

Pace Analytical Services, LLC 1700 Elm Street SE Minneapolis, MN 55414 Phone: 612.607.1700 www.pacelabs.com

Comprehensive Emissions Test Report

Grede, LLC - Iron Mountain
Particulate, PM-10, CO, SO₂, VOC
Compliance Testing

Testing Date(s): Dec. 8-10 & 15-17, 2020 Report Date: February 5, 2021 Revision Date: No revision to date

Report Prepared For:

Tyler Hill Grede, LLC - Iron Mountain 801 South Carpenter Avenue Kingsford, MI 49802

Telephone No.: (906) 779-0201 E-mail Address: tyler.hill@grede.com

Report Preparation Supervised By:

Terry Borgerding
Pace Analytical Services, LLC
1700 Elm Street, Suite 200
Minneapolis, MN 55414

Telephone No.: (612) 607-6374

E-mail Address: terry.borgerding@pacelabs.com

Pace Project No. 20-04074

Subject Facility:

Grede, LLC - Iron Mountain 801 South Carpenter Avenue Kingsford, MI 49802

Regulatory Permit No.: MI-ROP-B1577-2020 SRN: B1577

Subject Emission Sources:

Cupola EU-P009 Module Pouring & Cooling EU-P036 Main Plant Pouring & Cooling EU-P016

Test Locations:

Cupola Baghouse Exhaust 324644
Module Pouring & Cooling 2 Stacks
Main Plant Pouring & Cooling 6 Stacks

Table of Contents

Report Cover Table of Conte	nts		1 2
Regulatory Su Introduction Results Summ	·		3 5 6
Summary Tab Table Table	1-9 Parti	iculate Results Summary Monitoring Results, Cupola BH Inlet	8 9 18
Detail Tables Table Table Table Table Table Table	22-30 Parti31-33 Opa34-41 Preli	or Gases and Moisture Results iculate Results city Observations minary Airflow Measurements ow Measurement Results, Cupola BH Inlet	19 20 31 40 43 51
Process Desci	iption		53
Test Procedur Figure Report Signati	1-9 Test	Location Schematics	54 67 76
Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F	Field Data SI Quantitation Calculation E Quality Assu Source/Proce	neets and Documentation and Laboratory Reports Equations and Report Nomenclature rance Information ess/Plant Information I and Pretest Correspondence	A-1 B-1 C-1 D-1 E-1 F-1

Regulatory Summary

Subject Facility: Grede, LLC – Iron Mountain Plant Address: 801 South Carpenter Avenue

Kingsford, MI 49802

Air Permit No.: MI-ROP-B1577-2020

Facility ID No.: SRN: B1577

Emission Unit IDs	Emission Unit Name	Regulated Constituent	Regulatory Citations	Regulatory Limit	Average Test Result
324484	Main Plant Pouring & Cooling Disa Pouring	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0026 GR/DSCF
324632	Main Plant Pouring & Cooling No. 6 HMP	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0025 GR/DSCF
324662	Main Plant Pouring & Cooling No. 7 HMP	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0072 GR/DSCF
324678	Main Plant Pouring & Cooling Disa Pouring	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0043 GR/DSCF
324682	Main Plant Pouring & Cooling Disa Pouring	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0012 GR/DSCF
324848	Main Plant Pouring & Cooling No. 5 HMP	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0041 GR/DSCF
334116	Module Pouring & Cooling Exhaust	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0032 GR/DSCF
334176	Module Pouring & Cooling Exhaust	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF	0.0032 GR/DSCF

Emission Unit IDs	Emission Unit Name	Regulated Constituent	Regulatory Citations	Regulatory Limit	Average Test Result
				≤21.0 LB/HR	0.811 LB/HR
		Carbon Monoxide	R 336.1201(3)	≤250.0 mg/m³, corrected to 70°F and 29.92" Hg	14.5 mg/dscm (70°F : 29.92"Hg)
		Particulate	R 336.1331	≤0.011 LB/1000 LB exhaust gas	0.0026 LB/1000 LB exhaust gas
		(filterable)	40 CFR 63.7690(a)(2)	≤0.006 GR/DSCF	0.0014 GR/DSCF
		PM-10	R 336.1331	≤1.30 LB/HR	2.50 LB/HR
EU-P009 324644	Cupola Baghouse Exhaust	aghouse	R 336.1201(3)	≤170 mg/m³, corrected to 70°F and 29.92" Hg	29.5 mg/dscm (70°F: 29.92"Hg)
				≤13.8 LB/HR	1.65 LB/HR
		Volatile Organic HAP (VOHAP)	40 CFR 63.7690(a)(8)	≤20 PPMv @ 10% O₂ as hexane	<0.11 PPM, dry @ 10% O ₂
		Opacity (fugitive)	40 CFR 63.7690(a)(7)	≤20% 6-minute average, except for one 6-minute average per hour that does not exceed 27%	3.8% Highest 6-minute average

Introduction

Pace Analytical Services, LLC personnel conducted source emission compliance testing at the Grede, LLC – Iron Mountain facility located in Kingsford, Michigan. Cupola testing included particulate, carbon monoxide (CO), total hydrocarbon (THC), sulfur dioxide (SO₂), and opacity. Particulate emission testing was performed on eight Main Plant and Module Plant pouring and cooling exhaust stacks. Terry Borgerding, Zack Eckstrom, Andrew Radabaugh, Jake Geis, Stanley Broome, Josh Price, and Lucas Ruhland performed on-site testing activities on December 8-10 and 15-17, 2020. Terry Borgerding provided administrative project management. Tom White and Tyler Hill with Grede, LLC – Iron Mountain coordinated plant activities during testing. Jeremy Howe and Michael Conklin with the Michigan Department of Environment, Great Lakes, and Energy (EGLE) were on-site to witness testing. Pace Analytical Services, LLC prepared a comprehensive test protocol that was submitted to the EGLE prior to testing. On-site activities consisted of the following measurements:

- Particulate, three independent 72-96 minute samplings on the Main Plant and Module Plant pouring stacks
- Particulate, three independent two-hour samplings on the Cupola baghouse exhaust.
- CO, SO₂, THC, three independent one-hour monitoring periods on the Cupola baghouse inlet.
- Gas composition (O₂/CO₂), integrated bags collected concurrent with Cupola testing at the baghouse inlet and exhaust.
- Volumetric airflow, measurements collected in conjunction with isokinetic testing.
- Visible emissions (fugitive), three independent one-hour monitoring periods on the Cupola building.

The project objectives were to quantify particulate, CO, THC, and SO₂ emission constituents and compare them to applicable air emissions regulations stipulated by Iron and Steel Foundry MACT and the facility permit. These measurements were performed at the highest achievable melt rate. Quality protocols comply with regulatory compliance testing requirements.

Subsequent sections summarize the test results and provide descriptions of the process and test methods. Supporting information and raw data are in the appendices.

Results Summary

Results of particulate determinations are summarized in Tables 1-9 and in the regulatory summary. The filterable particulate emission concentration from all the Main Plant and Module Plant exhaust stacks ranged from 0.0012 GR/DSCF to 0.0072 GR/DSCF and were below the particulate emission concentration limit of 0.010 GR/DSCF for these sources. Subsequent to previous testing, modifications were made to exhaust stacks to mitigate cyclonic flow effect and establish EPA Method 1 compliance with upstream/downstream distances. All of the stacks met EPA Method 1 distance and cyclonic flow (less than 20 degrees) criteria. Standard EPA Method 5 testing procedures were followed. Current stack schematics are included.

The filterable particulate emission concentration from the cupola averaged 0.0014 GR/DSCF and 0.0026 LB/1000 LB exhaust gas. The operating permit limits for this source are 0.006 GR/DSCF and 0.011 LB/1000 LB exhaust gas. The PM-10 emission rate averaged 2.50 LB/HR. The PM-10 operating permit emission limit for this source is 1.30 LB/HR. Subsequent tables provide expanded detail of the testing results.

Particulate matter and PM-10 were collected with a single sampling train under the assumption that all particulate is less than 10 microns. The particulate dry catch (EPA Method 5) was used to report filterable matter. The dry catch (EPA Method 5), organic wet catch and inorganic wet catch (EPA Method 202) and EPA Method 5D dilution factors were combined to report PM-10 mass rate (LB/HR) on the cupola baghouse exhaust.

Particulate testing on the Cupola baghouse exhaust was performed following the procedures of EPA Method 5D. Sampling on the Cupola exhaust is performed from an area above the baghouse compartments and accessed from an open area along the top side of the baghouse. Airflow and temperature measurements collected from the inlet to the baghouse and temperatures from the baghouse exhaust were used to calculate dilution flow rate and the total flow rate at the baghouse exhaust to set isokinetic

sampling rates and exhaust mass emission rates following equations in section 12.2, 12.3 and 12.4 of EPA Method 5D. The isokinetic sampling rate for Run 2 (111.7%) was slightly outside of the Method criteria of 90-110% but should not have a significant bias on the particulate result. Baghouse outlet particulate is small enough to behave as an aerosol and largely unaffected by isokinetic sampling. Runs 1 and 3 isokinetic variation were acceptable but below 100% so if any bias existed, it would likely average out.

Results of THC, SO₂, and CO determinations measured from the cupola baghouse inlet are reported in Table 10. The THC concentration averaged <0.11 PPM as hexane @ 10% O₂. The VOC emission limit for this source is 20 PPM as hexane @ 10% O₂. The SO₂ concentration averaged 29.5 mg/dscm with a mass emission rate of 1.65 LB/HR. The SO₂ emission limit for this source is 170 mg/dscm corrected to 70°F and 29.92 inches Hg and 13.8 LB/HR. The CO concentration averaged 14.5 mg/dscm with a mass emission rate of 0.811 LB/HR. The CO emission limit for this source is 250 mg/dscm corrected to 70°F and 29.92 inches Hg and 21.0 LB/HR. An unusually low moisture value (7.3%) was measured for Run 1. After discussion with Jeremy Howe (EGLE), this value was used in calculations as it would only bias the mass rate result higher. Test runs on the cupola were halted when the cupola was in by-pass mode and resumed after the cupola returned to steady state in the blast mode. Down times are recorded on the Gas Monitoring Log included in Appendix B.

Results of opacity observations from the Cupola building are reported in Tables 31-33. The high six-minute average was 3.8%. The opacity limit for this source is ≤20% 6-minute average, except for one 6-minute average per hour that does not exceed 27%.

The data in this report are indicative of emission characteristics of the measured sources for process conditions at the time of the test. Representations to other sources and test conditions are beyond the scope of this report.

Summary Tables

Table 1

Kingsford, MI Pace Project No. 20-04074 Results Summary Main Plant Pouring & Cooling Disa Pouring - 324484

Parameter Date of Run Time of Run	Run 1 12/9/20 0826-0954	Run 2 12/9/20 1015-1144	12/9/20	Average
Volumetric Flow Rate (Rounded to 10 CFM) ACFM DSCFM	8,320 7,430	8,460 7,530	•	8,420 7,500
Gas Temperature, °F Gas Moisture Content, %v/v	90 1.7	89 2.3	91 1.7	90 1.9
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference)	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.14	0.16	0.20	0.17
Particulate Concentration, GR/DSCF Filterable Particulate	0.0021	0.0025	0.0031	0.0026

Table 2

Kingsford, MI Pace Project No. 20-04074

Results Summary Main Plant Pouring & Cooling No. 6 HMP - 324632

Parameter Date of Run Time of Run	Run 1 12/10/20 0720-0856	Run 2 12/10/20 0925-1052	Run 3 12/10/20 1210-1339	Average
Volumetric Flow Rate (Rounded to 10 CFM) ACFM DSCFM	4,370	4,550	4,480	4,470
	4,030	4,150	4,070	4,080
Gas Temperature, °F	84	89	94	89
Gas Moisture Content, %v/v	0.9	0.9	0.4	0.7
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference)	0.0	0.0	0.0	0.0
	21.0	21.0	21.0	21.0
	79.0	79.0	79.0	79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.073	0.080	0.106	0.087
Particulate Concentration, GR/DSCF Filterable Particulate	0.0021	0.0023	0.0030	0.0025

Table 3

Kingsford, MI Pace Project No. 20-04074

Results Summary Main Plant Pouring & Cooling No. 7 HMP - 324662

Parameter Date of Run Time of Run	Run 1 12/8/20 0748-0927	Run 2 12/8/20 0959-1200	12/8/20	Average
Volumetric Flow Rate (Rounded to 10 CFM) ACFM DSCFM	8,650	8,830	8,740	8,740
	7,870	7,980	7,880	7,910
Gas Temperature, °F	91	95	96	94
Gas Moisture Content, %v/v	0.8	0.8	0.9	0.8
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference)	0.04	0.04	0.04	0.04
	21.0	21.0	21.0	21.0
	79.0	79.0	79.0	79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.49	0.54	0.43	0.49
Particulate Concentration, GR/DSCF Filterable Particulate	0.0073	0.0079	0.0063	0.0072

Table 4

Kingsford, MI Pace Project No. 20-04074 Results Summary Main Plant Pouring & Cooling Disa Pouring - 324678

Parameter Date of Run Time of Run	Run 1 12/9/20 1052-1210	Run 2 12/9/20 1251-1406	12/9/20	Average
Volumetric Flow Rate (Rounded to 100 CFM) ACFM DSCFM	17,700	17,400	17,500	17,500
	16,700	16,700	16,700	16,700
Gas Temperature, °F	71	61	66	66
Gas Moisture Content, %v/v	0.4	0.1	0.1	0.2
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference)	0.04	0.04	0.04	0.04
	21.0	21.0	21.0	21.0
	79.0	79.0	79.0	79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.63	0.51	0.70	0.61
Particulate Concentration, GR/DSCF Filterable Particulate	0.0044	0.0036	0.0049	0.0043

Table 5

Kingsford, MI Pace Project No. 20-04074 Results Summary Main Plant Pouring & Cooling Disa Pouring - 324682

Parameter Date of Run Time of Run	Run 2 12/8/20 0935-1153	Run 3 12/8/20 1215-1342	12/8/20	Average
Volumetric Flow Rate (Rounded to 100 CFM) ACFM DSCFM	14,800 14,200	14,700 14,000	•	14,800 14,100
Gas Temperature, °F Gas Moisture Content, %v/v	63 0.6	66 0.7	67 1.1	65 0.8
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference)	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0	0.0 21.0 79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.15	0.14	0.16	0.15
Particulate Concentration, GR/DSCF Filterable Particulate	0.0012	0.0012	0.0013	0.0012

Table 6

Kingsford, MI Pace Project No. 20-04074

Results Summary Main Plant Pouring & Cooling No. 5 HMP - 324848

Parameter Date of Run Time of Run	Run 1 12/8/20 0750-0916	Run 2 12/8/20 0935-1150	12/8/20	Average
Volumetric Flow Rate (Rounded to 100 CFM) ACFM DSCFM	10,800	11,000	11,000	10,900
	10,100	10,200	10,200	10,200
Gas Temperature, °F	77	79	80	79
Gas Moisture Content, %v/v	0.4	0.6	0.6	0.5
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference)	0.0	0.0	0.0	0.0
	21.0	21.0	21.0	21.0
	79.0	79.0	79.0	79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.40	0.35	0.34	0.36
Particulate Concentration, GR/DSCF Filterable Particulate	0.0046	0.0039	0.0039	0.0041

Kingsford, MI Pace Project No. 20-04074 Table 7

Results Summary

Module Pouring & Cooling Exhaust - 334116

Test 1

Parameter Date of Run Time of Run	Run 1 12/10/20 0750-0917	Run 2 12/10/20 0940-1168	Run 3 12/10/20 1226-1352	Average
Volumetric Flow Rate (Rounded to 10 CFM) ACFM DSCFM	7,590	7,440	7,470	7,500
	6,980	6,810	6,740	6,840
Gas Temperature, °F	86	92	97	92
Gas Moisture Content, %v/v	0.9	0.2	0.8	0.6
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference)	0.0	0.0	0.0	0.0
	21.0	21.0	21.0	21.0
	79.0	79.0	79.0	79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.20	0.23	0.14	0.19
Particulate Concentration, GR/DSCF Filterable Particulate	0.0034	0.0040	0.0024	0.0032

Kingsford, MI Pace Project No. 20-04074 Table 8

Results Summary

Module Pouring & Cooling Exhaust - 334176

Test 1

Parameter Date of Run Time of Run	Run 1 12/9/20 0815-0942	Run 2 12/9/20 1035-1205	Run 3 12/9/20 1228-1354	Average
Volumetric Flow Rate (Rounded to 10 CFM) ACFM DSCFM	3,920 3,630	4,080 3,740	4,100 3,770	4,030 3,710
Gas Temperature, °F Gas Moisture Content, %v/v	80 0.5	82 1.0	85 0.4	82 0.6
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂	0.0 21.0	0.0 21.0	0.0 21.0	0.0 21.0
Nitrogen, N ₂ (by difference)	79.0	79.0	79.0	79.0
Particulate Mass Rate, LB/HR Filterable Particulate	0.122	0.088	0.094	0.101
Particulate Concentration, GR/DSCF Filterable Particulate	0.0039	0.0027	0.0029	0.0032

Kingsford, MI Pace Project No. 20-04074 Table 9
Results Summary
Cupola Baghouse Exhaust
Test 1

Parameter Date of Run Time of Run	Run 1 12/16/20 0830-1056	Run 2 12/16/20 1230-1456	Run 3 12/17/20 0753-1017	Average
Volumetric Flow Rate (Rounded to 1000 CFM) ACFM DSCFM	188,000 146,000	178,000 139,000	171,000 133,000	179,000 139,000
Gas Temperature, °F	172	176	175	175
Gas Moisture Content, %v/v	3.4	2.8	3.0	3.1
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference) Particulate Mass Rate, LB/HR	3.1 17.9 79.1	2.4 18.5 79.2	2.7 18.3 79.1	2.7 18.2 79.1
Filterable Particulate	3.18	0.75	1.26	1.73
Filterable+Organic Cond.	3.40	1.00	1.60	2.00
Total Particulate (PM-10 Eq.)	3.89	1.67	1.95	2.50
Particulate Concentration, GR/DSCF Filterable Particulate Filterable+Organic Cond. Total Particulate (PM-10 Eq.)	0.0025 0.0027 0.0031	0.0006 0.0008 0.0014	0.0011 0.0014 0.0017	0.0014 0.0017 0.0021
Regulatory Units, LB/1000 LBS of Flue Gas Filterable Particulate Filterable+Organic Cond. Total Particulate (PM-10 Eq.)	0.0047 0.0050 0.0057	0.0012 0.0016 0.0026	0.0020 0.0026 0.0032	0.0026 0.0031 0.0038

Kingsford, MI Pace Project No. 20-04074 Table 10
Gas Monitoring Results
Cupola Baghouse Inlet
Test 1

Parameter Date of Run Time of Run Sample Duration (Minutes)	Run 1 12/15/20 0855-0955 60	Run 2 12/15/20 1045-1145 60	Run 3 12/15/20 1230-1401 60	Average
Stack Temperature (°F) Duct Moisture Content (%v/v)	682 13.9	695 20.4	713 22.1	697 18.8
Volumetric Flow Rate (Rounded to 100 CFM) ACFM SCFM DSCFM	40,000 17,900 15,400	42,900 19,000 15,100	42,500 18,500 14,500	41,800 18,500 15,000
Constituent Concentration, PPMv - Dry Carbon Monoxide Sulfur Dioxide Total Hydrocarbons (as Hexane)	13.9 13.3 <0.12	10.2 10.4 <0.13	13.1 9.37 <0.13	12.4 11.0 <0.12
Constituent Mass Rate, LB/HR Carbon Monoxide Sulfur Dioxide Total Hydrocarbons (as Hexane)	0.935 2.04 <0.024	0.673 1.57 <0.025	0.825 1.35 <0.025	0.811 1.65 <0.025
Corrected Constituent Concentrations, PPM, di Carbon Monoxide Sulfur Dioxide Total Hydrocarbons (as Hexane)	ry @ 10% Ox 12.9 12.3 <0.11	xygen 9.31 9.50 <0.11	11.4 8.17 <0.11	11.2 9.99 <0.11
Constituent Concentration, mg/dscm (Std to 70 Carbon Monoxide Sulfur Dioxide	°F) 16.3 35.5	11.9 27.8	15.3 25.1	14.5 29.5

Pace Analytical FSD 20-04074

Grede, LLC - Iron Mountain Page 18 of 76

Detail Tables

Table 11

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results Main Plant Pouring & Cooling Disa Pouring - 324484

Parameter	Run 1	Run 2	Run 3
Date of Run	12/9/20	12/9/20	12/9/20
Time of Run	0826-0954	1015-1144	1205-1334
Major Gas Constituents - Ambient, % v/v Dry Basis (as measured)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.95	20.95	20.95
Nitrogen (by difference)	79.01	79.01	79.01
Wet Basis (calculated)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.60	20.47	20.59
Nitrogen	77.68	77.21	77.65
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	20.9	20.9	20.9
Moisture Collected, ml	25.0	34.8	26.2
Moisture Content, %v/v	1.68	2.28	1.73
Moisture Content if Saturated, %v/v	5.03	4.89	5.24
Relative Humidity, % rH	33%	47%	33%
Molecular Weight of Flue Gas, lb/lb-mole			
Dry¹	28.96	28.96	28.96
Wet	28.78	28.71	28.77

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Table 12

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results
Main Plant Pouring & Cooling No. 6 HMP - 324632

Parameter Run 1 Run 2	Run 3
	2/10/20
Time of Run 0720-0856 0925-1052 121	0-1339
Major Gas Constituents - Ambient, % v/v Dry Basis (as measured)	
Carbon Dioxide 0.04 0.04	0.04
Oxygen 20.95 20.95	20.95
Nitrogen (by difference) 79.01 79.01	79.01
Wet Basis (calculated)	
Carbon Dioxide 0.04 0.04	0.04
Oxygen 20.76 20.77	20.87
Nitrogen 78.30 78.31	78.70
Portable Oxygen Monitor Result	
Time Weighted Average, %O ₂ 20.9 20.9	20.9
Moisture Collected, ml 15.7 15.8	7.0
Moisture Content, %v/v 0.90 0.88	0.40
Moisture Content if Saturated, %v/v 4.06 4.88	5.64
Relative Humidity, % rH 22% 18%	7%
Molecular Weight of Flue Gas, lb/lb-mole	
Dry ¹ 28.96 28.96	28.96
Wet 28.86 28.86	28.92

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Table 13

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results
Main Plant Pouring & Cooling No. 7 HMP - 324662

Parameter	Run 1	Run 2	Run 3
Date of Run	12/8/20	12/8/20	12/8/20
Time of Run	0748-0927	0959-1200	1225-1341
Major Gas Constituents - Ambient, % v/v			
Dry Basis (as measured)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.95	20.95	20.95
Nitrogen (by difference)	79.01	79.01	79.01
Wet Basis (calculated)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.79	20.78	20.77
Nitrogen	78.41	78.38	78.32
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	20.9	20.9	20.9
Moisture Collected, ml	13.6	10.8	11.6
,			
Moisture Content, %v/v	0.77	0.80	0.87
,			
Moisture Content if Saturated, %v/v	5.07	5.72	5.94
Relative Humidity, % rH	15%	14%	15%
Molecular Weight of Flue Gas, lb/lb-mole			
Dry¹	28.96	28.96	28.96
Wet	28.88	28.87	28.86
·			

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Table 14

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results
Main Plant Pouring & Cooling Disa Pouring - 324678

Parameter	Run 1	Run 2	Run 3
Date of Run	12/9/20	12/9/20	12/9/20
Time of Run	1052-1210	1251-1406	1435-1550
Major Gas Constituents - Ambient, % v/v			
Dry Basis (as measured)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.95	20.95	20.95
Nitrogen (by difference)	79.01	79.01	79.01
Wet Basis (calculated)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.87	20.94	20.94
Nitrogen	78.70	78.97	78.96
D			
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	20.9	20.9	20.9
Moisture Collected, ml	5.5	0.7	1.0
Moisture Content, %v/v	0.39	0.05	0.07
Moisture Content if Saturated, %v/v	2.65	1.91	2.24
Relative Humidity, % rH	15%	3%	3%
Molecular Weight of Flue Gas, lb/lb-mole			
Dry¹	28.96	28.96	28.96
Wet	28.92	28.95	28.95

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Table 15

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results Main Plant Pouring & Cooling Disa Pouring - 324682

Parameter	Run 2	Run 3	Run 4
Date of Run	12/8/20	12/8/20	12/8/20
Time of Run	0935-1153	1215-1342	1400-1527
Major Gas Constituents - Ambient, % v/v			
Dry Basis (as measured)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.95	20.95	20.95
Nitrogen (by difference)	79.01	79.01	79.01
Triting of the control of	70.01	70.01	7 3.0 1
Wet Basis (calculated)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.83	20.80	20.72
Nitrogen	78.55	78.46	78.16
_			
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	20.9	20.9	20.9
	_5.5	_0.0	
Moisture Collected, ml	8.2	9.7	15.1
,			
Moisture Content, %v/v	0.59	0.70	1.08
,			
Moisture Content if Saturated, %v/v	2.06	2.26	2.30
Relative Humidity, % rH	28%	31%	47%
Molecular Weight of Flue Gas, lb/lb-mole			
Dry¹	28.96	28.96	28.96
Wet	28.90	28.88	28.84

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Table 16

Kingsford, MI Pace Project No. 20-04074 Major Gases and Moisture Results Main Plant Pouring & Cooling No. 5 HMP - 324848 Test 1

Parameter Date of Run Time of Run	Run 1 12/8/20 0750-0916	Run 2 12/8/20 0935-1150	Run 3 12/8/20 1206-1332
Major Gas Constituents - Ambient, % v/v Dry Basis (as measured)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.95	20.95	20.95
Nitrogen (by difference)	79.01	79.01	79.01
Wet Basis (calculated)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.86	20.82	20.83
Nitrogen	78.68	78.52	78.57
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	20.9	20.9	20.9
Moisture Collected, ml	5.8	8.8	7.8
Moisture Content, %v/v	0.42	0.62	0.55
Moisture Content if Saturated, %v/v	3.33	3.48	3.67
Relative Humidity, % rH	12%	18%	15%
Molecular Weight of Flue Gas, lb/lb-mole			
Dry ¹	28.96	28.96	28.96
Wet	28.91	28.89	28.90

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Kingsford, MI Pace Project No. 20-04074 Table 17

Major Gases and Moisture Results

Module Pouring & Cooling Exhaust - 334116

Test 1

Parameter	Run 1	Run 2	Run 3
Date of Run	12/10/20	12/10/20	12/10/20
Time of Run	0750-0917	0940-1168	1226-1352
Major Gas Constituents - Ambient, % v/v			
Dry Basis (as measured)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.95	20.95	20.95
Nitrogen (by difference)	79.01	79.01	79.01
Wet Basis (calculated)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.76	20.91	20.79
, ,	78.29	78.87	78.40
Nitrogen	70.29	10.01	70.40
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	20.9	20.9	20.9
g., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20.5	20.5	20.5
Moisture Collected, ml	15.3	2.9	12.5
Moisture Content, %v/v	0.91	0.18	0.77
Moisture Content if Saturated, %v/v	4.33	5.29	6.22
Relative Humidity, % rH	21%	3%	12%
Molecular Weight of Eluc Cos. Ib/lb mole			
Molecular Weight of Flue Gas, lb/lb-mole	28.96	28.96	28.96
Dry¹			
Wet	28.86	28.94	28.88

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Kingsford, MI Pace Project No. 20-04074 Table 18

Major Gases and Moisture Results

Module Pouring & Cooling Exhaust - 334176

Test 1

Parameter	Run 1	Run 2	Run 3
Date of Run	12/9/20	12/9/20	12/9/20
Time of Run	0815-0942	1035-1205	1228-1354
Major Gas Constituents - Ambient, % v/v			
Dry Basis (as measured)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.95	20.95	20.95
Nitrogen (by difference)	79.01	79.01	79.01
Wet Basis (calculated)			
Carbon Dioxide	0.04	0.04	0.04
Oxygen	20.85	20.73	20.86
Nitrogen	78.64	78.19	78.68
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	20.9	20.9	20.9
Time vvelgined / (velage, //ee/	20.9	20.9	20.9
Moisture Collected, ml	6.1	14.2	5.7
Moisture Content, %v/v	0.47	1.04	0.42
molecule Comoni, 7007	0.17	1.01	0.12
Moisture Content if Saturated, %v/v	3.64	3.90	4.27
Relative Humidity, % rH	13%	27%	10%
Molecular Weight of Flue Gas, lb/lb-mole			
Dry ¹	28.96	28.96	28.96
Wet	28.91	28.85	28.91

¹ Dry molecular weight reflects ambient gas proportions: 78.08% Nitrogen, 20.95% Oxygen, 0.93% Argon, and 0.038% Carbon Dioxide.

Kingsford, MI Pace Project No. 20-04074 Table 19
Major Gases and Moisture Results
Cupola Baghouse Exhaust
Test 1

Parameter	Run 1	Run 2	Run 3
Date of Run	12/16/20	12/16/20	12/17/20
Time of Run	0830-1056	1230-1456	0753-1017
Major Gas Constituents - Instrumental, % v/v Dry Basis (as measured)			
Carbon Dioxide	3.09	2.38	2.69
Oxygen	17.85	18.45	18.25
Nitrogen (by difference)	79.06	79.17	79.06
Wet Basis (calculated)			
Carbon Dioxide	2.99	2.31	2.61
Oxygen	17.25	17.93	17.71
Nitrogen	76.39	76.94	76.72
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	18.2	18.3	18.0
Moisture Collected, ml	75.0	70.8	60.1
Moisture Content, %v/v	3.38	2.82	2.95
Moisture Content if Saturated, %v/v	44.63	48.85	47.05
Relative Humidity, % rH	8%	6%	6%
Molecular Weight of Flue Gas, lb/lb-mole			
Dry	29.21	29.12	29.16
Wet	28.83	28.81	28.83

Kingsford, MI Pace Project No. 20-04074

Table 20 Major Gases and Moisture Results Cupola Baghouse Inlet Test 1

Parameter Date of Run	Run 1 12/15/20	Run 2 12/15/20	Run 3 12/15/20
Time of Run	0905-0955	1047-1157	1317-1400
Sample Duration, Minutes	40	56	45
Average Flue Gas Temperature, °F	680	680	696
Major Gas Constituents - Instrumental, % v/v			
Dry Basis (as measured)			
Carbon Dioxide	11.37	11.78	12.30
Oxygen	9.16	8.95	8.40
Nitrogen (by difference)	79.47	79.27	79.30
Wet Basis (calculated)			
Carbon Dioxide	10.54	9.37	9.38
Oxygen	8.49	7.12	6.40
Nitrogen	73.66	63.06	60.48
Sample Volume, Meter Conditions, Ft ³	21.75	30.29	25.21
Sample Volume, Dry Standard, Ft ³	22.61	30.71	25.38
Moisture Collected, ml	37.9	167.7	167.8
Moisture Content of Gas Stream, %v/v	7.31	20.45	23.73
Moisture Content if Saturated, %v/v	NA (>BP)	NA (>BP)	NA (>BP)
Relative Humidity, % rH	NA (>BP)	NA (>BP)	NA (>BP)
Molecular Weight of Flue Gas, lb/lb-mole			
Dry	30.19	30.24	30.30
Wet	29.29	27.74	27.38

Kingsford, MI Pace Project No. 20-04074

Table 21 Major Gases and Moisture Results Cupola Baghouse Inlet Test 1

Parameter Date of Date	Run 1 12/16/20	Run 2 12/16/20	Run 3 12/17/20
Date of Run Time of Run	0845-0955	12/16/20	0800-0910
Sample Duration, Minutes	45	46	60
Average Flue Gas Temperature, °F	687	693	679
Major Gas Constituents - Instrumental, % v/v			
Dry Basis (as measured)			
Carbon Dioxide	11.60	11.10	10.79
Oxygen	8.95	9.55	9.75
Nitrogen (by difference)	79.45	79.35	79.46
Wet Basis (calculated)			
Carbon Dioxide	9.96	9.52	9.38
Oxygen	7.69	8.19	8.47
Nitrogen	68.24	68.05	69.05
Sample Volume, Meter Conditions, Ft ³	25.27	25.12	33.95
Sample Volume, Dry Standard, Ft ³	25.28	25.02	33.31
Moisture Collected, ml	88.2	88.3	106.7
Moisture Content of Gas Stream, %v/v	14.11	14.24	13.10
Moisture Content if Saturated, %v/v	NA (>BP)	NA (>BP)	NA (>BP)
Relative Humidity, % rH	NA (>BP)	NA (>BP)	NA (>BP)
Molecular Weight of Flue Gas, lb/lb-mole			
Dry	30.21	30.16	30.12
Wet	28.49	28.43	28.53

Table 22

Kingsford, MI Pace Project No. 20-04074 Particulate Results
Main Plant Pouring & Cooling Disa Pouring - 324484

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1	Run 2	Run 3
	12/9/20	12/9/20	12/9/20
	0826-0954	1015-1144	1205-1334
	84	84	84
Average Flue Gas Temperature, °F	90.1	89.2	91.4
Moisture Content of Flue Gas, %v/v	1.7	2.3	1.7
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	9.53	11.58	14.26
	NR	NR	NR
	NR	NR	NR
Volumetric Flow Rate (Rounded to 10 CFM) ACFM SCFM DSCFM	8,320	8,460	8,470
	7,560	7,710	7,690
	7,430	7,530	7,550
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	70.38	73.54	73.85
	68.84	70.23	70.08
Particulate Concentration, GR/DSCF Filterable Particulate	0.0021	0.0025	0.0031
Particulate Emission Rate, LB/HR Filterable Particulate	0.14	0.16	0.20

Table 23

Kingsford, MI Pace Project No. 20-04074 Particulate Results
Main Plant Pouring & Cooling No. 6 HMP - 324632

Parameter	Run 1	Run 2	Run 3
Date of Run	12/10/20	12/10/20	12/10/20
Time of Run	0720-0856	0925-1052	1210-1339
Sample Duration, Minutes	84	84	84
Average Flue Gas Temperature, °F	83.7	89.5	94.1
Moisture Content of Flue Gas, %v/v	0.9	0.9	0.4
Particulate Collected, mg			
Dry Catch	11.25	12.19	16.17
Inorganic Wet Catch	NR	NR	NR
Organic Wet Catch	NR	NR	NR
Volumetric Flow Rate (Rounded to 10 CFM)			
ACFM	4,370	4,550	4,480
SCFM	4,060	4,180	4,090
DSCFM	4,030	4,150	4,070
Sample Volume, Meter Conditions, Ft ³	82.92	84.98	85.33
Sample Volume, Dry Standard, Ft ³	81.63	83.48	82.04
Particulate Concentration, GR/DSCF			
Filterable Particulate	0.0021	0.0023	0.0030
Particulate Emission Rate, LB/HR Filterable Particulate	0.073	0.080	0.106

Table 24

Kingsford, MI Pace Project No. 20-04074 Particulate Results
Main Plant Pouring & Cooling No. 7 HMP - 324662

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1	Run 2	Run 3
	12/8/20	12/8/20	12/8/20
	0748-0927	0959-1200	1225-1341
	96	72	72
Average Flue Gas Temperature, °F Moisture Content of Flue Gas, %v/v	90.7	94.5	95.8
	0.8	0.8	0.9
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	39.06	32.48	25.37
	NR	NR	NR
	NR	NR	NR
Volumetric Flow Rate (Rounded to 10 CFM) ACFM SCFM DSCFM	8,650 7,930 7,870	8,040	8,740 7,950 7,880
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	86.19	66.30	66.20
	82.86	63.12	62.16
Particulate Concentration, GR/DSCF Filterable Particulate	0.0073	0.0079	0.0063
Particulate Emission Rate, LB/HR Filterable Particulate	0.49	0.54	0.43

Table 25

Kingsford, MI Pace Project No. 20-04074 Particulate Results Main Plant Pouring & Cooling Disa Pouring - 324678

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1	Run 2	Run 3
	12/9/20	12/9/20	12/9/20
	1052-1210	1251-1406	1435-1550
	72	72	72
Average Flue Gas Temperature, °F	70.6	61.1	65.6
Moisture Content of Flue Gas, %v/v	0.4	0.1	0.1
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	18.78	15.16	20.93
	NR	NR	NR
	NR	NR	NR
Volumetric Flow Rate (Rounded to 100 CFM) ACFM SCFM DSCFM	17,700	17,400	17,500
	16,700	16,700	16,800
	16,700	16,700	16,700
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	70.50	70.98	71.23
	65.89	65.52	65.80
Particulate Concentration, GR/DSCF Filterable Particulate	0.0044	0.0036	0.0049
Particulate Emission Rate, LB/HR Filterable Particulate	0.63	0.51	0.70

Table 26

Kingsford, MI Pace Project No. 20-04074 Particulate Results
Main Plant Pouring & Cooling Disa Pouring - 324682

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 2 12/8/20 0935-1153 84		12/8/20
Average Flue Gas Temperature, °F Moisture Content of Flue Gas, %v/v	63.5 0.6	66.0 0.7	66.6 1.1
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	5.10 NR NR	4.89 NR NR	5.56 NR NR
Volumetric Flow Rate (Rounded to 100 CFM) ACFM SCFM DSCFM	14,800 14,300 14,200	14,100	14,900 14,300 14,100
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	66.45 65.40	66.05 64.48	66.63 65.26
Particulate Concentration, GR/DSCF Filterable Particulate	0.00120	0.00117	0.00131
Particulate Emission Rate, LB/HR Filterable Particulate	0.15	0.14	0.16

Table 27

Kingsford, MI Pace Project No. 20-04074 Particulate Results
Main Plant Pouring & Cooling No. 5 HMP - 324848

Parameter Date of Run	Run 1	Run 2	Run 3
	12/8/20	12/8/20	12/8/20
Time of Run	0750-0916	0935-1150	84
Sample Duration, Minutes	84	84	
Average Flue Gas Temperature, °F	77.4	78.8	80.4
Moisture Content of Flue Gas, %v/v	0.4	0.6	0.6
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	19.55	16.92	16.57
	NR	NR	NR
	NR	NR	NR
Volumetric Flow Rate (Rounded to 100 CFM) ACFM SCFM DSCFM	10,800	11,000	11,000
	10,100	10,300	10,200
	10,100	10,200	10,200
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	66.14	67.42	67.75
	65.38	66.15	65.95
Particulate Concentration, GR/DSCF Filterable Particulate	0.0046	0.0039	0.0039
Particulate Emission Rate, LB/HR Filterable Particulate	0.40	0.35	0.34

Kingsford, MI Pace Project No. 20-04074 Table 28

Particulate Results

Module Pouring & Cooling Exhaust - 334116

Test 1

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1	Run 2	Run 3
	12/10/20	12/10/20	12/10/20
	0750-0917	0940-1168	1226-1352
	84	84	84
Average Flue Gas Temperature, °F Moisture Content of Flue Gas, %v/v	85.8	92.1	97.3
	0.9	0.2	0.8
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	17.36	19.57	11.73
	NR	NR	NR
	NR	NR	NR
Volumetric Flow Rate (Rounded to 10 CFM) ACFM SCFM DSCFM	7,590 7,040 6,980	6,830	7,470 6,790 6,740
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	79.59	78.35	78.90
	78.61	76.33	75.92
Particulate Concentration, GR/DSCF Filterable Particulate	0.0034	0.0040	0.0024
Particulate Emission Rate, LB/HR Filterable Particulate	0.20	0.23	0.14

NR=Not required or not requested.

Kingsford, MI Pace Project No. 20-04074 Table 29
Particulate Results
Module Pouring & Cooling Exhaust - 334176
Test 1

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1	Run 2	Run 3
	12/9/20	12/9/20	12/9/20
	0815-0942	1035-1205	1228-1354
	84	84	84
Average Flue Gas Temperature, °F Moisture Content of Flue Gas, %v/v	80.1	82.3	85.0
	0.5	1.0	0.4
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	15.63	11.30	12.09
	NR	NR	NR
	NR	NR	NR
Volumetric Flow Rate (Rounded to 10 CFM) ACFM SCFM DSCFM	3,920 3,650 3,630	3,780	4,100 3,780 3,770
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	63.41	66.27	66.85
	61.41	63.66	63.74
Particulate Concentration, GR/DSCF Filterable Particulate	0.0039	0.0027	0.0029
Particulate Emission Rate, LB/HR Filterable Particulate	0.122	0.088	0.094

NR=Not required or not requested.

Kingsford, MI Pace Project No. 20-04074 Table 30
Particulate Results
Cupola Baghouse Exhaust
Test 1

Parameter Date of Run Time of Run Sample Duration, Minutes	Run 1	Run 2	Run 3
	12/16/20	12/16/20	12/17/20
	0830-1056	1230-1456	0753-1017
	120	120	120
Average Flue Gas Temperature, °F Moisture Content of Flue Gas, %v/v	172.5	176.5	174.7
	3.4	2.8	3.0
Particulate Collected, mg Dry Catch Inorganic Wet Catch Organic Wet Catch	16.6	4.7	6.6
	2.6	4.2	1.9
	1.1	1.6	1.8
Volumetric Flow Rate (Rounded to 1000 CFM) ACFM SCFM DSCFM	188,000	178,000	171,000
	151,000	143,000	137,000
	146,000	139,000	133,000
Sample Volume, Meter Conditions, Ft ³ Sample Volume, Dry Standard, Ft ³	106.70	123.14	98.98
	100.96	114.85	92.94
Particulate Concentration, GR/DSCF Filterable Particulate Inorganic Condensables Organic Condensables Filterable+Organic Cond. Total Particulate (PM-10 Eq.) (F+I+O)	0.0025	0.0006	0.0011
	0.0004	0.0006	0.0003
	0.0002	0.0002	0.0003
	0.0027	0.0008	0.0014
	0.0031	0.0014	0.0017
Particulate Emission Rate, LB/HR Filterable Particulate Inorganic Condensables Organic Condensables Filterable+Organic Cond. Total Particulate (PM-10 Eq.) (F+I+O)	3.18	0.75	1.26
	0.49	0.67	0.35
	0.22	0.25	0.34
	3.40	1.00	1.60
	3.89	1.67	1.95

NR=Not required or not requested.

Kingsford, MI Pace Project No. 20-04074 Table 31
Opacity Observations
Cupola Building - East Side
Test 1, Run 1

Pe	rcent Opacity	Optical Density	Relat	ive Frequency
	0	0.000		99.17
	5	0.022		0.83
	10	0.046		0.00
	15	0.071		0.00
	20	0.097		0.00
	25	0.125		0.00
	30	0.155		0.00
	35	0.187		0.00
	40	0.222		0.00
	45	0.260		0.00
	50	0.301		0.00
	55	0.347		0.00
	60	0.398		0.00
	65	0.456		0.00
	70	0.523		0.00
	75	0.602		0.00
	80	0.699		0.00
	85	0.824		0.00
	90	1.000		0.00
	95	1.301		0.00
_	99	2.000	_	0.00
Average >	0.0	0.000	Total >	100

Average Opacity Per Sequential Six Minute Period:				High Six Minute Average: 0.2
<u>Period</u>	Opacity	<u>Period</u>	Opacity	Maximum reading: 5.0
1	0.2	6	0.0	Minumum reading: 0.0
2	0.0	7	0.0	
3	0.2	8	0.0	Observer: Zachary Eckstrom
4	0.0	9	0.0	Date of test: 12/16/2020
5	0.0	10	0.0	Time of test: 1010-1110

NOTE: The high six-minute average opacity is the maximum value for any consecutive 24 readings.

Kingsford, MI Pace Project No. 20-04074 Table 32
Opacity Observations
Cupola Building - South Side
Test 1, Run 2

Perc	ent Opacity	Optical Density	Relati	ive Frequency
	0	0.000		100.00
	5	0.022		0.00
	10	0.046		0.00
	15	0.071		0.00
	20	0.097		0.00
	25	0.125		0.00
	30	0.155		0.00
	35	0.187		0.00
	40	0.222		0.00
	45	0.260		0.00
	50	0.301		0.00
	55	0.347		0.00
	60	0.398		0.00
	65	0.456		0.00
	70	0.523		0.00
	75	0.602		0.00
	80	0.699		0.00
	85	0.824		0.00
	90	1.000		0.00
	95	1.301		0.00
	99	2.000	_	0.00
Average >	0.0	0.000	Total >	100

Average Opacity Per Sequential Six Minute Period:			High Six Minute Average: 0.0	
<u>Period</u>	Opacity	<u>Period</u>	Opacity	Maximum reading: 0.0
1	0.0	6	0.0	Minumum reading: 0.0
2	0.0	7	0.0	
3	0.0	8	0.0	Observer: Zachary Eckstrom
4	0.0	9	0.0	Date of test: 12/16/2020
5	0.0	10	0.0	Time of test: 1010-1110

NOTE: The high six-minute average opacity is the maximum value for any consecutive 24 readings.

Kingsford, MI Pace Project No. 20-04074 Table 33
Opacity Observations
Cupola Building - West Side
Test 1, Run 3

Perc	ent Opacity	Optical Density	Relat	ive Frequency
	0	0.000		71.67
	5	0.022		27.50
	10	0.046		0.83
	15	0.071		0.00
	20	0.097		0.00
	25	0.125		0.00
	30	0.155		0.00
	35	0.187		0.00
	40	0.222		0.00
	45	0.260		0.00
	50	0.301		0.00
	55	0.347		0.00
	60	0.398		0.00
	65	0.456		0.00
	70	0.523		0.00
	75	0.602		0.00
	80	0.699		0.00
	85	0.824		0.00
	90	1.000		0.00
	95	1.301		0.00
	99	2.000	_	0.00
Average >	1.5	0.006	Total >	100

Average Opa	acity Per Sequ	uential Six M	linute Period:	High Six Minute Average: 3.8
<u>Period</u>	Opacity	<u>Period</u>	Opacity	Maximum reading: 10.0
1	0.8	6	0.0	Minumum reading: 0.0
2	1.9	7	1.9	
3	2.3	8	3.3	Observer: Zachary Eckstrom
4	0.0	9	3.1	Date of test: 12/16/2020
5	0.2	10	1.0	Time of test: 1355-1455

NOTE: The high six-minute average opacity is the maximum value for any consecutive 24 readings.

