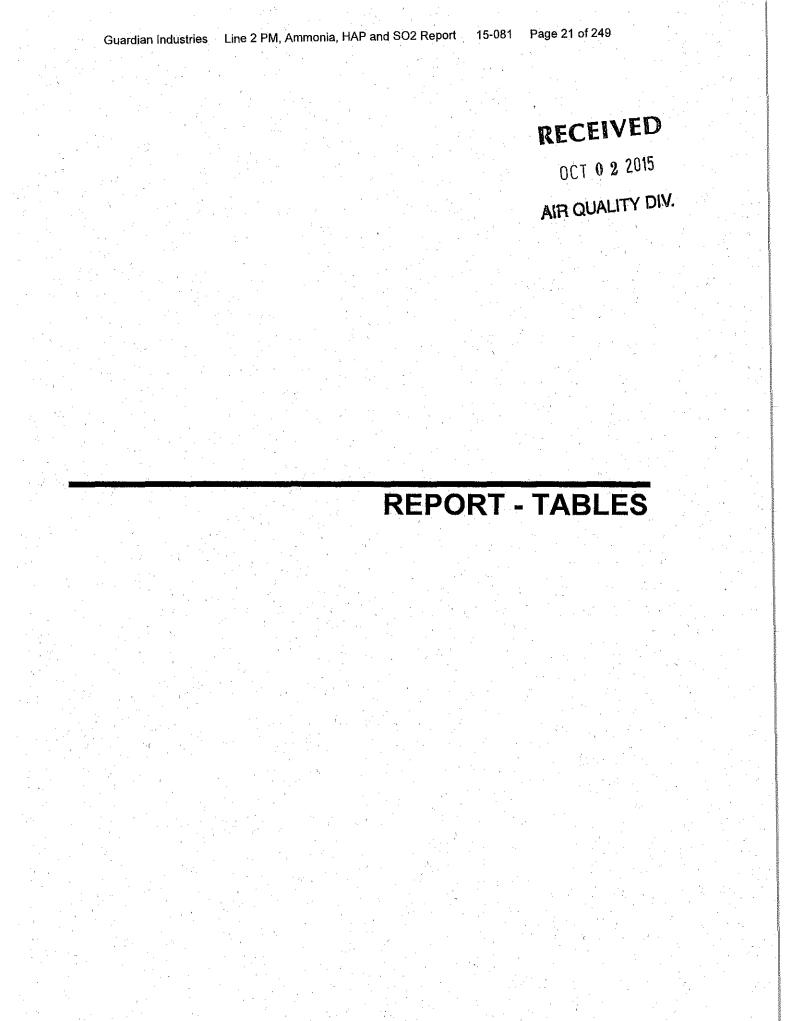


Table 1.