Table 34

Kingsford, MI Pace Project No. 20-04074 Preliminary Airflow Measurements
Main Plant Pouring & Cooling Disa Pouring - 324484

Parameter Date of Run	Run 1 12/9/20
Time of Measurement	0730
Barometric Pressure, Inches Hg	28.43
Static Pressure, Inches WC	-1.50
Absolute Gas Pressure (In. Hg)	28.32
Average Gas Temperature, °F	84
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	43.34
Duct Cross-sectional Area, Sq. Ft.	3.14
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	8,200
SCFM	7,500
DSCFM	7,400

Table 35

Kingsford, MI Pace Project No. 20-04074 Preliminary Airflow Measurements Main Plant Pouring & Cooling No. 6 HMP - 324632

Parameter Date of Run	Run 1 12/7/20
Time of Measurement	1500
Barometric Pressure, Inches Hg	28.64
Static Pressure, Inches WC	-0.35
Absolute Gas Pressure (In. Hg)	28.61
Average Gas Temperature, °F	92
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	23.54
Duct Cross-sectional Area, Sq. Ft.	3.14
Volumetric Flow Rate (Rounded to 10 CFM) ACFM	4,440
SCFM	4,060
DSCFM	4,020

Table 36

Kingsford, MI Pace Project No. 20-04074 Preliminary Airflow Measurements Main Plant Pouring & Cooling No. 7 HMP - 324662

Parameter Date of Run	Run 1 12/8/20
Time of Measurement	0830
Barometric Pressure, Inches Hg	28.65
Static Pressure, Inches WC	-0.50
Absolute Gas Pressure (In. Hg)	28.61
Average Gas Temperature, °F	85
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	41.40
Duct Cross-sectional Area, Sq. Ft.	3.41
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	8,500
SCFM	7,800
DSCFM	7,800

Table 37

Kingsford, MI Pace Project No. 20-04074 Preliminary Airflow Measurements
Main Plant Pouring & Cooling Disa Pouring - 324678

Parameter Date of Run	Run 1 12/9/20
Time of Measurement	0730
Barometric Pressure, Inches Hg	28.45
Static Pressure, Inches WC	-0.25
Absolute Gas Pressure (In. Hg)	28.43
Average Gas Temperature, °F	71
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	32.56
Duct Cross-sectional Area, Sq. Ft.	9.62
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	18,800
SCFM	17,800
DSCFM	17,600

Table 38

Kingsford, MI Pace Project No. 20-04074 Preliminary Airflow Measurements
Main Plant Pouring & Cooling Disa Pouring - 324682

Parameter Date of Run	Run 1 12/7/20
Time of Measurement	0730
Barometric Pressure, Inches Hg	28.63
Static Pressure, Inches WC	-0.45
Absolute Gas Pressure (In. Hg)	28.60
Average Gas Temperature, °F	69
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	23.83
Duct Cross-sectional Area, Sq. Ft.	9.62
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	13,800
SCFM	13,100
DSCFM	13,000

Table 39

Kingsford, MI Pace Project No. 20-04074 Preliminary Airflow Measurements Main Plant Pouring & Cooling No. 5 HMP - 324848

Parameter Data of Dura	Run 1
Date of Run	12/7/20
Time of Measurement	1435
Barometric Pressure, Inches Hg	28.64
Static Pressure, Inches WC	2.00
Absolute Gas Pressure (In. Hg)	28.79
Average Gas Temperature, °F	75
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	61.68
Duct Cross-sectional Area, Sq. Ft.	3.14
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	11,600
SCFM	11,000
DSCFM	10,900

Kingsford, MI Pace Project No. 20-04074

Table 40 Preliminary Airflow Measurements Module Pouring & Cooling Exhaust - 334116 Test 1

Parameter Date of Run	Run 1 12/10/20
Time of Measurement	0730
Barometric Pressure, Inches Hg	28.69
Static Pressure, Inches WC	-0.07
Absolute Gas Pressure (In. Hg)	28.68
Average Gas Temperature, °F	75
Moisture Determination Procedure Wet/Dry Bulb	
Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	24.54
Duct Cross-sectional Area, Sq. Ft.	4.91
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	7,200
SCFM	6,800
DSCFM	6,800

Kingsford, MI Pace Project No. 20-04074

Table 41 Preliminary Airflow Measurements Module Pouring & Cooling Exhaust - 334176 Test 1

Parameter Date of Run	Run 1 12/9/20
Time of Measurement	0750
Barometric Pressure, Inches Hg	28.47
Static Pressure, Inches WC	-0.14
Absolute Gas Pressure (In. Hg)	28.46
Average Gas Temperature, °F	75
Moisture Determination Procedure Wet/Dry Bulb Average Moisture Content, %v/v	1.0
Gas Molecular Weight (Ambient), lb/lb-mole Dry Wet	29.0 28.9
Flue Gas Average Velocity, FPS	11.89
Duct Cross-sectional Area, Sq. Ft.	4.91
Volumetric Flow Rate (Rounded to 100 CFM) ACFM	3,500
SCFM	3,300
DSCFM	3,300

Kingsford, MI Pace Project No. 20-04074

Table 42 Airflow Measurement Results Cupola Baghouse Inlet Test 1

-				
Parameter	Run 1	Run 2	Run 3	Run 4
Date of Run	12/15/20	12/15/20	12/15/20	12/15/20
Time of Measurement	0845	1030	1200	1400
Barometric Pressure, Inches Hg	29.11	29.11	29.11	29.11
Static Pressure, Inches WC	-1.25	-1.26	-1.93	-1.14
Absolute Gas Pressure (In. Hg)	29.01	29.01	28.96	29.02
Average Gas Temperature, °F	684	680	710	715
Corresponding M-4 Run Number	1	2	2	3
Average Moisture Content, %v/v	7.3	20.4	20.4	23.7
Gas Molecular Weight (Gas Data?), lb/lb-mole				
Dry	30.19	30.24	30.24	30.30
Wet	29.29	27.74	27.74	27.38
Flue Gas Average Velocity, FPS	51.83	54.25	59.50	53.19
Duct Cross-sectional Area, Sq. Ft.	12.57	12.57	12.57	12.57
Volumetric Flow Rate (Rounded to 100 CFM)				
ACFM	39,100	40,900	44,900	40,100
SCFM	17,500	18,400	19,600	17,500
DSCFM	16,200	14,600	15,600	13,300
	,	,	,	, -

Kingsford, MI Pace Project No. 20-04074

Table 43 Airflow Measurement Results Cupola Baghouse Inlet Test 1

Parameter Date of Run	Run 1 12/16/20	Run 2 12/16/20	Run 3
Time of Measurement	0730	1200	0730
Barometric Pressure, Inches Hg	28.86	28.86	28.82
Static Pressure, Inches WC	-1.62	-1.34	-1.25
Absolute Gas Pressure (In. Hg)	28.74	28.76	28.73
Average Gas Temperature, °F	735	684	694
Corresponding M-4 Run Number	1	2	3
Average Moisture Content, %v/v	14.1	14.2	13.1
Gas Molecular Weight (Instrumental), lb/lb-mole Dry Wet	30.21 28.49	30.16 28.43	30.12 28.53
Flue Gas Average Velocity, FPS	55.76	53.54	50.69
Duct Cross-sectional Area, Sq. Ft.	12.57	12.57	12.57
Volumetric Flow Rate (Rounded to 100 CFM)			
ACFM	42,000	40,400	38,200
SCFM	17,900	17,900	16,800
DSCFM	15,300	15,400	14,600

Process Description

The Grede, LLC - Iron Mountain (Grede) facility produces gray iron castings, typically for industrial machinery and various transportation industry customers. The major processes at Grede include raw material handling (metals, fluxes, and metallurgical coke), metal melting, mold and core production, casting and finishing.

Grede operates a main foundry and a module foundry under one roof. A single WRIB Company high efficiency cupola (EU-P009) provides all of the molten iron used by the main and module foundry. The cupola has a maximum melt rate of 20 tons per hour. Molten iron is stored in an electric holding furnace with a capacity of 28 tons prior to pouring. Emission control equipment for the cupola exhaust includes four natural gas afterburners for VOC and CO, a low efficiency scrubber (quench tank) for SO₂, and a Hartzell Engineering Corp. baghouse for particulate.

Test related process and operational details were recorded by Grede personnel and included in Appendix E of the report.

Test Procedures

EPA Method 1 specifies test location acceptability criteria and defines the minimum number of traverse points for representative sampling. Linear measurements from upstream and downstream flow disturbances and the duct equivalent diameter are compared and the distances related to number of diameters. A flow disturbance can be defined as anything that changes or upsets the direction of flow within the duct including bends, dampers, fans, shape or size transitions, and open flames. Method 1 stipulates that test ports should be located at least eight diameters downstream and two diameters upstream of any flow disturbance. The minimum acceptable criteria are two diameters downstream and 0.5 diameters upstream of flow disturbances. The test location must also be free of cyclonic or multidirectional flow. Once the distances have been determined, the values are used to select the minimum number of traverse points for representative sampling. Shorter distances require a greater number of traverse points. The test site configuration and measurement details are documented on EPA Method 1 Field Data Sheet.

Pace FSD conducts the method as written with no routine deviations.

EPA Method 2 defines procedures used to measure linear velocity and volumetric flow rate of a confined gas stream. Using traverse points determined by EPA Method 1, multiple differential pressure measurements (pitot impact opening versus static pressure) are made using a pitot tube and differential pressure gauge. The individual measurements are averaged and combined with the gas density to calculate the average gas velocity. The velocity and duct cross-sectional area are used to calculate the volumetric flow rate. The volumetric flow rate is expressed as actual cubic feet per minute (ACFM), standard cubic feet per minute (SCFM), and dry standard cubic feet per minute (DSCFM). The technician maintains comprehensive test records on EPA Method 2 Field Data Sheet. Details of the equipment used to measure gas velocity include:

Pitot Tube: S-Type

Differential Pressure Gauge: Oil or Electronic Digital Manometer

Temperature Device: Type K Thermocouple

Barometer Type: Electronic Digital Barometer

Gas Density Determination: EPA Method 3
Gas Moisture Determination: EPA Method 4

Method Defined Quality Control:

- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.

- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.

Pace FSD conducts the method as written with no routine deviations.

EPA Method 3 Ambient Provision allows the use of published or ambient gas concentrations (dry molecular weight of 28.96 LB/LB-mole) in cases where the source gas is free of combustion components. Ambient gas concentrations result in a dry molecular weight of 28.96 (29.0) LB/LB-mole.

		Molecular	
Gas Constituent	% v/v	Weight	LB/LB -mole
Nitrogen, N ₂	78.08	28.01	21.87
Oxygen, O ₂	20.95	32	6.70
Argon, Ar	0.93	39.95	0.37
Carbon Dioxide, CO ₂	0.038	44.01	0.02
Sum of Gas Constituents			28.96

Modified EPA Method 3/3A defines procedures to quantify carbon dioxide (CO₂) and oxygen (O₂) concentrations from stationary combustion sources. An integrated gas sample is collected simultaneously with other emissions testing. Sample gases are extracted from an emission stream at a constant rate over the course of a test period equal to other test constituents. A TedlarTM, aluminized MylarTM, or other inert material bag contains the collected gas sample prior to sample analyses. Instrumental gas analyzers compliant to EPA Method 3A quantify the CO₂ and O₂ concentrations. Three point instrument calibrations (zero, mid, and high span) are performed to certify the instruments for gas analyses. The technician maintains comprehensive test records on EPA Method 3 and Gas Analysis Field Data Sheets. Equipment used for measuring gas composition includes:

> Filter Material: Glass-fiber Filter or equivalent Moisture removal: Condenser and/or sorbent

Tedlar[™] or Aluminized Mylar[™] or equivalent Bag Material: Gas Analyzer:

Non-dispersive Infrared Detector (CO₂)

Paramagnetic Detector (O₂)

EPA Protocol 1 Calibration Gases:

Method Defined Quality Control:

Sampling bag leak check.

Pace FSD conducts the method as written with the following routine sampling deviation:

In the field, the gas sample is analyzed within two hours of collection using a portable O_2 detector. At a later time, potentially outside of the eight hour hold period, the gas sample is re-analyzed using an EPA Method 3A (Orsat) gas analyzer to quantify CO_2 and O_2 concentrations.

The preliminary analysis result from the portable O_2 detector is used to validate the Orsat results. The results are acceptable when the O_2 result from the field and the O_2 result from the lab differ by $\leq 0.3\%$.

EPA Method 4 - Isokinetic defines procedures to measure the moisture content of emission gas streams from stationary sources. The moisture content of the gas stream is determined in conjunction with an isokinetic sampling train. Collected water condensate is measured from the back half of the isokinetic train. Method 4 equations convert the condensed liquid volume to a gas volume. The water vapor volume compared with the dry standard gas volume collected through the isokinetic train determines the moisture content of the emissions gas stream and is reported in percent by volume. Test records are included on the associated isokinetic method data sheet. Equipment used for measuring moisture content includes:

Probe Material: Borosilicate glass or Stainless Steel

Filter Media: Glass or Quartz fiber Impinger Train Material: Borosilicate Glass

Desiccant: Drierite

Condensate Measure: Graduated Cylinder or Electronic Scale

Desiccant Measure: Electronic Scale

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.

 Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

EPA Method 5 defines procedures to measure particulate emissions from stationary sources. Using traverse points determined from EPA Method 1 and incorporating procedures from EPA Methods 2, 3, and 4, a sample gas stream is isokinetically drawn from the emission stream. The particulate dry fraction collects in the sampling probe and on a quartz or glass-fiber filter. The probe and filter components of the sampling train are heated to 248°F (±25°F) to prevent moisture condensation and preserve sample integrity. The filtered sample gas stream passes through a series of impingers to condense water vapor and collect gaseous constituents. The first two impingers initially contain deionized water, and the third impinger is empty. A desiccant packed drying column follows the impingers to quantitatively collect the remaining moisture. An ice bath maintains the impinger train temperature (outlet) at 68°F or less. The impinger contents can be discarded or saved for additional analyses. Sample recovery and train clean up are performed after each run using procedures to ensure sample integrity and quantitative recovery. The train operator maintains comprehensive test records on EPA Method 5 Field Data Sheet, Isokinetic Particulate Sampling. Details of particulate testing are outlined below:

Nozzle/Probe Material: Stainless Steel and Borosilicate Glass

Filter Holder Material: Borosilicate Glass with glass or Teflon support Filter Media: Quartz or Glass-fiber, >99.95% efficient at

0.3µm

Impinger Train Material: Borosilicate Glass Impinger Reagents: Deionized Water

Recovery Reagents: Acetone

Deionized water

Control Train: Gas meter, orifice, differential pressure

gauges, pump, valves, temperature monitors

and controllers

Analytical Techniques: Gravimetric

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).

- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be noncontaminating.
- Sampling and recovery reagents are reagent grade or better.
- Analytical balances are calibrated and certified on an annual basis by an external service provider and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.
- Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

EPA Method 5D defines procedures to measure particulate emissions from positive pressure fabric filters in terms of concentration (mg/dscm or GR/DSCF) and emission rate (kg/HR or LB/HR). Using traverse points determined using EPA Method 1 or the alternative measurement sites specified in Method 5D, a sample gas stream is isokinetically withdrawn from the emission stream. For monovent sampling, the isokinetic rate is calculated from fabric filter inlet airflows. The particulate dry fraction collects on a glass-fiber filter. The probe and filter components of the sampling train are maintained at a temperature at or above the exhaust gas temperature up to 248°F (±25°F) to prevent moisture condensation and preserve sample integrity. The filtered sample gas stream passes through a series of impingers to condense water vapor and collect gaseous constituents. The first two impingers initially contain deionized water, and the third impinger is dry. A desiccant packed drying column follows the impingers to quantitatively collect the remaining moisture. An ice bath maintains the impinger train temperature (outlet) at 68°F or less. Sample recovery and train clean up are performed after each run using procedures to ensure sample integrity and quantitative recovery.

The train operator maintains comprehensive test records on EPA Method 5 Field Data Sheet, Isokinetic Particulate Sampling. Details of particulate testing are outlined below:

Nozzle/Probe Material: Stainless Steel and Borosilicate Glass

Filter Holder Material: Borosilicate Glass

Filter Media: Glass-fiber, >99.95% efficient at 0.3 µm

Impinger Train Material: Borosilicate Glass Impinger Reagents: Deionized Water

Recovery Reagents: Acetone

Deionized Water

Control Train: Gas meter, orifice, differential pressure

gauges, pump, valves, temperature monitors &

controllers

Analytical Techniques: Gravimetric

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be noncontaminating.
- Sampling and recovery reagents are reagent grade or better.
- Analytical balances are calibrated and certified on an annual basis by an external service provider and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

- Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

Pace FSD conducted this method with the following project situational deviations: Mass rates were calculated from inlet airflow measurements.

EPA Method 202 defines procedures to determine organic and inorganic condensable particulate matter (CPM) emissions from stationary sources. The CPM is collected in a condensate knock-out impinger and Teflon filter after filterable PM has been collected by either Method 5 or Method 201A. The gas stream is sample isokinetically following EPA Method 5 or Method 201A procedures. The gas stream is initially cooled with a spiral condenser using recirculated cool water to maintain a sample gas temperature of 85°F or less. Condensate from the spiral condenser collects in glass, stemless, dropout impingers. The intent of the condenser and dropout impinger is to minimize gas/water contact to reduce collection of unintended artifacts. The dropout impinger is followed by a second impinger to provide overflow capacity. A TeflonTM filter, also maintained at 85°F or less is used to collect any remaining organic CPM. The filter is followed by an iced, water prepared impinger and desiccant packed drying column to quantitatively collect remaining moisture. Immediately after sampling, the Method 202 CPM condensate is purged with nitrogen (N₂) to liberate dissolved sulfur dioxide (SO₂) gases. The contents of the dropout and backup impingers prior to the CPM filter are measured, weighed, and transferred to an appropriate sample bottle. CPM is quantitatively recovered with water, acetone, and hexane rinses. The CPM filter and water are extracted with hexane and combined with solvent rinses to determine the organic CPM. Following extraction, the water is dried and the residue measured as the inorganic CPM. The combination of both fractions represents the total condensable particulate matter (CPM). The train operator maintains comprehensive test records on appropriate Field Data Sheets.

Filter Holder Material: Glass, Stainless Steel (316 or equivalent), or

Fluoropolymer-coated Stainless Steel

Filter Media: Teflon, >99.95% efficient at 0.3 um

Impinger Train Material: Borosilicate Glass Impinger Reagents: Deionized Water

Recovery Reagents: Acetone

Hexane

Deionized Water EPA Method 5

Control Train: EPA Method Analytical Technique: Gravimetric

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be noncontaminating.
- Sampling and recovery reagents are reagent grade or better.
- Analytical balances are calibrated and certified on an annual basis by an external service provider and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

EPA Method 6C defines procedures to measure sulfur dioxide (SO₂) from stationary sources. A stainless steel sampling probe and a heat-traced Teflon[™] sampling line draw a sample of the gas stream from the duct to a thermo-electric gas conditioner to remove moisture. The sample gas stream is delivered to a fluorescence gas analyzer to quantify SO₂ emissions. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 SO₂ standards specific to the target calibration range. A computerized data acquisition system logs SO₂ concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The operator also maintains comprehensive test records on the electronic Project Results Instrumental Workbook. Equipment used for SO₂ testing includes:

Probe Material: Stainless Steel

Moisture Removal: Thermo-electric

Transfer Line: Teflon™

Analytical Technique: Fluorescence Detector

Calibration Gas: EPA Protocol 1

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- System bias check is performed before and after each test.
- Analyzer bias is verified once per test.
- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of ≥ 2x the response time observed before starting data collection and recording stratification traverse point values.

Pace FSD conducts the method as written with no routine deviations.

EPA Method 9 defines procedures to evaluate the opacity of the plume emitted from a source stack. An independently certified visible emissions observer visually estimates the opacity of the non-moisture plume from the source. The observer positions themselves with the sun (or other light source) at their back and perpendicular to the plume when directly facing the emission point. The observer must also ensure a clear and contrasting background behind the plume. The certified observer then estimates (based on certification trials) the percentage of the background blocked by the source plume (plume opacity) in increments of 5%. Observed opacity readings are recorded at 15-second intervals throughout the run. Tabulated results include run average and successive six-minute averages. The spreadsheet software also searches the data set for any group of 24 consecutive readings that yield the highest possible six-minute average. The train operator maintains comprehensive test records on the Visible Emission Observation Form. Details of the opacity evaluation are outlined below:

Evaluation Period: One hour Observation Frequency: 15 Seconds

No. of Observations: 240 No. of Six-minutes Averages: 10

Observer Certifications: Semi-annual

Pace FSD conducts the method as written with no routine deviations.

In-Stack Method: Method 10 defines procedures to measure carbon monoxide (CO) emissions from stationary sources. A stainless steel sampling probe and a heat-traced Teflon™ sampling line draw a sample of the gas stream from the duct to a thermoelectric gas conditioner to remove moisture. The sample gas stream is delivered to a gas filter correlation non-dispersive infrared analyzer to quantify CO concentrations. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 CO standards specific to the target calibration range. A computerized data acquisition system logs CO concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The operator also maintains comprehensive test records in the electronic Project Results Instrumental Workbook. Equipment used to conduct Method 10 stack method testing includes:

Probe Material: Stainless Steel Moisture Removal: Thermo-electric

Transfer Line: Teflon™

Analytical Technique: Non-dispersive Infrared

Calibration Gas: EPA Protocol 1

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- System bias check is performed before and after each test.
- Analyzer bias is verified once per test.
- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of ≥ 2x the response time observed before starting data collection and recording stratification traverse point values.

Pace FSD conducts the method as written with no routine deviations.

EPA Method 25A defines procedures used to measure total hydrocarbons from stationary sources. A stainless steel sampling probe and heat-traced Teflon™ sampling line draw a sample of the gas stream from the duct directly to the analytical system. A total hydrocarbon monitor utilizing a flame ionization detector (FID) quantifies total hydrocarbon concentrations. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 propane (C₃H₀) standards specific to the target calibration range. A computerized data

acquisition system logs THC concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The analyzer results are multiplied by 3 to report results as carbon (C₁). The operator also maintains comprehensive test records in the electronic Project Results Instrumental Workbook. Equipment used for THC testing includes:

Probe Material: Stainless Steel Transfer Line: Teflon™, (heated)

Analytical Technique: Flame Ionization Detector (FID)

Calibration Gas: EPA Protocol 1

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- Analyzer bias is verified once per test.
- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of ≥ 2x the response time observed before starting data collection and recording stratification traverse point values.

Pace FSD conducted the method as written with the following project deviations. Hexane was used as the calibration gas in place of propane to report results as hexane.

Reference Standards. Pace implements a comprehensive program to verify and validate reference standards to further enhance and support method standards. Primary reference standards are directly comparable to a reference base. The National Institute of Standards and Technology (NIST) maintains primary reference materials or very closely traceable secondary standards. These materials are then used to certify secondary or transfer standards for use in quality management programs. Secondary reference standards are calibrated with primary standards using a high precision comparator. Materials that have a documented path to the primary standard are often referred to as traceable to NIST or NIST traceable. Where commercially and feasibly available, Pace uses primary reference standards to perform calibrations and verifications. In other cases, Pace maintains traceable secondary reference standards. Primary and secondary reference standards are used to calibrate and verify equipment and materials. Pace reference standards are calibrated by external vendors that have a

formal, registered quality system. Calibrations are performed with equipment and materials that are traceable to NIST.

Quality Controls (not defined in test methods):

- Sampling/Recovery Reagents are Reagent Grade or better.
- Reference Temperature Simulator is calibrated annually.
- Reference Pressure Transducer is calibrated annually.
- Reference DryCal airflow meter is calibrated annually.
- Mercury Barometer is a primary reference standard.
- Liquid Manometers are primary reference standards.
- Angle Blocks, Gauge Blocks, and Measuring Rods are verified every five years.
- Angle Gauges are verified each day of use.
- Calipers are verified annually.
- Stainless steel reference weights are verified every five years.
- Analytical balances are calibrated annually and verified at each use.
- Field balances are calibrated annually and verified at each use.

Quality Management System. To produce data that is complete, representative, and of known precision and accuracy, Pace Analytical Field Services Division has designed and implemented a rigorous and innovative quality management system. The system was initially based on the USEPA Quality Assurance Handbook for Air Pollution Measurement Systems and continually developed as procedural complexities and standards progressed. The Field Services Division Quality Management System (Pace FSD QMS) is now accredited by the American Association of Laboratory Accreditation (A2LA) to comply with three national accreditation standards:

- ASTM D7036 Standard Practice for Competence of Air Emission Testing Bodies (AETB).
- ISO 17025 General Requirements for the Competence of Testing and Calibration Laboratories
- The NELAC Institute General Requirements for Field Sampling and Measurement Organizations (FSMO)

The Pace FSD QMS includes:

- Quality Programs
 - Ethics policy and training.
 - Corrective Action and Preventative Action (CAPA).
 - Continuous Process Improvement.
 - Documented Demonstrations of Capability.
 - Internal and third party proficiency testing.
 - Qualified Individual program (QI)
 - Internal and external audits.
 - Annual management reviews.
- Documentation and Traceability
 - High quality traceable standards and reagents.

- Reagent tracking and management system.
- Use of matrix spikes, duplicate analysis, internal standards, and blanks.
- Validated workbooks for data collection and results reporting.
- Electronic quality, training, and safety documents available in-field.
- Sample security and preservation procedures.
- Chain of custody maintained from sample collection through laboratory analysis.
- Equipment Calibration
 - Full time staff dedicated to equipment maintenance and calibration.

All equipment and instruments are calibrated by trained personnel on a frequency that meets or exceeds method requirements.

Figure 1
Grede, LLC - Iron Mountain
Kingsford, MI
Main Plant Pouring & Cooling Disa Pouring (324484)
tjb \ 12/2020

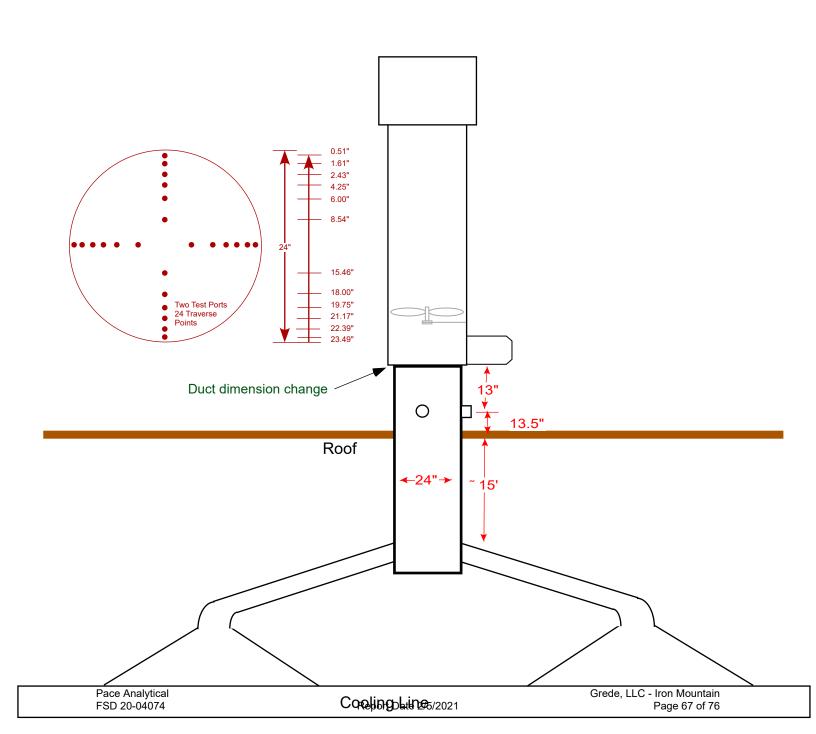


Figure 2
Grede, LLC - Iron Mountain
Kingsford, MI
Main Plant Pouring & Cooling No. 6 HMP (324632)

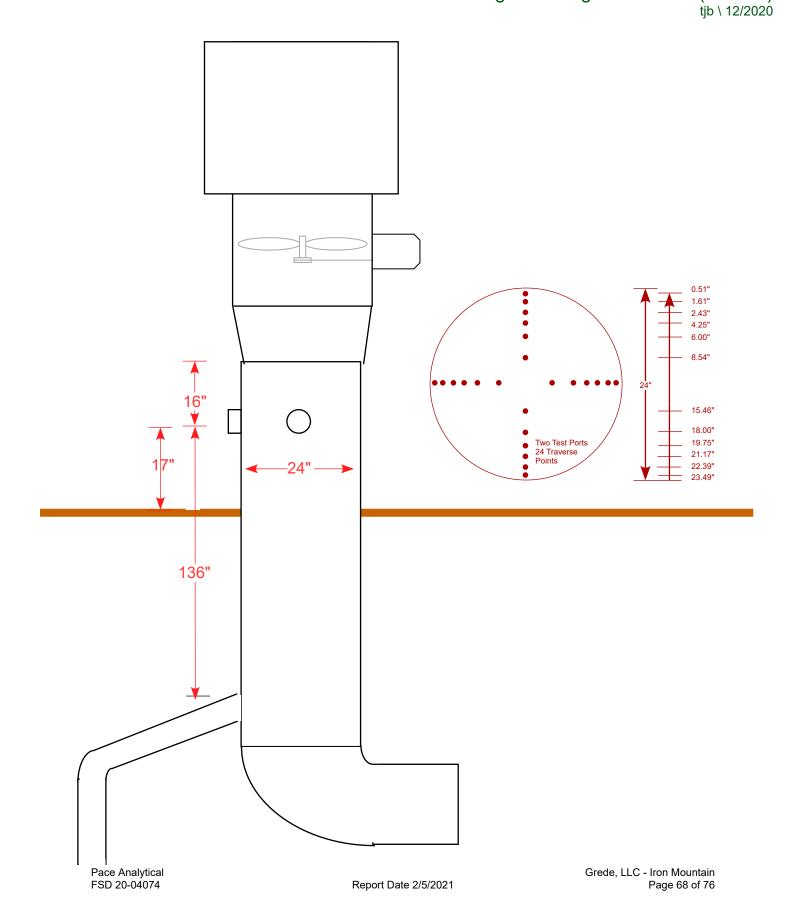


Figure 3
Grede, LLC - Iron Mountain
Kingsford, MI
Main Plant Pouring & Cooling No. 7 HMP (324662)
tjb\ 11/4/2019

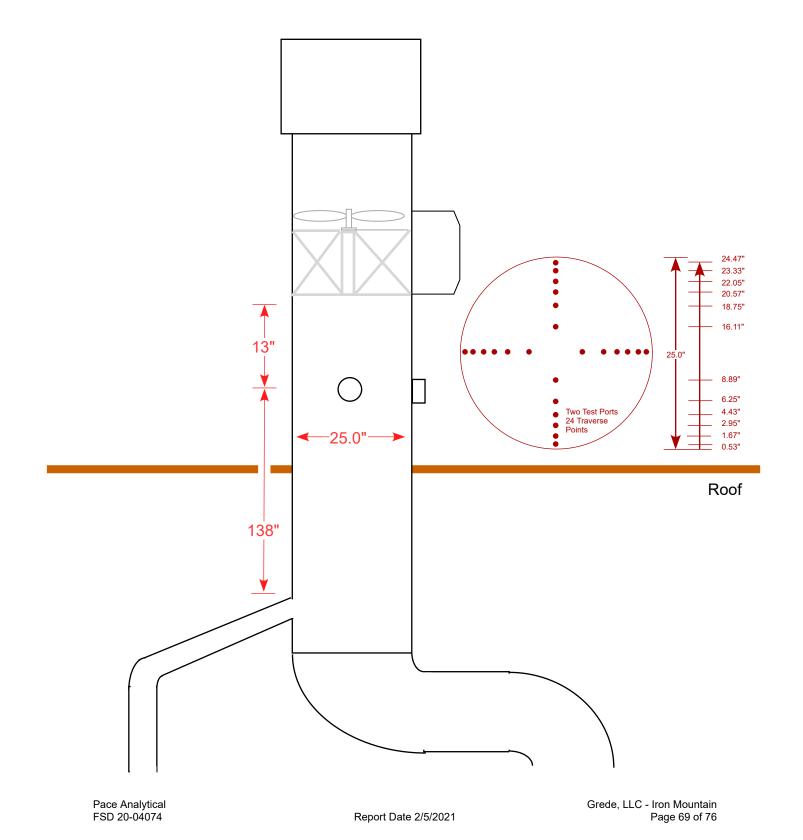


Figure 4
Grede, LLC - Iron Mountain
Kingsford, MI
Main Plant Pouring & Cooling Disa Pouring (324678)
tjb \ 11/4/2019

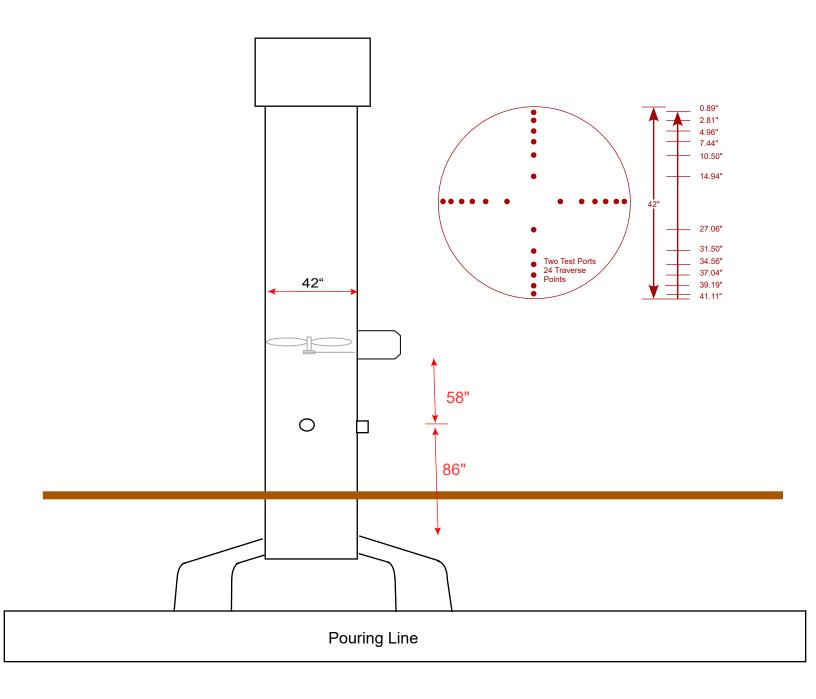


Figure 5
Grede, LLC - Iron Mountain
Kingsford, MI
Main Plant Pouring & Cooling Disa Pouring (324682)
tjb \ 12/2020

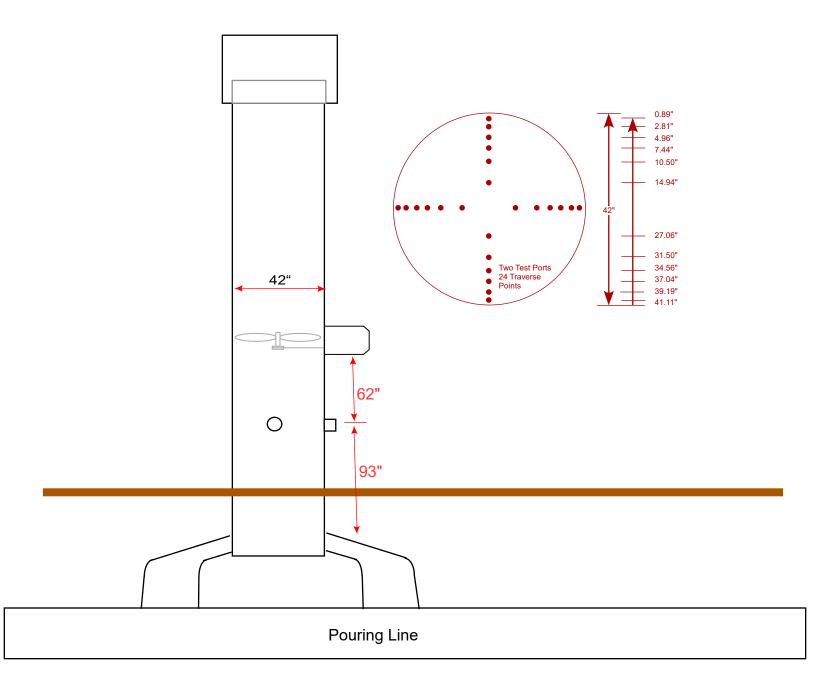
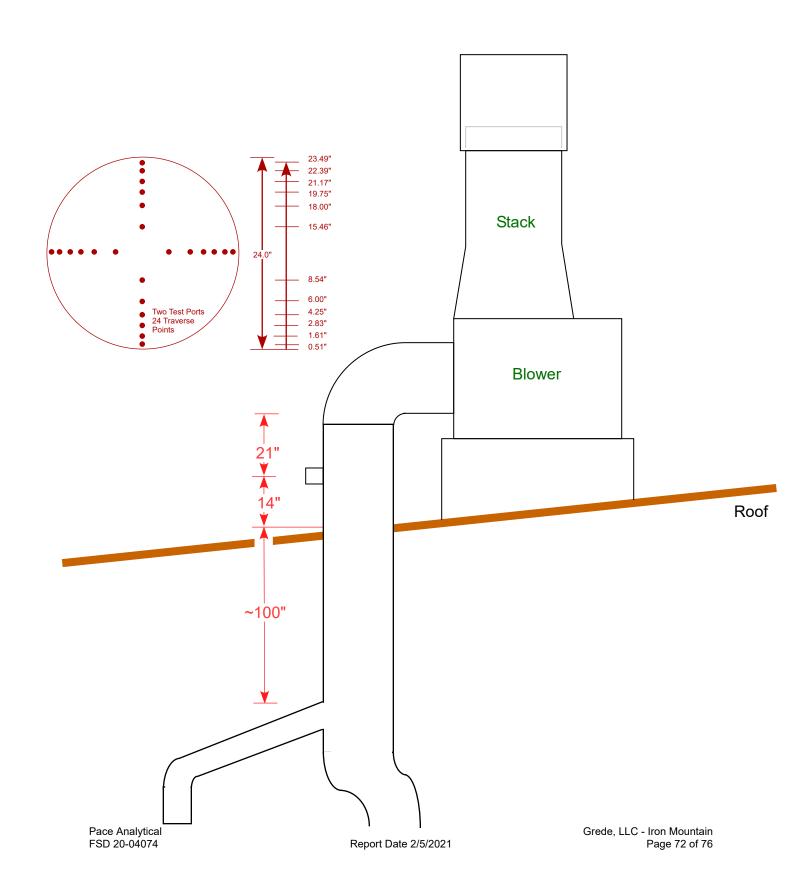



Figure 6
Grede, LLC - Iron Mountain
Kingsford, MI
Main Plant Pouring & Cooling No. 5 HMP (324848)
tjb \ 12/2020

Figure 7 Grede, LLC - Iron Mountain Kingsford, MI Module Pouring & Cooling Exhaust (334116) tjb/ 12/2020

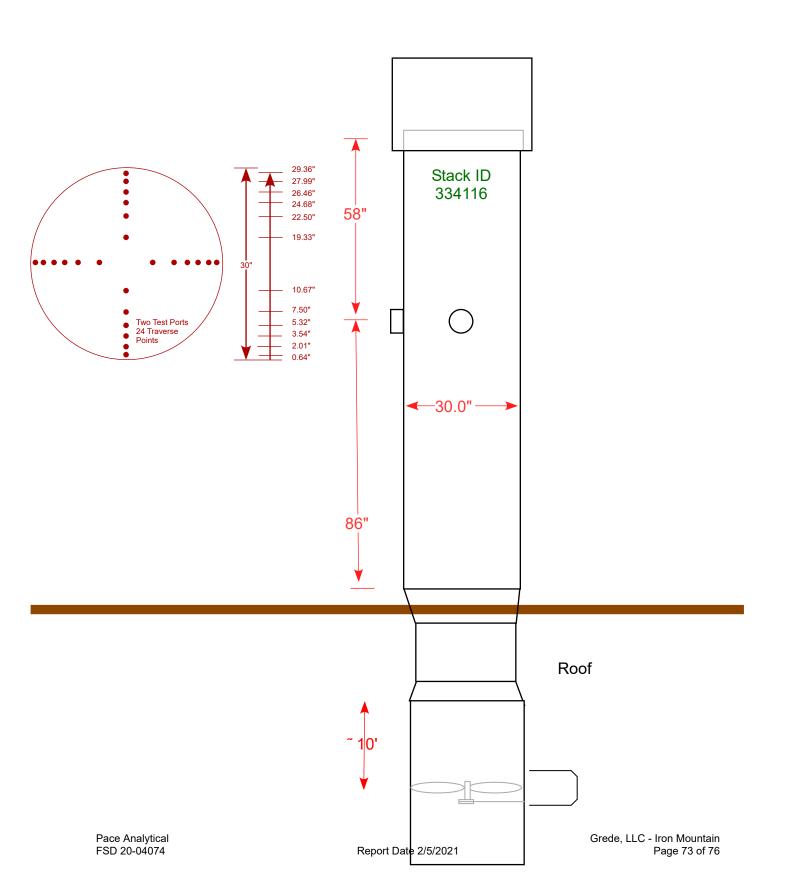


Figure 8
Grede, LLC - Iron Mountain
Kingsford, MI
Module Pouring & Cooling Exhaust (334176)
tjb/ 11/4/2019

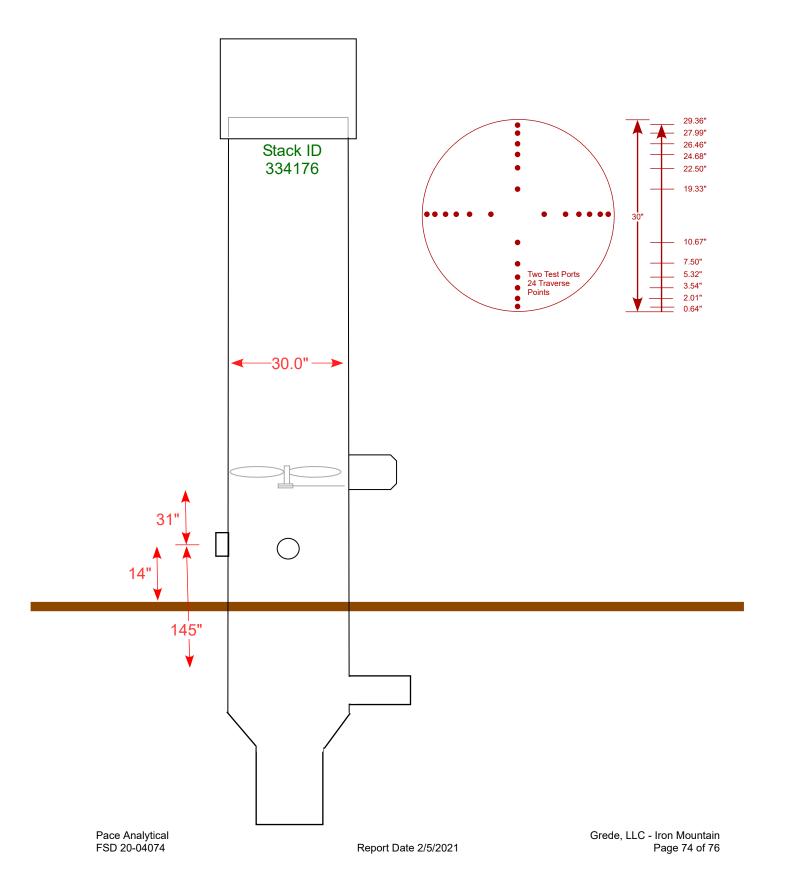
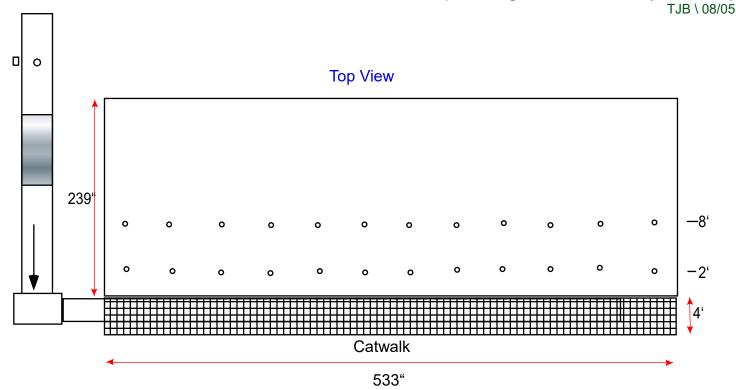
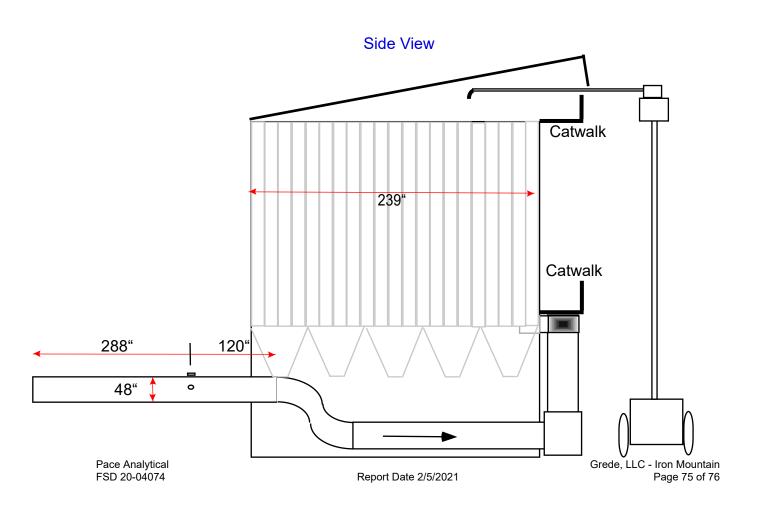




Figure 9
Grede, LLC - Iron Mountain
Kingsford, MI
Cupola Baghouse Exhaust (EU-P009)

Report Signatures

Field Testing and Reporting Performed by: Pace Analytical Services, LLC

Field Services Division 1700 Elm Street, Suite 200 Minneapolis, MN 55414

Field Testing Affirmation

All field testing was performed in accordance with stated test methods subject to modifications and deviations listed herein. Raw field data presented in this report accurately reflects results and information as recorded at the time of tests or otherwise noted.

TX	Date	1/20	202
Terence J. Borgerding, QSTI Team Lead			
Team Lead			

Report Affirmation

To the best of my knowledge, this report accurately represents the compiled field and laboratory information with no material omissions, alterations or misrepresentations.

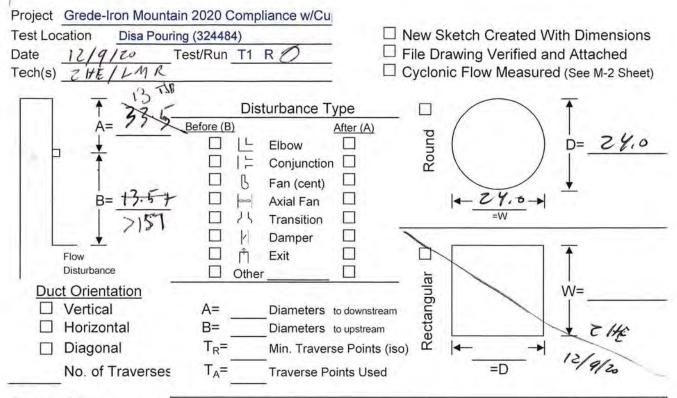
TX	Date	,/	201	12021
Terence J. Borgerding, QSTI		1		
Project Manager				

Responsible Charge Affirmation

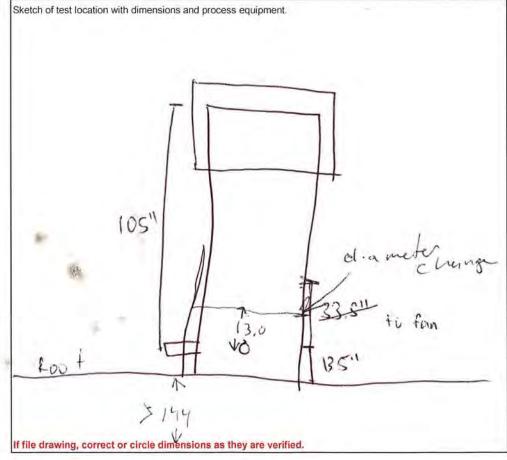
I have reviewed, the information herein and it is approved for distribution.

Donald B. Stock, QEP, QSTI

General Manager, Field Services Division

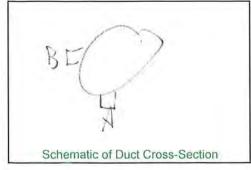

Appendix A

Field Data Sheets and Documentation


Field Data Sheets - 324484

Test Site and Traverse Point Selection

Traverse Points (from wall)


Pace Analytical * Field Services Division

EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

Project Grede-Iron Mo	ountain 2020 Comp	liance w/Cu	Manometer Type and ID	CM-5
Test Location Disa	Pouring (324484)		Barometer Type and ID	DB-60
Date (2/9/20	Test/Run T1	R	Thermocouple Sensor ID	TC-38
Duct Dimensions	24 x 24	Inches	Pitot Tube No. 3-0/	Cp6. 84
Port Length	6	Inches	Technicians Z # /L	MR
Pitot Leak Check - Pos	Ne	eg 🗸	#REF!	FSD PN: 20-04074

Trave	erse Poir	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ick Temp	perature	- °F
Point		From	Flow	Run 1	Run 2	Run 3	Run 4 ΔP	Run 1 °F	Run 2 °F	Run 3 °F	Run 4 °F
No.	Wall	Port	°Yaw		ΔΡ	ΔΓ	ΔΓ	-	*F	T	
Al S	151	6.51 7.61 8.43	500	0.46	1			1			
	1.61	8.43	8	0.50	1			82	1		
3	12.47	10.25	5	0.49	1			0	1		
5	6100	12.00	5	0.46		15	Un		1	711	
6	8.54	14.54		0.45						Z H/	-
	15.46	24.0	0	0.45		12/0		83			
3	19:00	25:75		0.45		12/9/2	0			12/	
10	21.17	27.17		0.68						2/1/20	\
ii.	22.34	28.39	-7 -7	0.80			1	84		,	1
12	23,49	29.45	-7	0.81							
3 1	T	T	15	_							1
3			0								
3			0								
5			5		-						
Ģ	San	e	5			1					
7	45		0				ZHE				
8	abu	ve	-10							1	
9			10			12	19/20				
′′0	-		-10				10	1			
1,2	1	1	13					1			
1								,			
									1		
									1		
			ZHE					1		1	
			12/9/20							1	
			19/20								1
											1

Pace Analytical
FSD 20-04074

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	28.431				"Hg
Static Pressure	-1.50			1	"H ₂ O
Dry Bulb Temp.	84		12/	A Marie	°F
Wet Bulb Temp.	_		13		°F
Moisture Content	1 0		12		%v/v
320 P Oxygen	20.9		1 %		%v/v
Time of Meas.	730	1		1	(24 Hour)

Isokinetic Particulate Sampling

FSD PN: 20-04074 Pace Analytical "

ede-Iron	Mountain	1 2020 Con	Project Grede-Iron Mountain 2020 Compliance w/I		CM	25	Pitot No.	210	ڻ ا	C,0.84	Manometer ID	leter ID	Em &	6
cocation Disa	Pouring	Sample Location Disa Pouring (324484) Date (2/9/20 Test/Run	T1 R /	Meter Coef. Orifice Coef	γ . ΔH@	2.074	Bar, Pres. Static Pres		123	In. Hg In. H ₂ O	TC Sensor ID Barometer ID	sor ID	08-80	3400
N	7/342	MR		Nozzle No.	0. 55	D, 0.2 %	Est, Moist	ist.	1	%۸/۸	Scale ID		Broso	\
-	Meter Vol.	Velocity	Orifice	Desired	Incre-	Train	Stack	Filter	Probe	Sample	Impinger	A	Mtr Out	320P
		Head AP	Meter AH	∆V _m	mental	Vacuum	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Oxyge %
		inches n ₂ O	Inches n20	Cubic Feet	m _N	indies rig								/0A/
n l	75.65				-	н		11						
N.	78.54	0.76	3. 42	778.72	3.47	3.5		642	259	41	65	21	22	70.9
•	66 18	27.0	3.36	41.282	3,42	3.3			260		20	28	501	1
11.00	785.38	0.75	2.33	785.54	3.40	3.4	87		562		43	44	45	
	188.72	99.0	2.9/	788.71	3.17	n	6	254	265		47	44	3.5	
100	68 16	0.58	2.56	89102	297	3.5			226		49	55	5-6	
1	89. 16	0.50	12.2	794.44	2.76	2	8		142		14	44	53	
N	14. 79	34.0	2.03	797.09	2.65	2.3	89	254	227		4.5	7	23	
11	85. 66	34.0	2.15	18.662	2.73	1,7	60	552	2 20	\ 	25	9,6	53	
100	29. 19	0.48	2	302.42	127	2,7	84		2 80		22	75	53	
10.	805.29	0.50	2:20	805.23	2.76	2.3		1	192		24	37	53	
00	80808	0.52	2.29	808.09	18.2	13			223		24	76	23	
n	310 . 86	9.4.8	41.2	18.0/8	i	7.5	82	44	220		25	47	24	
-	20. 41	89.0	29.2	8/4.00	3.18	1.2	47	552	542	1	29	87	4-4	
00	92. 41	99.0	2.88	817.18	3.16	1.6	16	256	250		47	16	44	
1	14. 028	0.63	2.76	820.27	3.09	1.5	96	752	082		24	20	200	
00	23.63	0.65	2.86	823.43	3.16	3.2	93	254	274		127	12/	5.5	
3	37. 75	29.0	2.95	826.63	3.60	2.0	66	552	622		85	15	2.5	
,	18.678	19.0	2.82	829.77	3.14	3.1	63	24,3	542		5.8	25	577	
	87. 58	0.46	10.2	832.44	2.67	2.2	16	255	276		28	23	27	
ad	835.18	24.0	1.87	834.99	2.56	2.2	06	242	892		29	63	37	
- 100	137. 19	24.0	1.95	837.61	192	2.0	16	253	222		3.6	20%	24	

e P

Other M-202; ■ Wet Catch; Probe Wash; Samples Recovered: Filter 0-1177 85.07=~V

4AP=02482H=2. 53

60.

02= 20.

t = 42.3

2525

Total

5

5.28 21 Desiccant

NO

114.00

17.8

Commen

Sampling Train Leak Checks:

Posttesto.3 Pitot - Pos.

Pretest

	89.	401	-10.
Impinger No.	Final Volume	Initial Volume	Difference
			#REF!
IIS:			

110

Isokinetic Particulate Sampling

24-50 Manometer ID TC Sensor ID Barometer ID Scale ID 0.8% In. Hg In. H₂O 1/1% S 3-01 Static Pres. D. O. 245 Est. Moist. Bar. Pres. Pitot No. Orifice Coef. AH@ 2.074 0.99 3 Meter Coef. Module ID Nozzle No. Project Grede-Iron Mountain 2020 Compliance w/l R Sample Location Disa Pouring (324484) Pace Analytical "Field Services Division Operators/Techs

FSD PN: 20-04074

Cubic Feet Inches H20 Cubic Feet Vm Inches Hg Feet	Trav.	Time	Meter Vol.	Velocity	Orifice	Desired	Incre-	Train	Stack	Filter	Probe	Sample	Impinger	_	Mtr Out	320P
2.4.2.5 18 1.2.5 2.4.2.5 2.2.5 2.4.2.5 2.2.5	No.	ΤΔ	Vm Cubic Feet	Head ∆P Inches H ₂ O	Meter ∆H Inches H ₂ O	ΔV _m Cubic Feet	V _m	Vacuum Inches Hg	°F	°F	°F	°F	°F	°F	°F	%v/v
3.4.2 18		(13/5	00.348													
16	17	12.00	84925	89.0	U	849.26	10	3.6	1	322	263	NA	bh		59	20.9
1.5 86.5 47 0.65 2.43 856.65 3.22 3.5 4 2.56 3.74 3.26 3.75 3.56 3.75 3.75 3.56 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75	:	1	852. 56	0.65	.93	852.48		3.6		223	892		7	00	62)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10	19.2	865.97	0.67	10	855.74	3.	3.7		238	284		47	4	65	
24. 7 88	1	14	0	0.65	63	858.96	n	3 /5	100	246	282		8.3		64	
24.7 88 6.2 6.5 6.5 2.35 88.6.01 2.35 3.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	V	1000	82.41	02.0	3.15	862.30	3.33	3.8		250	222		20	1.5	49	9
24.5 88 6.5 6 9.5 2.35 88.6.1 2.83 2.4.5 87.1 2.4.5 88 6.5 6.6 6.5 87.2 6.4.5 87.1 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	1	12	865.67	0.69	3.11	29.598	3,32	3.8		152	275		121	0	611	
28 871 57 0 45 2.04 871.19 2.69 2.6 89 257 31.5 876.59 2.5 6 89 257 35.5 876.59 2.57 2.5 88 2.5 6 876.59 2.57 2.5 88 2.5 6 876.59 2.57 2.5 88 2.5 6 876.59 2.57 2.5 88 2.5 6 876.59 2.57 2.5 88 2.5 6 876.59 2.57 2.5 88 2.5 6 876.59 2.57 2.5 88 2.5 6 876.59 2.5 6 876.59 2.5 6 876.59 2.5 6 876.59 2.5 6 876.50 2.5 6 876.	9	21,7	868.90	24.0	35	868.51	2.89	3.7		257	182		29		99	
2 5.52 68 6.2 25.2 20.4.8 92.2 c5.c 21 428 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 26.016 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 28.816 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 2.1.5 2 5.52 68 6.5 2 25.2 20.8.16 21.2 24.0 20.8 24.0	6	28	871.57	24,0		871.19	2.69	2.6		252	263		25	6.	99	
35. 876 80 0 41 1 86 876.59 2.57 2. 98 244 2. 98 38.59 2. 88 245 2. 88 245 2. 90 2. 90 3.	>	31.5	1	5.50	5	874.02	2.83	5.5		552	912		63	0	99	
39.5 879.55 J. 5. 77 879.44 2. 90 2. 9 88 2.55 J. 6 88. 24 2. 75 2. 96 88. 24 2. 96 88. 24 2. 96 88. 24 2. 96 88. 24 2. 96 88. 24 2. 96 88. 24 2. 96 88. 24 2. 96 88. 24 2. 96 88. 24 2. 96 88. 25 2. 96 88. 25 2. 96 88. 25 2. 96 88. 25 2. 96 88. 25 2. 96 88. 26 2. 96	~	35		120	86	876.59	2.57	25.3		244	274		4.5		67	
42. 886. 19. 12. 886.29.2 - 3. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	n	38.5	874.3	0. 52	12	879.49	2.90	5.9		842	286		25		67	
75.6 889.62 0.75 3.39 885.72 3.48 4 1 42 25.42 3.49 4 1 42 25.42 3.49 4 1 42 25.42 3.49 4 1 42 25.42 3.49 4 1 42 25.42 3.49 4 1 42 25.42 3.49 4 1 42 25.42 3.49 4 1 42 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 4 1 4 1 25.42 3.49 3.49 3.49 3.49 3.49 3.49 3.49 3.49	-	ch	-		12	42.288	2.76	1.		255	267		53		89	
92.5 889 20 2 3 25 8896.19 3.48 4 0 92 655 65 3.48 4 0 92 65 65 3.43 4 0 92 65 65 65 3.43 4 0 92 65 65 65 65 65 65 65 65 65 65 65 65 65	2	3		0.75	39	885.72	3.48			4-42	292		25		89	
52.5 892. (2 0.73 2.31 896.02 3.43 4 0 91 259 2 53.6 894. (2 0.73 2.23 896.02 3.34 1 1 88 259 2 53.5 894. 37 0.63 2.28 896.02 3.34 1 1 88 259 2 53.5 905. 36 0.57 2.35 908.03 2.99 3.3 90 50.5 910 89 0.57 2.35 908.03 2.99 3.5 90 73.5 910 89 0.57 2.35 908.03 2.99 3.5 80 255 2 73.5 910 89 0.57 2.35 908.03 2.99 3.5 80 255 2 80.5 9115 82. 0.57 2.35 919.50 2.77 2.9 89 255 2 80.5 9115 52. 0.77 2.35 919.50 2.78 3.0 89 255 2 80.5 9115 52. 0.77 2.35 919.50 2.78 3.0 89 255 2 80.5 9115 52. 0.77 2.35 919.50 2.78 3.0 89 255 2 80.5 9115 52. 0.77 2.35 919.50 2.78 3.0 89 255 2 80.5 9115 52. 0.77 2.35 919.50 2.78 3.0 89 255 2 80.5 9115 52. 0.77 2.35 919.50 2.78 3.0 89 255 2	11	2	889	37.6	6	884.19	3.48			25%	742		25	4	80	
\$\frac{69}{96.5} \frac{67}{96.5} \frac{67}{3.6} \frac{67}{3.6} \frac{67}{3.6} \frac{67}{3.6} \frac{67}	10	52.5	892. (2	10	_	892.62	3.43	4		862	122	-	3.4		63	
\$\frac{7}{66} \cdot \frac{7}{66}	6	24	895.97	0.20	n		3.39		-	24-8	234		60	2	63	
63 402 42 0 54 2 5 902.20 2.99 3.3 40 255 266 565 405 36 0 57 2 39 405.70 2.99 7.5 90 257 20 665.5 405.36 2.99 7.5 90 257 20 88 257 7.5 910 89 0.5 910 80.5 910 80 2.77 2.99 7.5 910 85 0 57 2.5 910 80.5	00	-	844 37	69.0			3.19		b = 1	253	412		19	63	02	
70 405 36 0 43 2 4/ 405.14 2.94 3 5 90 245 50 50 50 50 50 50 50 50 50 50 50 50 50	1	63		75.0			5.99		J	242	5,62		62	23	20	
73.5 410 89 0 47 2 15 40803 2.89 3 0 88 257 7 2 6 89 255 7 2 6 810 80 2.77 2 6 89 255 7 2 6 810 80 2.77 2 6 89 255 7 2 6 810 80 2.75 410 80 52 0 87 2 16 916 50 2.78 3 0 87 2 15 810 80 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9	66.4	2	0 53	14		2.94			268	279		63	63	12	
77.5 98 0.5 27.5 07.916 91.5 2.8 316 5.85 80.5 918 82.5 07.916 91.5 72 0.8 319 5.08 80.5 918 9.5 518 86.5 5.80 3.80 3.80 3.85 80.5 918 5.50 5.50 5.50 5.50 5.50 5.85	La	20	12.805	0.5/	33	408.03	2.89		88	257	249		63	ود	20	
913 82 0 12 2 38 913, 72 2.92 2 9 89 253 916 52 0 47 2 16 916 50 6.78 3 0 87 255 916 50 6.78 3 0 87 255	5	73.5	910	24.0	14	08.019	10.3	1.0	68	542	223		63	59	1/	
916 52 0 47 2.16 916.50 2.78 3 5 87 245	æ	11	913 82	0.00	38	913.72			80	273	590		63	99	1/	
319 24 0 12 32 319.38 2.89 3:18	1	80.5	916	0.47	2.16	916.50	, ~	2.1	87	245		>	63	99	12	/
	_	18	44 616	0.00	2.32	85.616		3.1	18	245	232		49	29	75	4

Other ☐ M-202; □ Wet Catch; Probe Wash; Samples Recovered: Filter

Sampling Train Leak Checks:

@ 6, 5 0

Posttest 0.5 Pretest 0.00

Pitot - Pos.

V = 73.54 JAP=0.761 AH= 2.64

#REF! Comments

Impinger No.	-	2	n	4	2	Desiccant	
Final Volume	1.96	113.1	3.9	/		1450.8	
Initial Volume	,00)	130	0	/	/	1429.1	
Difference	23.9	1.81	3.9			12/.7	

34.8

Total

=64.8 O2= 20.

0= 87

Isokinetic Particulate Sampling 5-50 Manometer ID TC Sensor ID Barometer ID Scale ID C. O. 39 In. H20 1/0% 3-01 Static Pres. Bar. Pres. Est. Moist Pitot No. D. 0.250 Orifice Coef. AH@ 2.074 3166.0 2 Meter Coef. Nozzle No. Module ID FSD PN: 20-04074 Project Grede-Iron Mountain 2020 Compliance w/I X Test/Run Sample Location Disa Pouring (324484) Pace Analytical" Operators/Techs 246/ Date

Tubic Feet Inches H ₂ O Lubic Feet M _m Inches H ₃ Inches H ₂ O Lubic Feet Months H ₂ O Inches H ₂ O Lubic Feet M _m Inches H ₃ O Inches H ₂ O Lubic Feet M _m Inches H ₃ O Inches H ₂ O Lubic Feet M _m Inches H ₃ O Inches H ₂ O Lubic Feet M _m Inches H ₃ O Inches H ₂ O Lubic Feet M _m Inches H ₃ O Inche	Trav.	Time	Meter Vol.	Velocity	Orifice	Desired		Train	Stack	Filter	Probe	Sample	Impinger Meter In	Meter In	Mtr Out	320P
\$\frac{\cappa_{\beta}}{22} \frac{\cappa_{\beta}}{22} \cappa_{\be	No.	ΔT	Cubic Feet		Inches H ₂ O	ΔV _m Cubic Feet	\ \ \	Vacuum Inches Hg	i i i	i i	유	ů T	i i	i i i	e e	%v/v
882 432 bb h 2 087 ht 866 b) 2 860 3286 402 892 hs2 hb 12 58.2 hb 2.2 bh 0.2 bh 0.3 bh 2.0 b 292 hs2 hb 12 58.2 hb 2.2 ch 0.4 ch 0.4 ch 0.4 ch 292 hs2 hb 12 58.2 hb 2.2 ch 0.4 ch 0.4 ch 292 hs2 hb 12 52.2 th 292 hs2 hb 12 th 293 hs2 hb 12 th 294 th 295 th		(120K)	6													
22 432 bb h 2 082 h 26b b 2 60	1,	3.5	923.39	0.77	3.40	427.40	in	3.6	16	225	1	MA	24	89	36	20.9
12	=	1	48. 826	0.75	3.44	426.92	u	2.3	16	234	a		15	63	24	,
12	9	10.5	24 86	0.72	62.2	930.36	w	2.2	16	1	280		49	67	14	
22 2 25	1	14	633 05	62.0	3.20	933.76	n	3.3	16		267		2.0	99	14	
27 430 46 17 0 25 2 23 436 42 3.01 3 0 6 26 24 2 3.02 24.02 46 46.02 46 24.02 46.02	S	17.5	437.04	29.0	2.64	936.96	w	7.1		١.	126		27	59	24	
22 452 46 67 2 082 47.89 61.7 840 96 648 5.12 62 648 648 648 648 648 648 648 648 648 648	^	17	21.016	74.0	25.5	939.47	3.01	0. 2			~0		02	65	25	
22 432 bb	9	24.5	96.286	0.49	2.24	18.246,	2.84	2.9			280		5	65	73	
12	6	28	48.34b.	-	2:37	945.72	2.92	2.6			8 42		12	66	32	
75. 456. 68 0 40 2 18 456.56 2. 86 2 45 656 456 456 456 456 456 456 456 456	5	3.16	448 83	75.0	2.46	948.70	2.97	2.5	14		225			39	14	
38.5 456 57 68.5 4.5 85.7 5.7 5.7 5.6 45.5 5.7 5.7 5.8 5.7 5.8 5.7 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	- 10	35	951.68	0.4.0	2.28	951.56	2.86	2	28		892		65	20	3,2	_
75. 44. 75. 76. 7. 12. 457.13 2.75 2.3 83 25. 74 75. 75. 75. 75. 75. 75. 75. 75. 75. 75.	2	38.8	954.53	85.0	2.20	95436	28.5	7.7	200		279		DA	29	75	
252 46 47 27 087 47 288 67 0 48 69 6 49 6 48 69 6 49 6 49 6 49 6 49		24	82 78	13.0	2.12	957.13	275	23	83		192		·	29	72	
14.5 465 83 0 68 3 27 83.71 3.31 3.1 465 83 0 68 472.71 5.31 3.1 470 5.10 6.20 3.15 467.08 3.32 3.2 470 5.10 6.20 3.15 470.44 3.36 3.32 3.1 470 5.10 6.20 3.15 470.44 3.36 3.32 3.1 470 5.15 6.20 470.44 3.36 3.32 3.1 470 5.15 6.3 470 5.15 6.3 470 5.15 6.3 470 5.15 6.3 470 5.15 6.2 470 5.15 6.2 470 5.15 6.2 470 5.15 6.2 470 5.15 6.2 470 5.15 6.2 470 5.15 6.2 470 5.15 6.2 470 5.15 6.2 470 6.2 470 6.15 6.2 470 6.2 470 6.15 6.2 470 6.2 47	2	2165	960.57	94.0	2.98	960.40	3.27	3.0	16		442		63	29	22	
72.5 967 16 270 317 967.08 3.37 3.4 967 16 270 3.15 967.08 3.32 3.1 94 0.55 92.2 1.1 967.09 3.36 3.2 3.1 94 0.55 92 92.2 1.1 96.5 92.2 1.1 94.0 1.2 92.2 1.1 94.0 1.2 92.2 1.1 94.0 1.2 92.2 1.2 92.2 1.1 94.0 1.2 92.2 1.1 94.0 1.2 92.2 1.1 94.0 1.2 92.2 1.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 92.2 94.0 1.2 94.0 1.2 92.2 94.0 1.2 94.2 94.2 94.2 94.2 94.2 94.2 94.2 94	/	19	963.83	0.50	3.27	963.71	3.31	3.1	46		274		47	63	2	
54 470 51 070 316 470.44 3.36 3.2 470 518 54 55 52 31 31 49 55 53 5 31 49 5.56 53 5 31 49 5.56 53 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10	4.2.8	91. 296	0.40	3.13	967.08	237	1.6	3		552		47	29	1/	
252 16 62 12 28.2 473.76 3.22 37.99 42 2.32 449 429 2.32 449 429 2.32 449 449 2.32 449 449 2.32 449 449 2.32 449 449 2.32 449 449 2.32 449 449 2.32 449 449 2.32 449 449 2.32 449 449 2.32 449 449 2.32 449 449 449 449 449 449 449 449 449 44		56	14.026	~	3.16	470.44	3.36	3.5			22		47	63	3	
752 96 4.2 6.2 7.2 477.04 3.26 2.4 476 6.6 4 476 7.6 4.6 476 7.6 4.6 476 7.6 4.6 476 7.6 4.6 476 7.6 4.6 476 7.6 4.6 476 7.6 4.6 476 7.6 4.6 476 7.6 4.6 476 7.6 4.6 476 7.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4	8	59.5	hc 226.	0	3.08	473.76	3.32	3.1			285		14	63	11	_
755 479 78 27 208 474.77 2.73 2.4 482 57 72 2.73 2.5 479 75 2.5 479 75 2.73 2.5 479 75 2.5 479 75 2.73 2.5 479 75 2.5 479 75 2.75 479 475 2.75 479 475 2.75 479 479 479 479 479 479 479 479 479 479	_	62	976 97	0.67	3.02	477.04	3.29	5.9			22.5		14	67	72	
5 70 982 57 0 46 2 09 482, 51 2.75 2.3 93 2 53 47 75.5 90 50 40 99 75.5 126 485 72 2.75 2.3 99 2 59 75 7 80 5 99 90 99 2.55 12 99 99 2 55 99 55	y	66.5	87 978	74.0	80.2	979.77	2.73	20			275	_	14	69	72	
73 985 32 047 2.13 985.2 2.2 2.89 49 92 2 2.8 4 6 98 2 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4	20	982 57	74.0	50.2	182.51	is	in		100	592	_	47	63	75	
77 988 13 0 50 2 28 48812 2.85 2 49 949 45 508 25 4 40 949 25 4 68 2 48 25 2 48 25 2 48 25 2 48 25 2 48 25 2 48 25 2 48 25 2 48 25 2 48 25 25 26 25 25 25 25 25 25 25 25 25 25 25 25 25	2	3162	985.32	450	2.13	485.27	2	2.3			22		86	49	72	
20.5 940 940 049 2.23 440.94 2.83 2.4 4 40 49 75 75 75 75 75 75 75 75 75 75 75 75 75	n	11	68813	0.50	2.26	488.12	2	6. 2	d		263		84	63	22	
256 66. 4.2 082 42.60 61.1 84	4	80.5	440 04	65.0	222	49.049	2	7			283	>	84	63	75	
	,	84	043.75	840	61.2	14	280	2.7	6		593		25	19	1/	9

M-202; ■ Wet Catch; Y Probe Wash; Samples Recovered: Filter a - 1176

J.5 =HZ 6/3/0=AZ

V=73.85

V =0

ot/Avg

#REF! Comments:

Sampling Train Leak Checks:

Pretest 0.00 Posttest 8.00 Pitot - Pos.

@ 9.0 @6.0

			1.4
Desiccant	1306.8	子子	7.3
2		/	
4		/	
က	7.5	0	7.7
2	110.8	1 30	8.0
	103.0	1001	3.9
Impinger No.	Final Volume	Initial Volume	Difference

Other

F-68.2 0,=20.9

Total

Pace Analytical FSD 20-04074

Grede, LLC - Iron Mountain Page A-7 of 88

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates.

It is not intended to reflect final results.

Project Grede-Iron Mountain 2020 Co Site Sample Location Disa Pouring (324484)

Date Tech.

The same of the same of	1100 001 00	lization Pa	rameters	a land	-	
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Υ	0.4416					
Orifice Coefficient - ∆H@	2.074					
Pitot Coefficient - Cp	0.84					
Nozzle Diameter - D _n	0.250					
Barometric Pressure - P _b	28.431			>		
Static Pressure - P _g	-1.5	-		_>		
Oxygen Estimate - %O ₂	20.9			>		
Moisture Estimate - %MC	- 1	1	- 1	1		
No. of Traverse Points	24					
Point Duration - ∆T	3.5					
Meter Start Temp, °F - t _m	58	58	58	72		
Initial Meter Volume - V _i	775.25	775.25	846.00	919.90		
Duct Shape (Rnd/Rect)	Rnd					
Duct Width, Inches	24					
Duct Depth, Inches	24					
Final Volume - V _f		845 63	919.54	993.75		
Total Run Time - θ		84		84		
Condensate Volume, ml (g)		25.0	34.8	26.2		
	End	of Run Su	ımmary			
Average Sq. Rt. of the ∆P	√∆P	0.7482	0.7611	0.7613		
Average Orifice Meter	ΔΗ	2,50	2.65	2.66		
Average Stack Temperature	t _s	90.1	89.2	91.4		
Average Meter Temperature	t _m	52,3	64.8	68.2		
Sample Volume, Actual	V _m	70.38	73.54	73.85		
Sample Volume, Dry Standar	V_{std}	68.79	70.19	70.04		
Moisture Content	MC	1.68	2.28	1.73		
Estimated Mole. Wt., dry	M _d					
Estimated Mole. Wt., wet	M _w			/		
Average Gas Velocity	Vs	44.23	45.01	45.06		
Isokinetic Variation	%I	101.4	102.1	101.6		
Volumetric Airflow, Actual	ACFM	83 40	8480	8490		
Volumetric Airflow, Standard	SCFM	7580	7720	7700		
Volumetric Airflow, Dry Std.	DSCFM	7450	75 40	7570		

Equipment & Method Summary

Isokinetic and Associated Testing
Group 1 QI ZIFE Group 4 QI

Project Name: Grede- Sampling Location: Disa P	Iron Mountain 2020 Compli ouring (324484)	ance w/(Test Da Recorde	·	19/20 VE
Airflow Determination	EPA Method: 2	72C	Other	Initials
Pitot Tube No.: 3 - 0/ Pitot Tube No.:	Coef.: 0.84	Next Ver. Date: 1/Next Ver. Date:	1/2/ F	Pre-Use Insp.: 214E
Manometer ID: (M-5	X Oil Digital	Next Ver. Date: 7/	11/21 F	Pre-Use Insp.: ZIFE
Manometer ID:	Oil Digital	Next Ver. Date:		Pre-Use Insp.:
Barometer ID: 08-60	Aneroid X Digital	Next Ver. Date:	122/21 F	Pre-Use Insp. Z 4 E
Barometer ID:	Aneroid Digital	Next Ver. Date:	F	Pre-Use Insp.:
T/C Readout TC-44	Single Dual	Next Ver. Date: 14	13/16/F	Pre-Use Insp. Z HE
T/C Readout	Single Dual	Next Ver. Date:	F	Pre-Use Insp.:
Gas Composition EPA	Method: 3 3/3A	3B 3C	Ambient	Initials
Container Type: Ted Sampling Proc.: Sing	lar Teflon 7-	Layer Inert C	ther	1
Gas Analysis: Orsat	Fyrite Instru	umental: Instrument	ID:	Cal Range
Ambient Provision Oxygen \		2 ID Ar sults are not reported as test tinta.	nbient Cal R	eading:
Moisture Content EPA	Method: 4, back-half of	f iso train	Other	Explain in Options/ Initials Deviations Section
Wt. Scale ID: PS-45	Digital Beam	Next Ver. Date:	F	Pre-Use Insp.:
	Std. Weight (g):		[Pass Fail
Isokinetic EPA Method:	⅓ 5 _	23 26A	29 [Other initials
Nozzle ID: 0.2 50 Type	e: Stainless Steel [Glass C	uartz	Other
Nozzle Cal.: 0.250	0.150 0.250 0.2	\$ 0.25 AV),250 F	Pre-Use Insp.: 241
Nozzle ID: Type	e: Stainless Steel	Glass C	uartz	Other
Nozzle Cal.:	3	5 Avg	F	Pre-Use Insp.:
Probe Length: 3_ft.	Liner: SS 🔀 Glass	s Quartz	Teflon	Other
Pitot Tube No.: 3-01	Coef.: 0.84	Next Ver. Date:	F	Pre-Use Insp.;
Probe Length:ft.	Liner: SS Glass	s Quartz	Teflon	Other
Pitot Tube No.:	Coef.:	Next Ver. Date:	F	Pre-Use Insp.:
Control Mod ID: CM-5 Y	0.9916 AH@: 2,074	Next Ver. Date: 2/	4/2/ F	Pre-Use Insp. 2/15
Control Mod ID:	ΔΗ@:	Next Ver. Date:	F	Pre-Use Insp.:
Filter Type: 2½" R	ound 4" Round	Thimble	Other	
Filter Media: Slass	Fiber Quartz Fiber	Paper Tefle	on SS	Other
Wet Catch: EPA 202	EPA 8 EPA	23 EPA 26A	☐ EPA	29 Other
WC Options/Deviations: Pace Analytical FSD 20-04074	Report Date 2	2/5/2021	Grede, L	LC - Iron Mountain Page A-9 of 88

Field Data Sheets - 324632

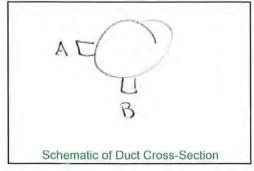
EPA Method 1 Field Data Sheet ace Analytical Test Site and Traverse Point Selection ield Services Division Project Grede-Iron Mountain 2020 Compliance w/Cu ☐ New Sketch Created With Dimensions **Test Location** No. 6 HMP - East Hunter (324632) ☐ File Drawing Verified and Attached Date 12/10/20 Test/Run T1 R / ☐ Cyclonic Flow Measured (See M-2 Sheet) Tech(s) ZHE /LMR Disturbance Type Before (B) After (A) Round D= 24.0 L Elbow Conjunction Fan (cent) 240 -N Axial Fan Transition Damper Flow Exit Disturbance Other Rectangular **Duct Orientation** W= Vertical A= Diameters to downstream ZHE ☐ Horizontal B= Diameters to upstream T_R= □ Diagonal Min. Traverse Points (iso) =D No. of Traverses TA= Traverse Points Used Sketch of test location with dimensions and process equipment. Traverse Points (from wall) SHE 12/10/20 0 Roof

Pace Analytical FSD 20-04074

Report Date 2/5/2021

If file drawing, correct or circle dimensions as they are verified.

Grede, LLC - Iron Mountain Page A-11 of 88


Pace Analytical * Field Services Division

EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

Project Grede-I	ron Mounta	in 2020 C	omplia	ince w/Cu	Manometer Type	e and ID	CM-5	
Test Location	No. 6 HM	P - East F	lunter	(324632)	Barometer Type	and ID	DB-60	
Date 12/7	120	Test/Run	T1	R	Thermocouple S	Sensor ID	tc-44	
Duct Dimensions	24.	0		Inches	Pitot Tube No.	3-01	Ср	0.84
Port Length	6.0)		Inches	Technicians	TJBI	Jul -	
Pitot Leak Check	- Pos	V	Neg	/	#REF!			FSD PN: 20-04074

Trav	erse Poi	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ck Temp	erature	-°F
Point		s From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔΡ	ΔΡ	ΔΡ	ΔΡ	°F	°F	°F	°F
A-4	0.51	7.61	5	0.13					/ /		
2	1.61	7.61	10	0.14							
3	2.93	8.65	15	0115							
4	4125	12.00	7 5 5 0	0.18							
4	8,54	14.54	5	0.19					ZHE		
ž	15.46	2176	(1)	0.19				-			
8	18.00		-5 0 0 -5 -3	0.19					12/9/20		
9	19.75	25:75	Ŏ	617					19/20	\	
10	21.17	27.17	0	0.15					,	1	
11	22.39	2839	-5	0.14							
12	23.44	2949	-3	014							
B-1	T	1	20								
3		-	17								
4			5								
5			0								
6		ane	0		-						
)	4	25	Ó			1					
8	a	dove	5			1					
10			-5				1	· ·			
			-5				1	ZH	F		
11			-3					1			
16	7	1	-6		-			1	12/	-	
								-	12/9/	2,	
									1		
									1		
											1
			1								1

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	7864				"Hg
Static Pressure	-0.35				"H ₂ O
Dry Bulb Temp.	92		1211		°F
Wet Bulb Temp.	-		12		°F
Moisture Content	1		12/2		%v/v
320 P Oxygen	209		1/2		%v/v
Time of Meas.	1500			1	(24 Hour)

Isokinetic Particulate Sampling

,								
2000	Project Grede-Iron Mountain 2020 Compliance w/l	Module ID CA	5-6	Pitot No.	3-01 C	0.87	Manometer ID	Comes
Λn	Sample Location, No. 6 HMP - East Hunter (324632)	Meter Coef. γ	9/160	Bar. Pres.	28.66	In. Hg	TC Sensor ID	14-71
alvetic	Date 12/19/20 Test/Run T1 R1	Orifice Coef. ∆H@	\$ 2.07 y	Static Pres.	-0.35	In. H ₂ O	Barometer ID	08-60
al.	Operators/Techs ZHE/LMC	Nozzle No. 55 Dn 0.37 Est. Moist. / %v/v Scale ID .05-45	D. 0.37	Est. Moist.	1	٨/٨%	Scale ID	24-50

FSD PN: 20-04074

Salar	14-21	09-80	34-50	Mtr Out 320P Temp. Oxyger		65 204	3	52	/	90	19	19	-
				Sample Impinger Meter In Mtr Out Temp. Temp. Temp. Temp. °F °F		19	57 6	25	2000	33			
Manometer ID	TC Sensor ID	Barometer ID	Scale ID	Impinger Temp. °F		24	25	94	37	36	20%	36	
Co 0.01	In. Hg	In. H ₂ O	٨/٨%			MA	-						
10-6	28.66	16.0.35	1	Probe Temp.	ee.	270	253	642	283	452	12	279	-
		1	loist.	Filter Temp.		1	255	662	352	295	450	252	
Pitot No.	Bar. Pres.	Static Pres.	Fest. N	Stack Temp.		85	8	8	83	18	V	83	200
6	9166	2.07	D. 0.3	Train Vacuum Inches Hg		2.4	9. h	4.9	2.0	4.3	3.4	6.6	
Module ID	Meter Coef. 7 0-91/6	Orifice Coef. AH@ 2.07 4	Nozzle No. 55 Dn 0.37 Est. Moist	Incre- mental V _m		3.62	3.74	3.72	3.69	3.58	3.64	3.7.8	
	Meter Co	Orifice C	Nozzle N	Desired ΔV_m Cubic Feet		74.89p	12.200	1604.92	19.6001	85.8 31.5101	1016.88 3.69	1020.66 3.78	
pliance w/	(324632)	T1 R1		Orifice Meter ∆H Inches H ₂ O		373	3.18	3.96	3.92	17.8	3.93	4.13	
2020 Con	East Hunte	Test/Run	ne	Velocity Head △P Inches H ₂ O		21.0	81.0	0.18	81.0	0.17	81.0	61.0	-
Project Grede-Iron Mountain 2020 Compliance W/	Sample Location, No. 6 HMP - East Hunter (324632)	0	Operators/Techs ZHE/LME	Meter Vol. Velocity Orifice V _m Head ΔP Meter ΔH Cubic Feet Inches H₂O Inches H₂O	38 466	86.866	80.2001	36.5001	1509.60	8.5 1012.19	10 T6 . 88	12. 020 2.1	
Grede-Iro	Location, I	02/01/21	rs/Techs	Time	(720)	3.5	1	10.5	14	18.5	17	24.5	-
Project	Sample	Date	Operato	Trav. Point No.		2	11	0)	<i>S</i>	8	N	9	

	8	2			_	3	(2.54.3 02=2.34	
			2						tm=5	
12	25	47	50	۱,	47	95	17			
30	28	n	n	36	16	96	3,6			
							>			
260	286	22.8	240	912	1	642	~			□ Other
472	152	253	253	442	952	272	452			
88	20	80	18	83	83	28	80		ts=83.7	□ M-202
	1		2.7.				. 1			□ Wet Catch:
3.53	7.54	3.65	3.64	3.57	3.46	3.09	86.2			
19.8301	1057.15	1060.80	1064.74 3	10.8901	74.1701	12.47.61	86.2 77.701 8			A Prohe Wash
2.63	3.63	3.85	3.88	3.68	2.47	2.80	2.59		182 AH= 3.46	N Pr
21.0	0.17	81.0	0.18	21.0	91.0	213	0.17		AP=0.39 82	2411-6
18: 630)	1057.20	22.0901	15. 590	46. 490	24. 14	374.67	77.77		126.28=W	Samples Recovered: Filter 0-1175
59.5 1053.81	1 49	68.5	20	73.5	77	80.5	84	C 348	1 18 =0	Recover
20	~	9	4	٧.	4	4	1	7	Tot/Avg 0	Samples

Sampling Train Leak Checks: 0 0 Pretest 0.00 Posttest 0.00 Pitot - Pos.

Comments

200 001 107. nitial Volume Final Volume Impinger No. Difference #REF!

Total

Desiccant

1.5

27.22 2.73

252

0.17

1.0

2607

45.9

52.5

3 2000

257 257 257

uny

0.11

(60)

Isokinetic Particulate Sampling

CM-5 12-44 08-6 52-50 Manometer ID TC Sensor ID Barometer ID Scale ID n. Hg n. H₂O C. 0.34 0 3-01 'Est. Moist. Static Pres. Bar, Pres. Pitot No. D.O. 374 9166.0 Orifice Coef. AH@ 2.07 CM-5 Meter Coef, Module ID Nozzle No. FSD PN: 20-04074 Project Grede-Iron Mountain 2020 Compliance w// R 2 Sample Location No. 6 HMP - East Hunter (324632) Test/Run Pace Analytical "Feeld Services Division Operators/Techs 2 45 12/0/20 Date

	°F %v/v
72	6.02 8
5 05 6	9
50 25 75	1
25	1
	1
43	5,8
22	-
25	1 2.5
15	24
44	, c
121	9
26	8
4.4	6-
61 53 6	63
63	00
25	7
4.5	1
53	9
3-6	0
	6
26	8
25	, ,
53 46 6	0
7=+	0000 143
	53 46

Pace Analytical FSD 20-04074

Grede, LLC - Iron Mountain Page A-14 of 88

Total

Comments:

@10.0 "Hg @ 8.6 "Hg

Posttest 2.30 Pitot - Pos.

Neg.

Sampling Train Leak Checks:

V

5.4

-24.0

Difference

#REF!

100

Final Volume nitial Volume

Impinger No.

114.4 4.4

1701.5

-	
1	١
u	,
1	١
a	•
Shoot	
77	:
U)
Data	
a)
+	•
C	۲
- 21	•
\sim	١
	4
$\boldsymbol{\tau}$	3
$\stackrel{\sim}{}$	_
1	١
u	,
3.7	-
ш	
FID	7
2	•
4	,
τ	3
~	1
C)
ř	-
7	-
+	•
1	١
	_
_	5
\leq	_
Method	
1	•
1	
0	ĺ
ш	
1 .	ì
FPA	J

Pace Analytical	FSD PN: 20-04074	2 146	28.00		SOK	2000	202	ואסעווועווס ו שווימושום סשוויאווא	2
320 Corr	elD CM-9	Pitot No	3-01	ပ	C. 0.84	Manometer ID	eter ID	Cm. G	
Sample Location No. 6 HMP - East Hunter (324632) Meter Coef.	Coef. 7 0.9916	Bar. Pres.	SS.	35	In. Hg	TC Sensor ID		16-44	
12/19/20 Test/Run T1 R3 Orifice	Orifice Coef. AH@ 2.074	Y Static Pres	0-	.35	In. H ₂ O	Barometer ID	ter ID	08-60	
Operators/Techs 2 4/E/L/M.	Nozzle No. \$\$ DnD.	Est. Moist.) 1/7/21	1	٨/٨%	Scale ID	0	24-50	
ol. Velocity Orifice	Desired Incre- Train	Stack		Probe	Sample	Impinger	Meter In	1000	320P
V _m Head ∆P Meter ∆H Cubic Feet Inches H ₂ O Inches H ₂ O	∆V _m mental Vacuum Cubic Feet V _m Inches Hg	n Temp.	Temp.	Temp. °F	Temp.	Temp. °F	Temp.	Temp.	Oxygen %v/v
162 35									
1 59. 2 110 86.991	,	100	1332	022	PN 8	22	19	2/2	20.7
120 65 0 18 3.83	3.73		v I	252		28	6	63	
	3 2 72 4 5	33		285		20	20	2	
10 0.18 5.92	5.71		_	202	-	5 3	25	18	
181 43 018 3 40	185. 50 3.71 4	3 94	252	275		250	200	22	
1 38.8 81.0 32	3.68 4	7		152		42	63	2	
18 020 81	7.90 5.	6 8		233		53	19	99	
44 2 91.0 12	196.43 3.28 4.		257	022		4	3	67	
200 24 0017	19:00	000	253	636		25	6/	8	
13 2.86	236 7.51 2.6	206	252	221		200	25	a a	
2	26 3.38 3	92	260	062		26	49	69	
213 84 0.15 3.25 2	5 3.39 3			152		200	20	0	
11 0.10 3.44	*		000	597		2	63	60	
250 56 0.17 3.65	13 3.59 3.	100		512		90	69	6.6	
75 72 36 0.18 3.86 224.	13 3.69	201		222		0,	65	12	
1.15 0.18 5.88	3 3.7% 4	20		690		79	60	2	
93 0.18 3.89	84 3.71	33	250	000		278	50	02	
535.46 0.16 3	37 3.53 4	63		562		63	99	14	
92.8 31.0 14.	3.42 4		522	122		29	99	1/	
20. 2 41.0 81.242	2.30 3	23		243		6 %	89	74	
5 3 0.14 3.10	5.2 88.7 1.33	-		0	/	200	29	1/	_
248.68 2.12 2.67 24	3.08	34		022	٥	29	99	77	>

☐ M-202; Impinger No. □ Wet Catch; #REF! 1110 Probe Wash; Comments: realy Samples Recovered: Filter 3-11 48 Sampling Train Leak Checks: F. 8.0

88

Posttest 3.3 Pretest 0.00

1328.8 Desiccant 2 5.7 113.2 -35.2 13.2 8 64 Initial Volume Final Volume Difference

Other

1.49=g4.1

02=20

Total

Pace Analytical FSD 20-04074

Grede, LLC - Iron Mountain Page A-15 of 88

68 =0

Vm= 84.33 VAP=0. 4050AH= 3.57

Field Calculation Summary

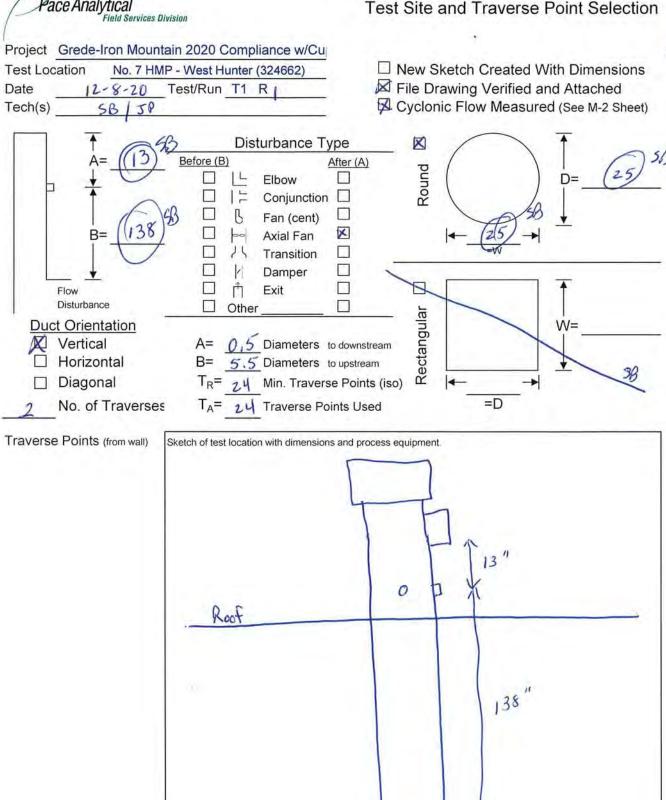
Computer Initialization and Run Summary The data on this form is preliminary and includes estimates It is not intended to reflect final results.