Filterable Particulate and Metal Emission Test Results, Line 2 Glass Production

Guardian Industries, Carleton, Michigan

Filterable Particulate Results Mass Collected (mg) 46.10 12.85 18.15 25.70 Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Rate (lb/tr) 4.35 1.17 1.64 2.39 Emission Rate (lb/ton of glass pulled) 0.249 0.067 0.094 0.136 0.45 HAP Metal Results Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 Emission Rate (lb/tr) 0.218 0.306 0.432 0.319 Emission Rate (lb/tr) 0.218 0.306 0.432 0.319 Emission Rate (lb/ton of glass pulled) 0.0125 0.0175 0.0247 0.0182 0.0247 Selenium Results Mass Collected (ug) 2220 3160 4610 3330	Test Data		Run 1	Run 2	Run 3	Average	2. • .
Start Time 8:40 AM 12:55 PM 12:55 PM End Time 11:23 AM 3:18 PM 3:18 PM Flow Rate (ACFM) 130030 130959 131049 130,680 Flow Rate (DSCFM) 55169 56463 56719 56,117 Sample Volume (DSCF) 76,479 78,725 81,042 78,748 Carbon Dioxide (dry volume %) 6,46 6,37 6,39 6,41 Oxygen (dry volume %) 10,49% 10.0% 9,7% 10.2% Stack Temperature (°F) 616.6 609.8 609.2 611.8 Precent of Isokinetic Sampling (%) 9,65.5 97.0 99.4 97.6 Production Rate (ton/hr) 17.5 17.5 17.5 17.5 Results Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Rate (lb/tr) 4.35 1.17 1.64 2.39 Emission Rate 10b/hr) 0.432 <						<u></u>	
End Time 11:23 AM 3:18 PM 3:18 PM Flow Rate (ACFM) 130030 130959 131049 130,680 Flow Rate (DSCFM) 55169 56463 56719 56,117 Sample Volume (DSCF) 76,479 78,725 81.042 78,748 Carbon Dioxide (dry volume %) 6.46 6.37 6.39 6.41 Oxygen (dry volume %) 12.13 12.21 12.23 12.19 Water Vapor (volume %) 10.9% 10.0% 9.7% 10.2% Stack Temperature (°F) 616.6 609.8 609.2 611.8 Percent of Isokinetic Sampling (%) 96.5 97.0 99.4 97.6 Friderable Particulate Results Mass Collected (mg) 46.10 12.85 18.15 25.70 Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Rate (lb/tn) 4.35 1.17 1.64 2.39	Date		07/21/15	07/21/15	07/21/15		
Flow Rate (ACFM) 130030 130959 131049 130,680 Flow Rate (DSCFM) 55169 55463 56719 56,117 Sample Volume (DSCF) 76,479 78,725 81.042 78,748 Carbon Dioxide (dry volume %) 6.46 6.37 6.39 6.41 Oxygen (dry volume %) 12.13 12.21 12.23 12.19 Water Vapor (volume %) 10.9% 10.0% 9,7% 10.2% Stack Temperature (°F) 616.6 609.8 609.2 611.8 Percent of Isokinetic Sampling (%) 96.5 97.0 99.4 97.6 Production Rate (ton/hr) 17.5 17.5 17.5 17.5 Results ////////////////////////////////////	Start Time		8:40 AM	12:55 PM	12:55 PM		
Flow Rate (DSCFM) 55169 56463 56719 56,117 Sample Volume (DSCF) 76.479 78.725 81.042 78.748 Carbon Dioxide (dry volume %) 6.46 6.37 6.39 6.41 Oxygen (dry volume %) 12.13 12.21 12.23 12.19 Water Vapor (volume %) 10.9% 10.0% 9.7% 10.2% Stack Temperature (°F) 616.6 609.8 609.2 611.8 Percent of Isokinetic Sampling (%) 96.5 97.0 99.4 97.6 Production Rate (ton/hr) 17.5 17.5 17.5 17.5 Results	End Time		11:23 AM	3:18 PM	3:18 PM		
Sample Volume (DSCF) 76.479 78.725 81.042 78.748 Carbon Dioxide (dry volume %) 6.46 6.37 6.39 6.41 Oxygen (dry volume %) 12.13 12.21 12.23 12.19 Water Vapor (volume %) 10.9% 10.0% 9.7% 10.2% Stack Temperature (°F) 616.6 609.8 609.2 611.8 Percent of Isokinetic Sampling (%) 96.5 97.0 99.4 97.6 Production Rate (ton/hr) 17.5 17.5 17.5 17.5 Results Imission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Rate (lb/hr) 4.35 1.17 1.64 2.39 1.45 Emission Rate (lb/ton of glass pulled) 0.249 0.067 0.094 0.136 0.45 HAP Metal Results Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 1.00 Emission Rate (lb/trn of glass pulled) 0.0125 0.0175 0.0247 0.018	Flow Rate	(ACFM)	130030	130959	131049	130,680	