Project Grede-Iron Mountain 2020 Co Site Sample Location No. 6 HMP - East Hunter (3246 Date Tech. 12/11/20

	1911111111	lization Pa	Carried Tolland		MARK.	160.0
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Υ	0.99/6					
Orifice Coefficient - ∆H@	2.074					
Pitot Coefficient - C _p	0.84					
Nozzle Diameter - D _n	0.370					
Barometric Pressure - P _b	28.66	4		<u> </u>		
Static Pressure - P _g	-0.35			>		
Oxygen Estimate - %O ₂	20.9	-		->		
Moisture Estimate - %MC	1	1	1	1		
No. of Traverse Points	24					
Point Duration - ∆T	3-5					
Meter Start Temp, °F - t _m	63	63	55	60		
Initial Meter Volume - V _i	994.85	994.85	78.11	163.35		
Duct Shape (Rnd/Rect)	Rud					
Duct Width, Inches	24					
Duct Depth, Inches	24					
Final Volume - V _f		1077.77	163.09	248,68		
Total Run Time - θ		84	84	84		
Condensate Volume, ml (g)		15.7	15.8	7		
	End	of Run St	ummary			
Average Sq. Rt. of the ∆P	√∆P	0.3982	0.4109	0.4050		
Average Orifice Meter	ΔΗ	3.46	3.63	3.57		
Average Stack Temperature	t _s	83.7	89.5	94.1		
Average Meter Temperature	t _m	54.3	55.6	66.7		
Sample Volume, Actual	V _m	82.92	84.98	85.33		
Sample Volume, Dry Standar	V_{std}	81.57	83.43	81.99		
Moisture Content	MC	0.90	0.88	0.40		
Estimated Mole. Wt., dry	M _d					
Estimated Mole. Wt., wet	M _w					
Average Gas Velocity	Vs	23.24	24.//	23.84		
Isokinetic Variation	%1	101.3	100.9	100.7		
Volumetric Airflow, Actual	ACFM	4380	4540	4496		
Volumetric Airflow, Standard	SCFM	4070	4180	4090		
Volumetric Airflow, Dry Std.	DSCFM	4030	4/40	4070		

Equipment & Method Summary

Isokinetic and Associated Testing
Group 1 QI Z Hre Group 4 QI


Project Name: Grede Sampling Location: No. 6 I	Iron Mountain 2020 Compl IMP - East Hunter (324632		
Airflow Determination	EPA Method: 2	2C Other_	Inilials
Pitot Tube No.: 3-0 / Pitot Tube No.:	Coef.: 2,84 Coef.:	Next Ver. Date: 1/1/2) Next Ver. Date:	Pre-Use Insp.: 2145 Pre-Use Insp.:
Manometer ID: (M-5	Oil Digital	Next Ver. Date: 2/11/21	Pre-Use Insp.: THE
Manometer ID:	Oil Digital	Next Ver. Date:	Pre-Use Insp.:
Barometer ID: 08-60	Aneroid Digital	Next Ver. Date: 2/22/21	Pre-Use Insp.: ZHE
Barometer ID:	Aneroid Digital	Next Ver. Date:	Pre-Use Insp.:
T/C Readout TC-YY	Single Dual	Next Ver. Date: 10/31/24	Pre-Use Insp.: 245
T/C Readout	Single Dual	Next Ver. Date:	Pre-Use Insp.:
Gas Composition EPA	Method: 3 3/3A	3B 3C Amb	ient Initials
Container Type: Ted Sampling Proc.: Sing	lar	Layer Inert Other With Iso Train	Leak Checks:
Gas Analysis: Orsat	Fyrite Instru	umental: Instrument ID:	Cal Range
Ambient Provision Oxygen		2 ID Ambient Ca esulls are not repoded as fest data	al Reading:
Moisture Content EPA	Method: X 4, back-half o	of iso train Other _	Explain in Options/ Initials Deviations Section
Wt. Scale ID: D5-45	Digital Beam	Next Ver. Date: 7/7/2/	Pre-Use Insp.: 2 45
Std. Weight ID:	Std. Weight (g):	Scale Reading:	Pass Fail
Isokinetic EPA Method:	5_ 8 17	7 23 26A 29	Other initials
Nozzle ID: Type	e: X Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 1 .370 2	.371 3.373 1.37	2 5,37/ 13.71	Pre-Use Insp.: TJB
Nozzle ID: Type	e: Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 1 2	3 4	5 Avg	Pre-Use Insp.:
Probe Length: 3 ft.	Liner: SS 🔀 Glas	s Quartz Teflo	on Other
Pitot Tube No.: 3-01	Coef.: 0.89	Next Ver. Date: 1/1/2/	Pre-Use Insp. ZHE
Probe Length:ft.	Liner: SS Glas	s Quartz Teflo	on Other
Pitot Tube No.:	Coef.:	Next Ver. Date:	Pre-Use Insp.:
Control Mod ID: CM-5 Y	: 0.9916 AH@: 2.074	Next Ver. Date: 2/11/21	Pre-Use Insp. Z ME
Control Mod ID:Y	: ΔH@:	Next Ver. Date:	Pre-Use Insp.:
Filter Type: 2½" R	ound 4" Round	Thimble Othe	r
Filter Media: Glass	Fiber Quartz Fiber	Paper Teflon	SS Other
Wet Catch: EPA 202	EPA 8 EPA	23 EPA 26A E	PA 29 Other
WC Options/Deviations: Pace Analytical FSD 20-04074	Report Date :		de, LLC - Iron Mountain Page A-17 of 88

Field Data Sheets - 324662

ace Analytical Field Services Division

EPA Method 1 Field Data Sheet

Test Site and Traverse Point Selection

If file drawing, correct or circle dimensions as they are verified.

Volumetric Airflow Determinations

(53)

Project Grede-Iron M	ountain 2020 Complianc	e w/Cu	Manometer Type and ID	CM	-1
Test Location No.	7 HMP - West Hunter (3)	24662)	Barometer Type and ID	DB-3	5
Date 12 - 8 - 21	Test/Run T1 R	1	Thermocouple Sensor ID	CM	-1
Duct Dimensions	25" round	Inches	Pitot Tube No. 3-01	Ср	0.84
Port Length	le ''	Inches	Technicians	5B / JP	
Pitot Leak Check - Po	s Neg	/	#REF!	•	FSD PN: 20-04074

Trave	erse Poir	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ack Temp	erature	- °F
Point		From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔΡ	ΔΡ	ΔΡ	ΔΡ	°F	°F	°F	°F
A-1	0,53	6.53	5	0.50	1			85			
2	1.67	7.67	8	0,53	1						
3	2.95	8.95	0	0.55							
4	4.43	10.43	0	0.53	1						
5	6.25	12.25	9	0.50		190		_	,	Via	
6	8.89	14.89	0	0.43		1/20	-			165)———
1	16.11	20.11		0.38						100	
9	18.75	24.75	3	0.36		1					
10	22.05	28.05	B	0.50							
11	23.33	29.33	0	0.63			1				
12	24,47	30.47	O	0.65	-			V			1
B-1	0.53	6.53	0	10.03			1				1
2	1.67	7.67	0								
3	2.95	8.95	0								
4	4.43	10.43	0								
5	6.25	12.25	0								
6	8.89	14.89	3								
7	16.11	20.11	0								
5	18:75	24.75	0								
70	20,57	26.57	0								
10	22.05	28.05	0						(3d)		
	23.33	29.33	00						1		
12	24.47	30,47	U								
							(50)				1
						-	(20)				

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	28.65	1			"Hg
Static Pressure	-0.5				"H ₂ O
Dry Bulb Temp.	85	1	(1)		°F
Wet Bulb Temp.	_	_	612		°F
Moisture Content	-1		1		%v/v
320 P Oxygen	20.9	20.9	20,9		%v/v
Time of Meas.	0830				(24 Hour)

-	1
5	10
Λ)
	304

Isokinetic Particulate Sampling

DB-35 - W CM-DS-42 Manometer ID TC Sensor ID Barometer ID Scale ID 0.84 In. H₂O In. Hg 1/0% 3-01/3 28,65 -0.5 Static Pres. Est. Moist. Bar. Pres. Pitot No. D. 260 1.821 0,9959 CM-I Orifice Coef. AH@ Meter Coef. Nozzle No. Module ID FSD PN: 20-04074 Project Grede-Iron Mountain 2020 Compliance w/l Sample Location No. 7 HMP - West Hunter (324662) C Test/Run 35 Pace Analytical Farrices Division 02-8-58 Operators/Techs Date

Oxygen 320P Mtr Out Impinger Meter In Sample Temp. Probe Temp. Filter Temp. Stack Temp. Train Incre-Desired Orifice Velocity

1/1/%

Temp.

Temp.

Temp.

20.9

NA

251

542

3.60

158.01

EE

44

249

250

つて

53

Vacuum

mental

Inches Hg

>

∆V_m Cubic Feet

747.34 Meter ∆H

Cubic Feet

>=

Meter Vol.

Time

TA

Point Trav.

Inches H₂O Head AP

inches H₂O

2000

4

0.51

rp. 0 0.53

20.0

387

7 000

0.57 . 40

777.06

781.03

3.36 69

768.80 25:496

169.00

0.44 0.36 785.09 195.00 50 ではいる

60

67

59

99

20

47 34

226

2 29

3

0

247

250

95

0

247

251

249

1,57

251

65

1000

67

67

0

イン

246

249

600

3.43

808.4B

815

804.29

2.15

250

25%222

000

254

250

2000

752 H

249 250

67

67

1697

242

249

2.0

00

794.52

0

791.21

50.7

2.15 SON

747.94

.45

152

25

249

249

0.46

0 5 J

00

3

1700

0

Vm=86.19 VAP=0.72 1411-0 0 b = 0

AH= 2.45

D. 50564 Samples Recovered: Filter

Comments:

"Hg Sampling Train Leak Checks: "Hg 10 Pretest 0.00 @ 0 Posttest 0:00

Pitot - Pos.

13.60

Total

Desiccant

2

4

Other

☐ M-202;

■ Wet Catch;

Probe Wash;

90,

N 0

1124

618

001

001

Initial Volume Final Volume

Difference

#REF!

Impinger No.

12.4

-1811

1282.1 16.5

02=209

tm=67.4

Grede. LLC - Iron Mountain

Pace Analytical FSD 20-04074

Report Date 2/5/2021

0=

Page A-21 of 88

Isokinetic Particulate Sampling

D5-42 DB-35 CM-1 CM-1 Manometer ID TC Sensor ID Barometer ID Scale ID 0.84 In. H₂O In. Hg 1/1/% ပ 8 28,65 01 3-61 Static Pres. Est. Moist. Bar. Pres. Pitot No. 0.9959 CM-I Orifice Coef. ∆H@ Meter Coef. Nozzle No. Module ID Project Grede-Iron Mountain 2020 Compliance w/I Sample Location No. 7 HMP - West Hunter (324662) RZ Test/Run Pace Analytical "Field Services Division -8-20

FSD PN: 20-04074

			1												
Trav		Meter Vol.	Velocity	Orifice	Desired	Incre-	Train	Stack	Filter	Probe	100	Impinger	Meter In	Mtr Out	320P
Point	It AT	V _m Cubic Feet	Head ∆P Inches H ₂ O	Meter ∆H Inches H ₂ O	AV _m	mental V _m	Vacuum Inches Hq	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Oxygen %v/v
	(NOTO	1		7	To Loreno										
1	10124	100								7					
-	m	833 400	04.0	1 .78	833 44	2.24	2.0	95	250	576	セフ	7	ex	107	20.9
1	و	836 .05	64.0	2.25	836.0	2.57	7.0	100	249	246	-	7	60	10	
n	6	838.75	0.51	2.36		2.63	0.7	47	249	246		7	68	68	
7	17	841 .40	0 51	38	841, 29	2.65	0.7	93	249	248		ī	69	89	
8	is	844.04	15.0	2.35	26'548	2.63	02	101	249	246		77	02	29	
9	×:	846.70	0.51	2.29	846.58	2.66		76	642	255		43	11	60	
7		05. PH8	15.0	2.65	849.38	2.80		6	248	250		42	12	ex	
80		852 .48	-	2.88	852.29	2.91	3.0	06	249	250		43,	73	69	
0		855 50	-		82,558	2.99	3.0	26	250	250		44	25	60	
10		858 .25	0.52	2.47	857.98	2.71	3.0	8	250	246		44	75	20	
=	33	860.95	6.50	. 36	860.63	2.65	3.0	26	250	254		12	75	20	
12		363.67	0.52		863.33	2.40	3.0	92	250	255		45	76	71	
-	.39	866.35	25.0	410	866 03		3.0	26	252	254		77	21	1/	
1	24	01. 698	15.0	2 .40	868,70	2.60	3.0	da da	250	250		45	74	77	
3	Sh	871 .80	0.45	2.12	871.21	2.57	3.0	93	249	246		45	75	72	
2	48	874 .50	0.55		873,99	2.78		9	250	351		45/	11	72	
7	15	817.20	15.0	.43	89.918	2.69	3.0	96	250	345		45	84	22	
9	54	874 ·85	64.0	.33	879.31	2.63	3.0	93	349	246		45	×	73	
1	57	6×2 ×0	0.62	20		3,96	3.0	hb	349	150		74	75	75	
90	00)	885.90	89.0			3.08	3.0	20.0	245	253		43	76	75	
0	63	11. 188	01.0	8		3.13	3.0	86	250	245		hh	11	75	
10	99	8:2.10	6.67	3.12	891,54		3.0	h 0/	548	253		44	75	75	
11	60	894.93	0.55	2.61	894.33		3.0	44	250	246		44	80	76	
12	72	897.500	0.45	2.12	896.85	2.52	3.0	66	350	247	>	45	80	76	>
	(1200)														-

Comments 0,50387 Sampling Train Leak Checks: Samples Recovered: Filter Pretest 0.00 @ Posttest 0 00 @

Neg. Pitot - Pos.

8.01

1282,1 1293,8

Total

Desiccant

2

4

က

105.

91,1

100 8,3

Initial Volume Final Volume Impinger No.

Difference

#REF!

Other

☐ M-202;

■ Wet Catch;

Probe Wash;

54

AH=2,

Vm= 66,30 VAP=0,73

0= 72

2.49=x

02=20

tm=72.6

Operators/Techs

Date

	Ľ
3	١
•	,
	30)

Isokinetic Particulate Sampling

FSD PN: 20-04074

Oxygen 320P 1/1/% 20.9 DS-4 D8-35 CM-CM-I Mtr Out Temp. 12% 244 80 00 00 00 Impinger Meter In Temp. × 25 25 Manometer ID TC Sensor ID Barometer ID Scale ID Temp. ななっちゃ 2532 200 46 至五五章 0.84 Sample Temp. In. H₂O In. Hg THE PERSON NAMED IN 1/1/% ပိ 250 346 250 255 245 248 246 346 247 244 253 HHE 248 Probe Temp. 247 2007 247 255 28,65 255 3-01 245 248 Temp. 249 Filter 744 250 349 249 249 250 250 250 250 250 250 251 Static Pres. Est. Moist. Bar. Pres. Pitot No. Temp. 100 Stack 60 993 201 49 0 D. , 260 1.821 0.9959 Vacuum Inches Hg 300 5.0 0 0/ 0 0 0 0 O ٥ Train CM-1 N Orifice Coef. AH@ 2,68 2.66 mental 2.80 2.78 2,67 3.07 Incre-> Meter Coef. Nozzle No. Module ID 914.06 936.66 942.00 944.67 950.27 428.74 939.32 835.56 Cubic Feet 900,31 905.89 925,95 933.98 Desired 931.35 ΔV_m Project Grede-Iron Mountain 2020 Compliance w/l Inches H₂O No. 7 HMP - West Hunter (324662) Meter ∆H 24. 2.37 26 36 .38 Orifice 14 6 ď F d Inches H₂O Test/Run Head ∆P 0000 0.67 Velocity 0.55 85 88 15.0 0 0 0 0 0 0 Face Analytical ** 0 V_m Cubic Feet 945.10 926.25 005.006 950 -65 7.800 903 -18 923.20 934.30 937.00 Meter Vol. .50 917.20 42. 416 50 02-8-931 80 Sample Location Operators/Techs Time 1225 AT 8 mm 27 22,53 24 6032 20 Point Trav. Date 0 8 NWI 70 60 0 5

Impinger No.	1	2	3	4	2	Desiccant	
Final Volume	87.1	2.801	7.2	1	١	1306.3	
Initial Volume	100	001	0	1	١	1293,8	
Difference	8:21-	2.6	2,7	1	1	12,5	

#REF!

Other

☐ M-202;

■ Wet Catch;

Probe Wash;

1411-0

Samples Recovered: Filter

Comments:

AH= 2,5

Vm= 66.20 VAP=0.73

EL =0

t=95.8

02=20,9

tm=80,1

822

243

249

. 85

00

600

0

0

35

00

otal

0,0

0.50609 Sampling Train Leak Checks: Pretest 0,00 @

4

0

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates.

It is not intended to reflect final results.

Project Grede-Iron Mountain 2020 Co Site

Date

Sample Location

No. 7 HMP - West Hunter (324662)

Tech.

	Initiali	zation Par	ameters		السيالة	
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Υ	0.9959					
Orifice Coefficient - ∆H@	1.821					
Pitot Coefficient - C _p	0,84					
Nozzle Diameter - D _n	.240					
Barometric Pressure - P _b	28.65			→		
Static Pressure - P _g	-0.5 -			->		
Oxygen Estimate - %O ₂	20.9			>		
Moisture Estimate - %MC	1					
No. of Traverse Points	24					
Point Duration - ∆T	3					
Meter Start Temp, °F - t _m	64	64.0	67.5	76.5		
Initial Meter Volume - V _i	744.152	744.152	831.20	897,800		
Duct Shape (Rnd/Rect)	Rnd					
Duct Width, Inches	25					
Duct Depth, Inches	25					
Final Volume - V _f		830,35	897.50	964.00		
Total Run Time - θ		96	72	72		
Condensate Volume, ml (g)		13.6	10.8	11.6		
		of Run Su	mmary			
Average Sq. Rt. of the ΔP	√∆P	0,7212	017340	0.726		
Average Orifice Meter	ΔΗ	2.45	2.54	2.51		
Average Stack Temperature	ts	90.7	94.5	95.8		
Average Meter Temperature	t _m	67.4	72.6	80.1		
Sample Volume, Actual	V_{m}	86.19	66.30	66.20		
Sample Volume, Dry Standar	V_{std}	82.81	63.08	62.12		
Moisture Content	MC	0,77	0.80	0.87		
Estimated Mole. Wt., dry	M _d	29.0	29.0	29.0		
Estimated Mole. Wt., wet	M_w					
Average Gas Velocity	Vs	42.37	43.27	42.85		
Isokinetic Variation	%I	101.2	101.4	101.0		
Volumetric Airflow, Actual	ACFM	8670	8850	8760		
Volumetric Airflow, Standard	SCFM	7950	8060	7960		
Volumetric Airflow, Dry Std.	DSCFM	7890	8000	7890		

9	
1	Pace Analytical®
1-	Field Services Division

Equipment & Method Summary

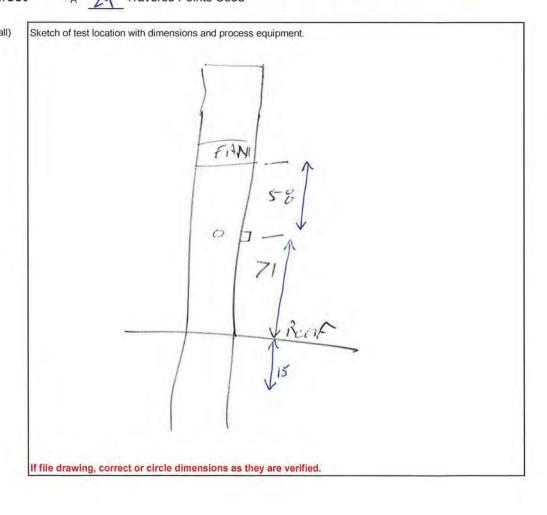
Isokinetic and Associated Testing
Group 1 QI 5B Group 4 QI

Project Name: Grede	-Iron Mountain 2020 Comp	liance w/(Test	Date:	12-8-20
Sampling Location: No. 7 I			orded By:	50
Airflow Determination	EPA Method: 2	2C	Other_	Initials
Pitot Tube No.: 3-01 Pitot Tube No.:	Coef.: 0184	Next Ver. Date: Next Ver. Date:		Pre-Use Insp.:
Manometer ID: CM-1	∑ Oil ☐ Digital	Next Ver. Date:	1-13-21	Pre-Use Insp.:
Manometer ID:	Oil Digital	Next Ver. Date:		Pre-Use Insp.:
Barometer ID: D6-35	Aneroid Digital	Next Ver. Date:	3-22-21	Pre-Use Insp.:
Barometer ID:	Aneroid Digital	Next Ver. Date:		Pre-Use Insp.:
T/C Readout	Single Dual	Next Ver. Date:	1-13-21	Pre-Use Insp.:
T/C Readout	Single Dual	Next Ver. Date:		Pre-Use Insp.:
Gas Composition EPA	Method: 3 3/3A	3B 3	C X Ambie	nt Initials
Container Type: Ted	llar Teflon 7	-Layer Inert	Other	Leak Checks:
Sampling Proc.: Sing	gle Point Multipoint	With Iso T	rain 🔲	Grab Integrated
Gas Analysis: Orsat	Fyrite Instr	rumental: Instrum	ent ID:	Cal Range
Ambient Provision Oxygen		22 ID results are not reported as test d	Ambient Cal	Reading:
Moisture Content EPA	Method: 4, back-half	of iso train	Other	Explain in Options/ Initials Deviations Section
Wt. Scale ID: D5-42	Digital Beam	Next Ver. Date:	4-6-21	Pre-Use Insp.:
Std. Weight ID:	Std. Weight (g):	Scale Reading	g:	Pass Fail
Isokinetic EPA Method	: X 5	7 23 2	6A 29	Other Initials
Nozzle ID: 12 Type	e: X Stainless Steel	Glass	Quartz	Other
Nozzle Cal.: 260 2	.260 3 ,260 4	260 5,260	Avg , Zluo	Pre-Use Insp.:
Nozzle ID: Type	e: Stainless Steel	Glass	Quartz	Other
Nozzle Cal.: 1 2	3 4	5	Avg	Pre-Use Insp.:
Probe Length: 3_ft.	Liner: SS X Glas	ss Quartz	Teflon	Other
Pitot Tube No.: 3-01	Coef.: 0684	Next Ver. Date:	1-1-21	Pre-Use Insp.:
Probe Length:ft.	Liner: SS Glas	ss Quartz	Teflon	Other
Pitot Tube No.:	Coef.:	Next Ver. Date:		Pre-Use Insp.:
Control Mod ID: cm-1	: 0,9959 AH@: 1,821	Next Ver. Date:	1-13-21	Pre-Use Insp.:
Control Mod ID:Y	: ΔH@:	Next Ver. Date:		Pre-Use Insp.:
Filter Type: 2½" R	ound X 4" Round	Thimble	Other	
Filter Media: X Glass	Fiber Quartz Fiber	Paper T	eflon S	SS Other
Wet Catch: EPA 202	EPA 8 EPA	23 EPA 26	SA EP	A 29 Other
WC Options/Deviations:				
Pace Analytical FSD 20-04074	Report Date	2/5/2021	Grede	e, LLC - Iron Mountain Page A-25 of 88

Field Data Sheets - 324678

Pace Analytical * Field Services Division

EPA Method 1 Field Data Sheet

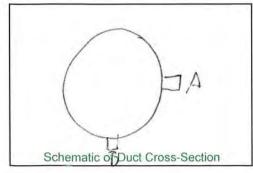

Test Site and Traverse Point Selection

Project Grede-Iron Mountain 2020 Compliance w/Cu ☐ New Sketch Created With Dimensions Disa Exhaust (324678) File Drawing Verified and Attached 12-4-20 Test/Run T1 R Tech(s) 53 Disturbance Type X Before (B) After (A) Round L Elbow Conjunction Fan (cent) Axial Fan Transition Damper M Exit Disturbance Other Rectangular **Duct Orientation** ✓ Vertical 1,4 Diameters to downstream ☐ Horizontal Diameters to upstream □ Diagonal Min. Traverse Points (iso) =D No. of Traverses Traverse Points Used

Traverse Points (from wall) 0.89 A 2 2.81 4.96 7.44 10.50 14.94 27.06 31,50 34.56 10 37.04 11 39.19 41.11 B 0.89 2.81 4.96 7.44 5 10,50 27.06 31,50 34.56

10

Pace Analytical * Field Services Division


EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

83

Project Grede-In	on Mountair	2020 C	ompliar	nce w/Cu	Manometer Type	e and ID	CM-	- 1
Test Location	Disa Exhau	ıst (3246	78)		Barometer Type	and ID	PB - 3	35
Date 12-9	-20 To	est/Run	T1	RI	Thermocouple S	ensor ID	cm-	1
Duct Dimensions	42,	42		Inches	Pitot Tube No.	4-06	Ср	0.84
Port Length	6			Inches	Technicians		53 15	}
Pitot Leak Check	- Pos	V	Neg		#REF!			FSD PN: 20-04074

Trave	erse Poir	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ick Temp	erature	-°F
Point	Inches		Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔΡ	ΔΡ	ΔΡ	ΔΡ	°F	°F	°F	°F
A	0.89	6.89	10	132				71			
7	2.81	8.81	10	,32							
3	4.96	10.96	50	, 32							
1/	7,44	13.44	0	.32		1					
5	10.50	16.50	5	130		(68)				6	
7	14.94 27.06	33.06	10	. 30		(h)				150	
8	31,50	37.50	0	, 28		~				1	
P	34.56	40.56	-5	, 21		1				1	
10	37.04		-25	, 34			1				1
it	39.19	45.19	-30	, 31 , 34 , 35							1
12	41,11	47.11	-25	130				V			
5 1	0.89	6.89	5								
2	2.81	8.81	5								
3	4,96	10,96	7								
4	7,44	13,44	/								
5 (10.50	16.50	9				((5B)				
7	27.06	20,94	-6				10				
B	31.50	37.50	5 -5 -5								
9	34.56	40.56	-10								
10	37.04	43.04	-10								
- 11	39.19	45.19	-10			+					
112	41.11	47.11	0								
	TO THE P										/
							58/				

	I (GII I	I COIT Z	I tuil o	T COIT	
Bar. Pressure	28,45				"Hg
Static Pressure	-0.25				"H ₂ O
Dry Bulb Temp.	71		(0))	°F
Wet Bulb Temp.	/		16.		°F
Moisture Content	@ 1				%v/v
320 P Oxygen	20,9				%v/v
Time of Meas.	0730			1	(24 Hour)

Run 1 Run 2 Run 3 Run 4

Isokinetic Particulate Sampling

88

してい C W Manometer ID TC Seneor ID 18.0 ပိ 4-06 30 Pitot No. 9000 CM-1 Module ID Project Grede-Iron Mountain 2020 Compliance w/I Pace Analytical **

FSD PN: 20-04074

	Sample	Location	Sample Location Disa Exhaust (324678)	st (324678)		Meter Coet. y	et. Y	o.4434 Bar. Pres.	Bar. Pre		28, 45 In. Hg	In. Hg	I C Sensor ID	sorID	Cm-1	1-
	Date	12	12-9-20	Test/Run	T1 R1	Orifice Coef. ∆H@	ef. ∆H@	1.821	Static Pres.		-0.25	In. H ₂ O	Barometer ID	ter ID	06-35	35
	Operato	Operators/Techs	58	25		Nozzle No.		Dn 336	Est. Moist.	st.		۸/۸%	Scale ID		DS-42	24
	Trav.	Timo	Meter Vol.	Velocity	Orifice	Desired	Incre-	Train	Stack	Filter	Probe	Sample	Impinger	Sample Impinger Meter In Mtr Out	Mtr Out	320P
	Point	ΔT	> :	Head ∆P	_	∆V _m		Vacuum	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Temp.	Oxygen
	No.		Cubic Feet	Inches H ₂ O	Inches H ₂ O	Cubic Feet	νm	Inches Hg	_	_	_	_	L	L	_	7/0//
	F	(1052)	965.100										Sec. 1			1
4	1	~	21.896	0.32	3.04	868,08 2.98	2.98	0.7	83	152	250	N.V.	56	12	23	6.02
	2	د,	970.40	C: :0	1.65	970.30		2.0	28	250	252	-	56	77	73	
	W	0	973.55	0.34	3.30	973.4H		4.0	83	249	2101		54	13	73	
	7	17	976 63	6.32	3 . 11	976.49		0.70	83	248	25		54	75	73	
	h	pe.	979.70	28:0	3.11	42.97	3.05	0 · h	83	bh2	1/17		29	36	73	
	9	de la	987. 60	0.38	2.15	0h:286	2,87	4.0	66	250	251		5.4	710	hL	
	1	74	985.70	6.31	3.11	985,46		4.0	68	252	h52		00	11	75	
	00	74	988.70	0.30	3.61	988.47		7.0	80	225	251		09	18	75	
	6	29	991.95	0.34	3.51	11.166		4.0	55	248	37/6		54	7	710	
	0/	20	995.00	0.31	3.14	994.79	3.8	4.0	65	502	254		60	80	76	
	H	38	998. 100	0.30	3.03	28'166	3.03	0. 1	67	250	15.2		00	20	77	
	15	3.0	06.0001	0.25	2.61	1000.02	1812	2.5	25	250	0h2		60	28	11	
8	-	39	1003. 60	6 .25	45. 84	1003.39	2.77	3.0	65/	248	200		00	79	18	
)	7	42	1006.50	0.27	2.66	100623	2.83	2.5	28	249	2007		00	00	79	
	3	45	1009.30	0.35	2.46	1008,95	2.73	2.2	48	157	255		io	83	4	
	7	48	1012.00	6. 25	2.46	1011.69	2.73	2.5	24	546	251		101	85	80	

Samples Recovered: Filter 0-1142	142; Ø Probe Wash;	■ Wet Catch;	☐ M-202;	□ Other				1	
Sampling Train Leak Checks:	0324) Comments:	Impinge	er No.	2	က	4	2	Desiccant	Total
Prefest 6 00 @ 1"Ha		Final V	olume . Qu	201	0	1	1	1310 8	

ts=70,6

58'2=HV

Vm= 70.50 VAP=0.53

tm= 79.3 O2=20,9

2822

8000000

88882 88882

रक्षेत्र भेड

243 243 255 246

251

e e

251

249 25

286

00

10.16.72

54

1026.27 1529.26 14.2501

3.86

0

93

6.28 0.31

1868

9

210

1014,13

00

246 754

251

Impinger No.		7		4	ç	Desiccant
Final Volume	88 .	109	0	1	1	1314.8
Initial Volume	100	001	0	/	1	1306.3
Difference	21-	6	0	1	1	8,5

#REF!

Neg. B

Pretest 0.00 @ Posttest 0.00 @ Pitot - Pos.

Pretest 0.00

9 1 00 0

5 00 ot/Avg 0= 12

08-35 25-47

Jul -CN-

Isokinetic Particulate Sampling

Manometer ID TC Sensor ID Barometer ID Scale ID 1810 In. H₂O In. Hg 1/1/% ပ္ -0.25 28.45 4-06 Static Pres. Est. Moist. Bar. Pres. Pitot No. Dn 0310 1.82 0,9959 CM-Orifice Coef. AH@ Meter Coef. Module ID Nozzle No. Project Grede-Iron Mountain 2020 Compliance w/I C F Disa Exhaust (324678) Test/Run Pace Analytical Farrices Division 58/IP 2-

-SD PN: 20-04074

Oxygen 20.9 320P 1/1/% Mtr Out Temp. 84 Impinger Meter In Temp. 885 885 Temp. 7000 2253384 2882 Sample Temp. 4/2 246 248 246 256 Probe Temp. 250 251 251 251 25.0 2 mg 247 250 251 251 251 251 250 250 Temp. 250 Filter 249 235 3700 Stack Temp. Vacuum Inches Hg 00 000 0 Train 3,05 3.06 mental 282 Incre->= 67,40 73.24 79.34 76.06 Cubic Feet Desired AVm Inches H₂O 1.42 20.00 20.00 20.00 Meter ∆H 3.54 Orifice 25226 Inches H₂O 223292929 Head ∆P 325 0.14 Velocity 000000000 00 V_m Cubic Feet 44 30 50 04 52 80 55 35 58 60 800 55 55 56 50 55 56 50 50 50 50 50 50 . 25 00. Meter Vol. 6.0 E 335 L 275275 Time TA 1251 Point Trav. 0 .7 0 4

Other M-202; ■ Wet Catch; M Probe Wash; V= 70,98 VAP=0.53 Samples Recovered: Filter 0-1145 10, 4994

Comments

AH= 2,90

t_s= 6

Impinger No.	1	2	3	4	2	Desiccant
Final Volume	85.0	107.8	6.0	1	1	13/5.8
Initial Volume	001	100	0	1	1	1314,8
Difference	1.41	7. 1.	0,0	/	/	1.0

#REF!

02=20.9

tm=86,1

248

3.65

6h2

000

3.05

22.04

0=

9

Fotal

Neg. 8

Pretest 0.00 @ Posttest O to @ Pitot - Pos.

Sampling Train Leak Checks:

Sample Location

Date

Operators/Techs

11 =0

Isokinetic Particulate Sampling

FSD PN: 20-04074

Oxygen tm=85,7 02=20 9 1/1/% 26.99 320P 2h-90 08-35 CM-1 Cw -Mtr Out Temp. 8888 80 8 R Meter In Temp. 20000 Manometer ID TC Sensor ID Barometer ID Scale ID Impinger Temp. 3227166 500 2888766 2888766 0.84 Sample In. H20 Temp. In. Hg 1/1/% ပ 242 248 -0.25 Other 252 Probe Temp. 250 747 250 251 251 251 251 28,45 249 25/2 251 251 4-06 245 252 250 250 250 250 250 245 Filter Temp. 252 235 ☐ M-202; Static Pres. Est. Moist. Bar. Pres. Pitot No. 5=65.6 Stack Temp. 00 P3990 Dn , 310 Inches Hg Wet Catch; Vacuum N NO 0 0 0 Train CM-I Orifice Coef. AH@ 3.00 mental 7.54 3.10 Incre-> Meter Coef. Module ID Nozzle No. 159.12 140,92 49.22 135,00 56.58 38.09 54.46 Probe Wash; 28.72 51.96 46.49 Cubic Feet Desired ΔV_m Grede-Iron Mountain 2020 Compliance w/ Inches H₂O 200 . 52 23.46 53.46 06.46 Meter ∆H 3:11 . 13 29.5=HV しり Orifice C ma win F V=71,23 VAP=0.53 Inches H₂O 0-1146 Disa Exhaust (324678) 2-9-20 Test/Run 0000 2000 Head ∆P 21.00 .21 Velocity 00 0000 Pace Analytical Tace Anision 5A 125.62 156.69 159.20 162.20 165.55 135.00 138.05 140.92 149.25 152.00 154.50 Cubic Feet 143.72 Samples Recovered: Filter Meter Vol. 131.70 Tho 9h 168.95 Sample Location 21 =0 Operators/Techs Time ΔT 524 52 23 33 23 27 1426 222 Project Point 百二万 Date 462 2000 760 80 4 0

Total

Desiccant

2

4

က

717

106.5

800 001

Impinger No. Final Volume

Comments

Sampling Train Leak Checks:

Pretest 0,00 @ Posttest 0.00@

H.Hg

9 Neg.

Pitot - Pos.

C1505.0

Initial Volume

Difference

#REF!

100

1317.1 1315,8 1,0

2.4

6.5

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates. It is not intended to reflect final results.

Project Grede-Iron Mountain 2020 Co Site 12-9-20 Date Sample Location Disa Exhaust (324678) Tech.

	Initia	lization Pa	rameters			3.4.3
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Υ	0.9959					
Orifice Coefficient - ∆H@	1.821					
Pitot Coefficient - C _p	0.84					
Nozzle Diameter - D _n	, 310					
Barometric Pressure - P _b	28,45			\rightarrow		
Static Pressure - P _g	-0.25			->		
Oxygen Estimate - %O ₂	20.9			5		
Moisture Estimate - %MC	1			->		
No. of Traverse Points	24					
Point Duration - ∆T	3					
Meter Start Temp, °F - t _m	72	72	84.5	85.5		
Initial Meter Volume - V _i	965,100	965,100	35.800	107,000		
Duct Shape (Rnd/Rect)	Rnd					
Duct Width, Inches						
Duct Depth, Inches	42					
Final Volume - V _f		1035.60	106.78	178.227		
Total Run Time - θ		72	72	72		
Condensate Volume, ml (g)		5.5	0.7	1.0		
		of Run Su	mmary			
Average Sq. Rt. of the ΔP	√∆P	0.5306	0.5263	0.5296		
Average Orifice Meter	ΔΗ	2.85	2.90	2.92		
Average Stack Temperature	ts	70.6	61.1	65,6		
Average Meter Temperature	t _m	79.3	86.1	85.7		
Sample Volume, Actual	V_{m}	70.50	70.98	71.23		
Sample Volume, Dry Standar	V_{std}	65.85	65,48	65.76		
Moisture Content	MC	0.39	0.05	0.07		
Estimated Mole. Wt., dry	M_d	29.0	29.0	29.0		
Estimated Mole. Wt., wet	M _w					
Average Gas Velocity	Vs	30.67	30,13	30.46		
Isokinetic Variation	%I	160.7	99.8	100.0		
Volumetric Airflow, Actual	ACFM	17710	17390	11580		
Volumetric Airflow, Standard	SCFM	16750	16740	16780		
Volumetric Airflow, Dry Std.	DSCFM	16680	16730	16170		

Pace Analytical® Field Services Division

FSD 20-04074

Equipment & Method Summary

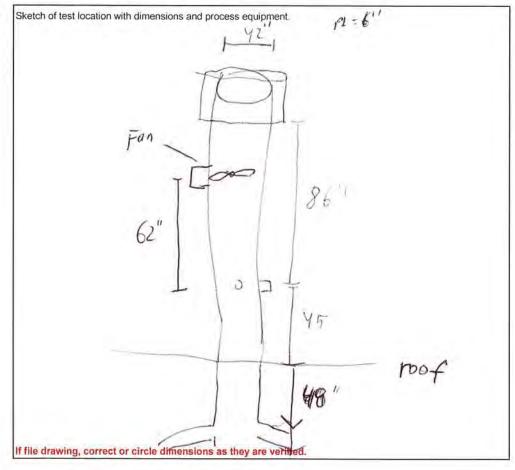
Isokinetic and Associated Testing
Group 1 QI _5B Group 4 QI ____

Page A-33 of 88

Project Name: Grede Sampling Location: Disa E	e-Iron Mountain 2020 Comp Exhaust (324678)		Date: _ orded By: _	12-9-20 5B
Airflow Determination	EPA Method: X 2	2C	Other	Initials
Pitot Tube No.: 4-06 Pitot Tube No.:	Coef.: 0.84	Next Ver. Date: Next Ver. Date:		Pre-Use Insp.:
Manometer ID:	Oil Digital	Next Ver. Date:	1-13-21	Pre-Use Insp.:
Manometer ID:	Oil Digital	Next Ver. Date:		Pre-Use Insp.:
Barometer ID: DB-35	Aneroid Digital	Next Ver. Date:	3-22-21	Pre-Use Insp.:
Barometer ID:	Aneroid Digital	Next Ver. Date:		Pre-Use Insp.:
T/C Readout	Single Dual	Next Ver. Date:	1-13-21	Pre-Use Insp.:
T/C Readout	Single Dual	Next Ver. Date:		Pre-Use Insp.:
Gas Composition EPA	A Method: 3 3/3A	3B 3	C X Ambie	nt initials
Container Type: Tec	dlar Teflon 7	-Layer Inert	Other	Leak Checks:
Sampling Proc.: Sing	gle Point Multipoint	With Iso T	rain 🔲 (Grab Integrated
Gas Analysis: Orsat	Fyrite Instr	umental: Instrume	ent ID:	_Cal Range
Ambient Provision Oxygen		2 ID results are not reported as test d	Ambient Cal	Reading:
Moisture Content EPA	Method: X 4, back-half o	of iso train	Other	Explain in Options/ Initiats Deviations Section
Wt. Scale ID: DS-UZ	□ Digital □ Beam	Next Ver. Date:	4-6-21	Pre-Use Insp.: 🗸
Std. Weight ID:	Std. Weight (g):	Scale Reading	g:	Pass Fail
Isokinetic EPA Method	: 🛛 5 📗 8 📗 1	7 23 2	6A 29	Other Initials
Nozzle ID: Type	e: X Stainless Steel	Glass	Quartz	Other
Nozzle Cal.: 310 2	,310 3,310 4,	310 5 310	Avg . 310	Pre-Use Insp.:
Nozzle ID: Type	e: Stainless Steel	Glass	Quartz	Other
Nozzle Cal.: 1 2	3	5	Avg	Pre-Use Insp.:
Probe Length: 4 ft.	Liner: SS X Glas	ss Quartz	Teflon	Other
Pitot Tube No.: 4-66	Coef.: 0.84	Next Ver. Date:	1-2-21	Pre-Use Insp.:
Probe Length:ft.	Liner: SS Glas	ss Quartz	Teflon	Other
Pitot Tube No.:	Coef.:	Next Ver. Date:		Pre-Use Insp.:
Control Mod ID: Cm-1 Y	C: 0.9959 AH@: 1.821	Next Ver. Date:	1-13-21	Pre-Use Insp.:
Control Mod ID:Y	ſ: ΔH@:	Next Ver. Date:		Pre-Use Insp.:
Filter Type: 2½" R	ound X 4" Round	Thimble	Other	
Filter Media: X Glass	Fiber Quartz Fiber	Paper T	eflon S	SS Other
Wet Catch: EPA 202	EPA 8 EPA	23 EPA 26	SA EP	A 29 Other
WC Options/Deviations:			Grada	A LLC - Iron Mountain

Report Date 2/5/2021

Field Data Sheets - 324682

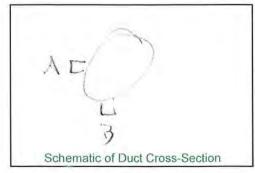

Pace Analytical * Field Services Division

EPA Method 1 Field Data Sheet

Test Site and Traverse Point Selection

Project Grede-Iron Mounta	in 2020 Complia	ance w/Cu	
Test Location Disa CC E	xhaust (324682)		New Sketch Created With Dimensions
Date 12/7/2	Test/Run T1 R	. 0	☐ File Drawing Verified and Attached
Tech(s) > # ?			☐ Cyclonic Flow Measured (See M-2 Sheet)
T + 62	Distu	ırbance Type	_ 1 _ 1
A= 10	Before (B)	After (A)	1 0 / 1/2 1/
h +		Elbow 🗆	S () D= 92,0
I		Conjunction	$D = \frac{42.0''}{}$
u-/	□ßF	an (cent)	
B= Jot	D 60 A	Axial Fan	√200→
93	□ /\ T	Transition	=W
1		Damper	
Flow		Exit 🗆	
Disturbance	☐ Other		5
Duct Orientation			
☐ Vertical	A= D	Diameters to downstr	tream C
☐ Horizontal	-	Diameters to upstream	
□ Diagonal	-	Min. Traverse Points	ts (iso)
No. of Traverses	T _A =T	Traverse Points Use	ed =D (97)%

Traverse Points (from wall)



Volumetric Airflow Determinations

Project Grede-In	on Mountain 2020 C	Compliance w/Cu	Manometer Type and ID	CM-5				
Test Location	Disa CC Exhaust (3	324682)	Barometer Type and ID	03-60				
Date 12/7/	™ Test/Run	T1 R)	Thermocouple Sensor ID	(M-5				
Duct Dimensions	42 x 42	Inches	Pitot Tube No. 4-02	Cp 0.84				
Port Length	6 x 64	Inches	Technicians ZHE/	LMR				
Pitot Leak Check	- Pos/	Neg _ V	#REF!	FSD PN: 20-04074				

Trav	erse Poi	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ack Temp	erature	- °F
Point		s From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔΡ	ΔΡ	ΔΡ	ΔΡ	°F	°F	°F	°F
A	0,89	6.89	8	0,20 12	1110120			69	\		
-7	7.81	8.81	0	15.0					1		
3	4.96	10.96		0.21	210	1		/ 8	1		
1/	7.44	13.44	5		0.18	1		68	1		
5	13.50	70.94	-	0.15		1			1		
6	2706	23.99	3	0.16		-		10	1		
8	31.50	37.06	0	0.18		1		69	1		
9	74.50	37,50	8	0.17		1				1	
10	34156	43,04	. 5	0.17	10	-					
10	37.04	45/1	-5 -5	0.17	0,20	-		69		1 >	12
-	234.19	45-19	-5	0.140	0100	1		09		10	HE
P) 1	11.11	1//11	0	0.45	12/8/20	10	HE			1	112
7		1	5	0.46	17810	1					
3			5	0.50	1		12/8/26		5 1	12.	-
4			0	0.49		1	16/8/2			181	
5	1-5-1		0	0.48	8	leak Kigh	3.0			12/8/20	
6	541	ne	Ŏ	0.48	otat	leak	1				1
7	us		-5 -5	0.48	Bias	Itish					1
8	u/		-5	0.48		0					
$v_{\tilde{i}}$	96	We!	-5	0.48							
10			0	0.47							1
- 11			0	0.47							\
1)		+	O	0,48	1			60		-	
				4			1				
						711.					
						2/8/		/			
						71.					
					- 1	4/8/	20				
1							1	F			

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	28.634	1			"Hg
Static Pressure	-0,450				"H ₂ O
Dry Bulb Temp.	64		SHE		°F
Wet Bulb Temp.	_	1	16		°F
Moisture Content	1	14	18/2		%v/v
320 P Oxygen	20.9			1	%v/v
Time of Meas.	730				(24 Hour)

Isokinetic Particulate Sampling

2-11-5

Manometer ID

4-02 Co 34 200 5 0 res. Un C, L を 使st. Moist. S Nozzle No. FSD PN: 20-04074 Pace Analytical Trace Division 7/34 Operators/Techs

98.0 In. H₂O In. Hg

Impinger Meter In

Oxygen

Temp.

Temp.

Temp.

Temp.

4

320P

1/1/%

20.9

222220

2710

5

522

230

25

15

220

6222

22222

222

2220 12 12

77

520000

535.94 535.94 538.4

No

Om

no

790

2000

Mtr Out

TC Sensor ID Barometer ID

18-60 カータ

Scale ID

1/1/%

Sample

Probe

Filter

Temp.

Temp.

Stack

Temp.

Train

Inches Hg Vacuum

mental >

ΔV_m Cubic Feet

V_m Cubic Feet

ΔT

Point Trav.

Meter Vol.

Head ∆P

Inches H₂O

05.00

84.0 722.87 727.49 10.80 10.8

Desired

Inches H₂O Meter ∆H

Velocity

Sa

Pace Analytical FSD 20-04074

roject	roject Grede-Iron Mountain 2020 Compliance w/ Module ID (4 - 5	Module ID (4-5	Pitot No.
ample	ample Location Disa CC Exhaust (324682)	Meter Coef. 7 0.99/	Bar. Pre
ate	ate 12/8/75 Test/Run T1 R1 Orifice Coef. $\Delta H @ 2.077$ Static Pr	Orifice Coef. AH@ 2.07	Static Pr
4000	11×11/2	C C C S S S S S S S S S S S S S S S S S	/ Act Mai

Sampling Train Leak Checks: Pretest 0.00 @ 8.0 "Hg 분분)

60 0

PosttestO, XX (Pitot - Pos. V

#REF!

From

Initial Volume Final Volume Difference

Grede, LLC - Iron Mountain Page A-37 of 88

Samples Recovered: Filter 0 -

0,=00-6

tm75.1

300

22

20

225

230

12

NN

742

543.61 548.86 548.86

15

o

7.000

20

14.0

0.50

2.5

00

7.0

13.64

2863

222

22

10 10

Total

Desiccant

2

0.6

1961

3

Impinger No.

Other

☐ M-202;

Wet Catch;

Probe Wash;

7-HA DUCT, C=9AV 1290

Vm= 63,15

72 =0

ot/Avg

t=62.

0

30

123

ī
J
١
١
J
3
j
2
۲
1
7
_
2
,
1
-
)
3
J
3
١
_
5
-
•
-

Isokinetic Particulate Sampling CNL といれ 2 120 38-80 Manometer ID TC Sensor ID Barometer ID Scale ID In. Hg In. H₂O 0 1/1/% 0 0 28.6 100 0) Ш Static Pres. Est. Moist. Bar, Pres. Pitot No. Day Co Orifice Coef. AH@ 2 57 0.961 Meter Coef. Module ID

FSD PN: 20-04074

Pace Analytical **

Grede-Iron Mountain 2020 Compliance w/I

Exhaust (324682)

Disa CC

Sample Location

Project

12

Date

Incre-

Train

Filter

Temp.

Oxygen 1/1%

320P

Mtr Out Temp.

Meter In Temp.

Impinger Temp.

Sample

Probe Temp.

Temp.

Stack

Temp.

N

C

Test/Run

Nozzle No. Cubic Feet Desired ΔV_m

Vacuum Inches Hg

mental

>=

Orifice

Inches H₂O Meter ∆H Velocity

Inches H₂O Head ∆P

Cubic Feet

>=

Meter Vol.

Time

ΔT

Point

HE

Operators/Techs

60.

000

0 0

00 0

0

000

nnnn

131

57 50

432

152

55

22

2227

260

10'

260

500

15 15

230

257

255

NNN

45.

25

293

2

252

276

243

55

24.

0000

nnnn

00

0.0 0

2.16

10.2

0.2 00

000 0 766

Vm=6445 VAP=0.44 @ AH= 2.23

Samples Recovered: Filter くひ =0

Sampling Train Leak Checks: 2.0 0 0 Posttest 0.30 Pretest 0.00

Comments:

21 0 client

#REF!

32.4 Initial Volume Difference

Final Volume

Impinger No.

Pace Analytical FSD 20-04074

342

0

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-38 of 88

ot/Avg

Neg.

SHAT BEEKUPE

Pitot - Pos.

9.21-

25 1074

523 02=00

II W

Total

Desiccant

2

4

3

Other

☐ M-202;

Wet Catch;

Probe Wash;

ts=63.5

1269.2

Isokinetic Particulate Sampling

320P

1/10%

20.

Oxygen Sur Mtr Out 42 Temp. 20 30 0 0 Impinger Meter In Temp. 2222 Manometer ID ならならな 222 37 2222 TC Sensor ID 32 Barometer ID Scale ID Temp. 44 2000 Sample In. H20 Temp. 8.0 In. Hg 1/1/% S 2 35 942 265 Probe Temp. 2222 23 10.0 243 622 922 Temp. 252 Filter 252 Static Pres. Est. Moist. Bar. Pres. Pitot No. Stack Temp. D. 0.3/0 Vacuum Inches Hg Train 102 (M-15 ∆H@ mental 2.20 Incre-25 >= 0 Orifice Coef. Meter Coef. Module ID Nozzle No. Cubic Feet Desired AV. Grede-Iron Mountain 2020 Compliance w/I Inches H₂O 2.22 Meter ∆H 2.32 222 22 222 2.4 0 Disa CC Exhaust (324682) Inches H₂O Test/Run Head ∆P 3200 22002 Velocity 020 0 00 0 0 Pace Analytical " V_m Cubic Feet Meter Vol. 13412 Operators/Techs Sample Location 66.5 Time 10.61 2 ΔT 20 Project Point No. Trav. Date 0

cant	113	3.8	6.3
Desic	241	141	1 15
2		/	
4			
3	2.4	10	3. 4
2	107.9	12	2.4
1	83.1	1001	-16.9
Impinger No.	Final Volume	Initial Volume	Difference
			#REF!
nts:			

Other

☐ M-202;

Wet Catch;

Probe Wash;

Samples Recovered: Filter0 - //

2,20

10P=0.44 67 AH=

V=66.05

18 =0

222

252

0

0200

=660g

Total

Sampling Train Leak Checks: @7.0 Posttest 0. 20 Pitot - Pos._

Commen

#REF!

Pace Analytical FSD 20-04074

Grede, LLC - Iron Mountain Page A-39 of 88

Isokinetic Particulate Sampling

Orifice Coef. AH@ 2074 0.991 CMS Nozzle No. 55 Meter Coef. γ Module ID Project Grede-Iron Mountain 2020 Compliance w// Sample Location Disa CC Exhaust (324682) Test/Run 3 Operators/Techs

cm-5 M-K Manometer ID TC Sensor ID Barometer ID Scale ID 0-87 In. H₂O In. Hg 1/1/% ပ 10.4 Static Pres. Dn 0-36 Est. Moist. Bar. Pres. Pitot No.

Sample

Impinger Meter In Mtr Out

Oxygen

Temp.

Temp.

Temp.

Temp.

320P

1/1%

3

P 72 2

ope

FSD PN: 20-04074

Date

-	
2	,
	Ņ
	1
7	7
10	
JUNE	
158	
110	

Face Analytical "

ice Analytica
SD 20-04074

Probe Temp.		562	278	233	220	122	22	223	225	226	222	222	226	222	223	4,22	122	422	5,22	422	223	322	122	220	12.7
Filter Temp. °F		527	222	422	224	722	222	233	237	242	243	262	243	757	252	255	244	152	24.6	252	752	252	252	242	252
Stack Temp. °F					3.5									10				'n	-				63	1	
Train Vacuum Inches Hg		2.2	2.3	2.0	0.2	6.3	1.2	2	2.0	2.0	2.6	1.2	2.7	0.2	1.2	1.2	1.7	1.2	1.7	1.2	1.1	12	0.2	2.7	1
Incre- mental V _m		2.77	22	2.69	2.76	2.26	276	2.60	276	2.90	3.02	3,03	2.97	027	2.20	2.20	276	192	2,62	2.62	697	92-2	2.95	2.89	2.83
Desired ΔV_m Cubic Feet		16.802	711.66	214.36	717.12	719.88	722.64	725.37	101.821	730.99	70.482	737.04	740.01	14.2hc	745.40	248.10	750.86	743.64	21-956	748.78	761.46	72.472	267.18	20.022	272.90
Orifice Meter ΔH Inches H ₂ O		2.20	2.10	30.2	220	2.20	12.2	2.10	2.21	2.43	2.65	2.65	2.57	2.10	01.2	2.10	2:20	80.2	1.98	1.98	60.2	02.2	2.53	242	2.32
Velocity Head △P Inches H ₂ O		02.0	61.0	21.0	0. 20	2.20	0.50	\$1.0	2.0	3.22	12.0	120	023	61.0	61.0	61.0	0.20	61.0	0.1.0	81.0	0.19	0.7.0	62.0	220	100
Meter Vol. V _m Cubic Feet	02. 902	739 07	111 82	72. KIL	716.99	719 65	751 . 126	125.02	728.20	730.67	733 72	136.81	739.99	45 726	745.32	248.10	750.83	13: 641	246.28	11. 885	261.64	26 692	767.00	769.95	772.83
Time ΔT	^	2.2	1	10.5	14	17.5	2	5.42	28	31.5	35	38.1	42	49.6	49	52.5	26	56.5	63	66.5	2	73.5	12	2000	200
Frav. Point No.		21)1	0 1	6	20	1	9	10	>	'n	4		21	1(21	5	8	^	9	2	2	N	1)	,

3

15

27.7

20

2495

25 34

Grede, LLC - Iron Mountain Page A-40 of 88

ot/Avg 0= 84

02=20

8 26=W

2222

250

Total

Desiccant

က

001 108

41.2

Initial Volume Final Volume Impinger No.

Difference

#REF!

□ Other

☐ M-202:

□ Wet Catch;

Probe Wash;

Samples Recovered: FilterO-1178

Comments:

Sampling Train Leak Checks:

@ 6:5 @ 6:5

PretestO:00

Posttest 0.00 (Pitot - Pos. V

4 2.2=HD pro=ADV 87.39=N

1,=66.6

1260.5

Pa FS al

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates.

It is not intended to reflect final results.

Project Grede-Iron Mountain 2020 Co Site Sample Location Disa CC Exhaust (324682)

Date Tech.

	Initia	lization Pa	rameters			
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Υ	0.9914					
Orifice Coefficient - Δ H@	2.074					
Pitot Coefficient - C _p	0.84					
Nozzle Diameter - D _n	0,260	0.260	0.310	0-310	0.310	
Barometric Pressure - P _b	28.634			7	~>	
Static Pressure - P _g	-0.450			->	->	
Oxygen Estimate - %O ₂	20.9			->	7	
Moisture Estimate - %MC	1	1	1	1	1	
No. of Traverse Points	24					
Point Duration - ∆T	3					
Meter Start Temp, °F - t _m	62	62	55	60	58	
Initial Meter Volume - V _i	50 9.65	509.65	573,K	639.85		
Duct Shape (Rnd/Rect)	Rnd					
Duct Width, Inches	42					
Duct Depth, Inches	42				1	
Final Volume - V _f		572.80	639.55	705.90	772.83	
Total Run Time - θ		72	84	84	84	
Condensate Volume, ml (g)		4.3		87	15/	
		of Run Su	ımmary			
Average Sq. Rt. of the ΔP	√∆P	0.7008	0.4489	0.4451	0.4501	
Average Orifice Meter	ΔΗ	2.71	2.23	2.20	2.24	
Average Stack Temperature	t _s	62.0	63,5	66.0	66.6	
Average Meter Temperature	t _m	55.1	52:3	56.5	54.8	
Sample Volume, Actual	V _m	63.15	68.45	66.05	66.63	
Sample Volume, Dry Standar	V_{std}	61.86	65.36	64.44	65.22	
Moisture Content	MC	0.33	0.59	0.70	1.08	,
Estimated Mole. Wt., dry	M _d					
Estimated Mole. Wt., wet	M _w					
Average Gas Velocity	Vs	40.06	25.71	25.56	25.88	
Isokinetic Variation	%I	100,7	100.5	100.2	100.7	
Volumetric Airflow, Actual	ACFM	23/20	14840	14750	14940	
Volumetric Airflow, Standard	SCFM	22350	14310	14150	14320	L
Volumetric Airflow, Dry Std.	DSCFM	22280	14230	14050	14170	

FSD 20-04074

Equipment & Method Summary

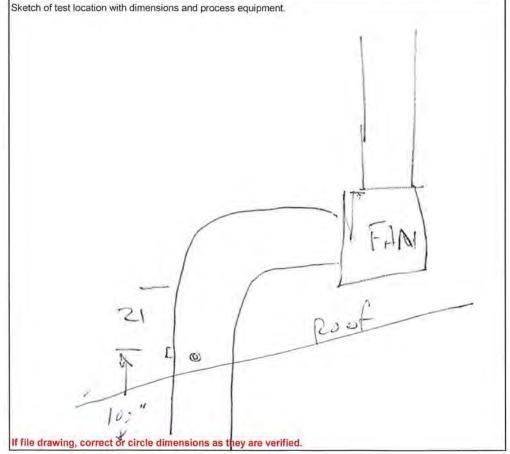
Isokinetic and Associated Testing
Group 1 QI ZHE Group 4 QI

Page A-42 of 88

Project Name: Grede-Ir Sampling Location: Disa CC	on Mountain 2020 Compli Exhaust (324682)	1,550 = 19161	12/8/20 ZHE
Airflow Determination	EPA Method: 2	2C Other_	Initials
	Coef.: <u>0.84</u> Coef.:	Next Ver. Date:	Pre-Use Insp.:
Manometer ID: Ch-5	Oil Digital	Next Ver. Date: 2/11/2/	Pre-Use Insp.: 2 NE
Manometer ID:	Oil Digital	Next Ver. Date:	Pre-Use Insp.:
Barometer ID: DB-60	Aneroid Digital	Next Ver. Date: 7 / 22 /2/	Pre-Use Insp. ZHE
Barometer ID:	Aneroid Digital	Next Ver. Date:	Pre-Use Insp.:
T/C Readout TC-38	Single 🔀 Dual	Next Ver. Date: 3/8/2/	Pre-Use Insp.2111
T/C Readout	Single Dual	Next Ver. Date:	Pre-Use Insp.:
Gas Composition EPA N	Method: 3 3/3A	3B 3C Ambi	ent initials
Container Type:	r Teflon 7-l	Layer Inert Other	Leak Checks:
Sampling Proc.: Single	Point Multipoint	With Iso Train	Grab Integrated
Gas Analysis: Orsat	Fyrite Instru	umental: Instrument ID:	Cal Range
Ambient Provision Oxygen Ve		2 ID Ambient Ca sulls are not reported as lest data.	l Reading:
Moisture Content EPA N	Nethod: 4, back-half of	f iso train Other _	Explain in Options/ Initials Deviations Section
Wt. Scale ID: PS-45	Digital Beam	Next Ver. Date: 7/7/2/	Pre-Use Insp. 7 HE
Std. Weight ID:	Std. Weight (g):	Scale Reading:	Pass Fail
Isokinetic EPA Method:	5_ 8 17	23 26A 29	Other initials
Nozzle ID: 226 Type:	Stainless Steel [Glass Quartz	Other
Nozzle Cal.: 10.260 2 0	260 3 0.260 0.21	60 0.260 AVB 0.260	Pre-Use Insp.: 2 HE
Nozzle ID: <u>0-310</u> Type:	Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 10.310 20	310 30.310 10.31	0 50.310 100.310	Pre-Use Insp.: ZHE
Probe Length: 4 ft. Lin	ner: SS Glass	S Quartz Teflo	n Other
Pitot Tube No.: 4-02	Coef.: 0.89	Next Ver. Date:	Pre-Use Insp.:
Probe Length:ft. Lin	ner: SS Glass	S Quartz Teflo	n Other
	Coef.:	Next Ver. Date:	Pre-Use Insp.:
Control Mod ID: (M- 15 1: 2		Next Ver. Date: 2/11/21	Pre-Use Insp. 7 1/5
Control Mod ID: Y:	ΔH@:	Next Ver. Date:	Pre-Use Insp.:
Filter Type: 2½" Rou	and 4" Round	Thimble Othe	r
Filter Media: Glass Fi	ber Quartz Fiber	Paper Teflon	SS Other
Wet Catch: EPA 202	EPA 8 EPA	23 EPA 26A EF	PA 29 Other
WC Options/Deviations:		Gree	de II.CIron Mountain

Report Date 2/5/2021

Field Data Sheets - 324848

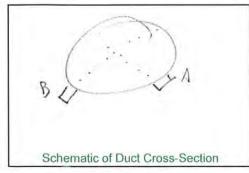

Pace Analytical * Field Services Division

EPA Method 1 Field Data Sheet

Test Site and Traverse Point Selection

Project Grede-Iron Mounta	in 2020 Compli	iance w/Cu			
	- TC Fan (3248		☐ New S	Sketch Created W	ith Dimensions
Date 12/8/2022	Pest/Run T1 I	R	☐ File D	rawing Verified a	nd Attached
Tech(s) 7B	1260		☐ Cyclo	nic Flow Measure	d (See M-2 Sheet)
1 21 -	Dist	urbance Type	□		T
A=	Before (B)	After (A) 0		01. 0
h <u>↓</u>		Elbow	5		D= X7. V
I		Conjunction	Round		
100	П В	Fan (cent)			+ ,,
B= 100		Axial Fan		¥ 24.0→	- 6 Post
		Transition		=W	7
		Damper			
Flow	口市	Exit			1
Disturbance	☐ Other		<u>~</u>		
Duct Orientation			ang sing		W
☐ Vertical	A=	Diameters to down	nstream E		
☐ Horizontal	B=	Diameters to upstr	mearm mearmants (o.e.)		<u> </u>
□ Diagonal	T _R =	Min. Traverse Poi	nts (iso)	← / →	
No. of Traverses	T _A =	Traverse Points U	Jsed	=D	

Traverse Points (from wall)


Pace Analytical Field Services Division

EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

Project Grede-Iron Mo	ountain 2020 Comp	liance w/Cu	Manometer Type	e and ID	DM-48)
Test Location No. 5	HMP - TC Fan (32	24848)	Barometer Type	and ID	-DM-	48- DB -71
Date 12/7/20	Test/Run T1	R	Thermocouple S	Sensor ID	cmell	
Duct Dimensions	24.0	Inches	Pitot Tube No.	3-41	Ср	0.84
Port Length	4.0	Inches	Technicians	TUD,	JWG	
Pitot Leak Check - Pos	Ne	g V	#REF!	-		FSD PN: 20-04074

Trave	erse Poin	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ck Temp	erature	· °F
Point	Inches	From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔΡ	ΔΡ	ΔΡ	ΔΡ	°F	°F	°F	°F
AI	0.51	6.51	50	100	1						
2	1161	7.61		0.90							
3	7.83	8 87	0	073							
4	4.28	10.25	0	0.89	1						
5	4.00	12.0	900	089	,						
5	8.54		0	11		1					
8	15.41	24.0	0	13		1					
9	19.75	25:75	25	14		1					
10	21.17	27.17	2	14							
11	2239	28.39	3				1				
12	23.44	29.44	3	1435							
811		ME	3	-			1				
2	317	1	0					155			
3			8					1			
4											
5			2					1			
7			0								
1			3						1		
à									1		
10			3						1		
11		1	3								
17	4	*	3								
				1						1	-
-											1
	2	1									1
	1	M									1
)							

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	28.64	1			"Hg
Static Pressure	-2.0	1			"H ₂ O
Dry Bulb Temp.	75				°F
Wet Bulb Temp.	~		1	25	°F
Moisture Content	1				%v/v
320 P Oxygen	20.9			1	%v/v
Time of Meas.	1435				(24 Hour)

Isokinetic Particulate Sampling

06-72 コーンス いない Manometer ID TC Sensor ID Barometer ID Scale ID ななら In. H₂O In. Hg 1/1/% S 12.0 32 Static Pres. Est. Moist. Bar. Pres. Pitot No. ,210 7.07 11-14/ ٥ Orifice Coef. AH@ 5 Meter Coef. Nozzle No. Module ID FSD PN: 20-04074 Project Grede-Iron Mountain 2020 Compliance w/l C No. 5 HMP - TC Fan (324848) Test/Run 300 Pace Analytical **
Fred Services Division à ce Sample Location Operators/Techs Date

Oxygen 200 320P 1/1/% 135-38 Mtr Out Temp. 15 'n Meter In 4.5 537 55 55 5.4 Temp. Impinger 54 63 Temp. でい 30 E Sample Temp. ナン MC) 238 120 240 Probe Temp. 223 22 とこと 7.52 252 052 250 50 252 Filter Temp. Stack Temp. 0 36 Vacuum Inches Hg Train U) 249 580 mental 624 976 00 160 701 Incre-296 × 292 ∆V_m Cubic Feet 272 223 308 300 228 300 405 305 305 Desired Inches H₂O 22.27 2.73 Meter ∆H 72.27 2.50 272 2.22 Orifice 1.53 46 Inches H₂O 0.37 .20 96 0.63 0.65 Head ∆P 20 20 Velocity 0 0.67 01. V_m Cubic Feet 354.32 325.10 367.76 370.70 373.95 377.64 361.65 Meter Vol. Time TA 37 20 0 Point Trav.

M-202; _ Impinger No. Wet Catch; Probe Wash; Comments からずる Sampling Train Leak Checks: Samples Recovered: Filter

Initial Volume Final Volume Difference #REF!

H.

Posttest 6.00@

(0)

Pretest 6.00

Neg. 0

Pitot - Pos. V

Desiccant 4.4251 1329 25H 2 4 က 0 - 19.1 100 000 3

02=20.

t_= 52.4

アイン

1 Other

1=77.5

2.2

つるか

0.0

84.0

5 ė

24

535

Total

10 × 0

Vm= 6614 VAP=49916 TAH= 2.27

Isokinetic Particulate Sampling

SD PN: 20-04074

Oxygen 209 320P 1/10% 0<38 アルノ CM-27-80 Mtr Out Temp. 5555 5 53 20 55 Meter In Temp. 53 53 00 Manometer ID TC Sensor ID Barometer ID Scale ID Impinger 2522 Temp. 500 77 343 Sample n. Hg n. H₂O Temp. ママ MOS 1/1/% ပ 227 236 225 352 612 233 753 242 200 227 237 Probe Temp. 122 28.64 0 1,1 3-41 239 252 245 252 6/2 230 252 255 152 152 282 25 Temp. Filter Static Pres. Est. Moist. Bar. Pres. Pitot No. Stack 36 Temp. 780 322 33 30 0.9953 Dn 1216 Inches Hg 5102 Vacuum Train ころし ころし 757 Orifice Coef. AH@ 364 228 742 973 mental 392 とから ブガブ 200 343 05 180 55 Incre-745 > Meter Coef. Nozzle No. Module ID 361 ∆V_m Cubic Feet 337 305 305 かっと 510 255 822 Desired 221 300 Grede-Iron Mountain 2020 Compliance w/ Inches H₂O 1.87 37 Meter ∆H 2.64 2.75 7.7 2.96 2002 œ No. 5 HMP - TC Fan (324848) I Test/Run Inches H₂O 0.87 0.45 0.67 5.67 00 Head AP 35 Velocity 27 3 O Pace Analytical Tarrices Division 394.50 397.58 700.62 700.62 V_m Cubic Feet 469.83 133 96.124 391.40 11977 424.08 440.40 アナ・レーナ Meter Vol. 430.63 406. 7 20 SE SE Sample Location Operators/Techs 25 24.8 Time 73 TA Date 128 12 0 7 Project 36 32 Point Trav. 00 O 35 3.510

Wet Catch; Plant Lunch Break Probe Wash; 1053-1141 Comments 000 Sampling Train Leak Checks: "Hg Samples Recovered: Filter

#REF!

Neg. e

Posttest 0.00@
Pitot - Pos.

5

0

Pretest v. 0.0

Final Volume	1	611.8		/	,	1255.4
Initial Volume	100	501	0			1241.4
Difference		181			,	5.01

tm= 56.4 02= 23.

M

Other

M-202;

t= 78.9

500

ていて

2

44

0.85

0.73

iv 2

105

Fotal

Pace Analytical FSD 20-04074

Report Date 2/5/2021

Grede, LLC - Iron Mountain Page A-47 of 88

50=0

Vm=67.42 JAP=1.604 JAH= 2.34

Isokinetic Particulate Sampling

FSD PN: 20-04074

1 8 2 0 2 0 224848 Meter Coef. γ 2 8 2 0 TestRun T1 R 3 Orifice Coef. ΔH@ 1 8 2 0 TestRun T1 R 3 Orifice Coef. ΔH@ 1 0 0 2 0 TestRun T1 R 3 Orifice Coef. ΔH@ 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0	0100	Bar. Pres.	5	In In			
Meter Vol. Velocity Orifice Desired Incre- Vm	200		1000	5	IC Sensor ID	CM-I	
Meter Vol. Velocity Orifice Desired Incre- Vm. Head AP Meter AH AVm mental Cubic Feet Inches H ₂ O Orifice Desired Incre- 454.60 454.60 454.60 475.24 478.43 4		Static Pres	0,20	In. H ₂ O	Barometer ID	28.72	
12. Time	_		-	1000		00	
Vo. ΔT Vm Head ΔP Meter ΔH ΔVm Vo. (120 €) 4×9.00 3.18 33.1 1.12 5.5 4/67.28 1.40 3.18 33.1 1.1 5.5 4/67.28 1.40 3.18 33.1 1.1 5.5 4/67.28 1.40 3.24 3.24 1.1 4/67.54 1.35 3.00 32.1 3.24 1.1 4/67.54 1.35 3.00 3.24 3.21 2.1 4/78.43 1.25 2.86 3.14 3.25 2.1 4/78.43 1.10 7.53 2.45 3.21 2.1 4/78.41 1.00 7.53 2.45 3.21 2.1 4/78.41 1.10 7.53 2.45 3.21 3.2 4/81.56 1.10 7.53 2.45 3.21 4 3.1 4/81.56 1.10 7.53 2.45 2.15 4 2.4 <			-		-	Mtr Out	320P
1206 454.00 3.18 331 1.25 5.04 3.12	Ial Vacuum	.F	F °F	°F	°F °F	°F	oxygen %v/v
1.12							
1.5 30.5 3.	1 3.5			MA	45 53	15	5.00
7.5	1			14	ds hh		-
25	2 3 5	76	230 229	+	16 58	22	-
25		1	-	_		-	-
25	27 3.8	^	- 1				+
242 241 26 01.1 26.187 2.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		200	235 227		2	5-7	+
255 25 25 25 25 25 25 25 25 25 25 25 25		+	4		4	4	+
255 488.97 6.63 2555 230 2555 488.97 6.63 1.53 230 222 1.44 223 1.24 1.25 6.63 1.44 222 1.25 1.25 2.45 1.25 2.55 1.25 2.45 1.25 2.55 1.25 2.45 1.25 2.55 2.5	7 3.0	-	2				+
2 355 491. 22 0.63 1.53 223 1.42 223 1.42 223 1.42 223 1.44 223 1.45 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5			257 227				-
235 441. 22 0.63 1.44 223 1.75 2.47 1.30 3.00 3.00 3.22 1.75 1.75 2.45 1.75 2.45 1.75 2.45 1.75 2.45 2.45 1.75 2.45 2.45 1.75 2.45 2.45 2.45 2.45 2.45 2.45 2.45 2.4	7.2.5	8			50 63	200	
7.5		-	227 252			-	
215		-			57 53	-	-
25	23.5						
25			252 252		-	5.6	-
56 516 06 12.5 5.80 5.80 586 56 56 56 56 56 56 56 56 56 56 56 56 56		83	251 233				-
54.5 569.23 72.7 2.86 31.8 6.9 2.66.	5 3.4				53 63		
7 755 20.5 0.1.1 10.175 5.9 6.9 7.5 1.5 0.7 5.0 11.515 0.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5.7 5		3,32	250 229			00	
755 52.1 5.80 11.515 5.90 75.75 5.77 5.75 5.75 5.75 5.75 5.75 5.		-	256 651		60 63		_
755 521 52.0 53.0 F3.0 67.75 5							
735 522.13 0.80 1.83 252 0 77 522.45 0.05 1.80 228 2 80.5 524.62 0.54 1.37 2.4 4	0 27					00	
80.5 524.65 0.05 (30 228 7 80.5 524.65 054 (31 2.1 4			250 276			10	
86.5 Say 62 054 137 21 21 2	5.7	80	•			10	
0,0			250 256	-	29 64	20	,
3-45:(5 0.37 1.36 6/7 4			152 152	>	53 64	رد ا	7
(1331)							
Jet/Avg 0= gy N=でラント VAP=(いらいと) AH= ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・ス・		t _s = \$10.4				tm=60510	02= 20
		200	-				

Grede, LLC - Iron Mountain Page A-48 of 88

1371.5

Total

Desiccant

2

135

0

Impinger No. Final Volume Initial Volume

Comments:

Sampling Train Leak Checks:

00

Neg.

Pretest &.u.o. (Posttest &.u.o. (Pitot - Pos. V

Difference

#REF!

5.5° -

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates.

It is not intended to reflect final results.

Project Grede-Iron Mountain 2020 Co Site No. 5 HMP - TC Fan (324848) Sample Location

Date Tech.

	Initial	ization Par	ameters			
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Υ	0.9958					
Orifice Coefficient - △H@	2.079					
Pitot Coefficient - Cp	.87					
Nozzle Diameter - D _n	,210					
Barometric Pressure - P _b	28.64					
Static Pressure - P _g	-2.0					
Oxygen Estimate - %O ₂	20.9-			->		
Moisture Estimate - %MC	- 1		1-1			
No. of Traverse Points	24					
Point Duration - ∆T	3.5					
Meter Start Temp, °F - t _m		51	53	57		
Initial Meter Volume - V _i		325,10	391.40	459.00		
Duct Shape (Rnd/Rect)						
Duct Width, Inches						
Duct Depth, Inches						
Final Volume - V _f		391.24	458.82	526.75		
Total Run Time - θ		84	84	84		
Condensate Volume, ml (g)		5.8	8.8	7.8		
	End	of Run Su	mmary			
Average Sq. Rt. of the ΔP	√∆P	19915	1.0047	1,0053		
Average Orifice Meter	ΔΗ	2.27	2.34	2.36		
Average Stack Temperature	t _s	77.5	78.8	80.4		
Average Meter Temperature	t _m	52,4	56.4	60.5		
Sample Volume, Actual	V _m	66.14	67.42	67.75		
Sample Volume, Dry Standar	V_{std}	65.34	66.11	65.91		
Moisture Content	MC	0.42	0.62	0.53		
Estimated Mole. Wt., dry	M _d	2889	28.84	28.81		
Estimated Mole. Wt., wet	M_w		ETT			
Average Gas Velocity	V _s	57.49	58.35	58.36		
Isokinetic Variation	%I	100.2	1004	1003		
Volumetric Airflow, Actual	ACFM	10840	11000	11000		
Volumetric Airflow, Standard	SCFM	10190	10310	10280		
Volumetric Airflow, Dry Std.	DSCFM	10150	10250	10220		

9	
/	Pace Analytical®
1-	Field Services Division

FSD 20-04074

Equipment & Method Summary

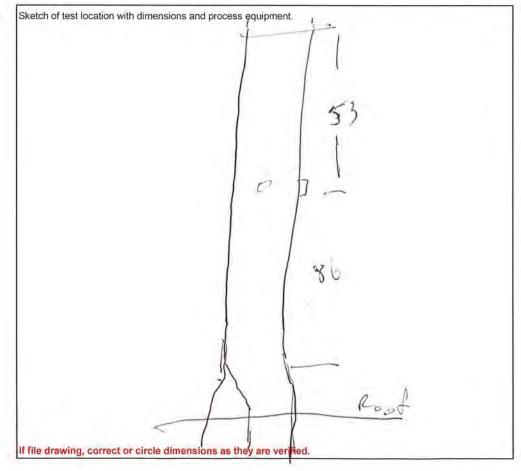
Isokinetic and Associated Testing

Page A-50 of 88

Group 1 QI TIB Group 4 QI Project Name: Grede-Iron Mountain 2020 Compliance w/(Test Date: Sampling Location: No. 5 HMP - TC Fan (324848) Recorded By: 2C Airflow Determination EPA Method: Other .840 Pre-Use Insp.: The Pitot Tube No.: Coef .: Next Ver. Date: Pitot Tube No.: Next Ver. Date: Pre-Use Insp.: Coef.: Manometer ID: CM-11 Oil Digital Next Ver. Date: 2/6/21 Pre-Use Insp.: 738 Digital Manometer ID: Next Ver. Date: Pre-Use Insp.: 13-72 Aneroid Digital Next Ver. Date: 2/15/21 Pre-Use Insp.: TYS Barometer ID: Barometer ID: Aneroid Digital Next Ver. Date: Pre-Use Insp.: Em-11 Next Ver. Date: 2/8/21 Pre-Use Insp.: The T/C Readout Single Dual T/C Readout Single Dual Next Ver. Date: Pre-Use Insp.: 3C Ambient EPA Method: Gas Composition 3/3A 3B Teflon Tedlar 7-Laver Inert Other Leak Checks: Container Type: Multipoint With Iso Train Grab Integrated Sampling Proc.: Single Point Gas Analysis: Orsat Instrumental: Instrument ID: Cal Range Ambient Provision Oxygen Verification: Ambient Cal Reading: 20-9 Portable O2 ID Note: Portable O2 results are not reported as test data. Explain in Options/ **Moisture Content** EPA Method: 4, back-half of iso train Other Deviations Section V Digital Beam Next Ver. Date: Wt. Scale ID: Pre-Use Insp.: Fail Std. Weight (g): Pass Std. Weight ID: Scale Reading: EPA Method: \ 5 8 17 23 26A Other Isokinetic Stainless Steel Nozzle ID: 95 Glass Type: Quartz Other Nozzle Cal.: 1210 210 1210 1210 Pre-Use Insp.: TJ3 1200 11211 Nozzle ID: Type: Stainless Steel Glass Quartz Other Nozzle Cal.: Pre-Use Insp.: SS Glass Quartz Teflon Probe Length: Liner: Other Pitot Tube No.: Coef .: .640 Next Ver. Date: Pre-Use Insp.: 136 Probe Length: ft. Liner: SS Glass Quartz Teflon Other Pitot Tube No.: Coef .: Next Ver. Date: Pre-Use Insp.: Control Mod ID: Cm-11 Y: 0 9954 ΔH@: 7.079 Next Ver. Date: 2/8 121 Pre-Use Insp.: The Υ: $\Delta H@:$ Next Ver. Date: Control Mod ID: Pre-Use Insp.: 4" Round Other 21/2" Round Thimble Filter Type: Paper Glass Fiber Teflon SS Other Filter Media: Quartz Fiber **EPA 202** EPA 8 EPA 23 EPA 26A EPA 29 Other MY Wet Catch: WC Options/Deviations: Pace Analytical Grede, LLC - Iron Mountain

Report Date 2/5/2021

Field Data Sheets - 334116

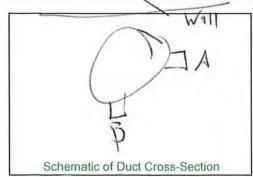

Pace Analytical* Field Services Division

EPA Method 1 Field Data Sheet

Test Site and Traverse Point Selection

Project Grede-Iron Mountain	n 2020 Compliance w/Cu	
Test Location Module Plan	nt Exhaust (334116)	☐ New Sketch Created With Dimensions
Date 12/10/2027	est/Run T1 R	☐ File Drawing Verified and Attached
Tech(s)	wi	☐ Cyclonic Flow Measured (See M-2 Sheet)
T 7 -	Disturbance Type	_ □
A= <u>5</u>)	Before (B) After (A)	D=_3≎
	☐ ☐ Conjunction ☐ ☐ ☐ Fan (cent) ☐	ığ
B= 86	☐ ├── Axial Fan ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	<u>← 3⊃</u> →
1	☐	
Flow Disturbance	☐ ∱ Exit ☐ ☐ Other ☐	
Duct Orientation Vertical	A= 1, % Diameters to downst	W= mean mean mean mean mean mean mean mean
☐ Horizontal	B= 7.8 Diameters to upstrea	m cta
□ Diagonal	T _R = 74 Min. Traverse Point	s (iso)
No. of Traverses	T _A = 24 Traverse Points Use	ed =D

Traverse Points (from wall)


Pace Analytical Field Services Division

EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

Project Grede-Iron M	lountain 2020 Complia	ance w/Cu	Manometer Type	e and ID	cm-11
Test Location Mod	dule Plant Exhaust (33	34116)	Barometer Type	and ID	DB.72
Date 12/10/2,	Test/Run T1	RO	Thermocouple S	ensor ID	cm-11
Duct Dimensions	30 ,30	Inches	Pitot Tube No.	3.41	Ср , 840
Port Length	6	Inches	Technicians	T	6, 1WG
Pitot Leak Check - Po	sv Neg	· _ /	#REF!		FSD PN: 20-04074

Trav	erse Poii	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ck Temp	erature	-°F
Point	Inches	From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔΡ	ΔΡ	ΔP	ΔΡ	°F	°F	°F	°F
1 12	6.04	4.64	70	6.29	/:						
11	2.01	5.01	77	0.24	1						
10	354	9.54	77	0.23							
1	5:32		15	0.19	1						1 - 1
8	7,50	13.50	15	0,19							
7	10.47		10	0,18							
6	1933	2533	-10	016							
5	22155		-10	0 = 16		1					
ц	24.68	30,68	-10	0015							
3	26.46		-15	0.15			1				
7		33,99	-15	0.15							
- 1	29.31	35.36	-15	0,15			1				
B 13	5AN	1 E	72								
)1			25								
10		1	70					1	3		
9		/	20					1			
8	(15								
7			10						1		
6		1	-10								
5		1	-10						1		
4			-15						1		
3		.\/	•20								
7		\cup	-20							1	
	-		-15							1	
1								-		-	
1			-	1						1	
		1	Are 1101	0							1
-	1	(1400 1101								1
	Tib										-
	1										

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	28.69	1			"Hg
Static Pressure	-,07				"H ₂ O
Dry Bulb Temp.	75		1		°F
Wet Bulb Temp.					°F
Moisture Content	- 1				%v/v
320 P Oxygen	20-9				%v/v
Time of Meas.	0730			1	(24 Hour)

Pace Analytical FSD 20-04074

Grede, LLC - Iron Mountain Page A-53 of 88

Isokinetic Particulate Sampling

Oxygen 20.09 1/1/% 09 72 Con-していっし Mtr Out Temp. 250 25 72 25.7 50 in W Meter In Temp. 2522 444 57 522 Manometer ID TC Sensor ID Barometer ID Scale ID Impinger 52 52 Temp. Sample XX In. Hg In. H₂O Temp. 187 1/1/% ပ္ 223 233 227 243 202 232 240 237 239 727 アイノ 253 Probe Temp. 23, 260 3.41 3 23 652 152 152 248 125 125 232 252 Temp. Filter 23 Static Pres. Est. Moist. Bar, Pres. Pitot No. 920 Stack Temp. V 20 30 200 46 200 63 245 D, 1346 C .9953 Vacuum Inches Hg 2.379 Train CM-11 Orifice Coef. AH@ 300 284 677 200 そっと mental 427 297 55 SO Incre-397 818 > Meter Coef. Module ID Nozzle No. 582 Cubic Feet Desired 082 ΔV_m FSD PN: 20-04074 Project Grede-Iron Mountain 2020 Compliance w/I Inches H₂O Meter ∆H 25.52 25.54 25.54 25.54 3-1-6 4.18 3.53 3.21 2.96 2.96 4.07 X Module Plant Exhaust (334116) Inches H₂O Test/Run 0.23 00.00 25.0 Head ∆P 0.22 Velocity 0 1/6 510 0.19 61.0 81.0 510 0.21 51.0 11:0 0 Pace Analytical Trend Services Division 798.09 Cubic Feet 378.15 737 85 758.85 741.44 744.97 768.20 184.31 798.47 Meter Vol. 762.10 180.58 834.01 20 755.45 774.13 152.01 195.11 801. 765 101 Sample Location 24.5 Operators/Techs 5250 52.5 100 7 25.5 Time 5.69.5 TΔ 3 63 30 Point 5 Trav. NE Date 7

Sampling Train Leak Checks: "Hg Neg. 0 Posttest 0.00@ Pitot - Pos. V Pretest 0.00

Comments

#REF!

1337.9 Desiccant 125 4 n 0 3 27131 50 nitial Volume Final Volume Impinger No. Difference

15.3

Total

tm=35,102=

my

Other

D

☐ M-202;

Wet Catch;

Probe Wash;

J4.8-14419 AN-3.26

L= 85.7

18 =0

ot/Ava

Samples Recovered: Filter

1	ace Anal	Pace Analytical *	vision	FSD PN: 20-04074	1074				l		Isoki	Isokinetic Particulate Sampling	articula	ate San	npling
Project	Grede-Ir	Project Grede-Iron Mountain 2020 Compliance w/	in 2020 Con	npliance w/I	Module ID		Cm-11	Pitot No.	3.41	° C°	340	Manometer ID		C.M.II	
Sample	Sample Location		Module Plant Exhaust (334116)	334116)	Meter Coef.	əf. y	. 9958	Bar, Pres.		50	In. Hg	TC Sensor ID	sor ID	Cm-11	175-4
Date	12/10	02 0	Test/Run	T1 R3	Orifice Coef. ∆H@		2.079	Static Pres.	res.	20	In. H ₂ O	Barometer ID	ter ID	087	2
Operato	Operators/Techs	T	18, jwG		Nozzle No.	55	Dn ,346	Est. Moist.	st.		1/0%	Scale ID		05.2	38
Trav.	ì	Meter Vol.	Velocity	Orifice	Desired	Incre-	Train	Stack	Filter	Probe	a	Impinger	Meter In	Mtr Out	320P
Point	IIme	>			ΔVm	mental	Vacuum	Temp.	Temp.	Temp.			Temp.	Temp.	Oxygen
No.	1	Cubic Feet	Inches H ₂ O	Inches H ₂ O	Cubic Feet	V _m	Inches Hg	Ļ	Ļ,	4 °	¥.	Ļ	ų.	Ļ	N/N%
	(640)	317.65													
13-12	3.5	821.41	025	4.7	378	143	3.5	X	236	212	オス	53	33	22	20.9
/)	١	235.17	0.25	100	373	215	3.5	96	238	222		27	K	200	J
01	10.5	8 28 . 80	0.27	3.9.1	360	882		26	245	200		25	20	N	
5	14	832.52		3.82	362	7.4		30	257	227		7	29	23	
ne en	17.5	835.48		3.53	3 401	293	200	90	253	177		25	00	5.6	
-	12	339.27		3.11	327	920	2.9	3	250	228	_	53	09	2.4	
د	24.5	872.52	Э.	3.09	375	247		001	248	229		53	<u>-</u>	60	
7	2.8	845.80	0	3.18	331	218	2.6	Se Se	252	235		2.7	<u>-</u>	000	
2	31.5	849.05	1.0	3.03	525	901		23	552	271		2	25	00	
'n	35	852.10	0.17	2.87	315	216		30	235	253		53	23	9	
2	38.5	853.25	C	2.71	306	525	2.8	200	225	237		ど	62	2	
-	7.5	458.33		2.17	311	833		120	252	765		5.5	es	S	
17-12	45.5	841.67	0.23	3.87	366	199	in	5.8.	250	224		25	3	5	
1	F	365.56		3.87	364	563		88	252	177		27	63	65	
3	57.5	869.02		3.43	345	200		101	252	2 10		7	9	6.3	
-	25	872.27	_	3.09	327	235	2.0	7 23	231	572	-	22	3	3	
20	24.5	275.55	0.19	N. IN	331	266		7.7	22.	232		2.5	62	63	
	63	36.868	0.18	7000	317	25.50		200	233	239		5	62	5	
5	500		٥	7.6	304	143		2	25	232		2	5.	X L	
1	20	384.88	0.15		862	786		99	152	276		200	9	60	
2	23.5	887.73	2:0	2.33	285	176	4. V	23	250	227		2	و	3	
7.	27	890.62	5.0	7.35	787	055		47	251	かなの		200	و بر	53	
,,	83.5	893.35	6.13		273	322		10/	251	200	,	5.7	ee	CS	_
-	22	896.00	0.13	2.17	273	- 09		001	251	127	7	2.1	67	65	_
	(1108														1
				- 1											,
Tot/Avg	15 =0	Vm= 78.35	VAP=, 4314 AH= 3.	AH=3.12			1	t= 92,1						tm= 60.8 02=	02=
				/											

5.3

Total

Desiccant

2

3

☐ Other

☐ M-202;

■ Wet Catch;

Probe Wash;

Comments:

Sampling Train Leak Checks:

Neg.

Pretest <u>& いつ</u> @ Posttest <u>& いい</u> @ Pitot - Pos. ✓ N

Samples Recovered: Filter

12909

000

3

#REF!

Impinger No. Final Volume Initial Volume Difference

Isokinetic Particulate Sampling

72

していし 05-38 ニースし Manometer ID TC Sensor ID Barometer ID Scale ID 078, In. H₂O In. Hg 1/1/% S 128.69 0 Static Pres. Est. Moist. Bar. Pres. Pitot No. 346 0.9958 2.079 ď にが-ニ Orifice Coef. AH@ Meter Coef. Nozzle No. Module ID Grede-Iron Mountain 2020 Compliance w/I C Module Plant Exhaust (334116) Test/Run いいい Pace Analytical Tace Analytical 43 12 110 2 Sample Location Operators/Techs Project Date

Oxygen 20.02 320P 1/1/% Mtr Out Temp. 00 00 00 CCC 99 60 0 Meter In 2260 Temp. 700 202 S 72 Impinger して 65 6 29 Temp. 50 9 Sample nit Temp. 222 222 230 233 822 220 233 231 237 Temp. 222 Probe 252 25/ 152 252 Temp. 105 Stack Temp. 105 107 603 0 3000 96 107 92 40 99 201 69 0) 3 Vacuum Inches Hg Train 3 12/ 684 mental 877 26c 000 >= Cubic Feet 452 376 365 350 304 227 Desired 325 AVm Inches H₂O 3.29 Meter ∆H 3.17 2.31 50 3.5 4.07 Orifice Inches H₂O 3000 Head ∆P 0.20 Velocity 6.24 027 6.23 0.19 510 0.21 1.0 925.96 931.86 452.67 Cubic Feet 949.57 Meter Vol. 938.00 962 62 923.03 200 80.5 5.25 10.5 245 543 Time 79 3 ΔT A-12 32 Point No. Trav. 200

문 F) Sampling Train Leak Checks: Samples Recovered: Filter Neg. C Pretest 3.00 @ C Posttest v.co@ Pitot - Pos.

Comments

nitial Volume Final Volume Impinger No. #REF!

1370.0 Desiccant M 2 4 က 0 100 3.66 001 Difference

12.7

Total

1m=6814 02=

22

Other

☐ M-202;

Wet Catch;

Probe Wash;

AH= 3 11

Vm= 78-70 VAP=4308

t=97.3

18=0

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates.

It is not intended to reflect final results.

Grede-Iron Mountain 2020 Co Site Project Module Plant Exhaust (334116 Sample Location

Stack Date Tech.