Carbon Dioxide (dry volume %) 6.46 6.37 6.39 6.41 Oxygen (dry volume %) 12.13 12.21 12.23 12.19 Water Vapor (volume %) 10.9% 10.0% 9.7% 10.2% Stack Temperature (°F) 616.6 609.8 609.2 611.8 Percent of Isokinetic Sampling (%) 96.5 97.0 99.4 97.6 Production Rate (ton/hr) 17.5 17.5 17.5 17.5 Results Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Cate (lb/tr) 4.35 1.17 1.64 2.39 Emission Rate (lb/ton of glass pulled) 0.249 0.067 0.094 0.136 0.44 HAP Metal Results Mass Collected (ug) 2285.983 3228.812 4566.260 3393.685 Emission Rate (lb/tr) 0.218 0.306 0.432 0.319 Emission Rate (lb/ton of glass pulle	Flow Rate	(DSCFM)	55169	56463	56719	56,117	
Oxygen (dry volume %) 12.13 12.21 12.23 12.19 Water Vapor (volume %) 10.9% 10.0% 9.7% 10.2% Stack Temperature (°F) 616.6 609.8 609.2 611.8 Percent of Isokinetic Sampling (%) 96.5 97.0 99.4 97.6 Production Rate (ton/hr) 17.5 17.5 17.5 17.5 Results Imisoin Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.4650 HAP Metal Results Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 Emission Rate (lb/tr) 0.218 0.306 0.432 0.319 Emission Rate (lb/tr) 0.218 0.306 0.432 0.319 Emission Rate (lb/tr) 0.218 0.306 0.432 0.319 Emission Rate (lb/tr) 0.21	Sample Volume	(DSCF)	76.479	78.725	81.042	78.748	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Water Vapor (volume %) 10.9% 10.0% 9.7% 10.2% Stack Temperature (°F) 616.6 609.8 609.2 611.8 Percent of Isokinetic Sampling (%) 96.5 97.0 99.4 97.6 Production Rate (ton/hr) 17.5 17.5 17.5 17.5 Results Itimization (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Rate (lb/tn) 4.35 1.17 1.64 2.39 Emission Rate (lb/tn) 0.249 0.067 0.094 0.136 0.45 HAP Metal Results Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 Emission Rate (lb/tn) 0.218 0.306 0.432 0.319 Emission Rate (lb/tn) 0.218 0.306 0.432 0.319 Emission Rate (lb/tn) 0.218	Carbon Dioxide	(dry volume %)	6.46	6.37	6.39	6.41	· · · · ·
Stack Temperature (°F) 616.6 609.8 609.2 611.8 Percent of Isokinetic Sampling (%) 96.5 97.0 99.4 97.6 Production Rate (ton/hr) 17.5 17.5 17.5 17.5 Results Itimi Itimi Itimi Itimi Itimi Filterable Particulate Results Mass Collected (mg) 46.10 12.85 18.15 25.70 Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Rate (lb/hr) 4.35 1.17 1.64 2.39 Emission Rate (lb/hr) 0.249 0.067 0.094 0.45 HAP Metal Results Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 Emission Rate (lb/hr) 0.218 0.306 0.432 0.319 Emission Rate (lb/hr) 0.218 0.306 0.432 0.319 Emission Rate (lb/ton of glass pulled) 0.0125	Oxygen	(dry volume %)	12.13	12.21	12.23	12.19	
Stack Temperature (°F) 616.6 609.8 609.2 611.8 Percent of Isokinetic Sampling (%) 96.5 97.0 99.4 97.6 Production Rate (ton/hr) 17.5 17.5 17.5 17.5 Results Imit Imit Imit Imit Imit Filterable Particulate Results Imit Imit Imit Imit Mass Collected (mg) 46.10 12.85 18.15 25.70 Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Rate (lb/hr) 4.35 1.17 1.64 2.39 Emission Rate (lb/ton of glass pulled) 0.249 0.067 0.094 0.136 0.45 HAP Metal Results Imit Imit 0.218 0.306 0.432 0.319 0.0247 0.0182 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.00247 0.0182 0.00	Water Vapor		10.9%	10.0%	9.7%	10.2%	
Production Rate (ton/hr) 17.5 17.5 17.5 17.5 17.5 Results Imi Imi Imi Imi Imi Imi Filterable Particulate Results Imi Imi Imi Imi Imi Filterable Particulate Results Imi	Stack Temperature	(°F)	616.6	609.8	609.2	611.8	
Production Rate (ton/hr) 17.5 17.5 17.5 17.5 17.5 Results Imi Imi Imi Imi Imi Imi Filterable Particulate Results Imi Imi Imi Imi Imi Filterable Particulate Results Imi			96.5	97.0	99.4	97.6	