	Initial	ization Par	rameters	200		
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Υ	9958					
Orifice Coefficient - ∆H@	2.079					
Pitot Coefficient - C _p	.84					
Nozzle Diameter - D _n	.346					
Barometric Pressure - P _b	28.49	-		-		
Static Pressure - P _g	07.			1		
Oxygen Estimate - %O ₂	20.4			\rightarrow		
Moisture Estimate - %MC			1	- 4		
No. of Traverse Points						
Point Duration - ∆T		-				
Meter Start Temp, °F - t _m		277.85	57	66		
Initial Meter Volume - V _i		737.85	817.65	894.25		
Duct Shape (Rnd/Rect)						
Duct Width, Inches						
Duct Depth, Inches						
Final Volume - V _f	1	817.44	896.00	975.15		
Total Run Time - θ		84	84	87		
Condensate Volume, ml (g)		15.3	7.9	12-5		
	End	of Run Su	mmary			
Average Sq. Rt. of the ∆P	√∆P	,4419	,4314	,4308		
Average Orifice Meter	ΔΗ	3.26	3.12	3.11		
Average Stack Temperature	t _s	85.8	921	97.3		
Average Meter Temperature	t _m	55.1	608	68.4		
Sample Volume, Actual	V _m	7959	78.35	78.90		
Sample Volume, Dry Standar	V_{std}	75.53	76,45	75.88		
Moisture Content	MC	0.91	ø.18	0.77		
Estimated Mole. Wt., dry	M_d	28.87	28.94	28.84		
Estimated Mole. Wt., wet	M_w					
Average Gas Velocity	Vs	25.82	25,32	25.43		
Isokinetic Variation	%1	100.6	100.3	1000		
Volumetric Airflow, Actual	ACFM	7600	7460	7490		
Volumetric Airflow, Standard	SCFM	7050	68 40	6800		
Volumetric Airflow, Dry Std.	DSCFM	6990	6830	6750		

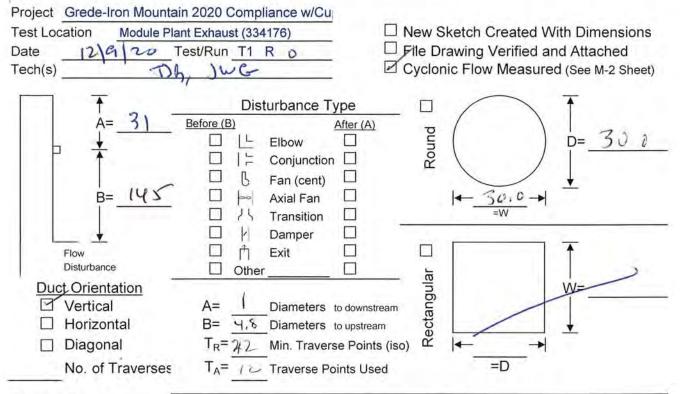
9	
1	Pace Analytical®
1	Field Services Division

Equipment & Method Summary

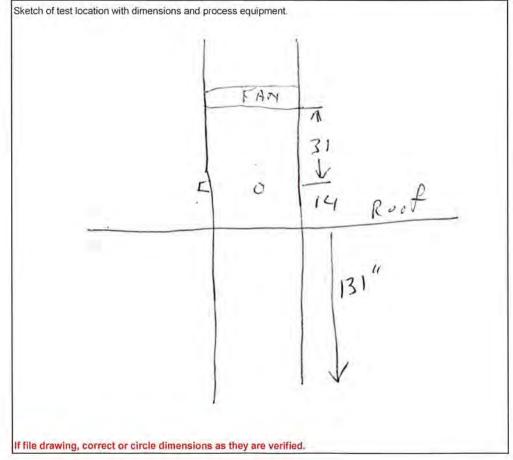
Isokinetic and Associated Testing Group 1 QI Group 4 QI Project Name: Grede-Iron Mountain 2020 Compliance w/(Test Date: Sampling Location: Module Plant Exhaust (334116) Recorded By: Initials Airflow Determination EPA Method: 2C Other Pitot Tube No.: 3-14 Next Ver. Date: 1 Coef .: Pre-Use Insp.: 1)6 Pitot Tube No.: Next Ver. Date: Pre-Use Insp.: Coef .: Oil Digital Manometer ID: And Next Ver. Date: Pre-Use Insp.: Manometer ID: CM-M Digital Pre-Use Insp.: TJS Next Ver. Date: Digital Aneroid Barometer ID: Next Ver. Date: 2 2 2 Pre-Use Insp.: 73 Barometer ID: Aneroid Digital Next Ver. Date: Pre-Use Insp.: T/C Readout Single Dual Next Ver. Date: Pre-Use Insp.: T/C Readout Single Dual Next Ver. Date: Pre-Use Insp.: EPA Method: 3C Ambient Gas Composition 3/3A 3B Container Type: Tedlar Teflon 7-Layer Inert Other Leak Checks: Sampling Proc.: Single Point Multipoint With Iso Train Grab Integrated Orsat Instrumental: Instrument ID: Gas Analysis: Ambient Provision Oxygen Verification: Ambient Cal Reading: Portable O2 ID Note. Portable O2 results are not reported as lest data Explain in Options/ Deviations Section EPA Method: Moisture Content 4, back-half of iso train Other Digital Wt. Scale ID: Beam Next Ver. Date: Pre-Use Insp.: Std. Weight (g): Std. Weight ID: Scale Reading: Pass Fail Isokinetic EPA Method: 5 17 23 26A 29 Other Stainless Steel Nozzle ID: 55 Type: Glass Quartz Other Pre-Use Insp.: 718 347 ,347 346 346 Nozzle Cal.: . 3416 Nozzle ID: Type: Stainless Steel Glass Quartz Other Nozzle Cal.: Pre-Use Insp.: SS Teflon Probe Length: Liner: Glass Quartz Other .840 Pitot Tube No.: 3.41 Next Ver. Date: Pre-Use Insp.: T/8 Coef .: Probe Length: Glass Quartz Teflon Other Liner: Next Ver. Date: Pitot Tube No.: Pre-Use Insp.: Coef.: Control Mod ID: CFW-11 Y: 1,9958 AH@: 2.079 Pre-Use Insp.: 1.1 Next Ver. Date: ΔH@: Next Ver. Date: Pre-Use Insp.: Control Mod ID: 4" Round 21/2" Round Filter Type: Thimble Other Glass Fiber Quartz Fiber Paper Teflon Other Filter Media: EPA 8 Wet Catch: EPA 202 EPA 23 **EPA 29** WC Options/Deviations:

> Grede, LLC - Iron Mountain Page A-58 of 88

Pace Analytical


FSD 20-04074

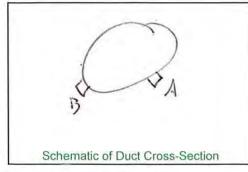
Field Data Sheets - 334176


Pace Analytical Field Services Division

EPA Method 1 Field Data Sheet

Test Site and Traverse Point Selection

Traverse Points (from wall)


Pace Analytical * Field Services Division

EPA Method 2 Field Data Sheet

Volumetric Airflow Determinations

Project Grede-Ir	on Mountain 202	0 Complia	ance w/Cu	Manometer Type and	dID PM-48	
Test Location	Module Plant Ex	haust (33	34176)	Barometer Type and	IID DB-72	
Date 12 9	ZO Test/R	un T1	RÓ	Thermocouple Senso	or ID cm-4	
Duct Dimensions	30,0		Inches	Pitot Tube No. 3	Cp .84	
Port Length	. Co. 2		Inches	Technicians	DB, JWG	
Pitot Leak Check	- Pos	Neg	-	#REF!	FSD PN: 20-04	1074

Trave	erse Poir	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ck Temp	erature	· °F
Point	Inches	From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔΡ	ΔΡ	ΔΡ	ΔΡ	°F	°F	°F	°F
A-12	2.64	6.64	0	0.065							
11	2.01	8.01	0	6066							
10	3,54	9,54	5	0.065					1		
9	5,32	11.32	5	0 0063							
8	7,50	13.50	5	0.059							
7	10,67	16.67		0.049							
6	19.33	25,33	-10	0030					1.)5		
5	22.50	28.50	-5	0.030							
4	24.68	30.68	0	0.025							
3	26.46	32.46	O	0 075							
2	27.44	33.99	0	0.021							
1	29,36	35.36	0	0.028				4			
B-12			5								
- 11			ร์								
10		1	5								
1			0								
8			3	1							
7			0								
5			10								
			20								
7			20			-	(I)	0			
3			7,7				1	_			
- 2			75								
- 1			20	-							
								1			
									1		
									1		
										1	
										1	
						I					

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	28.47	1			"Hg
Static Pressure	139	1			"H ₂ O
Dry Bulb Temp.	75				°F
Wet Bulb Temp.		= 1			°F
Moisture Content	-1				%v/v
320 P Oxygen	20.9				%v/v
Time of Meas.	750			1	(24 Hour)

Isokinetic Particulate Sampling

FSD PN: 20-04074

Pace Analytical Tace Analytical

るとなって Oxygen 502 320P 1/1/% D3-28 75.80 ロルーに CM-V Mtr Out Temp. 00 0 3 8 37 54 Co ē 5 ee Meter In 88 00 Temp. 58 ceee 25. 00 Manometer ID TC Sensor ID Barometer ID Scale ID Impinger Temp. 5555 35000 inani Sample 340 wood ケン Temp. In. H₂O In. Hg ပ် 266 260 206 225 Probe Temp. 249 36 ったか 23 757 233 750 द्रेर Temp. 220 Filter Static Pres. Est. Moist. Bar. Pres. Pitot No. Stack Temp. 80 83 5 22 8 8 0 X 28 50 W 25% 2019 Inches Hg Vacuum . 4958 Train N N CAN ٥ Orifice Coef. AH@ 466 100 205 ててし mental 100 イジア 181 207 368 210 465 Incre-50 820 280 > Meter Coef. Nozzle No. Module ID 200 Cubic Feet 28€ とする 270 Desired 268 255 ΔVm 2.5 Project Grede-Iron Mountain 2020 Compliance w/I Inches H₂O 235 Meter ∆H 2.08 0.36 1.60 0000 65.1 237 2.09 Orifice C Sample Location Module Plant Exhaust (334176) F 3 500 220 らんと Inches H₂O 062 050 000 820 ST. 026 000 060 550 190 Test/Run 0.066 170 Head ∆P 30.0cm 00 Velocity tra 545.10 521.878 571.87 581 86 588 27 588 69 Cubic Feet SLS. 33 20 269 Meter Vol. 540.03 1. 125 >" 534 9120 sn. 530 523 Operators/Techs 7 10.5 TA として 1/2 00 Point 2 Trav. P 1 20 Date

-202;	_		(0	
Z	npinger No.	inal Volume	Initial Volume	on
: Catch;	Imping	Final V	Initial V	Difference
□ Wet				#REF!
.; ☐ Probe Wash; ☐ Wet Catch; ☐ M-202;	Comments:			
Samples Recovered: Filter	Sampling Train Leak Checks:	Pretest 6-00 @ 7 "Hg	Posttest \$ 000 @ "Hg	Pitot - Pos. V Neg.

02=20.9

C:55=

Total

Desiccant

2

3

Pother 4-1

80,1

11

12684

0

600

00

198.8

6

8.3

Pace Analytical FSD 20-04074

Grede, LLC - Iron Mountain Page A-62 of 88

Samples Recovered

Vm= 63.41 VAP=2287 AH=201

28

11()

Isokinetic Particulate Sampling

Oxygen 1/1/% 200 11-80 55-3B Dind Cur-1 Mtr Out Temp. 200 668 0 5600 50 49 5 Impinger Meter In Temp. 2666 Se E E E E E E 67 Manometer ID 80 TC Sensor ID Barometer ID Scale ID Temp. - Bro Sample さと In. H₂O Temp. In. Hg 1/10% S 330 5 25.5 25% 257 239 ンカン Probe Temp. 14-6 752 252 282 348 248 250 Temp. 122 251 Static Pres. Est. Moist. Bar. Pres. Pitot No. Temp. 300 Stack 20000 30 क्षेत्र कर्ष 80 33.4 82 Dn 0.425 0.9958 Vacuum Inches Hg 4 2.079 Train ٥ Chi. ナレ N N Orifice Coef. ∆H@ mental アメイ 500 でこと かんな 495 298 Incre-700 h >" 2 Meter Coef. Nozzle No. Module ID 280 Cubic Feet 308 295 Desired 204 182 789 ΔVm -SD PN: 20-04074 Grede-Iron Mountain 2020 Compliance w/ Inches H₂O Meter ∆H 2.40 23.2 しょう 2.64 3.0.8 11 727 Orifice 223 12.1 C Module Plant Exhaust (334176) 0.034 0.034 0.034 0.034 0.00 0.033 0.658 りから nches H₂O 220.0 6.062 0.065 0.068 Test/Run 1900 Head ∆P 0.068 0.058 Velocity Pace Analytical ** 630.78 42.100) Cubic Feet Meter Vol. 627.18 6 20 648 578 100 5 Sample Location Operators/Techs 5.7.2 66.5 52.5 54.5 Time 80.5 7.5 31.5 10 63 TA 3 Project 4 20 Point 3/1 Date

■ Wet Catch;	Imping	Final V	Initial \	Differe
□ Wet				#RFF!
; Probe Wash;	Comments:			

Imminor Nic	,	0	0	,	3
Impinger No.		7	2	4,	C
Final Volume	-	5.83		/	
Initial Volume	100	100	0		/
Difference	1	107			/

02=209

tm=6.9

とな

Other

☐ M-202;

1= 823

12 =HV

VAP=,2372

Vm=id27

₹ =0

Samples Recovered: Filter

Total

Desiccant

13379

0 0 Posttest 8.00 @ Pretest 0,00

급급? Sampling Train Leak Checks: Neg. Pitot - Pos.

Isokinetic Particulate Sampling

Oxygen 1/10% 20,3 320P Total 02= OM- TO 47851 17.60 tm=68.1 Desiccant Cm-II Mtr Out Temp. 800 0000 69 63 0000 69 69 2 60 Meter In 500 C Co Temp. 8000 C 3250 67 600 Manometer ID 00 TC Sensor ID Barometer ID 2 Scale ID Impinger Temp. 2 EE 56000 65 4 way Sample 378 Temp. AN Mu. H20 In. Hg 3 1/1/% ပ် D Other chi 202 260 252 202 242 Temp. 264 Probe 268 260 257 269 2007 28.4 3.5 272 757 252 2 50 253 512 Temp. Filter ☐ M-202; Static Pres. Est. Moist. Bar. Pres. Pitot No. C 58=8 Stack Temp. 32 830 Impinger No. 3226 Dn .425 2.079 ■ Wet Catch; 565% Vacuum Inches Hg Train 2.5 30 Cur-u Orifice Coef. ∆H@ 122 337 mental 300 55 348 148 100 265 Incre-> Meter Coef. Module ID Nozzle No. Probe Wash; Cubic Feet 276 215 797 239 Desired ΔV_m FSD PN: 20-04074 Grede-Iron Mountain 2020 Compliance w/I Inches H₂O 3 2.87 18.2 Meter ∆H CT2=HV 32,5 757 0 2 46 64 210 102 Orifice 223 2 374 Comments CC Module Plant Exhaust (334176) 0.064 0.067 Pro-0 0.069 6.026 V= 66, 85 TVAP= 2383 Inches H₂O 250.0 0.026 0.000 210.0 0.032 6.05T Test/Run Head ∆P 0100 4000 5000 Velocity 110:0 Pace Analytical **
Face Analytical **
Field Services Division** 139 Sampling Train Leak Checks: Cubic Feet 20 67 Meter Vol. Samples Recovered: Filter CT 473 125.61 582 280 JO. 416 670 3 Sample Location Operators/Techs ₩ =0 Time 10.5 TA Project Point 0 10 0 Date 5 2 e 5

4.7

127.9

0

001

Initial Volume Final Volume

Difference

#REF!

5.5"Hg

Posttest 8.00@ Pitot - Pos.

Pretest 0.00

Neg.

けるらい

9. 8. S. C. C.

THE

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates.

It is not intended to reflect final results.

Grede-Iron Mountain 2020 Co Site Project Module Plant Exhaust (334176 Sample Location

Date Tech.

	Initial	ization Pai	rameters			
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Υ	.9958					
Orifice Coefficient - ∆H@	2.079					
Pitot Coefficient - C _p	.840					
Nozzle Diameter - D _n	.425					
Barometric Pressure - P _b	28.47	-		-5		
Static Pressure - P _g	14	-				
Oxygen Estimate - %O ₂	20.9	-		->		
Moisture Estimate - %MC						
No. of Traverse Points	24					
Point Duration - ∆T	3.5					
Meter Start Temp, °F - t _m		57	60	68		
Initial Meter Volume - V _i		540.03	604.10	670.75		
Duct Shape (Rnd/Rect)						
Duct Width, Inches						
Duct Depth, Inches						
Final Volume - V _f		603.44	670.3)	737,60		
Total Run Time - θ		84	84	84		
Condensate Volume, ml (g)		42)	14.2	5.7		
		of Run Su	mmary			
Average Sq. Rt. of the △P	√∆P	. 2287	. 23 7g	,2383		
Average Orifice Meter	ΔΗ	2-07	卫.23	2.27		
Average Stack Temperature	t _s	80.1	82,3	857,0		
Average Meter Temperature	t _m	59.1	629	68.1		
Sample Volume, Actual	V_{m}	63.41	66.27	66.85		
Sample Volume, Dry Standar	V_{std}	61.37	63.77	63.20		
Moisture Content	MC	0,47	1.04	,42		
Estimated Mole. Wt., dry	M_d	17.73				
Estimated Mole. Wt., wet	M_w					
Average Gas Velocity	V _s	13.33	13.87	13.96		
Isokinetic Variation	%1	100.2	toril	100,2		
Volumetric Airflow, Actual	ACFM	3930	4090	4110		
Volumetric Airflow, Standard	SCFM	3650	3790	3790		
Volumetric Airflow, Dry Std.	DSCFM	3630	3750	3770		

/	Pace Analytical®
1-	Field Services Division

Airflow Determination

Manometer ID: Dun-418

Sampling Location: Module Plant Exhaust (334176)

EPA Method:

184

Digital

Digital

Digital

Digital

Dual

Dual

Teflon

Coef .:

Coef .:

Oil

Oil

Aneroid

Aneroid

Single

Single

EPA Method:

Single Point

EPA Method:

Digital

0.425

Coef .:

Coef .:

4956

Liner:

Liner:

Y:

21/2" Round

Glass Fiber

Std. Weight (g):

8

Stainless Steel

Stainless Steel

0.425

.840

 Δ H@:

4" Round

Quartz Fiber

SS

SS

EPA 8

Tedlar

Orsat

Ambient Provision Oxygen Verification:

DS-38

EPA Method:

Type:

Type:

ft.

ft.

Project Name:

Pitot Tube No.:

Pitot Tube No .:

Manometer ID:

Barometer ID:

Barometer ID:

T/C Readout

T/C Readout

Gas Composition

Container Type:

Sampling Proc.:

Moisture Content

Gas Analysis:

Wt. Scale ID:

Isokinetic

Nozzle Cal.:

Nozzle Cal.:

Probe Length:

Pitot Tube No.:

Probe Length:

Pitot Tube No.:

Control Mod ID:

Filter Type:

Filter Media:

Wet Catch:

Std. Weight ID:

Nozzle ID: 05

Nozzle ID:

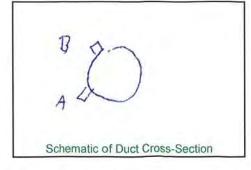
Equipment & Method Summary Isokinetic and Associated Testing Group 1 QI TOS Group 4 QI Grede-Iron Mountain 2020 Compliance w/(Test Date: Recorded By: 12 2C Other Next Ver. Date: 111 21 Pre-Use Insp.: 75 Next Ver. Date: Pre-Use Insp.: Next Ver. Date: 3/30/20 Pre-Use Insp.: TW Next Ver. Date: Pre-Use Insp.: Next Ver. Date: 2 21 21 Pre-Use Insp.: Next Ver. Date: Pre-Use Insp.: Pre-Use Insp.: Next Ver. Date: Pre-Use Insp.: Next Ver. Date: 3C Ambient 3/3A 3B Other 7-Layer Inert Leak Checks: Multipoint With Iso Train Grab Integrated Instrumental: Instrument ID: Ambient Cal Reading: Portable O2 ID Note: Portable O2 results are not reported as test data Explain in Options/ Deviations Section Initials Other 4, back-half of iso train Beam Next Ver. Date: Pre-Use Insp.: 733 Pass Scale Reading: Fail 17 23 26A 29 Other Glass Quartz Other Pre-Use Insp.: 718 Glass Quartz Other 0-426 0,426 0.425 Pre-Use Insp.: 73 Glass Quartz Teflon Other 1-1-21 Pre-Use Insp.: Th Next Ver. Date: Glass Quartz Teflon Other Next Ver. Date: Pre-Use Insp.: ΔH@: 2.079 Next Ver. Date: Pre-Use Insp.: 7 Next Ver. Date: Pre-Use Insp.: Thimble Other SS Paper Teflon Other **EPA 23** EPA 26A **EPA 29** Other

WC Options/Deviations: Pace Analytical FSD 20-04074

Control Mod ID: EM-M

Grede, LLC - Iron Mountain Page A-66 of 88

Field Data Sheets - Cupola Inlet



Volumetric Airflow Determinations

Project Great	Manometer Type and ID				
Test Location (c	po19 13H	Inkt		Barometer Type	and ID
Date 12/15/20	RI	Thermocouple Sensor ID			
Duct Dimensions	48x48		Inches	Pitot Tube No.	6-10
Port Length	3.24		Inches	Technicians	2 HE/
Pitot Leak Check - Po	os V	Neg			

Manometer Typ	e and ID	Em	an-46
Barometer Type	and ID	DB-6	50
Thermocouple S	Sensor ID	+1-4	17
Pitot Tube No.	6-10	Ср	0.84
Technicians	SHE/)	4.JR	

Traverse Point IDs		Cyclonic Velocity Head - Inches H ₂ O				Stack Temperature - °F					
Point		s From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔΡ	ΔΡ	ΔΡ	ΔΡ	°F	°F	°F	°F
	1,55	4,80		0.361	0.348	0,590	0-463			683	675
2	5.02	3.28		0.405	0.451	0.566	0,431			7/2	693 756
3	9,30	12.55		0.749	0.391	3.525	0.431			753	706
Y	32.49	18.76	-	0.507	0.490		0.409		-	723	711
6	38.70	35-77		0,483	0.524	0,436	0.627			735	727 723
5	42.47	4/22		0,132	0.512	0.391	0.265			692	723
g	46.45	46.22		3.610	0-461	0.432	0.247			684	715
	-	7		0,363	0.347	0529	0,491			698	762
3				0,482	0.428	0.492	0.476			702	734
3	1	6,		0.437	0.405	0.513	0,416			717	716
4		the		0.427	0.383	0-423	0.423			721	118
T,	a.			0.336	0.334		369			712	716
1	1 46	eve		0.336	0.293	0.434	2340			715	715
0	1	1		0.355	0.310	0.448	0.329			710	7!1
				1320	0-3/0	2.724	0.778			11-	///
-											
3	1										
			1								
						THE					
					1	21					
						2/15/25		-			
								1			
						-			-		
											-

	Run 1	Run 2	Run 3	Run 4	
Bar. Pressure	29.106	-	~	~~~	"Hg
Static Pressure	-1,251	-1.264	-1.929	-1.140	"H ₂ O
Dry Bulb Temp.	684	680	710	715	°F
Wet Bulb Temp.	NY	MY	MY	MY	°F
Moisture Content	20	MY	MY	MY.	%v/v
320 P Oxygen	10.0	9.0	4.0	9.0	%v/v
Time of Meas.	845	1230	1200	1400	(24 Hour)

Constant Rate Moisture Sampling

29.10 6 In. Hg -1.251 In. H20

1/1/%

Barometer ID

24-

D13-60 TC Sensor ID

Scale ID

20

Static Pres. Est. Moist. Bar. Pres.

(m)

3.49r

Meter Coef.

Module ID

Tulet

8

(Upola)

Sample Location

inesp

Project

Pace Analytical

FSD 20-04074

Pace Analytical *

Test/Run

3

12/15

Date

Operators/Techs

Orifice Coef. AH@ 1.821

Vacuum Train

30 mental NA Nm/

83 Inches H₂O

0

93

Report Date 2/5/2021

32

700 04

50 12 21

Just rocklank ond started

いたいけん to line

mist たころ

1 mg

Tot/Avg

02=9.18

tm=8/12

115/23

t=680

00.1=HD

Vm=21.75

20

=0

ot/Avg

半

37.9

5.7

Total

Desiccant 0.0811 1177.0 3.0

2

4

0

101.6

132,6

Final Volume Initial Volume

700

Comments: 2428

Sampling Train Leak Checks: Pretest 2. 22 @6.13 "Hg Posttest 0.45@ 9.16 "Hg

Grede, LLC - Iron Mountain

Page A-69 of 88

(100 58

Impinger No.

00

32.

Difference

our ticulare

456 454 937

beck upla

Revised 11/13/2020

5

Cubic Feet

685

Z WE

12/15/2

3

0

Pud Juy

a 40

4 11

429

0 0

00

0

PE

684

Inches Hg

Probe Temp. Filter Temp. Temp. Stack

Oxygen

Temp.

Temp.

Temp.

1/1/%

320P

10.5

27 12

3

97

1/4

44

0,

57

un u

2

1.6

26

3

ch

46

いい

mpinge | Meter In | Mtr Out

Incre-

Orifice

Meter Vol.

Time

Trav. Point

ΔT

No.

Meter ∆H

>

Constant Rate Moisture Sampling

75-277 D13-60 TC Sensor ID

Barometer ID

Scale ID 1/1/%

-1.264

_n. Hg _n. H₂O 29.108

Static Pres. Est. Moist. Bar. Pres.

abuuduu Probe Filter Stack

Meter Coef.

1-1

Module ID

3H INP+

(100)

Sample Location

Test/Run

12/11/2/

Date

45%

Operators/Techs 2 HE

Orifice Coef. AH@

320P Mtr Out Meter In Oxygen

Temp.

Temp.

Temp.

Temp.

Temp.

Temp.

Vacuum Inches Hg

mental Incre-

Nm/

Inches H₂O Meter ∆H

V_m Cubic Feet

Train

Orifice

Meter Vol.

Time ΔT

Trav. Point No

4

1/0%

8.50

30 5

94

672

2,5

05

7

201

NAN

44

687

0

12

1/4

00.

12

102

1047

257.25

2 2.1

212

52

8

43

49

667 680

>

Lea fz

223.74

35

20

42 812

30

114

251

12

in 15 18

24-50

80.00

75 202

2.9 77

5

685 999

5/50/27

0 p

> 20 212

75

232.11

0

63

1.5

rul my

Witz Analyzers Mois hie

Flussing **Tot/Avg**

tm=47.0802=8

t= 680

OF 1 = HD

Vm= 30.29

=0

0.0811 Desiccant 1.88.3 2 4 0

Total

167.7

2.6

Comments: Sampling Train Leak Checks: Pretest 2,0 H @ 7,00 "Hg

	3
	0
2	K
?	30
D	
-	

0	4	-
3710	1	1
V','	2	,
4	1	
14	1	-
PH	0	
0	1	
100	1	

1 2	6.811 6982	(0) (0)	6.81 6981	
Impinger No.	Final Volume	Initial Volume	Difference	
	110%	pishe		6111
ments:	parse E	to Unpluy		SCK UP 6

Project

Pace Analytical **

Posttest (1, 317 @)

Constant Rate Moisture Sampling

% -1.264 Est. Moist.

_ In. Hg In. H₂0

TC-47 08-63

05-42

Oxygen

Temp.

Temp.

Temp.

Temp.

1/10%

50.21 8.7

20

897

1/4

4

685

k

269

0

5 5

0 0

2

47

72

10

687

0

5

0 D

707

724 720

0

10

2 7 たって

36

5

320P

impinge Meter In Mtr Out

TC Sensor ID Barometer ID

Scale ID

29.10 6

Static Pres. Bar, Pres.

9.9950 (M-1

Module ID

Meter Coef. 7

Orifice Coef. AH@ 1. 921

Probe

Orifice

Test/Run 7,

BH Inlet

Sample Location (Joy)

(2/15/12)

Date

Operators/Techs

Crede

Project

Pace Analytical

FSD 20-04074

Pace Analytical **

NT4/342

Trav.

Point

V.m. Meter Vol. -Time ΔT

9

233:70

がある

Temp. Filter Temp. Stack Vacuum Inches Hg Train

mental Incre-W/ Meter ∆H

Inches H₂O 00

1

82.50 20

0

8

72 3

247.68

240 45 442

753.34 266.02

2

33

248.93

2 77 20

000 415

OC. 1=HA V=25.21

Gus startes St. FAUS UF.

Tot/Avg

tm=47,0 02=8.22

t=695,77

analycers

いたが、ナル

八年

15

1

さいた

(45 min.

Ful rin

00

00 66

2

215

10

Comments:

Sampling Train Leak Checks:

Pretest 0.22 @ 11.0 "Hg
Posttest 2.0 0 0 10.0 "Hg

Pars down

222

6.0 130 350.0 Initial Volume Final Volume Impinger No. Difference

Decr 40 (5) 1718

167.8

Total

Desiccant

4

0,0261 1306.3

1340-1342

Revised 11/13/2020

110

Volumetric Airflow Determinations

ProjectGreat				Manometer Typ	e and ID	OM	-46	
Test Location Lup	19 BH	INTE	L	Barometer Type	and ID	DB-6)	
Date 12/16/20	Test/Run			Thermocouple S	Sensor ID	TC-4	7	
Duct Dimensions	48-48		Inches	Pitot Tube No.	6-10	Ср	0.84	
Port Length	3.25		Inches	Technicians	ZHE			
Pitot Leak Check - Pos	~	Neg						

Trav	erse Poi	nt IDs	Cyclonic	Velo	city Head	- Inches	H ₂ O	Sta	ick Tem	oerature ·	· °F
Point	Inches	s From	Flow	Run 1	Run 2	Run 3	Run 4	Run 1	Run 2	Run 3	Run 4
No.	Wall	Port	°Yaw	ΔΡ	ΔΡ	ΔΡ	ΔΡ	°F	°F	°F	°F
	1.55	4.80	0	0.329	0,483	0,397		717	627	691	
3	5.03	858	0	0.338	0,483	0.278		783	645	692	
3	9.30	12.55	0	0.429	0.442	0-959		762	649	702	
4	15.51	18.76	0	0,472	0,405	0.427		758	651	702	
5	3870	35.74	5	0.463	0.378	0.356		717	645	703	
6	28/0	91.75	5	0.484	01355	0,390		711	680	706	
8	42.47	44.76	0	0.453	0,347	0.266		712	682	797	
5	46.45	79.70	0	3,403	0.508	0.216		704	685	698	_
2		7	0	0.416	01921	0247		762	721	692	
3	1	anel	0	0.287	0.347 0.308 0.327 0.429 0.318 0.373	0203		350	723	690 685 681 700	
4		as	0	0.452	0 277	2.011		75/2	735	685	
			0	0.201	0.390	0.436		717	692	700	
50	G	pre	0	1203	0.469	0.400		715		17-	
7			0	0.383	2. Ym	0.440		711	7/2	0690	
8	1	1	0	0,391	0.400	0.366		705	705	675	
_				-,21)			100	100	1	015	
							Aug	735	684	694	
							11.0		0-1	0.1	
			1								
						-	,				
						< 1	4=				
							7				
						12:					
						- 1	15/2,				
						-	1/2,				
							/				
										1	
							,				
							13	116	12/6	7	
							1	-		1	
				1			Run 1	Run 2	Run 3	Run 4	

Schematic of Duct Cross-Section

	1				
	Run 1	Run 2	Run 3	Run 4	Harrie .
Bar. Pressure	28.862		20,00	7	"Hg
Static Pressure	-1.619	-1.337	-1.267		"H ₂ O
Dry Bulb Temp.	725	684	Bas		°F
Wet Bulb Temp.	MY	MY	N4		°F
Moisture Content	MY	ny	MY		%v/v
320 P Oxygen	9.0	-	-		%v/v
Time of Meas.	730	1200	730		(24 Hour)

684

G9 (Grede, LLC - Iron Mountain

RevisionPage Analytical) FSD 20-04074

Constant Rate Moisture Sampling

2 20 Bar. Š Orifice Coef. $\Lambda = \frac{0.0957}{0.0057}$ Meter Coef. 7 Module ID

all tule

(upola

Sample Location

Test/Run

Operators/Techs 2 14 £

12/16/20

Date

~		
TC Sensor ID	Barometer ID	Scale ID
	0	

~		
IC Sensor ID	Sarometer ID	0
_	m	-

11-11	09-80	00.14
Sensor ID	rometer ID	

0	
ete	
Du	0
ä	g
m	S

2	₽	
00000	Barometer	Scale ID

O Sellso ID	Barometer ID	Scale ID

res. 48, 82	In. Hg	TC Sensor
Pres 1. 337	In. H ₂ O	Barometer
oist. 25	٨/٨%	Scale ID

. Pres.	18,82	In. Hg	
tic Pres.	-1.337	In. H ₂ O	
Moist.	S	٨/٨%	0,

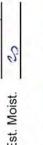
atic Pres	-1.337	In. H ₂ O	m
st. Moist.	S	1/0%	S

п
п
п
П
r
н
ı
ı
п
п
ı
ı
ı
п
н
H
Ľ
į.
t
Е
L
t
Ľ
۲
н
ı
ı
п
п
п
ı
ı
П
ı
۲
ı
П
н
П
ı
ı
ı
ı
ı
۲
ı

	ı
	1
	ı
	1
	ı
	ı
	1
	ı
	1
	1
	1
	1
	1
	1
	1
	1
	ł
	ı
	F
	t
	В
	ı
	ı
	ı
	ł
	1
	1
	1
	1
	1
	1
	ı
	ı
	1
	1
	,
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

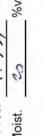
\/\ ⁰ / ₁	
S	
ESt. MOISt.	

/////	
S	
. Moist.	
EST.	


5.	7/0//
----	-------

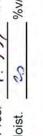
100
Mtr Out
0
三
2
C
-
a
1
<u>w</u>
2
10000
D
D
= .
<u>a</u>
=
1
a
1 8
1 7
robe
-
(D)
le le
li T
-
Name of Street
1
1
1 के
ו ס
Sta
Sta

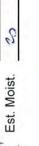
8	
S	
Est. Moist.	

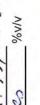

l	0	,		
	Ect Moist	LSt. Moist.		
-	000	100.		

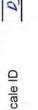
/%	
S	
Aoist.	

oist. 25









From Mr

2

27

668

4

3

0. 7

2

0.

261.86

0

267.63

270.73

3

75. 542

33 7 3

25

Oxygen 320P

Temp.

Temp.

Temp.

Temp.

Temp.

Temp.

Vacuum Inches Hg

mental Incre-

M/

Inches H₂O Meter ∆H

V_m Cubic Feet

ΔT

2591

845

Train

Orifice

Meter Vol.

Time

Trav. Point So.

1/1/%

*						-	_	
96	24	24	くか	14	84	48	66	
47	82	66	52	15	22	43	22	

685

٥

128.84

50

287 182

959

51

13 72

1

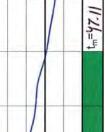
688

2.0

11.0

001

train Coutinually


Plussing

45 min.

2/16/20

882

Total

Fot/Avg

02=

 $t_s = 687$

3

Vm=25.27 AH=

3h =0

Sampling Train Leak Checks: Pretest - 03 @ 13.0 "Hg Posttest - 03 @ 13.0 "Hg

855 Comments:

rex

Difference

Revised 11/13/2020

Project

Grele

Pace Analytical "

Constant Rate Moisture Sampling

In. H₂O 28.862 In. Hg Bar, Pres.

3

Barometer ID Scale ID

16-77

19-40

DS-42

TC Sensor ID

Est. Moist.

Static Pres.

0,996,9

Cm-1

Module ID

1.821

Meter Coef. γ

Orifice Coef. AH@

Filter

Oxygen

Temp.

Temp.

Temp.

Temp.

Temp.

Temp.

Inches Hg Vacuum

Vm

۸/۸%

MI

200

3

1

102

2

24

40 50

12

15

12

55

200

15

320P

minpinge Meter In Mtr Out

Probe

Stack

Train

Incre-

Test/Run

mental

Meter ∆H Orifice

Time

ΔŢ

Point Trav.

SO.

Meter Vol.

Cubic Feet Inches H₂0 3

240

284 65

12 2

269 673

2

089

00

5

248.54

CA

2

32 108

2007

2

4

N

30425 79. 305

600

20 20

25

d

Endrun early due to

Riog of moisture

Se'l=HV V=25.12

=0

Sampling Train Leak Checks: Pretest 2.33 @ (2.9 "Hg Posttesto, 20

@ 12.0 "Hg

Passon 10 Comments: 35

300

70.6 Initial Volume Difference

345.8 Desiccant 2 4 6.9 270.5 Final Volume Impinger No.

Total

atm=44.5502=mr

ts=692.T

Revised 11/13/2020

Project

618 20

Sample Location (pp

12/1/2/20

Date

Operators/Techs 2 HE

Pace Analytical Trace Division

Constant Rate Moisture Sampling

1.582 3.9959 (m) Orifice Coef. AH@ Meter Coef. 7 Module ID

20 Static Pres. Est. Moist. Bar. Pres.

11.3

Scale ID

TC Sensor ID Barometer ID

In. Hg

Oxygen 320P

Mtr Out Temp.

Meter In Temp.

abuuduu

Temp.

Temp.

N/N%

3

55 56

50

863

2.5

0

00

329 88

345.64

828

ろかん

KO

186

77 11

2

54

58

4

28

16-77

	1		
	۶		
1	1		
<	7		
		ı	

i)	1	ľ	
1	ر	٦		
4		7		
			1	

		ı	
		1	
	3	7	
4)		
2	5	7	
1		٦	

	- 1	
0	42	
	3	4

0	7	
0	5-5	
115	0	

Stack

mental Incre-

Orifice

Temp.

Probe

Meter ΔH Inches H₂O Cubic Feet

Inches Hg

00

Train

Vm

No.

Filter Temp.

Vacuum

310

80.

20

516 313

0

7.8 71875

124

7 3 24 43

Time ΔT Point

Trav.

Meter Vol.

Date

Tulet T 0 copo Grase

Pace Analytical Freig Services Division

Pace Analytical

FSD 20-04074

Sample Location Operators/Techs Project

Fest/Run

Grede, LLC - Iron Mountain Page A-75 of 88

Sampling Train Leak Checks: Pretest 0, 00 @ 14.0 "Hg

(9)

Posttest 0, 20

1346.8 Desiccant

2

4

3

285.1

mitial Volume

Difference

Final Volume Impinger No.

Comments:

Perso

02=n

atm=56.71

t=678.9

00,1=HA

95

V= 33

Field Data Sheets - Cupola Exhaust

Pace Analytical Tace Analytical

Isokinetic Particulate Sampling

C.M.

p

Static Pres. Est. Moist. Bar. Pres. Pitot No. D. 100 AH@ Orifice Coef. Meter Coef. Module ID Nozzle No. Expost Test/Run MA シッナ Sample Location Croole 3

0.84 In. H₂O In. Hg 1/1/% S 29.9 0.00

Manometer ID TC Sensor ID Barometer ID Scale ID

Incre-

mental

Desired ΔVm

Train

Stack

Temp.

Filter

Temp.

Temp.

Inches Hg Vacuum

\ m

Cubic Feet

Inches H₂O Meter ∆H Orifice

Inches H₂O

Cubic Feet

Head AP

Velocity

Meter Vol.

Time TΔ

Point Trav.

Š

12/16/20

Date

Operators/Techs

Project Grede

Pace Analytical FSD 20-04074

20083

0

0

0,002 6.0027

0.0027

Probe

Temp.

Oxyger 320P

Mtr Out Temp.

Meter In Temp.

Impinger Temp. 1/1%

4

Total

Desiccant

2

9651

150

000

174

22.7

22.4

8

Initial Volume Final Volume Impinger No.

Loles on Kitter Difference

4114

marks on

1.947

very

玉十

Pitot - Pos. 7

Revised 11/13/2020

0/0

02=

tm=78

Other

M-202;

■ Wet Catch;

Probe Wash;

Vm=106.70 VAP-0038AH=2.

ot/Avg

Grede, LLC - Iron Mountain

Page A-77 of 88

Samples Recovered: Filter 0-1143

Comments:

Sampling Train Leak Checks:

1=1725

0

49

42.90 0.00283

0.0027

20

E

0.00294

001

N

1000

8000

333

224

0.00263

208

Report Date 2/5/2021

0%

Sample

Isokinetic Particulate Sampling 15-57 Manometer ID TC Sensor ID Barometer ID Scale ID Cp 0.84 In. Hg 3 28 Bar, Pres. Pitot No. Static Est 0.992 0 ٥ CMI DHO, Orifice Coef. Module ID Meter Coef. Nozzle No. exhans Fest/Run Pace Analytical cupola Knon Operators/Techs X/R, 200 Grade Sample Location 12/16

In. H ₂ O	٨/٨%	September 1997
1.00 1	7	
Pres.	oist.	

In. H	%N/N	-
100	h	The second second
res.	ist.	

In. H ₂ (٨/٨%	
100	4	
res.	ist.	

ī.	V//%	
1.00 !	4	
Pres.	Moist.	1

٦	%	
2.00 1	7	
Pres.	Moist.	

<u>-</u>	%	0
100	4	
SS. 0	 	Line
res	Si.	

=	//%_	5
100	7	Droho
SS.	+	Filtor

n ₂	%N/N	Comp
100	4	Proha
0		Tiltor

	%^//	Sam
00	4	Probe
5		Filter

	%^\/	Sam
00	4	Probe
5	ب ا	Filter

S	Proha	Filter
10%	1	it.
Ė.	100	es.

	%		Š
0	1	,	Probe
	ist.		Filter
	0		

0	7	Pro
		Tilter
	Moist	
	+;	1 2

Incre-

Train

Sta

Temp. 4

Temp.

Vacuum Inches Hg

>=

Cubic Feet

Inches H₂O

Inches H₂O

Cubic Feet

178

0

(123

7 0.00192

240.060.062

0/

Head AP

1.067

5.00452

0.0012 0.0037

30

5

H

40004

100

0

AVm

Temp.

Temp.

nple Impinger

Oxyger 320P

Temp.

Temp. H

4

4

Mtr Out Temp. 1/10%

Total

Desiccant

1361

100

11-

001

8

19.7

5

Initial Volume Final Volume

Difference

Impinger No.

4

Solvida

@ 0.00 "Hg @ 0.00 "Hg Neg. 17

Neg.

Pitot - Pos. X

Revised 11/13/2020

Posttest 18

Pretest

Comments:

Sampling Train Leak Checks:

Samples Recovered: Filter

3

Other

₩ M-202;

■ Wet Catch;

Probe Wash;

D

JAP=0.0598AH=3.21

V=12314

0=170

Grede, LLC - Iron Mountain

Page A-78 of 88

761=

tm=87.02=

200

00

252

9

N

10

0

40.0307

372.90 0.0038

30

0.003

N

I H

0.003

382.290.0307

100

387.20 0.0309

0 6,000,0

110

1

120x

31

92 0.00354

378

50

Report Date 2/5/2021

0.00% 300.0035 0.0032

0

10

6.0

Meter In

mental

Desired

Meter ∆H Orifice

Velocity

Meter Vol

Time

Point

No.

Trav.

Project

Pace Analytical FSD 20-04074

Date

ΔT

Isokinetic Particulate Sampling

C-4-3 Manometer ID TC Sensor ID Barometer ID Scale ID Cp 0.84 In. H₂O In. Hg Static Pres. Est. Moist. Bar, Pres. Pitot No. 6.3922 CM-3 Orifice Coef. AH@ / 3 Meter Coef. Module ID Nozzle No. 7/17/2 Test/Run 7, Sample Location cupolo-Project Grade Iron 03/01 Operators/Techs Date

Trav.	j	Meter Vol.	Velocity	Orifice	Desired	Incre-	Train	Stack	Filter	Probe	Sample II	Impinger	Meter In	Mtr Out	320P
Point	- IIIIe	\ \ \ \	Head ∆P	Meter ∆H	ΔVm	mental	Vacuum	Temp.	Temp.	o.	_	Temp.	Temp.	o.	Oxygen
No.	ΙV	Cubic Feet	Inches H ₂ O	Inches H ₂ O	Cubic Feet	Vm	Inches Hg	°F	%	,k		, F	J.		N/N%
	(753)	08: 14													
4		96.305	00000		83:504	4.03	1.5	(83)	25.9	452	8 8	65	28	80	18.8
~	01	14.604	0.00215	1 .86	23	3.33	6. 7	161	255	192		65	2/2	000	170
B		0/ 6/14	0.00222	1.92	413.69	398	5.0	130	255	253	7	65	75	03	177
7	50	18	0.00234	2.00	18.21	4.12	50	173	251	252		60	16	80	17.1
1 3		86 Tch	42500	16,	421.76	3.95	5.0	^	258	582	1/2	39	29	80	183
~	30	45.78	0.0025	1.97	425.77	1.01	50	181		25%	72	19	18	90	180
0		429.71	0 3219	1.81	43.68	3.36	5.0	206		152	70		23	00	1.81
~	04	64		16.1	433.63	3.25		83	252	257	,	65	30	18	186
1 W		437.55	8/2000	68.1	437.56	3.93	8.8	193	253	255	32		03	18	17.9
7	50	05 144		1.89	64144	5.93	4.9	181	250	252	25	49	08	18	17.7
1		445.43	0.00216	100	145.41	3.92	0.0	193	753	25	26	79	386	18	17.7
7	60	449.34	0-00213	1.88	44933	3.92	5.0			254	75	90	2	18	181
2			0.00222		14-83-41	20%	5.2	163	25%	256	25	19	84	32	18.2
~	70	457.49	49 0,0024	1.39	257.25	40%	5	180	252	256	11	62	8	62	18.2
1 4		461.57	70.0227	20%	1.54	4.10	1.5	170	251		11	29	82	82	17.7
2	40	465.67	6700030	2.06	565.65	11.4	1.5	175		253	14	09	00	82	17.3
H		189.87	70,00234	2.14	169.85	4.20	5.0	160	52	355	75	19	58	82	17.8
7	30	81345	8 200241	2 27	474.15	230	3.5	151	3	252	12	09	200	3	18.5
1		14 84	000244	2.23	44.064	1.27	2.6	162	253	254	11	90	.58	3	17.6
7	100	19	0.00,00	2 .35	482.82	7.38	200	121	252	255	20	09	35	200	18.6
1		11. 787	452 900	2.35	487.22	7.4	5.3	156	n	121	10	1364	16 ,	48	18.3
2	110	21.70	0.00260	2.46	491.72	4.50	1'9	143	15%	258	73	62	2002	48	8.8
1 7		78.26	.26 0,00264	2.47	42.964	4.51	5.2	150	232	25%	14	63	8	8	17.9
4	150	500.78	000268	2.50	500.77	4.54	6.2	152	157	256	14	63	500	85	18.7
XX				•											
	CIOI)														
Tot/Avg	TOWAYE 0=/20	86.86=WA	Vm=98,98 VAP=2.08 8 AH=2.0	AH=2,08				1=174.7						tm=81.4	02=

Pitot - Pos.

Total

□ Other

母 M-202;

■ Wet Catch;

Probe Wash;

Comments:

Sampling Train Leak Checks:

Samples Recovered: Filter

@ 0.0 "Hg

8

Pretest /

00

Impinger No. Final Volume Initial Volume

Difference

Pace Analytical "Field Services Division

Field Calculation Summary

Computer Initialization and Run Summary The data on this form is preliminary and includes estimates. It is not intended to reflect final results.

Project Grede Site Dag house Date Sample Location Tech. Cupola

	Initia	lization Pa	rameters	12/1/20	-	
Parameter	Initial	Run_1	Run_2	Run_3	Run_4	Run_5
Meter Coefficient - Υ	0.9922			•		
Orifice Coefficient - Δ H@	1.862				i i	
Pitot Coefficient - Cp	0.84					
Nozzle Diameter - D _n	1.00			28.87		
Barometric Pressure - P _b	28.92	28.92	28.92	28.72		
Static Pressure - P _g	0.001	0.001	0.001	0.001		
Oxygen Estimate - %O ₂	18	18	18	18		
Moisture Estimate - %MC	18	5	4	3		
No. of Traverse Points	24					
Point Duration - ∆T	5					
Meter Start Temp, °F - t _m	フフ	77	86	78		
Initial Meter Volume - V _i	169.05	169.20	278.15	401.80		
Duct Shape (Rnd/Rect)	Rect					
Duct Width, Inches	533					
Duct Depth, Inches	239					
Final Volume - V _f		275.90	401.29	500.78		
Total Run Time - θ	1 30	120	120	120		
Condensate Volume, ml (g)		75	70.8	60.1		
	End	of Run Su	immary	7		
Average Sq. Rt. of the ∆P	√∆P	0.0530	0.0598	0.0481		
Average Orifice Meter	ΔΗ	2.44	3.21	2.08		
Average Stack Temperature	ts	172.5	1765	174.7		
Average Meter Temperature	t _m	78.8	826	81.4		
Sample Volume, Actual	$V_{\rm m}$	108.70	123.14	98.98		
Sample Volume, Dry Standar	V_{std}	100.90	114.78	92.90		
Moisture Content	MC	3.38	2.82	2.96		
Estimated Mole. Wt., dry	M_d					
Estimated Mole. Wt., wet	M _w					
Average Gas Velocity	V _s	3.32	3.76	3.03		
Isokinetic Variation	%1	99.3	99.9	100.8		
Volumetric Airflow, Actual	ACFM	176250	199320	160580		
Volumetric Airflow, Standard	SCFM	142220	159830			
Volumetric Airflow, Dry Std.	DSCFM	1378/0	155320	124680		

Pace Analytical® Field Services Division

Equipment & Method Summary

Isokinetic and Associated Testing Group 1 QI TUB Group 4 QI TUB

Project Name: Greve Iron MAX. Sampling Location: Capola Exhaust	Test Date:	113/20 13/2
Airflow Determination EPA Method: 2	2C Other	Initials 1
- 1. (1) 2. (1) 1. (1)		Pre-Use Insp.: AUA Pre-Use Insp.:
Manometer ID: _cm-J KOil Digital Ne	ext Ver. Date: 3/4/2/	Pre-Use Insp.: AUA
Manometer ID: Oil Digital Ne	ext Ver. Date:	Pre-Use Insp.:
Barometer ID: DD-72 Aneroid Digital Ne	ext Ver. Date: 2/10/20	Pre-Use Insp.: AUA
Barometer ID: Aneroid Digital Ne	ext Ver. Date:	Pre-Use Insp.:
T/C Readout 7c-33 Single Dual Ne	ext Ver. Date: 03/08/21	Pre-Use Insp.: WR
T/C Readout Single Dual Ne	ext Ver. Date:	Pre-Use Insp.:
Gas Composition EPA Method: 3 3/3A	3B 3C Ambier	nt initials
Container Type: Tedlar Teflon 7-Lay	yer Inert Other	Leak Checks:
Sampling Proc.: Single Point Multipoint	☐ With Iso Train │ ☐ G	Grab Integrated
Gas Analysis: Orsat Fyrite K Instrume	ental: Instrument ID: 6	Cal Range 21
	D 04-13 Ambient Cal F are not reported as lest data.	Reading: 20.9
Moisture Content EPA Method: 4, back-half of is	o train Other	Explain in Options/ Initials Deviations Section
Wt. Scale ID: 05-45	ext Ver. Date: 2/2/2021	Pre-Use Insp.: ************************************
Std. Weight ID: 4/2/6/ Std. Weight (g): 500-0	Scale Reading: 500. 0	Pass Fail
Isokinetic EPA Method: 5 _ 8 17	23 26A 29	Other initials
Nozzle ID: Type: 🔀 Stainless Steel 🗌	Glass Quartz	Other
Nozzle Cal.: 1/.00 2/.00 3/.00 4	5 Avg	Pre-Use Insp.: 70B
Nozzle ID: Type: Stainless Steel	Glass Quartz	Other
Nozzle Cal.: 1 2 3 4	5 Avg	Pre-Use Insp.:
Probe Length: 12 ft. Liner: SS Class	Quartz Teflon	Other
Pitot Tube No.: Coef.: 84 Ne	ext Ver. Date:	Pre-Use Insp.: AUK
Probe Length:ft. Liner: SS	Quartz Teflon	Other
Pitot Tube No.: Coef.: Ne	ext Ver. Date:	Pre-Use Insp.:
Control Mod ID: <u>CM-3</u> Υ: <u>0.992</u> ΔH@: <u>/862</u> Ne	ext Ver. Date: 3/4/2/	Pre-Use Insp.: AUX
Control Mod ID: Υ: ΔH@: Ne	ext Ver. Date:	Pre-Use Insp.:
Filter Type: 2½" Round 4" Round	Thimble Other	
Filter Media:	Paper Teflon S	S Other
Wet Catch: EPA 202 EPA 8 EPA 23	EPA 26A EPA	29 Other
WC Options/Deviations:		

Pace Analytical Field Services Division

Equipment & Method Summary

Instrumental and Associated Testing

Project Name: Grade Iron Mit. Sampling Location: Capolar Exhaust	Test Date: 12/16/2 o
Airflow Determination EPA Method: 2	Recorded By: AUX 2C OtherInitials
Pitot Tube No.: Coef.: 6.44 Pitot Tube No.: Coef.:	Next Ver. Date: Pre-Use Insp.: 4JA Next Ver. Date: Pre-Use Insp.:
Manometer ID: 67-3 Soil Digital	Next Ver. Date: 3/4/21 Pre-Use Insp.: AUR
Manometer ID: Oil Digital	Next Ver. Date: Pre-Use Insp.:
Barometer ID: DB-7z Aneroid Digital	Next Ver. Date: 2/10/2/ Pre-Use Insp.: AUR
Barometer ID: Aneroid Digital	Next Ver. Date: Pre-Use Insp.:
T/C Readout Tr-33 ☐ Single ➤ Dual	Next Ver. Date: 03/08/2/ Pre-Use Insp.: 41/1
T/C Readout Single Dual	Next Ver. Date: Pre-Use Insp.:
Gas Composition EPA Method: 3 3/3A	3B 3C Ambient Initials
Container Type: Tedlar X Teflon 7-	Layer Inert Other Leak Checks:
Sampling Proc.: Single Point Multipoint	With Iso Train Grab Integrated
Gas Analysis: Orsat Fyrite 🖟 Instr	umental: Instrument ID: 6 Cal Range 20
	2 ID 0×13 Ambient Cal Reading: $2 \cdot 9$
Moisture Content EPA Method: 4 Wet/	Dry Bulb Rel. Test Otherinitials
Wt. Scale ID: 05-45 Tipidial Beam	Next Ver. Date: 7/9/2021 Pre-Use Insp.: 400
Std. Weight ID: 4/2/6/ Std. Weight (g): 500.0	Scale Reading: 500-0 Te Pass Fail
Gas Monitoring EPA 3A EPA 6C	☐ EPA 7E ☐ EPA 10 ☐ EPA 25A
Instrument ID: 02-62-6	
Cal. Range: <u>0-21</u>	
Interface: Extractive Extractive	Extractive Extractive Extractive
Dilution Dilution	Dilution Dilution Dilution
Pre-Use Insp: (initials)	
Sample Line ID: ft.	Heated Unheated Pre-Use Insp.:
Gas Conditioner ID: Temp. Set Pt	Dilution Pre-Use Insp.:
Options/Deviations/Provisions:	

Method Used (circle one) 203A Method 9 203B Other

Company Name Mountain Zip Cd Unit No. Control Equipment Operating Mode Emission Point Description Copula East size Height of Emis. Pt Relative to Observer Height of Emission Point 20 Start Start End Distance to Emission Point Start Direction of Emission Point (Degrees) Start 9 End 3 4 5 80 End Did Observation Point Change Yes No Vertical Angle to Observation Point Start End Plume Background Description Start Gray Bill Crey End Sky Conditions **Emission Color** End Light Ever Start (1847 Start Noul End Wind Speed Start 5-19 Wind Direction Start 5h End Ambient Temperature (°F) Wet-Bulb Temp. 13 Start 17 End Source Layout Diagram Draw Arrow North 20 Observation Point Legend Stack Observer's Position Plume 140° Sun Sun Position Wind

Observer Na	me Zaci	ary E	chstron		
Affiliation	face	./	tical		
Certified by (met	11/4/	10	

Visible Emissions Observation Form

Test	Run 1	Page /	of 2	
Observation 2//	l/25	Start Time	End Time	

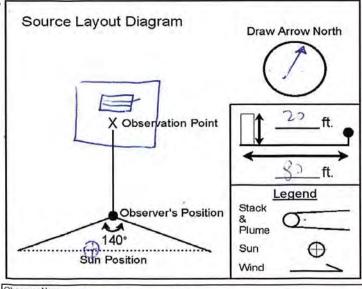
Sec	0	15	30	45	Comments
0	0	0	0	0	40
1	0	U	0	0	
2	C	0	0	0	
3	0	0	0	0	
4	0	0	0	0	
5	0	0	5	0	I Y
6	0	·O.	0	0	5
7	0	0	0	0	
8	0	0	0	O.	,
9	0	3	0	0	
10	0	0	8	0	
11	0	0	5	0	
12	0	0	0	0	
13	()	15	0	0	
14	63	0	0	0	
15	0	ð	0	50	X
16	0	53	0	()	
17	0	0	0	0	*
18	0	ð	0	0	
19	0	0	0	0	
20	0	0	S	0	
21	0	0	0	٥	
22	0	0	0	0	
23	0	0	0	0	
24	0	0	0	9	
25	0	Ò	0	0	ar and a second
26	C	0	0	0	
27	0	0	0	0	
28	0	9	0	0	
29	0	0	0	C	

Observer Signature	P 1	Date
Sellan	Erholm	12/16/20
2 cours	CALL	-

Visible Emissions Observation Form Run / 2 Test [Page Method Used (circle one) Observation Date **End Time** Start Time Method & Other 203A 203B 12/16/20 1000 Comments 15 30 45 Company Name 3 (1981 30 2 0 Facility Name n movotain 0 0 31 Street Address Carpenter 0 32 0 Zip Cd Kingsfild 0 M 33 0 34 0 0 Unit No. Operating Mode Process 0 35 Control Equipment Operating Mode 0 0 0 36 Emission Point Description 0 East silt 37 0 0 38 Height of Emission Point Height of Emis. Pt Relative to Observer 1 0 39 0 End Start Start End Distance to Emission Point Direction of Emission Point (Degrees) 0 3 0 40 0 Start Start End Vertical Angle to Observation Point Did Observation Point Change 41 0 0 0 0 42 Plume Background Description Start End 0 0 43 0 **Emission Color** Sky Conditions Start End Start End 0 0 0 44 Wind Speed Wind Direction Start End End 0 0 45 0 0 Wet Bull Tempo Ambient Temperature (°F) Start 0 0 46 7 0 43 0. 47 0 0 0 Source Layout Diagram Page Draw Arrow North 0 48 0 0 49 C 0 0 0 0 50 51 0 Ò X Observation Point 52 0 0 0 0 53 0 ft. 0 0-54 Legend 0 Stack 0 55 Observer's Position Plume 0 56 140° Sun 57 0 C Sun Position Wind 58 0 Observer Name Packary Ecustran 59 Affiliation Certified by (Org/Date) Observer Signature 11/4/20 36 hay Alvanet

Pace Analytical*

Control Equipment


Method Used (circle one) Method 9 203A 203B Other

Company Name Great Facility Name In Montain Street Address Street Address Street Address Street Address Street Address Street Address State A Zip Cd Process Copylia BH Either Unit No. Operating Mode

Operating Mode

Emission Point Description (u) 414	## South Side
Cupola B	hilding
Height of Emission Point Start End 70	Height of Emis. Pt Relative to Observer Start 10 End 0
Distance to Encission Point Start End 80	Direction of Emission Point (Degrees) Start 3 15 End 3 45
Vertical Angle to Observation Point Start Send	Did Observation Point Change - Yes No

Plume Background Description Start Gray Dellans	End Gray Building
Emission Color Start No he End No Ne	Sky Conditions Start 1144 End Clar
Wind Speed Start 10 End 5-15	Wind Direction Start 5 W End 5 W
Ambient Temperature (°F) Start 17 End 13	Wet Bulb Temp. %rH

Observer N	ame Zac	havy	ECRSHO M	
Affiliation	Paie		yral .	
Certified by	(Org/Date)			
	A	elowet	- 11/4/20	

Visible Emissions Observation Form

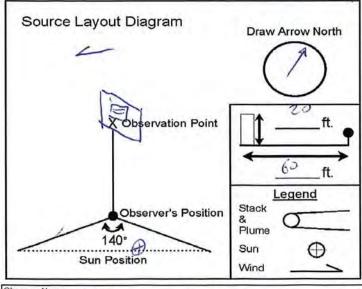
Test	Run 2	Page 1	of 2.
Observation Date		Start Time	End Time
12/16/21		1212	1110

Sec	0	15	30	45	Comments
0	0	0	Ċ	0	
1	.0	O	0	0	
2	0	0	0	0	
3	0	0	0	D	
4	0	0	0	a	
5	5	0	0	0	
6	0	0	0	0	
7	0	0	0	0	
8	0	0	0	0	
9	0	ð	3	0	
10	0	0	8	0	
- 11	0	ō.	0	0	
12	0	0	C	0	
13	0	0	O	0	
14	0	3	0	0	
15	Ö	0	0	Ö	
16	0	0	0	0	
17	0	63	O	0	*
18	3	ð	0	0	
19	D	6	0	0	
20	0	0	5	0	
21	0	0	3	7	
22	0	6)	0	5	
23	0	0	0	0	
24	0	0	0	0	18
25	0	0	C	0	
26	0	0	0	0	
27	0	0	0	0	
28	0	0	C	0	
29	0	0	0	0	

Observer Signature	Date
Bullion Echlon	12/16/13
0.000	1 -1 -1 - 0

Visible Emissions Observation Form Run Z 2 Method Used (circle one) Test Page Observation Date Start-Time **End Time** Method 9 203A 203B Other 12/16/20 10 1013 45 Comments Company Name 0 Grede 0 30 0 3 Facility Name Mora tain 0 0 31 0 Street Address Carpenter 32 3 Zip Cd 33 0 0 ~ 0 1) 0 34 1 Unit No. Process Operating Mode 35 0 0 Control Equipment Operating Mode 0 0 36 Emission Point Description Southsige 0 0 37 7) 0 0 38 0 Height of Emission Point Height of Emis. Pt Relative to Observer 39 0 Start End Start End Distance to Emission Point Direction of Emission Point (Degrees) 0 0 40 0 Start End Start End Vertical Angle to Observation Point Did Observation Point Change Ó 41 0 Start Yes 42 0 C Plume Background Desc ription Start End 43 0 0 Emission Color Sky Conditions Start Start End 44 0 0 Wind Speed Wind Direction End Start Start End 45 0 Wet Bulb Temp. Ambient Temperature (°F) Start 0 0 46 0 47 0 0 Source Layout Diagram Draw Arrow North 48 0 0 0 49 0 0 0 50 1) 51 0 0 0 0 X Observation Point 52 0 0 53 0 0 0 ft. 0 54 egend 0 Stack 55 0 Observer's Position 0 Plume 0 0 0 56 140° Sun 7) 0 57 Sun Position Wind 0 0 0 0 58 Observer Name 0 59. Affiliation Certified by (Org/Date) 12/16/15

Pace Analytical Process Division


Method 9 203A 203B Other

Company Name	60	ele					
Facility Name	Ivai	1 /	houn	taln			
Street Address	801	5.	Car	oen te	-		
City Kings	Ford			State	I	Zip Cd	

Process Cupola ##	Unit No.	Operating Mode 4073
Control Equipment	Operating Mode	

+ Side of Building
4
Height of Emis. Pt Relative to Observer Start 10 End 10
Direction of Emission Point (Degrees) Start 325 End 325
Did Observation Point Change Yes No

Plume Background Description Start Rus Ly Building	End Rusty Building
Emission Color	Sky Conditions Start Clear End Clear
Wind Speed Start 5-15 End 5-15	Wind Direction Start 5 W End 5 W
Ambient Temperature (°F) Start 13 End 12	₩et Bulb Temp. %#H

4.1		
el Ana	(lytical	
1		
,	ger wet	Aeromet 11/4/20

Visible Emissions Observation Form

Test /	Run 3	Page (of 2	
Observatio	n Date 16/20	Start Time	End Time	

Sec	0	15	30	45	Comments
0	0	0	0	0	
1	0	0	0	0	
2	0	0	5	0	
3	5	0	0	0	
4	0	0	5	0	
5	0	0	0	5	
6	0	0	0	0	
7	5	0	0	0	
8	0	0	0	Ō	
9	5	0	ð	0	
10	0	5	5	5	
11	5	5	5	5	
12	1	0	5	0	
13	5	5	0	5	
14	0	0	5	5	
15	5	0	5	5	
16	15	ð	0	0	
17	0	0	0	0	
18	0	0	0	0	
19	0	0	0	0	
20	0	0	0	0	
21	0	0	0	0	
22	0	0	0	0	
23	0	0	0	0	
24	0	0	0	0	
25	0	0	0	0	
26	0	0	0	0	
27	0	0	5	0	
28	0	0	0	0	
29	0	0	0	0	

Observer Signature	(11	Date
Trkes	LAM	12/16/20

Method Used (circle one) Method 9 203A 203B Other Company Name Grese Facility Name on Mountain 5 Carpenter Street Address State City Zip Cd Kingstord Unit No. Operating Mode BH Cupo14 Control Equipment Operating Mode Emission Point Description side West deight of Emission Point Start Height of Emis. Pt Relative to Observer Start End Distance to Emission Point Direction of Emission Point (Degrees) Start End End Vertical And e to Observation Point Did Observation Point Change Start End Plume Background Description Start End Emission Color Sky Conditions En Start Start End Wind Speed Wind Direction End Start Start End Ambient Temperature (°F) Wet Bulb Temp. Start End Same Source Layout Diagram es Draw Arrow North PERC X Observation Point ft. egend Stack Observer's Position Plume 140° Sun Sun Position Wind Observer Name Affiliation

Visible Emissions Observation Form

Test /	Run 3	Page 2	of 2
Observatio	16/20	Start Time	End Time

Min	0	15	30	45	Comments
30	0	0	0	0	
31	0	0	0	0	
32	0	0	0	0	
33	0	0	0	0	
34	0	0	0	0	
35	1	0	0	0	
36	0	0	0	0	
37	1)	0	0	0	
38	0	15	0	5	
39	0	5	5	5	
40	9	0	5	5	
41	5	0	5	5	
42	0	0	5	5	
43	5	0	5	5	
44	5	5	5	5	
45	5	0	15	5	
46	0	5	5	0	
47	5	0	0	5	
48	5	0	0	V	
49	5	5	5	5	
50	ð	5	10	10	
51	0	5	5	5	
52	0	0	6	0	
53	0	5	0	5	
54	0	0	5	0	
55	5	5	5	0	
56	0	Ŏ	0	0	
57	0	0	0	0	
58	0	0	0	0	
59	5	0	0	0	

Observer Signature	Date
Zocher Eleber	12/16/20
Sering to C-	

Acrome

Certified by (Org/Date)

Appendix B

Quantitation and Laboratory Reports

Certs: Zero:

20

21

High

EPA Method 3/3A Field Data Sheet

Mid: cc95749

21.1

Instrumental Analysis of Collected Samples

0.5%

0.5%

High: DT0033087

Pass

Pass

Project	Grede, LLC - Iron Mountain	Analyst	A. Radabaugh
Test Location	Cupola BH Inlet	Analysis Date	12/16-17/2020
Sampling Date	12/16-17/2020	Instrument ID	
Fuel Type		Sample Type	Time Integrated

Low:

21

20

Instrument Calibration												
Cylinder Value Pretest Calibration Posttest Pre-Post Calibration Reading Test Drift Status												
Level	CO ₂	O ₂	CE	Drift								
Zero	0		0	0	0.0%	0.0%	0.1	0.1	0.5%	0.5%	Pass	Pass
Low												
Mid	9.93	10.9	9.8	10.9	-0.6%	0.0%	9.9	11	0.5%	0.5%	Pass	Pass

0.0%

20.1

0.0%

	Sample Analysis Results									
Samp	ole ID	O ₂	Hold	Instrumer	nt Results	QC C	riteria	QC Check Status		
Test	Run	Field	Lab	%CO ₂	%O ₂	$Hold\Delta$	F_{o}	Result Acceptance		
1	1			11.5	9.0	??	1.03	O2 Hold Missing		
Calib	oration	Bias Ad	djusted	11.60	8.95					
1	2			11.0	9.6	??	1.023	O2 Hold Missing		
Calib	oration	Bias Ad	djusted	11.10	9.55					
1	3			10.7	9.8	??	1.033	O2 Hold Missing		
				10.79	9.75					
Calib	oration	Bias Ad	djusted							
Calib	oration	Bias Ad	djusted							
Calib	oration	Bias Ad	djusted							
Calib	oration	Bias Ad	djusted							
Calib	oration	Bias Ad	djusted							
Calik	oration	Bias Ad	djusted							

O₂ Hold Acceptance

Field O_2 - Lab O_2 = Hold Range $\leq 0.3\% O_2$ Fo is a guideline, not criterion.

Instrumental Analysis of Collected Samples

Project	Grede, LLC - Iron Mountain
Test Location	Cupola BH Exhaust
Sampling Date	12/16-17/2020
Fuel Type	

Analyst A. Radabaugh Analysis Date 12/16-17/2020 Instrument ID Sample Type Time Integrated

Certs: Zero: Mid: cc95749 High: DT0033087 Low:

Instrument Calibration												
Cylinder Value Pretest Calibration Reading Error								ttest ding		Post Drift	Calibi Sta	
Level	CO ₂	O ₂	CO ₂	O ₂	CO ₂	O ₂	CO ₂	CO ₂ O ₂		O ₂	CE	Drift
Zero	0		0	0	0.0%	0.0%	0.1	0.1	0.5%	0.5%	Pass	Pass
Low												
Mid	9.93	10.9	9.8	10.9	-0.6%	0.0%	9.9	11	0.5%	0.5%	Pass	Pass
High	20	21	20	21	0.0%	0.0%	20.1	21.1	0.5%	0.5%	Pass	Pass

	Sample Analysis Results										
Samp	ole ID	O ₂ H	Hold	Instrumer	nt Results	QC C	riteria	QC Check Status			
Test	Run	Field	Lab	%CO ₂	%O ₂	Hold∆	F_{o}	Result Acceptance			
1	1	18.1	17.9	3.1	17.9	0.2	0.987	Criteria Met			
Calib	oration	Bias A	djusted	3.09	17.85						
1	2	18.6	18.5	2.4	18.5	0.1	1.029	Criteria Met			
Calib	oration	Bias Ad	djusted	2.38	18.45						
1	3	18.5	18.3	2.7	18.3	0.2	0.987	Criteria Met			
				2.69	18.25						
Calib	oration	Bias Ad	djusted								
Calib	oration	Bias Ad	djusted								
Calib	oration	Bias Ad	djusted								
Calib	oration	Bias Ad	djusted								
Calib	oration	Bias Ad	djusted								
Calib	oration	Bias Ad	djusted								

O₂ Hold Acceptance

Field O_2 - Lab O_2 = Hold Range $\leq 0.3\% O_2$ Fo is a guideline, not criterion.

Bias Adjustment Summary

Kingsford, MI Pace Project No. 20-04074

Appendix B Bias Adjustment Summary Cupola Baghouse Inlet Test 1

Oxygen (O2), %v/v, Dry	Interval 1	Interval 2	Interval 3
Date of Run	12/15/2020	12/15/2020	12/15/2020
Time of Run	0855-0955	1045-1145	1230-1401
Span Cylinder Concentration	10.9	10.9	10.9
Pre-Run Zero Reading	0.0946	0.0306	0.00460
Post-Run Zero Reading	0.0306	0.00460	-0.0205
Pre-Run Span Reading	10.9	10.9	10.8
Post-Run Span Reading	10.9	10.8	10.8
Run Period Analyzer Average	9.16	8.91	8.31
Bias Adjusted Run Result	9.16	8.95	8.40
Ond as Distille Works Day	1.61.4	1.1	1.1
Carbon Dioxide, %v/v, Dry	Interval 1	Interval 2	Interval 3
Date of Run	12/15/2020	12/15/2020	12/15/2020
Time of Run	0855-0955	1045-1145	1230-1401
Span Cylinder Concentration	9.93	9.93	9.93
Pre-Run Zero Reading	-0.0267	-0.0297	-0.0371
Post-Run Zero Reading	-0.0297	-0.0371	-0.0466
Pre-Run Span Reading	9.82	9.87	9.95
Post-Run Span Reading	9.87	9.95	9.88
Run Period Analyzer Average	11.3	11.8	12.3
Bias Adjusted Run Result	11.4	11.8	12.3
Total Hydrocarbons, PPM, Wet	Interval 1	Interval 2	Interval 3
Date of Run	12/15/2020	12/15/2020	12/15/2020
Time of Run	0855-0955	1045-1145	1230-1401
Span Cylinder Concentration	15.0	15.0	15.0
Pre-Run Zero Reading	0.0466	0.263	0.240
Post-Run Zero Reading	0.263	0.240	0.0683
Pre-Run Span Reading	15.2	15.4	15.3
Post-Run Span Reading	15.4	15.3	15.2
Run Period Analyzer Average	0.173	0.120	0.0808
Bias Adjusted Run Result	0.0184	-0.130	-0.0729
Result Adjusted to Method MDL	0.1	0.1	0.1

Kingsford, MI Pace Project No. 20-04074

Run Period Analyzer Average

Bias Adjusted Run Result

Appendix B **Bias Adjustment Summary Cupola Baghouse Inlet** Test 1

Carbon Monoxide, PPM, Dry	Interval 1	Interval 2	Interval 3
Date of Run	12/15/2020	12/15/2020	12/15/2020
Time of Run	0855-0955	1045-1145	1230-1401
Span Cylinder Concentration	49.6	49.6	49.6
Pre-Run Zero Reading	0.636	0.963	1.28
Post-Run Zero Reading	0.963	1.28	1.19
Pre-Run Span Reading	48.8	48.5	48.1
Post-Run Span Reading	48.5	48.1	51.0
Run Period Analyzer Average	14.2	10.8	14.0
Bias Adjusted Run Result	13.9	10.2	13.1
Sulfur Dioxide, PPM, Dry	Interval 1	Interval 2	Interval 3
Date of Run	12/15/2020	12/15/2020	12/15/2020
Time of Run	0855-0955	1045-1145	1230-1401
Span Cylinder Concentration	49.0	49.0	49.0
Pre-Run Zero Reading	0.688	1.08	1.80
Post-Run Zero Reading	1.08	1.80	1.91
Pre-Run Span Reading	47.4	47.4	46.9
Post-Run Span Reading	47.4	46.9	46.6

13.5

13.3

11.1

10.4

10.4

9.37

Gas Monitoring Log

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

			DAQ CI	hannels			Comments —
	I		27.10	10.11.010		1	
	Ch - 1	Ch - 2	Ch - 3	Ch - 4	Ch - 5	Ch - 6	
	02	CO2	THC	СО	SO2		
Date/Time	<u>%v/v, Dry</u>	%v/v, Dry	PPM, Wet	PPM, Dry	PPM, Dry		0 (5 -
12/15/2020 7:37	20.86	0.07	1.3	3.4	0.0		System Response Time
12/15/2020 7:38	20.87	0.06	1.4	4.0	0.0		To Zero 1
12/15/2020 7:39	20.85	0.08	1.4	4.9	0.1		Up-scale 1
12/15/2020 7:40 12/15/2020 7:41	20.84 20.82	0.09 0.09	1.4 1.4	4.7 4.5	0.1 0.1		Williates
12/15/2020 7:41	20.85	4.21	1.4	4.3	0.1		
12/15/2020 7:42	20.03	19.51	1.4	1.5	0.1		
12/15/2020 7:43	20.90	19.59	1.4	-0.1	0.1		
12/15/2020 7:45	20.95	19.80	1.4	0.1	0.1		
12/15/2020 7:46	21.05	20.07	1.4	0.1	0.1		21/20
12/15/2020 7:47	21.00	17.51	1.4	0.2	0.1		
12/15/2020 7:48	12.06	9.83	1.4	1.5	0.1		
12/15/2020 7:49	11.06	9.89	1.4	1.5	0.2		
12/15/2020 7:50	11.05	9.89	1.4	1.5	0.2		10.9/9.93
12/15/2020 7:51	11.04	9.88	1.4	1.6	0.2		
12/15/2020 7:52	16.98	3.44	1.4	2.5	0.2		
12/15/2020 7:53	18.68	0.43	1.4	16.5	12.6		
12/15/2020 7:54	0.32	0.01	1.4	127.7	104.6		
12/15/2020 7:55	0.14	-0.01	1.4	110.0	113.8		
12/15/2020 7:56	0.09	-0.01	1.4	109.7	111.6		
12/15/2020 7:57	0.08	-0.02	1.4	109.8	112.0		
12/15/2020 7:58	0.07	-0.02	1.4	110.0	110.9		
12/15/2020 7:59	0.06	-0.02	1.4	110.0	111.1		110/110
12/15/2020 8:00	0.16	-0.02	1.4	108.9	105.6		
12/15/2020 8:01	1.27	0.04	1.4	58.3	52.4		
12/15/2020 8:02	0.05	-0.03	1.4	48.6	50.4		
12/15/2020 8:03	0.04	-0.03	1.4	48.4	50.1		
12/15/2020 8:04	0.04	-0.03	1.4	48.5	50.0		49.6/49
12/15/2020 8:05	2.81	0.01	1.4	56.7	57.8		
12/15/2020 8:06	0.25	-0.03	1.4	208.2	208.1		
12/15/2020 8:07	0.05	-0.04	1.4	247.2	210.5		
12/15/2020 8:08	0.04	-0.04	1.4	247.8	210.5		246
12/15/2020 8:09	2.31	-0.01	1.4	207.7	176.9		
12/15/2020 8:10	19.11	0.09	1.4	35.1	30.1		
12/15/2020 8:11	20.67	0.10	1.4	4.7	8.5		
12/15/2020 8:12	20.81	0.08	1.4	3.5	2.9		
12/15/2020 8:13	13.22	8.32	1.4	9.4	7.2		
12/15/2020 8:14	9.20	11.18	1.4	10.8	14.5		
12/15/2020 8:15	8.59	11.75	1.4	12.2	14.3		

RM Data Log Page 1 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

			DAQ C	hannels			Comments
	I		D/ (Q O	namiolo		I	Commente
	Ch - 1	Ch - 2	Ch - 3	Ch - 4	Ch - 5	Ch - 6	
	02	CO2	THC	CO	SO2		
Date/Time	<u>%v/v, Dry</u>	<u>%v/v, Dry</u>	PPM, Wet	PPM, Dry	PPM, Dry		
12/15/2020 8:16	9.91	10.09	1.4	13.8	13.3		system
12/15/2020 8:17	10.89	9.80	1.4	5.4	3.0		
12/15/2020 8:18	10.89	9.81	1.4	8.0	1.1		
12/15/2020 8:19	10.89	9.81	1.4	0.7	0.9		
12/15/2020 8:20	10.89	9.82	1.4	0.7	8.0		
12/15/2020 8:21	10.89	9.82	1.4	0.6	0.7		10.9/9.93/0/0
12/15/2020 8:22	16.39	3.71	1.4	0.9	0.7		
12/15/2020 8:23	9.35	0.62	1.4	23.2	19.2		
12/15/2020 8:24	0.16	0.01	1.4	47.9	42.3		
12/15/2020 8:25	0.13	-0.01	1.4	48.3	45.0		
12/15/2020 8:26	0.11	-0.02	1.4	48.5	46.5		
12/15/2020 8:27	0.10	-0.02	1.4	49.0	47.3		
12/15/2020 8:28	0.09	-0.03	1.4	48.8	47.4		0/0/49.6/49
12/15/2020 8:29	0.09	-0.03	1.4	48.8	47.5		
12/15/2020 8:30	11.59	0.04	1.4	27.4	20.4		
12/15/2020 8:31	20.85	-0.03	19.6	2.1	1.8		
12/15/2020 8:32	20.90	-0.04	1.4	1.3	1.2		
12/15/2020 8:33	20.80	0.03	7.7	1.6	0.9		
12/15/2020 8:34	20.74	0.06	37.9	2.2	8.0		
12/15/2020 8:35	20.53	0.04	10.1	2.6	1.7		
12/15/2020 8:36	20.90	-0.03	1.1	2.1	1.1		
12/15/2020 8:37	20.97	-0.04	0.0	1.3	8.0		0
12/15/2020 8:38	20.98	-0.04	0.2	1.2	0.7		
12/15/2020 8:39	20.93	-0.03	50.7	1.4	0.7		
12/15/2020 8:40	20.97	-0.04	40.2	1.5	0.6		
12/15/2020 8:41	20.97	-0.04	39.9	1.4	0.6		39.9
12/15/2020 8:42	20.93	-0.04	28.9	1.5	0.6		
12/15/2020 8:43	20.87	-0.04	25.2	1.4	0.6		
12/15/2020 8:44	20.87	-0.05	25.1	1.4	0.6		25.9
12/15/2020 8:45	20.84	-0.04	20.5	1.4	0.6		
12/15/2020 8:46	20.63	-0.03	15.2	1.7	0.7		
12/15/2020 8:47	20.65	-0.05	15.2	1.5	0.6		15
12/15/2020 8:48	20.65	-0.05	10.5	1.5	0.6		
12/15/2020 8:49	17.02	4.40	0.5	2.8	4.9		
12/15/2020 8:50	9.14	11.45	0.3	10.3	21.7		In Stack
12/15/2020 8:51	8.51	12.04	0.3	10.6	19.4		3.46.1
12/15/2020 8:52	8.39	12.00	0.3	6.9	19.2		
12/15/2020 8:53	9.28	11.01	0.3	8.7	19.5		
12/15/2020 8:54	8.46	11.98	0.3	13.9	16.9		
12/15/2020 8:55	8.28	12.13	0.3	8.3	16.2		Run 1
12/15/2020 8:56	8.58	11.83	0.3	6.7	17.9		TOTAL T
12/10/2020 0.00	0.00	11.00			17.0		

RM Data Log Page 2 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

			DAQ CI	hannels		I	Comments
	Ch - 1 O2	Ch - 2 CO2	Ch - 3 THC	Ch - 4 CO	Ch - 5 SO2	Ch - 6	
Date/Time	<u>%v/v, Dry</u>	<u>%v/v, Dry</u>	PPM, Wet	PPM, Dry	PPM, Dry		
12/15/2020 8:57	9.54	10.81	0.3	7.6	17.5		
12/15/2020 8:58	9.48	10.88	0.3	10.3	17.8		
12/15/2020 8:59	9.07	11.35	0.3	17.2	20.5		
12/15/2020 9:00	8.11	12.35	0.3	11.0	18.1		
12/15/2020 9:01	8.91	11.44	0.3	8.1	18.1		
12/15/2020 9:02	9.17	11.12	0.3	8.0	18.7		
12/15/2020 9:03	9.48	10.94	0.3	13.1	15.4		
12/15/2020 9:04	7.95	12.51	0.3	11.4	16.8		
12/15/2020 9:05	8.04	12.31	0.3	6.9	18.9		
12/15/2020 9:06	9.67	10.65	0.3	7.7	15.8		
12/15/2020 9:07	9.69	10.72	0.2	9.5	14.3		
12/15/2020 9:08	9.87	10.46	0.2	11.6	15.7		
12/15/2020 9:09	9.13	11.27	0.2	15.9	13.2		
12/15/2020 9:10	8.70	11.59	0.2	9.5	14.4		
12/15/2020 9:11	9.00	11.26	0.2	7.8	16.0		
12/15/2020 9:12	9.38	10.98	0.2	8.1	16.1		
12/15/2020 9:13	9.32	11.12	0.2	11.1	15.4		
12/15/2020 9:14	8.99	11.50	0.2	15.5	13.5		
12/15/2020 9:15	8.33	12.09	0.2	7.7	14.5		
12/15/2020 9:16	9.41	10.95	0.2	7.1	14.6		
12/15/2020 9:17	9.84	10.55	0.2	10.4	13.8		
12/15/2020 9:18	9.03	11.45	0.1	15.4	13.3		
12/15/2020 9:19	8.97	11.46	0.1	10.3	13.2		
12/15/2020 9:20	9.19	11.23	0.1	9.2	14.5		
12/15/2020 9:21	9.88	10.47	0.1	8.5	13.6		
12/15/2020 9:22	9.92	10.62	0.1	12.3	13.4		
12/15/2020 9:23	9.12	11.42	0.1	14.5	14.1		
12/15/2020 9:24	8.64	11.90	0.1	8.2	14.2		
12/15/2020 9:25	9.68	10.78	0.1	7.7	13.8		
12/15/2020 9:26	9.73	10.71	0.1	12.1	12.0		
12/15/2020 9:27	8.80	11.70	0.1	16.4	7.8		
12/15/2020 9:28	8.80	11.67	0.1	8.9	9.9		
12/15/2020 9:29	9.33	11.11	0.1	7.6	11.0		
12/15/2020 9:30	9.83	10.64	0.1	8.4	10.8		
12/15/2020 9:31	9.60	10.91	0.1	11.7	11.0		
12/15/2020 9:32	9.34	11.06	0.1	12.3	10.1		
12/15/2020 9:33	9.17	11.41	0.1	8.7	9.7		
12/15/2020 9:34	9.28	11.21	0.1	7.5	11.0		
12/15/2020 9:35	9.82	10.67	0.1	9.3	11.9		
12/15/2020 9:36	10.09	10.38	0.1	16.8	10.6		
12/15/2020 9:37	8.55	11.95	0.2	12.9	10.6		

RM Data Log Page 3 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

			DAQ C	hannels			— Comments ———
	I		27.14 0.	10.11.010		ı	
	Ch - 1	Ch - 2	Ch - 3	Ch - 4	Ch - 5	Ch - 6	
	02	CO2	THC	CO	SO2		
Date/Time	<u>%v/v, Dry</u>	<u>%v/v, Dry</u>	PPM, Wet	PPM, Dry	PPM, Dry		
12/15/2020 9:38	9.03	11.31	0.1	7.0	13.8		
12/15/2020 9:39	9.65	10.84	0.3	9.1	11.9		
12/15/2020 9:40	9.55	11.05	0.2	240.9	10.6		
12/15/2020 9:41	7.60	13.02	0.1	13.1	12.8		
12/15/2020 9:42	8.73	11.73	0.1	6.5	12.2		
12/15/2020 9:43	9.31	11.12	0.1	8.2	10.7		
12/15/2020 9:44	8.56	12.06	0.1	12.3	11.4		
12/15/2020 9:45	8.90	11.48	0.1	9.5	12.5		
12/15/2020 9:46	9.41	11.21	0.1	11.3	11.8		
12/15/2020 9:47	9.14	11.31	0.1	9.1	10.9		
12/15/2020 9:48	9.16	11.26	0.1	11.8	11.3		
12/15/2020 9:49	8.92	11.54	0.1	12.9	11.3		
12/15/2020 9:50	8.76	11.62	0.1	8.2	11.8		
12/15/2020 9:51	9.51	10.85	0.1	8.6	13.1		
12/15/2020 9:52	9.86	10.54	0.1	11.3	11.0		
12/15/2020 9:53	9.68	10.75	0.1	14.2	10.6		
12/15/2020 9:54	8.87	11.61	0.1	10.3	10.8		
12/15/2020 9:55	9.77	10.70	0.1	8.5	10.8		End R1
12/15/2020 9:56	9.37	11.20	0.1	11.3	10.9		
12/15/2020 9:57	7.94	12.64	0.1	11.0	11.9		
12/15/2020 9:58	12.09	7.64	1.3	6.4	12.8		
12/15/2020 9:59	20.73	0.09	0.8	3.3	3.4		
12/15/2020 10:00	20.89	0.02	0.6	1.5	1.8		
12/15/2020 10:01	20.91	0.01	0.4	1.5	1.4		
12/15/2020 10:02	20.92	0.00	0.3	1.5	1.3		
12/15/2020 10:03	20.93	-0.01	0.3	1.5	1.2		0
12/15/2020 10:04	20.90	0.00	5.5	1.5	1.1		
12/15/2020 10:05	20.58	-0.02	15.0	1.9	1.2		
12/15/2020 10:06	20.59	-0.02	15.3	1.7	1.1		
12/15/2020 10:07	20.59	-0.02	15.4	1.6	1.0		15
12/15/2020 10:08	20.60	0.02	9.2	1.7	1.1		
12/15/2020 10:09	12.08	9.25	0.1	1.7	1.1		
12/15/2020 10:10	10.89	9.85	0.0	1.0	1.1		
12/15/2020 10:11	10.88	9.87	0.0	1.0	1.1		10.9/9.93
12/15/2020 10:12	10.87	9.89	0.0	0.9	1.1		
12/15/2020 10:13	11.40	8.87	0.3	1.0	1.1		
12/15/2020 10:14	3.55	0.63	-0.1	33.7	29.8		
12/15/2020 10:15	0.10	0.02	-0.1	48.2	45.7		
12/15/2020 10:16	0.08	0.00	-0.1	48.3	46.5		
12/15/2020 10:17	0.06	-0.01	-0.1	48.1	46.7		
12/15/2020 10:18	0.05	-0.02	-0.1	48.2	46.7		
			DM D-	4- D	4 -6 4 4		

RM Data Log Page 4 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

1			DAQ CI	hannels		I	— Comments -	
	Ch - 1 O2	Ch - 2 CO2	Ch - 3 THC	Ch - 4 CO	Ch - 5 SO2	Ch - 6		
Date/Time	<u>%v/v, Dry</u>	<u>%v/v, Dry</u>	PPM, Wet	PPM, Dry	PPM, Dry			
12/15/2020 10:19	0.05	-0.02	-0.1	48.3	47.0			
12/15/2020 10:20	0.04	-0.02	-0.1	48.5	47.2			
12/15/2020 10:21	0.04	-0.03	-0.1	48.3	47.3			
12/15/2020 10:22	0.03	-0.03	-0.1	48.3	47.4			
12/15/2020 10:23	0.03	-0.03	-0.1	48.5	47.4			49.6-49
12/15/2020 10:24	0.03	-0.03	-0.1	48.2	47.4			
12/15/2020 10:25	3.99	-0.01	0.3	42.1	37.7			
12/15/2020 10:26	20.54	0.02	0.7	5.1	4.0			
12/15/2020 10:27	20.66	0.02	1.0	3.2	2.2			
12/15/2020 10:28	20.68	0.02	1.0	3.9	1.8			
12/15/2020 10:29	20.70	0.02	0.8	3.4	1.6			
12/15/2020 10:30	20.71	0.02	0.7	2.7	1.5			
12/15/2020 10:31	20.72	0.02	0.8	3.2	1.4			
12/15/2020 10:32	20.73	0.02	1.0	2.9	1.4			
12/15/2020 10:33	20.73	0.01	0.5	3.0	1.3			
12/15/2020 10:34	20.73	0.01	0.5	2.1	1.3			
12/15/2020 10:35	20.74	0.01	0.5	2.1	1.3			
12/15/2020 10:36	20.74	0.01	0.9	2.5	1.3			
12/15/2020 10:37	20.74	0.01	0.8	3.7	1.3			L. Orași
12/15/2020 10:38	20.74	0.03	0.8	3.3	1.3			In Stack
12/15/2020 10:39	10.60	10.84	0.3	8.0	3.2			
12/15/2020 10:40	9.22	11.66	0.1	15.5	11.6			
12/15/2020 10:41	8.39	12.33	0.1	7.7	15.3			
12/15/2020 10:42	9.36	11.31	0.1	7.8	13.4			
12/15/2020 10:43	9.75	10.87	0.1	9.6	11.4			
12/15/2020 10:44	8.88	11.81	0.1	13.1	10.9			Otant DO
12/15/2020 10:45	8.50	12.13	0.1	12.6	9.9			Start R2
12/15/2020 10:46	8.96	11.63	0.1	9.5	9.8			
12/15/2020 10:47	9.24	11.30	0.2	8.7	11.0			
12/15/2020 10:48	9.26	11.30	0.1	13.8	11.0			
12/15/2020 10:49	8.76	11.85	0.1	12.5	9.9			
12/15/2020 10:50	9.04	11.44	0.2	8.4	11.3			
12/15/2020 10:51	9.57	11.03	0.1	11.0	10.2			
12/15/2020 10:52	8.70	11.85	0.1	10.3	11.9			
12/15/2020 10:53	9.03	11.69	0.1	14.8	10.0			
12/15/2020 10:54 12/15/2020 10:55	8.30	12.28	0.1	7.9	10.7			
	9.23	11.31	0.1	8.2	11.4			
12/15/2020 10:56 12/15/2020 10:57	9.22	11.30	0.2	11.2	11.9			
12/15/2020 10:57	8.43	12.25	0.2 0.2	13.6 8.1	10.9 11.7			
12/15/2020 10:59	8.52 8.97	12.03 11.57	0.2	7.6	12.5			
12/13/2020 10.39	0.31	11.37	0.2	7.0	12.0			

RM Data Log Page 5 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

l			DAQ C	hannels		I	— Comments —	
	Ch - 1 O2	Ch - 2 CO2	Ch - 3 THC	Ch - 4 CO	Ch - 5 SO2	Ch - 6		
Date/Time	<u>%v/v, Dry</u>	<u>%v/v, Dry</u>	PPM, Wet	PPM, Dry	PPM, Dry			
12/15/2020 11:00	9.38	11.07	0.1	9.7	13.3			
12/15/2020 11:01	8.67	11.90	0.1	14.9	11.7			
12/15/2020 11:02	8.66	11.79	0.2	9.0	12.3			
12/15/2020 11:03	9.11	11.33	0.1	7.1	13.1			
12/15/2020 11:04	9.70	10.85	0.1	9.9	12.9			
12/15/2020 11:05	8.99	11.65	0.1	13.9	11.9			
12/15/2020 11:06	8.65	11.96	0.1	12.2	11.1			
12/15/2020 11:07	8.76	11.75	0.1	7.3	13.1			
12/15/2020 11:08	9.69	11.02	0.1	9.5	12.1			
12/15/2020 11:09	9.37	11.33	0.1	15.3	13.0			
12/15/2020 11:10	8.38	12.56	0.1	12.7	10.4			
12/15/2020 11:11	8.66	12.14	0.1	6.6	11.9			
12/15/2020 11:12	9.84	10.92	0.1	8.2	11.8			
12/15/2020 11:13	10.07	10.73	0.1	13.5	11.2			
12/15/2020 11:14	8.86	12.02	0.1	12.9	11.0			
12/15/2020 11:15	9.29	11.45	0.1	9.1	12.9			
12/15/2020 11:16	9.76	10.98	0.1	9.4	12.7			
12/15/2020 11:17	9.84	11.10	0.1	18.9	11.3			
12/15/2020 11:18	8.03	13.02	0.1	12.6	10.4			
12/15/2020 11:19	9.13	11.60	0.1	7.1	11.3			
12/15/2020 11:20	9.27	11.46	0.1	7.6	11.4			
12/15/2020 11:21	9.55	11.27	0.2	12.6	10.5			
12/15/2020 11:22	8.47	12.34	0.2	11.9	10.0			
12/15/2020 11:23	8.23	12.59	0.1	7.5	10.9			
12/15/2020 11:24	9.37	11.20	0.1	8.9	11.9			
12/15/2020 11:25	9.03	11.80	0.1	16.2	10.7			
12/15/2020 11:26	8.14	12.60	0.2	11.8	12.2			
12/15/2020 11:27	8.22	12.42	0.1	9.2	11.7			
12/15/2020 11:28	8.79	11.72	0.1	9.0	12.0			
12/15/2020 11:29	8.57	12.00	0.1	11.4	11.4			
12/15/2020 11:30	8.34	12.33	0.1	13.6	10.3			
12/15/2020 11:31	7.89	12.67	0.1	8.4	12.1			
12/15/2020 11:32	9.32	11.27	0.1	9.8	10.0			
12/15/2020 11:33	8.86	11.78	0.1	10.0	11.1			
12/15/2020 11:34	8.91	11.96	0.1	20.2	8.5			
12/15/2020 11:35	7.46	13.28	0.1	6.4	10.6			
12/15/2020 11:36	8.76	11.92	0.1	7.1	11.4			
12/15/2020 11:37	9.54	11.07	0.1	10.0	10.1			
12/15/2020 11:38	9.12	11.76	0.1	19.3	9.3			
12/15/2020 11:39	8.05	12.69	0.1	10.8	9.7			
12/15/2020 11:40	8.71	11.98	0.1	8.0	10.3			
_,			DM D	4a l as: D-	0 -4 44			