Filterable Particulate Results Mass Collected (mg) 46.10 12.85 18.15 25.70 Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Rate (lb/hr) 4.35 1.17 1.64 2.39 Emission Rate (lb/ton of glass pulled) 0.249 0.067 0.094 0.136 0.45 HAP Metal Results Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 Emission Rate (lb/hr) 0.218 0.306 0.432 0.319 Emission Rate (lb/ton of glass pulled) 0.0125 0.0175 0.0247 0.0182 0.02 Selenium Results Mass Collected (ug) 2220 3160 4610 3330			17.5	17.5	17.5	17.5	
Mass Collected (mg) 46.10 12.85 18.15 25.70 Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Rate (lb/hr) 4.35 1.17 1.64 2.39 Emission Rate (lb/tr) 4.35 1.17 0.094 0.136 0.45 HAP Metal Results Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 Emission Rate (lb/hr) 0.218 0.306 0.432 0.319 Emission Rate (lb/ton of glass pulled) 0.0125 0.0175 0.0247 0.0182 0.0247 Selenium Results Mass Collected (ug) 2220 3160 4610 3330	Results						Limit
Mass Collected (mg) 46.10 12.85 18.15 25.70 Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Rate (lb/hr) 4.35 1.17 1.64 2.39 Emission Rate (lb/tr) 0.249 0.067 0.094 0.136 0.45 HAP Metal Results Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 Emission Rate (lb/hr) 0.218 0.306 0.432 0.319 Emission Rate (lb/ton of glass pulled) 0.0125 0.0175 0.0247 0.0182 0.0247 Selenium Results (ug) 2220 3160 4610 3330 3330	Filterable Particulate Results						
Emission Concentration (gr/DSCF) 0.0092 0.0024 0.0034 0.0050 Emission Rate (lb/hr) 4.35 1.17 1.64 2.39 Emission Rate (lb/ton of glass pulled) 0.249 0.067 0.094 0.136 0.45 HAP Metal Results		(mg)	46.10	12.85	18.15	25.70	
Emission Rate (lb/hr) 4.35 1.17 1.64 2.39 Emission Rate (lb/ton of glass pulled) 0.249 0.067 0.094 0.136 0.45 HAP Metal Results Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 Emission Rate (lb/hr) 0.218 0.306 0.432 0.319 Emission Rate (lb/nr) 0.218 0.306 0.432 0.319 Emission Rate (lb/ton of glass pulled) 0.0125 0.0175 0.0247 0.0182 0.0247 Selenium Results Mass Collected (ug) 2220 3160 4610 3330	Emission Concentration			0.0024	0.0034	0.0050	
Emission Rate (lb/ton of glass pulled) 0.249 0.067 0.094 0.136 0.45 HAP Metal Results Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 Emission Rate (lb/tnr) 0.218 0.306 0.432 0.319 Emission Rate (lb/ton of glass pulled) 0.0125 0.0175 0.0247 0.0182 0.02 Selenium Results Mass Collected (ug) 2220 3160 4610 3330	Emission Rate		4.35	1.17	1.64	2.39	
Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 Emission Rate (lb/hr) 0.218 0.306 0.432 0.319 Emission Rate (lb/ton of glass pulled) 0.0125 0.0175 0.0247 0.0182 0.02 Selenium Results Mass Collected (ug) 2220 3160 4610 3330			the second se		0.094	0.136	0.45
Mass Collected (ug) 2285.983 3228.812 4666.260 3393.685 Emission Rate (lb/hr) 0.218 0.306 0.432 0.319 Emission Rate (lb/ton of glass pulled) 0.0125 0.0175 0.0247 0.0182 0.02 Selenium Results Mass Collected (ug) 2220 3160 4610 3330	HAD MAAAI Dogula						-
Emission Rate (lb/hr) 0.218 0.306 0.432 0.319 Emission Rate (lb/hr) 0.0125 0.0175 0.0247 0.0182 0.02 Selenium Results Mass Collected (ug) 2220 3160 4610 3330	the second se	()	2205 002	2000 010	4666 260	- 3303 685	· .
Emission Rate (lb/ton of glass pulled) 0.0125 0.0175 0.0247 0.0182 0.02 Selenium Results Mass Collected (ug) 2220 3160 4610 3330						and the second	
Selenium ResultsMass Collected(ug)2220316046103330					1 A		0.02
Mass Collected (ug) 2220 3160 4610 3330		(-
							- 1-
				and the second			
	Emission Rate	(lb/hr)	0.212	0.300	0.427	0.313	2.03
Emission Rate (Ib/ton of glass pulled) 0.0121 0.0171 0.0244 0.0179	Emission Rate	(lb/ton of glass pulled)	0.0121	0.0171	0.0244	0.0179	

C:\Users\pjadlowiec\Desktop\15-081 - Carleton MI - Stack Testing\Field Work\Compliance Stack Test\M5-29 and 13B.xis, FPM&Metals Summary

Line 2 PM, Ammonia, HAP and SO2 Report 15-081 Page 22 of 249

Guardian Industries

Printed 9/8/2015

Table 2. Sulfur Acid Mist Emission Test Results Summary, Line 2 Glass Production

Guardian Industries, Carleton, Michigan

and the second	· · · · ·					
Test Data		Run 1	Run 2	Run 3	Average	
Date		7/22/15	7/22/15	7/22/15	,	
Start Time		8:45 AM	11:50 AM	2:20 PM		1.14
End Time	· · · · · · · · · · · ·	9:58 AM	12:57 PM	3:27 PM		
Flow Rate	(ACFM)	131,568	124,325	123,983	126,625	
Flow Rate	(SCFM)	63,335	60,022	60,439	61,265	1. 1.
Flow Rate	(DSCFM)	57,094	53,764	56,864	55,907	
Sample Volume	(DSCF)	57.372	52.589	53.901	54.621	·
Carbon Dioxide (CO ₂)	(dry volume %)	6.46	6.37	6.39	6.41	2
Oxygen (O ₂)	(dry volume %)	12.13	12.21	12.23	12.19	•
Water Vapor (H ₂ O)	(volume %)	9.85	10.43	5.91	8.73	
Stack Temperature	(°F)	607.4	604.3	594.1	601.9	· .
Percent of Isokinetic Sampling	(%)	99.5	96.9	93.9	96.7	
Product Rate (Glass Pull Rate)	(ton/hr)	17.5	17.5	17.5	17.5	
Results						Limit
Sulfuric Acid Mist (H2SO4)					· · ·	
Total mass as H ₂ SO ₄	(mg)	85.0	82.60	125.2	97.60	
Sulfuric Acid Mist Concentration as H ₂ SO ₄	(ppm _{dv)}	12.8	13.6	20.1	15.5	· · · ·
Sulfuric Acid Mist Emission as H ₂ SO ₄	(lb/hr)	11.2	11.2	17.5	13.3	1.6
Sulfuric Acid Mist Emission as H ₂ SO ₄	(lb/ton of glass)	0.639	0.638	0.998	0.759	
				1.1.1		

Table 3.

Ammonia Emission Test Results, Line 2 Glass Production Guardian Industries, Carleton, Michigan

Test Data		Run 1	Run 2	Run 3	Average
Date					
		7/21/15	7/21/15	7/21/15	and the second second
Start Time		9:23 AM	1:25 PM	3:34 PM	e e e e e e e e e e e e e e e e e e e
End Time		10:48 AM	2:50 PM	4:59 PM	
Flow Rate	(ACFM)	126,176	127,112	127,855	127,048
Flow Rate	(SCFM)	60,750	61,470	61,645	61,289
Flow Rate	(DSCFM)	53,890	53,607	53,756	53,751
Sample Volume	(DSCF)	52.87	51.53	52.53	52.31
Carbon Dioxide (CO ₂)	(dry volume %)	6.46	6.37	6.39	6.41
Oxygen (O ₂)	(dry volume %)	12.13	12.21	12.23	12.19
Water Vapor (H ₂ O)	(volume %)	11.29	12.79	12.80	12.29
Stack Temperature	(°F)	604.3	599.6	602.8	602.2
Percent of Isokinetic Sampling	(%)	97.21	95.25	96.84	96.4
Production Rate	(ton/hr)	17.5	17.5	17.5	17.5
Results					
Ammonia					
Emission Mass Catch	ug	25031	27559	25144	25911
Collection Efficiency	%	99.94	99.83	99.83	99.87
Emission Concentration	lb/dscf	1.04E-06	1.18E-06	1.06E-06	1.09E-06
Emission Concentration	ppm_{dv}	23.8	26.8	24.0	24.9
Emission Rate	lb/hr	3.37	3.79	3.40	3.52
Emission Rate	lb/ton product	0.193	0.217	0.194	0.201

•

C:\Users\pjadlowiec\Desktop\15-081 - Carleton MI - Stack Testing\Field Work\Compliance Stack Test\CTM-027 Ammonia.xls, Summary

9/8/2015

Table 4.

TABLE NOMENCLATURE

SYMBOL		DESCRIPTION	SYMBOL	-	DESCRIPTION	SYMBOL	DESCRIPTION	
	-	Percent	gpm	-	Gallons per minute	O ₂	Oxygen	·
Volume	-	Percent by volume	gr/DSCF	- '		OSHA	Occupational Safe	ty & Health Administratio
7		Degrees Fahrenheit	H ₂ O	-		PADEP	PA Department of	Environmental Protection
-	_	Less than	H₂SO₄	-	Sulfuric acid	Pb	Lead	
	-	Greater than	HAP	-	Hazardous air pollutant	PEL	Permissible expos	ure limit
В		Acetone Blank	Hg			PM	Particulate matter	
CFM		Actual cubic feet per minute	ні	-	Heat input	PM_{10}	Particulate matter	less than 10 microns
ACT	-	Best Available Control Technology	Hp			ppb	Parts per billion	
HP	-	Brake horsepower	hr	-		PPE	Personal protectiv	e equipment
TU	-	British thermal units	IC		Ion chromatography	ppm	Parts per million	•••
TU/scf	_	British thermal units per standard cubic feet	in H ₂ O	-	Inches of Water	ppm _{dv}	Parts per million, dr	y volume
₃ H ₈	-	Propane	in Hg	-	Inches of Mercury	ppmwv	Parts per million, w	
E	-	Capture efficiency	Kg	· _		psia	Pounds per square	inch absolute
EMS	-	Continuous emission monitor system	lb	-	Pound	psig	Pounds per square	e inch gauge
	· _	Cubic foot	lb/hr	÷	Pound per hour	PTI	Permit to Install	· · ·
R	-	Code of Federal Regulations	lb/lb-mole	-	Pound per pound mole	PTE	Permanent total er	nclosure
HL4	-	Methane	MACT	-	Maximum Achievable Control Technology	RA	Relative Accuracy	l
$_{2}H_{6}$	-	Ethane	m ³	-	Cubic meters	RATA	Relative Accuracy	/ Test Audit
l ₂	-	Chlorine	MDL		Minimum detection limit	RM	Reference Method	
5	_	Carbon monoxide	mg	-	Milligrams	RMD	Relative mean diffe	rence
02	-	Carbon dioxide	mg/g	-	Milligrams per gram	rpm	Revolutions per m	inute
OG	-	Coke oven gas	min	_ `	Minute	S	Sulfur	· · · · · · · · · · · · · · · · · · ·
ACF		Dry actual cubic feet	mL	-	Milliliter	SCF	Standard cubic feet	
ACM	-	Dry actual cubic meters	mm HG	-	Millimeters of mercury	SCFM	Standard cubic feet	per minute
Е	· _	Destruction efficiency	MMBtu	-	Million British thermal units	SCM	Standard cubic met	ers
SCF	-	Dry standard cubic feet	MNOC	-	Maximum normal operating capacity	SO ₂	Sulfur dioxide	
SCFM	-	Dry standard cubic feet per minute	MSDS	-	Material Safety Data Sheet	STD	Standard	
D .	-	Flame Ionization Detector	MW	<u>.</u>	Megawatts	TEQ	Toxicity Equivale	
	-	Foot	N ₂	-	Nitrogen	THC	Total hydrocarbons	
sec	-	Feet per second	ND	-	Non-detectable	tph	Tons per hour	
2	-	Square feet	NDO	-	Natural draft opening	tpy	Tons per year	· · · ·
5	-	Cubic feet	NESHAP	÷.	National Emission Standard for Hazardous Air Pollutants	μg	Micrograms	· · · · · · · · · · · · · · · · · · ·
/lb-mole	. -	Cubic feet per pound mole	ng	-	Nanograms	USEPA		conmental Protection Agency
		Grams	NMEVOC	-	Non-methane, non-ethane volatile organic compounds	VE VOC	Visible emissions Volatile organic of	
bhp-hr	-	Grams of brake horsepower per hour	NMVOC	-	Non-methane volatile organic compound	vol.	Volume	ompound
mL C	-	Gram per milliliter Gas Chromatography	NO2 NO2	-	Nitrous Oxide Oxides of Nitrogen	w/o	With out	

Guardian Industries Line 2 PM, Ammonia, HAP and SO2 Report 15-081 Page 25 of 249