RM Data Log Page 6 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

	Г		DAQ C	hannels		I	Comments —
	Ch - 1 O2	Ch - 2 CO2	Ch - 3 THC	Ch - 4 CO	Ch - 5 SO2	Ch - 6	
Date/Time	<u>%v/v, Dry</u>		PPM, Wet		PPM, Dry		
12/15/2020 11:41	9.04	11.59	0.1	8.7	10.0		
12/15/2020 11:42	8.77	11.88	0.2	10.9	11.3		
12/15/2020 11:43	9.31	11.42	0.1	13.9	8.0		
12/15/2020 11:44	8.23	12.45	0.1	8.6	9.7		
12/15/2020 11:45	9.73	10.85	0.1	9.4	10.0		End R2
12/15/2020 11:46	9.15	11.54	0.1	12.0	9.5		
12/15/2020 11:47	8.72	11.99	0.1	17.2	8.6		
12/15/2020 11:48	7.71	12.93	0.1	8.9	10.6		
12/15/2020 11:49	15.33	4.52	0.7	6.9	8.3		
12/15/2020 11:50	19.95	0.14	0.3	5.1	3.6		
12/15/2020 11:51	20.82	0.01	0.2	2.1	2.1		
12/15/2020 11:52	20.84	0.00	0.2	1.7	1.8		
12/15/2020 11:53	20.85	-0.01	0.2	1.6	1.7		0
12/15/2020 11:54	20.78	0.01	5.1	1.6	1.7		
12/15/2020 11:55	20.45	-0.01	15.2	2.3	1.8		
12/15/2020 11:56	20.51	-0.03	15.4	1.9	1.7		
12/15/2020 11:57	20.51	-0.03	15.6	1.9	1.7		
12/15/2020 11:58	20.51	-0.03	15.4	1.8	1.6		
12/15/2020 11:59	20.51	-0.03	15.3	1.9	1.7		15
12/15/2020 12:00	20.51	-0.03	12.7	1.9	1.6		
12/15/2020 12:01	20.45	0.55	1.2	2.1	1.7		
12/15/2020 12:02	11.25	9.75	0.0	2.0	1.8		
12/15/2020 12:03	10.83	9.94	0.0	1.2	1.7		
12/15/2020 12:04	10.82	9.95	0.0	1.3	1.8		10.9/9.93
12/15/2020 12:05	10.83	9.81	0.4	1.3	1.8		
12/15/2020 12:06	5.50	0.98	0.0	27.8	26.6		
12/15/2020 12:07	0.07	0.01	-0.1	48.4	45.8		
12/15/2020 12:08	0.04	-0.01	-0.1	48.2	46.6		
12/15/2020 12:09	0.03	-0.02	-0.1	48.1	46.7		
12/15/2020 12:10	0.02	-0.03	-0.1	48.3	46.8		
12/15/2020 12:11	0.01	-0.03	-0.1	48.1	47.0		
12/15/2020 12:12	0.01	-0.03	-0.1	47.9	46.9		
12/15/2020 12:13	0.00	-0.04	-0.1	48.1	46.9		49.6/49
12/15/2020 12:14	5.04	-0.01	0.5	40.4	35.5		
12/15/2020 12:15	20.52	0.01	0.6	4.3	4.6		
12/15/2020 12:16	20.60	0.01	0.9	3.3	2.7		
12/15/2020 12:17	20.62	0.01	0.8	3.6	2.3		
12/15/2020 12:18	20.64	0.00	0.7	3.3	2.1		
12/15/2020 12:19	20.65	0.01	1.2	3.2	2.0		
12/15/2020 12:20	20.66	0.00	1.0	4.1	1.9		
12/15/2020 12:21	20.66	0.01	0.6	3.8	1.8		
			DM Do	ta Log Page	7 of 11		

RM Data Log Page 7 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

			DAQ CI	nannels			— Comments —
			2 1 2			,	
	Ch - 1	Ch - 2	Ch - 3	Ch - 4	Ch - 5	Ch - 6	
Date/Time	O2 <u>%v/v, Dry</u>	CO2 %v/v, Dry	THC PPM, Wet	CO PPM, Dry	SO2 PPM, Dry		
12/15/2020 12:22	20.66	0.01	0.9	3.2	1.8		
12/15/2020 12:22	20.67	0.00	0.5	3.5	1.8		
12/15/2020 12:24	18.53	2.89	0.4	2.6	1.8		
12/15/2020 12:25	8.33	12.23	0.2	5.5	5.1		
12/15/2020 12:26	8.88	11.52	0.2	7.5	13.9		
12/15/2020 12:27	8.78	11.66	0.1	12.5	13.6		
12/15/2020 12:28	8.20	12.25	0.1	13.9	11.2		
12/15/2020 12:29	8.04	12.30	0.1	7.8	11.6		
12/15/2020 12:30	9.23	11.10	0.1	9.4	10.6		Run 3
12/15/2020 12:31	8.84	11.50	0.1	10.1	11.3		
12/15/2020 12:32	9.22	11.14	0.1	10.0	9.7		
12/15/2020 12:33	8.94	11.41	0.1	11.2	9.3		
12/15/2020 12:34	8.37	12.19	0.1	10.2	9.6		
12/15/2020 12:35	8.85	11.66	0.1	11.0	8.8		
12/15/2020 12:36	8.22	12.41	0.1	12.7	7.6		
12/15/2020 12:37	8.66	11.76	0.1	7.9	8.7		
12/15/2020 12:38	8.64	11.87	0.2	9.3	9.1		
12/15/2020 12:39	9.17	11.25	0.1	11.8	9.0		
12/15/2020 12:40	8.28	12.22	0.1	14.8	8.3		
12/15/2020 12:41	8.20	12.20	0.1	9.0	9.2		
12/15/2020 12:42	8.50	11.75	0.1	7.6	10.4		
12/15/2020 12:43	9.49	10.75	0.1	19.8	9.9		
12/15/2020 12:44	8.31 7.83	12.15	0.1	22.8 10.4	7.2 9.3		
12/15/2020 12:45 12/15/2020 12:46	13.94	12.65 5.00	0.0	369.7	9.3 8.5		Cupola off Blast
12/15/2020 12:47	18.17	5.99 2.57	1.5 0.3	143.6	6.5 3.5		Cupola off Blast
12/15/2020 12:48	17.47	2.83	0.3	76.0	3.0		Cupola off Blast
12/15/2020 12:49	15.77	4.29	0.1	20.2	3.1		Cupola off Blast
12/15/2020 12:43	14.12	5.50	0.2	6.2	4.1		Cupola off Blast
12/15/2020 12:51	15.74	4.19	0.3	5.8	3.1		Cupola off Blast
12/15/2020 12:52	20.33	0.13	0.9	4.7	2.2		Cupola off Blast
12/15/2020 12:53	20.60	0.03	0.5	3.8	2.0		Cupola off Blast
12/15/2020 12:54	20.61	0.03	0.6	2.6	1.9		Cupola off Blast
12/15/2020 12:55	20.62	0.02	0.8	2.5	1.8		Cupola off Blast
12/15/2020 12:56	20.63	0.02	0.8	2.8	1.8		Cupola off Blast
12/15/2020 12:57	20.63	0.01	0.6	2.9	1.7		Cupola off Blast
12/15/2020 12:58	20.64	0.01	0.6	2.6	1.7		Cupola off Blast
12/15/2020 12:59	20.65	0.01	8.0	2.7	1.7		Cupola off Blast
12/15/2020 13:00	20.65	0.01	0.7	2.9	1.7		Cupola off Blast
12/15/2020 13:01	20.66	0.01	0.6	2.9	1.7		Cupola off Blast
12/15/2020 13:02	20.66	0.01	0.4	2.2	1.7		Cupola off Blast
			DM Da	4- D	0 -4 4 4		

RM Data Log Page 8 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

			DAQ CI	hannels			Comments —
	Ch - 1	Ch - 2	Ch - 3	Ch - 4	Ch - 5	Ch - 6	
	02	CO2	THC	CO	SO2	GII - U	
Date/Time	%v/v, Dry	%v/v, Dry	PPM, Wet	PPM, Dry	PPM, Dry		
12/15/2020 13:03	20.65	0.00	0.4	1.8	1.8		Cupola off Blast
12/15/2020 13:04	20.65	0.00	0.5	2.1	1.8		Cupola off Blast
12/15/2020 13:05	20.66	0.00	0.7	2.3	1.7		Cupola off Blast
12/15/2020 13:06	20.66	0.00	0.5	3.1	1.7		Cupola off Blast
12/15/2020 13:07	20.67	0.00	0.8	2.8	1.7		Cupola off Blast
12/15/2020 13:08	20.67	0.00	0.6	3.6	1.7		Cupola off Blast
12/15/2020 13:09	20.66	0.00	0.8	3.0	1.7		Cupola off Blast
12/15/2020 13:10	12.69	8.39	0.3	341.4	2.3		Cupola off Blast
12/15/2020 13:11	9.35	11.06	0.2	42.7	9.2		
12/15/2020 13:12	7.19	13.31	6.2	339.2	14.3		start up mode
12/15/2020 13:13	6.18	14.42	0.8	525.0	24.2		start up mode
12/15/2020 13:14	6.61	14.28	0.1	374.2	23.0		start up mode
12/15/2020 13:15	7.16	14.18	0.1	21.7	13.8		start up mode
12/15/2020 13:16	6.87	14.28	0.1	12.5	12.7		
12/15/2020 13:17	6.50	14.96	0.1	60.0	17.6		Resume R3
12/15/2020 13:18	8.17	12.86	0.1	21.2	13.5		
12/15/2020 13:19	8.42	12.70	0.1	23.8	15.1		
12/15/2020 13:20	8.24	12.92	0.1	20.4	9.0		
12/15/2020 13:21	7.58	13.52	0.2	12.1	11.2		
12/15/2020 13:22	8.41	12.60	0.2	11.9	12.7		
12/15/2020 13:23	9.69	11.12	0.1	16.9	11.1		
12/15/2020 13:24	8.66	12.49	0.2	18.8	9.6		
12/15/2020 13:25	7.79	13.39	0.1	11.5	10.1		
12/15/2020 13:26	8.22	12.92	0.1	10.1	10.6		
12/15/2020 13:27	8.58	12.25	0.1	10.6	11.5		
12/15/2020 13:28	8.76	12.32	0.1	14.0	10.6		
12/15/2020 13:29	8.56	12.43	0.1	11.5	9.2		
12/15/2020 13:30	8.46	12.70	0.1	11.7	9.4		
12/15/2020 13:31	9.11	11.27	0.1	11.9	10.3		
12/15/2020 13:32	8.25	12.38	0.1	17.8	8.6		
12/15/2020 13:33	7.23	13.35	0.1	10.6	9.8		
12/15/2020 13:34	7.74	12.74	0.1	8.6	10.3		
12/15/2020 13:35	8.82	11.52	0.1	11.2	10.0		
12/15/2020 13:36	8.03	12.48	0.1	14.2	10.1		
12/15/2020 13:37 12/15/2020 13:38	8.33	12.10 12.73	0.1 0.0	14.5 12.5	9.4 10.1		
12/15/2020 13:39	7.73 7.92	12.73	0.0	10.4	11.0		
12/15/2020 13:39	8.23	12.51	0.1	13.3	10.4		
12/15/2020 13:40	8.31	12.12	0.0	16.8	8.0		
12/15/2020 13:42	8.00	12.17	0.0	9.7	10.7		
12/15/2020 13:42	8.85	11.71	0.0	13.3	10.7		
12/13/2020 13.43	0.00	11.71	0.0	13.3	10.0		

RM Data Log Page 9 of 11

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

			- DAQ C	hannels			Comments —
	Ch - 1 O2	Ch - 2 CO2	Ch - 3 THC	Ch - 4 CO	Ch - 5 SO2	Ch - 6	
Date/Time	%v/v, Dry	<u>%v/v, Dry</u>		PPM, Dry	PPM, Dry		
12/15/2020 13:44	7.95	12.67	0.0	13.0	10.1		
12/15/2020 13:45	7.50	13.24	0.0	12.0	9.5		
12/15/2020 13:46	7.64	12.97	0.1	9.2	11.1		
12/15/2020 13:47	8.11	12.46	0.0	9.1	10.5		
12/15/2020 13:48	8.82	11.68	0.0	15.1	10.2		
12/15/2020 13:49	7.43	13.26	0.0	18.1	8.6		
12/15/2020 13:50	7.29	13.09	0.0	13.5	12.4		
12/15/2020 13:51	8.50	11.79	0.0	10.8	11.4		
12/15/2020 13:52	8.62	11.71	0.1	14.2	9.7		
12/15/2020 13:53	7.41	12.95	0.1	14.7	9.2		
12/15/2020 13:54	7.51	12.92	0.0	14.5	16.6		
12/15/2020 13:55	8.24	12.05	0.0	15.2	12.7		
12/15/2020 13:56	8.58	11.89	0.0	18.8	14.7		
12/15/2020 13:57	8.61	11.77	0.0	17.9	10.8		
12/15/2020 13:58	8.65	11.80	0.0	16.5	9.0		
12/15/2020 13:59	8.05	12.41	0.0	8.7	10.5		
12/15/2020 14:00	8.53	11.88	0.0	9.0	12.0		
12/15/2020 14:01	9.36	11.00	0.1	16.2	10.1		
12/15/2020 14:02	8.04	12.20	0.2	15.3	9.3		
12/15/2020 14:03	19.01	0.46	0.4	6.2	7.6		
12/15/2020 14:04	20.74	0.02	0.2	2.3	2.9		
12/15/2020 14:05	20.76	0.00	0.2	1.6	2.3		
12/15/2020 14:06	20.78	-0.01	0.2	1.6	2.0		
12/15/2020 14:07	20.78	-0.02	0.1	1.6	1.9		
12/15/2020 14:08	20.79	-0.02	0.1	1.6	1.9		0
12/15/2020 14:09	20.79	-0.03	0.1	1.6	1.9		
12/15/2020 14:10	20.59	-0.02	12.1	1.7	1.9		
12/15/2020 14:11	20.45	-0.03	15.7	2.0	1.9		
12/15/2020 14:12	20.45	-0.04	15.9	1.9	1.9		
12/15/2020 14:13	20.45	-0.04	16.0	1.8	1.9		
12/15/2020 14:14	20.45	-0.04	16.0	2.0	2.0		adjusted backpressure
12/15/2020 14:15	20.45	-0.04	15.2	1.9	2.0		15
12/15/2020 14:16	20.45	-0.01	9.9	1.8	2.0		
12/15/2020 14:17	11.94	9.20	0.0	2.1	2.1		
12/15/2020 14:18	10.79	9.85	0.0	1.5	2.0		
12/15/2020 14:19	10.78	9.87	0.0	1.3	1.9		
12/15/2020 14:20	10.77	9.88	0.0	1.2	1.9		10.9/9.93
12/15/2020 14:21	10.76	9.88	0.0	1.2	1.9		
12/15/2020 14:22	6.66	4.18	0.0	18.0	16.8		
12/15/2020 14:23	0.05	0.02	-0.1	50.3	43.8		
12/15/2020 14:24	0.02	-0.01	-0.1	50.8	45.4		
			RM Dat	a Log Page	10 of 11		

Kingsford, MI Pace Project No. 20-04074

Appendix B RM Data Acquisition Log Cupola Baghouse Inlet Test 1

			THC CO			T T	Comments —	
	Ch - 1 O2	Ch - 2 CO2	THC	СО	Ch - 5 SO2	Ch - 6		
Date/Time	<u>%v/v, Dry</u>	<u>%v/v, Dry</u>			PPM, Dry			
12/15/2020 14:25	0.01	-0.02			45.8			
12/15/2020 14:26	0.00	-0.03			45.9			
12/15/2020 14:27	-0.01	-0.04			46.1			
12/15/2020 14:28	-0.01	-0.04			46.2			
12/15/2020 14:29	-0.01	-0.04			46.4			
12/15/2020 14:30	-0.02	-0.04			46.5			
12/15/2020 14:31	-0.02	-0.05			46.5			40.0
12/15/2020 14:32	-0.02	-0.05			46.6			49.6
12/15/2020 14:33	2.49	-0.02			40.5			
12/15/2020 14:34	20.29	0.00			7.2			
12/15/2020 14:35	20.53	0.00 0.00			3.5			
12/15/2020 14:36 12/15/2020 14:37	20.56 20.57	0.00			2.7 2.4			
12/15/2020 14:37	20.57	0.01			2.4			
12/15/2020 14:39	20.57	0.03	0.7	2.1	۷.۱			
12/15/2020 14:40		Electronic	Data Log A	Attestation	l			
12/15/2020 14:41								
12/15/2020 14:42		Start:	13	12/15/20	20 7:37			
12/15/2020 14:43		End:	434	12/15/20	20 14:38			
12/15/2020 14:44		I certify t	his to be	a comple	altered			
		record o	f instrume	ent outpu	d.			
				•				
			Terry	Borge	erding			

Subcontract Laboratory Report

EMSL Analytical, Inc. 3410 Winnetka Avenue North New Hope, MN 55427 (763) 449-4922

Terry Borgerding Pace Analytical – MN Field Services 1700 Elm Street SE Suite 200 Minneapolis, MN 55414

December 30, 2020

EMSL Order #: 352011173

RE: Grede - 20-04074

Dear Terry Borgerding:

EMSL Analytical, Inc. received samples for the project identified above on December 11, 2020. The sample(s) were analyzed in the EMSL Analytical, Inc. laboratory unless otherwise noted. Analytical results are summarized in the following report.

Analytical results are reported on an "as received" basis unless otherwise noted. Where possible, the samples will be retained by the laboratory for 60 days following issuance of the initial final report. The samples will be disposed of or returned at that time. Arrangements can be made for extended storage by contacting me at this time.

We appreciate your decision to use EMSL Analytical, Inc. for this project. We are committed to being your vendor of choice to meet your analytical needs.

If you have any questions please contact me at the above phone number.

Sincerely,

Mark Erickson

Laboratory Manager

Pace Analytical Services – MN Field Department

352011173

M5 analysis

26 samples, 25 runs and 1 blank

20-04074 - Grede

Custody	The samples were received on 12/11/2020 by Amanda Lindahl. The samples were delivered at ambient temperature in good condition. No leaks or sample loss was evident.
Analysis	The samples were analyzed for particulate matter using the analytical procedures in EPA Method 5, Determination of Particulate Matter Emissions from Stationary Sources (40 CFR Part 60, Appendix A).
QC Notes	For M5 analysis, all weights were performed on Balance IH-35-05 (Ohaus Explorer EX125) which is calibrated by NBS Calibrations through 09/2021. No reagent correction factors were applied to the reported fractions. The reagent blank was calculated but not applied to the runs.
Reporting Notes	Gravimetric analyses are considered accurate to +/- 0.5 mg. Negative weights between 0 and -0.5 mg are set to 0 in the calculation and not investigated. Negative weights greater than -0.5 mg are investigated. For M5 analysis, no reported weights were greater than -0.5 mg. For M5 analysis, probe was fraction for sample Disa Exh (324678) run 3 (352011173-0013) glass fragments were removed from the beaker prior to performing the final weights.

		T	
LIMS ID		352011173-0002	352011173-0003
Sample ID	No. 5 HMP (324848) Run	No. 5 HMP (324848) Run	No. 5 HMP (324848) Run
	1	2	3
Filter ID	0-0648 Date/Time	0-0691 Date/Time	0-0668 Date/Time
Final Weight 1 (g)	0.50863 12/28/20 2P	0.50822 12/28/20 2P	0.50519 12/28/20 2P
Final Weight 2 (g)	0.50866 12/29/20 9A	0.50816 12/29/20 9A	0.50510 12/29/20 9A
Tare Weight (g)	0.50654 6/30/2020	0.50563 6/30/2020	0.50267 6/30/2020
Net Filter Catch (mg)	2.12	2.53	2.43
Tin ID	0-1395 Date/Time	0-1396 Date/Time	0-1397 Date/Time
Weight 1 (g)	3.35602 12/28/20 2P	3.54805 12/28/20 2P	3.44769 12/28/20 2P
Weight 2 (g)	3.35585 12/29/20 9A	3.54768 12/29/20 9A	3.44736 12/29/20 9A
Tare Weight (g)		3.53266 11/17/2020	3.43267 11/17/2020
Net Acetone Residue (mg)		15.02	14.69
Acetone Volume (mL)		80	70
Total Particulate (mg)		17.55	17.12
LIMS ID	352011173-0004	352011173-0005	352011173-0006
Sample ID			
Sumple 12	Disa CC (324682) Run 1	Disa CC (324682) Run 2	Disa CC (324682) Run 3
		1	<u>. </u>
Filter ID	0-0624 Date/Time	0-0692 Date/Time	0-1180 Date/Time
Final Weight 1 (g)		0.50255 12/28/20 2P	0.50738 12/28/20 2P
Final Weight 2 (g)			
Tare Weight (g)		0.50116 6/30/2020	0.50613 11/4/2020
Net Filter Catch (mg)		1.33	1.24
Net I mer Caten (mg)	1.77	1.55	1,27
Tin ID	0-1398 Date/Time	0-1399 Date/Time	0-1400 Date/Time
Weight 1 (g)	3.32476 12/28/20 2P	3.40311 12/28/20 2P	3.48283 12/28/20 2P
Weight 2 (g)			
			3.47815 11/17/2020
Tare Weight (g)	3.32153 11/17/2020	3.39841 11/17/2020	
Net Acetone Residue (mg) Acetone Volume (mL)		4.23	4.35
		58	88
Total Particulate (mg)	4.59	5.56	5.59
D (D1 1	A 4	7	
Reagent Blank	Acetone]	
FE1: **	0.1202		
Tin ID			
Initial Volume (ml)		ד	
Weight 1 (g)		4	
Weight 2 (g)		4	
Tare Weight (g)]	
Residue (mg)			
Max Residue (mg)	0.00145		

i			
LIMS ID	352011173-0007	352011173-0008	352011173-0009
Sample ID	Disa CC (324682) Run 4	No. 7 HMP (324662) Run	No. 7 HMP (324662) Run
	2150 CC (327002) Rull 7	1	2
			
Filter ID	0-1178 Date/Time	0-1147 Date/Time	9-1040 Date/Time
Final Weight 1 (g)	0.51092 12/28/20 2P	0.51255 12/28/20 2P	0.50907 12/28/20 2P
Final Weight 2 (g)	0.51088 12/29/20 9A	0.51256 12/29/20 9A	0.50891 12/29/20 9A
Tare Weight (g)	0.50965 11/4/2020	0.50564 11/4/2020	0.50387 12/10/2019
Net Filter Catch (mg)	1.23	6.92	5.04
Tin ID	0-1401 Date/Time	0-1402 Date/Time	0-1403 Date/Time
Weight 1 (g)	3.33489 12/28/20 2P	3.34849 12/28/20 2P	3.26554 12/28/20 2P
Weight 2 (g)	3.33474 12/29/20 9A	3.34834 12/29/20 9A	3.26521 12/29/20 9A
Tare Weight (g)	3.32965 12/21/2020	3.31549 12/21/2020	3.23690 12/21/2020
Net Acetone Residue (mg)	5.09	32.85	28.31
Acetone Volume (mL)	96	90	110
Total Particulate (mg)	6.32	39.77	33.35
•			
LIMS ID	352011173-0010	352011173-0011	352011173-0012
Sample ID	No. 7 HMP (324662) Run	Disa Exh (324678) Run 1	Disa Exh (324678) Run 2
	3	Disa Exii (5240/8) Kufi 1	Disa Exii (324078) Kuli 2
•			
Filter ID	0-1141 Date/Time	0-1142 Date/Time	0-1145 Date/Time
Final Weight 1 (g)	0.51038 12/28/20 2P	0.50628 12/28/20 2P	0.50270 12/28/20 2P
Final Weight 2 (g)	0.51045 12/29/20 9A	0.50635 12/29/20 9A	0.50278 12/29/20 9A
Tare Weight (g)	0.50609 11/4/220	0.50329 11/4/2020	0.49984 11/4/2020
Net Filter Catch (mg)	4.36	3.06	2.94
Tin ID	0-1404 Date/Time	0-1405 Date/Time	0-1406 Date/Time
Weight 1 (g)	3.31053 12/28/20 2P	3.33428 12/28/20 2P	3.31713 12/28/20 2P
Weight 2 (g)	3.31021 12/29/20 9A	3.33426 12/29/20 9A	3.31700 12/29/20 9A
Tare Weight (g)	3.28852 12/21/2020	3.31781 12/21/2020	3.30407 12/21/2020
Net Acetone Residue (mg)	21.69	16.45	12.93
Acetone Volume (mL)	86	92	90
Total Particulate (mg)	26.05	19.51	15.87
Reagent Blank	Acetone		
		•	
Tin ID	0-1393		
Initial Volume (ml)			
Weight 1 (g)			
Weight 2 (g)	3.31505 12/29/20 9A		
Tare Weight (g)	3.31476 11/17/2020		
Residue (mg)	0.29	1	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

Max Residue (mg)

0.00145

i	272011172 0012		
LIMS ID	352011173-0013	352011173-0014	352011173-0015
Sample ID	Disa Exh (324678) Run 3	Disa Pouring (324484)	Disa Pouring (324484)
	2134 2141 (62 16 / 6) 1441 6	Run 1	Run 2
Filter ID	0-1146 Date/Time	0-1177 Date/Time	0-1179 Date/Time
Final Weight 1 (g)	0.50692 12/28/20 2P	0.50783 12/28/20 2P	0.51599 12/28/20 2P
Final Weight 2 (g)	0.50698 12/29/20 9A	0.50766 12/29/20 9A	0.51608 12/29/20 9A
Tare Weight (g)	0.50377 11/4/2020	0.50525 11/4/2020	0.51269 11/4/2020
Net Filter Catch (mg)	3.21	2.41	3.39
,			
Tin ID	0-1407 Date/Time	0-1408 Date/Time	0-1409 Date/Time
Weight 1 (g)	3.28806 12/28/20 2P	3.30848 12/28/20 2P	3.33880 12/28/20 2P
Weight 2 (g)	3.28810 12/29/20 9A	3.30814 12/29/20 9A	3.33869 12/29/20 9A
Tare Weight (g)	3.26964 12/21/2020	3.30037 12/21/2020	3.32971 12/21/2020
Net Acetone Residue (mg)	18.46	7.77	8.98
Acetone Volume (mL)	94	82	100
Total Particulate (mg)	21.67	10.18	12.37
LIMS ID	352011173-0016	352011173-0017	352011173-0018
Sample ID	Disa Pouring (324484)	Mod PLT Exh (334176)	Mod PLT Exh (334176)
	Run 3	Run 1	Run 2
Filter ID	0-1176 Date/Time	0-0667 Date/Time	0-0611 Date/Time
Final Weight 1 (g)	0.51471 12/28/20 2P	0.51065 12/28/20 2P	0.50790 12/28/20 2P
Final Weight 2 (g)	0.51483 12/29/20 9A	0.51077 12/29/20 9A	0.50777 12/29/20 9A
Tare Weight (g)	0.51196 11/4/2020	0.50799 6/30/2020	0.50616 6/30/2020
Net Filter Catch (mg)	2.87	2.78	1.61
Tin ID	0-1410 Date/Time	0-1411 Date/Time	0-1412 Date/Time
Weight 1 (g)	3.27743 12/28/20 2P	3.45457 12/28/20 2P	3.51085 12/28/20 2P
Weight 2 (g)	3.27738 12/29/20 9A	3.45419 12/29/20 9A	3.51070 12/29/20 9A
Tare Weight (g)	3.26533 12/21/2020	3.44042 12/21/2020	3.50014 12/21/2020
Net Acetone Residue (mg)	12.05	13.77	10.56
Acetone Volume (mL)	84	116	110
Total Particulate (mg)	14.92	16.55	12.17
Reagent Blank	Acetone		
Tin ID	0-1393		
Initial Volume (ml)	200 Date/Time		
Weight 1 (g)	3.31503 12/28/20 2P		
Weight 2 (g)	3.31505 12/29/20 9A		
Tare Weight (g)	3.31476 11/17/2020		
Residue (mg)	0.29		
Max Residue (mg)	0.00145		
max residue (mg)	0.00110		

_			
LIMS ID	352011173-0019	352011173-0020	352011173-0021
Sample ID	Mod PLT Exh (334176)	Mod PLT Exh (334116)	Mod PLT Exh (334116)
	Run 3	Run 1	Run 2
·			
Filter ID	0-0614 Date/Time	0-0643 Date/Time	0-0641 Date/Time
Final Weight 1 (g)	0.50193 12/28/20 2P	0.50626 12/28/20 2P	0.50846 12/28/20 2P
Final Weight 2 (g)	0.50220 12/29/20 9A	0.50625 12/29/20 9A	0.50803 12/29/20 9A
Tare Weight (g)	0.49992 6/30/2020	0.50170 6/30/2020	0.50197 6/30/2020
Net Filter Catch (mg)	2.28	4.55	6.06
Tin ID	0-1413 Date/Time	0-1414 Date/Time	0-1415 Date/Time
Weight 1 (g)	3.34507 12/28/20 2P	3.45474 12/28/20 2P	3.43760 12/28/20 2P
Weight 2 (g)	3.34470 12/29/20 9A	3.45441 12/29/20 9A	3.43725 12/29/20 9A
Tare Weight (g)	3.33427 12/21/2020	3.44083 12/21/2020	3.42279 12/21/2020
Net Acetone Residue (mg)	10.43	13.58	14.46
Acetone Volume (mL)	78	98	120
Total Particulate (mg)	12.71	18.13	20.52
LIMS ID	352011173-0022	352011173-0023	352011173-0024
Sample ID	Mod PLT Exh (334116)	No. 6 HMP (324632) Run	No. 6 HMP (324632) Run
-	Run 3	1	2
•			
Filter ID	0-0642 Date/Time	0-1175 Date/Time	0-1144 Date/Time
Final Weight 1 (g)	0.50467 12/28/20 2P	0.50458 12/28/20 2P	0.50391 12/28/20 2P
Final Weight 2 (g)	0.50476 12/29/20 9A	0.50461 12/29/20 9A	0.50402 12/29/20 9A
Tare Weight (g)	0.50204 6/30/2020	0.50307 11/4/2020	0.50152 11/4/2020
Net Filter Catch (mg)	2.72	1.54	2.50
•			
Tin ID	0-1416 Date/Time	0-1417 Date/Time	0-1418 Date/Time
Weight 1 (g)	3.29732 12/28/20 2P	3.28968 12/28/20 2P	3.34768 12/28/20 2P
Weight 2 (g)	3.29717 12/29/20 9A	3.28947 12/29/20 9A	3.34759 12/29/20 9A
Tare Weight (g)	3.28709 12/21/2020	3.27899 12/21/2020	3.33719 12/21/2020
Net Acetone Residue (mg)	10.08	10.48	10.40
Acetone Volume (mL)	136	98	90
Total Particulate (mg)	12.80	12.02	12.90
Reagent Blank	Acetone		
-		•	
Tin ID	0-1393		
Initial Volume (ml)	200 Date/Time	_	
Weight 1 (g)	3.31503 12/28/20 2P		
Weight 2 (g)	3.31505 12/29/20 9A		
Tare Weight (g)	3.31476 11/17/2020		
Residue (mg)	0.29		
May Pasidua (mg)	0.00145		

Max Residue (mg)

0.00145

LIMS ID	352011173-0025	3520111	73-0026	
Sample ID	No. 6 HMP (324632) Run	Acatoma	Dlank	
_	3	Acetone	Blank	
			,	
Filter ID		NA		
Final Weight 1 (g)				
Final Weight 2 (g)				
Tare Weight (g)				
Net Filter Catch (mg)	2.53			
m: 15	0.1410 D . /T!	0.1400	D . /D:	
Tin ID			Date/Time	
Weight 1 (g)			12/28/20 2P	
Weight 2 (g)			12/29/20 9A	
Tare Weight (g)			12/21/2020	
Net Acetone Residue (mg)		3.47		
Acetone Volume (mL)	•	210		
Total Particulate (mg)	16.96	3.47		
LIMS ID				
Sample ID				
Filter ID				
Final Weight 1 (g)				
Final Weight 2 (g)				
Tare Weight (g)				
Net Filter Catch (mg)				
rect inter eaten (mg)				
Tin ID				
Weight 1 (g)				
Weight 2 (g)				
Tare Weight (g)				
Net Acetone Residue (mg)				
Acetone Volume (mL)				
Total Particulate (mg)				
	<u> </u>		<u>'</u>	
Reagent Blank	Acetone			
Tin ID				
Initial Volume (ml)		•		
Weight 1 (g)		•		
Weight 2 (g)				
Tare Weight (g)				
Residue (mg)				
Max Residue (mg)	0.00145			

														_							
167	CHAIN-	OF-CU	STODY	FODY Analytical Request Document								LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here									
/ Pace Analytical*	Chain	.f Curtody	ica I FGAL	DOCUMEN	IT - Complet	en all ralava	nt finlds						2		MITTER	og-in ivi	mber Heri	е			
Company:			Billing Info		ii - Complet	le all releve	nt neius						ي ۔	\Box	D1	<u>[]</u>	15 .				
Pace Mr		ኦ 							ALL SHADED AREAS are for Container Preservative Type ** Lab Pr												
Address: 1700 Ela Report Ton Borgardia	a St.									Γ	Conta	iner Pres	servativ	e Type	**		Lab Proje	ect Manager:			
Report Ton Bongwalin	<u> </u>		Email To:															sodium hydroxide, (5) zinc ac rbic acid, (8) ammonium sulfa			
Copy To: Beth Kel	m		Site Collec	te Collection Info/Address:							um hydrox	cide, (D) T			Lab Profi	-					
Customer Project Name/Number:	-04074	<u>'</u>	State: /									And	alyses				Lab S	ample Receipt Checkl dy Seals Present/Int			
Phone Terry Borgeding Email: a pacelabs.com	Site/Facility ID	#:	<u> </u>		Compliano	ce Monitori	ng?	_	r								Custo Colle	dy Signatures Presen ctor Signature Prese	t YN NA nt YN NA		
Collected By (print): Terry 30 yerding	Purchase Orde	r#:			DW PWS I												Corre	es Intact ct Bottles cient Volume	Y N NA Y N NA Y N NA		
Collected By (signature):	Turnaround Da	to Requir	nd:			ely Packed	on Ice:										Sampl	es Received on Ice Headspace Acceptabl	AN NY AN NY		
	Turriar ourid Da	572	eu.		[]Yes	[] No			T								USDA :	Regulated Soils es in Holding Time	Y N NA Y N NA		
Sample Disposal:	Rush:		-	<u>-</u>		red (if appli	cable):		A							1	Resid	ual Chlorine Present			
[] Dispose as appropriate [] Return [] Archive:	[] Sar [] 2 Day [-	[] Next Day [] 4 Day	-	[] Yes	[] No			3								Sampl	rips: e pH Acceptable	Y N NA		
[] Hold:	<u> </u>		rges Apply)		Analysis: _				م									de Present	AN N Y		
* Matrix Codes (Insert in Matrix bo Product (P), Soil/Solid (SL), Oil (OI																		Acetate Strips: SE ONLY:			
Customer Sample ID	Matrix *	Comp / Grab	1	ted (or site Start) Time	Compo Date	site End	Res Cl	# of Ctns	145								Lab S	ample # / Comments:			
No.5 HAR (324848) Rug 1	AR	حـ	 	0750	Date	Tille		2	~												
11 11 Run 2		1	Li_	0935				2	\ <u>\</u>												
" " RUA3				1206	<u> </u>	<u></u>		2	V										` 	·	
Disa CC (324682) R.1				0743		L		2	<u> </u>	<u> </u>						_ _			:.		
11 11 Run 2	 _			0935				2	<i>'</i>	_											
1 1 Rva3				1215				2	V	<u> </u>			<u> </u>			_					
No. 7 HMP (324662) R. 1			\vdash	0748				2	1			<u> </u>	<u> </u>								
in in Rinz		<u> </u>		0959				2		<u> </u>			ļ			4		<u> </u>		<u></u>	
" 1' Ru.3	 		<u> </u>	1225	 	ļ	ļ	2		_		-	 								
Disa Exh (324678) Run		<u> </u>	-	1052	14/ [<u> </u>		2		leuc	DT HOLD	e poece	UT (-72					Lab Sample Temperatur	o Info:		
Customer Remarks / Special Condit		lazards:	Type of ic	e Used: laterial Use		Blue Dr	у іче	one		+	RT HOLD Tracking				· ·	•		Temp Blank Received		≬A	
ship to Emsl											nlos:			<u> </u>	625	ТΞ		Therm ID#:Cooler 1 Temp Upon			
pg 1 of 3			<u> </u>	sample(s) s	screened (<					Ш,	ples recei FEDEX	ÜPS	Client	t Co	urier	Pace 0		Cooler 1 Therm Corr. Cooler 1 Corrected To		oc oc	
lelinquished by/Company: (Signatu	ire)		e/Time:	<i>_</i>	Regeived b	y/Company	/	_			Date/Tim	1		-		AB USE	ONLY	Comments:			
Pac Pac			11/20/910 / 1/1/ 1Pac						e_		12/11		9:19	Table Acctr			- 	-			
ir linduished by/tompany: (9/gn/tu	1 Pace		/Time: Received by/Company: (Signature)						Date/Time: Acctnum Template Prelogin:						olate:			Trip Blank Received: HCL MeOH TS		NA AV	
Pace Analytical	ire)	Date	e/Time:			y/Company الانسان			Date/Time: PM:								Non Conformance(s): YES / NO	Page:			
		J		_					_			<u></u>		ţ. J.		<i>:</i>		Grede, LLC - Iron I	Mountain	=	
FSD 20-04074							Repor	ı Date	2/5/2	2021								Page B	-28 of 36		

	JSTODY Analyti	cal Request Document	LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here										
Pace Analytical*	ly is a LEGAL DOCUMEN	T. Complete all relevant fields		352011173									
Company:	Billing Information:	T - Complete all relevent fields	\dashv				-		_	-			
Pace MN-Freld									KEAS a		AB USE ONLY		
Address: 1700 Elm St.			-	П	Container	Preserva	ative Typ	e **		Lab Proje	ect Manager:		
Report To: To Borgerding	Email To:										sodium hydroxide, (5) zinc acetate,		
ICopy To:	Site Collection Info/A	Address:			, (7) sodium b m hydroxide,					kane, (A) asco	orbic acid, (B) ammonium sulfate, —		
Customer Project Name/Number:	State: County/Ci	ity: Time Zone Collected:	_			Analyse	es			Lab Profi	ile/Line: :ample Receipt Checklist:		
Grede / 20-04074		[] PT[] MT[] CT [] I	ET						.	ı	ody Seals Present/Intact Y N NA		
Phone: terry borgerling a Site/Facility ID #: Email: Acceptans:		Compliance Monitoring?								Custo	dy Signatures Present Y N NA ector Signature Present Y N NA		
		[] Yes [] No	$\dashv \mathcal{I}$							Bott1	es Intact Y N NA		
Collected By (brint): Purchase Order #: Terry Baccaphing Quote #:		DW PWS ID #: DW Location Code:	16							Suffi	ct Bottles Y N NA cient Volume Y N NA		
Terry Birgerling Quote #: Collected By (signature): Turnaround Date Requ	ired:	Immediately Packed on Ice:		1						VOA -	es Received on Ice Y N NA Headspace Acceptable Y N NA		
	std	[] Yes [] No	_ \							Sampl	Regulated Soils Y N NA es in Holding Time Y N NA		
Sample Disposal: Rush:	[] Next Day	Field Filtered (if applicable): [] Yes [] No								Cl St	lual Chlorine Present Y N NA		
	[]4 Day []5 Day	Analysis:	6								e pH Acceptable Y N NA		
* Matrix Codes (Insert in Matrix box below): Drinking Wate	harges Apply) or (DW), Ground Water i		- N								de Present Y N NA Acetate Strips:		
Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR),			11/0							- 1	SE ONLY:		
Customer Sample ID Matrix * Grab		Composite End Res # 6	1 1	1						Lab S	ample # / Comments:		
Customer Sample ID Matrix * Grab	Composite Start) Date Time	Date Time CI Ct	15										
Disa Ed (324678) Bis All C	12-9-20 1251	2											
i i Run 3	1435	2					<u> </u>						
Disa Buring (324484) Bull	0826						_						
" Run 2	1015	. 	길				_			1			
" " R. 3	1205		_				_		_	-			
Mad AH Ext. (334176) Run	0815	1 1		\vdash						 			
- Mariani, - 1	1035			\vdash				+			*************************************		
Med RIFEA (334116) Run 1	12-10-20 0750			┝╾┼			-}-	+		+			
11 11 Ron 2	1 0940				- - 		\dashv						
Customer Remarks / Special Conditions / Possible Hazards:	Type of Ice Used:	Wet Blue Dry None		SHOR	T HOLDS PF	RESENT (<72 hou	rs): Y	N N	'A	Lab Sample Temperature Info:		
	Packing Material Use	d:		Lab T	racking#:			200	· Γ Δ ·		Temp Blank Received: Y N NA		
Ship to EMSL				<u> </u>			2.	3 b Z	52	<u>J</u>	Therm ID#:oC Cooler 1 Temp Upon Receipt:oC		
Ship to EMDL pg. 2 of 3	Radchem sample(s) s	creened (<500 cpm): Y N	NA		les received EDEX UI		ient	Courier	Pare	Courier	Cooler 1 Therm Corr. Factor:oC Cooler 1 Corrected Temp:oC		
Relinquished by/Company: (Signature) Da	te/Time:	Beceived by/Company:/Signature)			ate/Time:		<u>-,,,</u>		LAB USI		Comments:		
	214/20/96	1 1/1 1/11 1/ 1 4 4	ile		12/11/20	9:11	и —	ble#:					
(elinquisbed by/Company: Signature) Da	te/Time:	Received by/Company: (Signature)			ate/Time:	<u> </u>	Ac	ctnum:			Trip Blank Received: Y N NA		
Price i	2/11/20 9/19						mplate: elogin:			HCL MeOH TSP Other			
Retinquished by/Company: (Signature)	te/Time:	Received by/Company: (Signature)	Date/Time: PM:							Non Conformance(s): Page:			
Pace Analytical			PB: YES / NO G										
FSD 20-04074		Report Da	ate 2/5/2	2021					•		Page B-29 of 36		

	CHAIN-C	F-CU	STODY	LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here																	
/ Pace Analytical*	Chain-of-	Custody	is a LEGAL I	DOCUMEN	T - Complet	te all releve	nt fields											O	D1173		
Company: Pace MN-	Field		Billing Info	illing Information:													AS a	are for L	AB USE ONLY		
Address: 1700 AM											Cor	tainer	Presen	<u>vative</u>	Type '	**	$\overline{}$	Lab Proj	ject Manager:		
Report To: T. Burgero		-	Email To:						** Preservative Types: (1) nitric acid, (2) sulfuric acid, (3) hydrochloric acid, (4) sodium hydroxide, (5) zinc acetate, (6) methanol, (7) sodium bisulfate, (8) sodium thiosulfate, (9) hexane, (A) ascorbic acid, (B) ammonium sulfate,									\exists			
Copy To:	<u> </u>		Site Collec	te Collection Info/Address:									(D) TSP,						orbic acid, (B) ammonium sulfate,		
Customer Project Name/Number:			State:								Analyses							Lab Profile/Line: Lab Sample Receipt Checklist:			
Grede 120)-04071	4	/ [] PT [] MT [] CT [] ET																ody Seals Present/Intact Y N NA		
Phone: fory bogerlings Email: parelans.com	Site/Facility ID #:	1		Compliance Monitoring? [] Yes [] No														Custo Colle	ody Signatures Present Y N NA ector Signature Present Y N NA		
Collected By (print):	Purchase Order #	* :			DW PWS				u									Corr	ect Bottles Y N NA		
Terry Burgeraing Collected By (signature);	Quote #:		10		DW Locat	ion Code: ely Packed	on Ice		1	1								Samp	icient Volume Y N NA les Received on Ice Y N NA		
Collected by (signature):	Turnaround Date	Require]		[] Yes	[]No	on ice.		DW /	Ţ								USDA	- Headspace Acceptable Y N NA Regulated Soils Y N NA		
Sample Disposal:	Rush:			[] Yes [] No Field Filtered (if applicable):														Resi	les in Holding Time Y N NA dual Chlorine Present Y N NA		
[] Dispose as appropriate [] Return [] Archive:] Next Day [] Yes [] No] 4 Day [] 5 Day														Samp	trips: le pH Acceptable Y N NA		
[] Hold:			rges Apply)															Sulf	trips: Y N NA		
* Matrix Codes (Insert in Matrix bo Product (P), Soil/Solid (SL), Oil (O	x below): Drinking L), Wipe (WP), Air	Water (AR), Tis	(DW), Grou isue (TS), Bi	DW), Ground Water (GW), Wastewater (WW), ue (TS), Bloassay (B), Vapor (V), Other (OT)														1	Acetate Strips:		
Customer Sample ID	Matrix *	Comp / Grab	1	Collected (or Composite End CI Ctns														Lab.	Sample # / Comments:	, m	
. 1011 (/ / / / / / / / / / / / / / / / / /			Date	Time	Date	Time	 -	 	Method	 				_	_		_	_			
Mod Plt. Ext. (334116) Run3	AR	<u> </u>	127014		 	 	<u> </u>	2	1	_	-	-				_	+			Jo	
No 6 HMP (324632) Run1	├── ो───		 	0720			<u> </u>	2	1	-	├			\dashv	-+		-			m	
11 11 Run 2	 	$\overline{}$		1210				2	1				-	_						 ტ	
Acetone Blank		F		1330		 		1		 				\dashv			-	-			
1.0010110 ().00110	 	<u>. </u>		1.5.5.	1			† <u>'</u> -	<u> </u>		ļ					_	\dashv	\dashv			
					<u> </u>				· · · · ·										·		
		_	· · ·										\neg			"		1			
						l													_		
						<u>]</u>															
Customer Remarks / Special Condit		zards:	Type of Ice			Blue Di	y No	one					RESENT	(<72 l	iours):	. Y	N N	/A	Lab Sample Temperature Info: Temp Blank Received: Y N NA		
ρ_{q} . 3	0+3		Packing M	aterial Use	ıd:					Lab	Tracki	ng#:			731	62	54	1	Therm ID#:		
- 1 1 2	-									Sam	ples re	ceived	via:			<u> </u>			Cooler 1 Temp Upon Receipt:oC Cooler 1 Therm Corr. Factor:oC		
= Ship to El	NSL				creened (<			2	١		FEDEX			Client	Co	urier		e Courier	Cooler 1 Corrected Temp:oC		
telinquished by/Company: (Signatu	ıre)		e/Time: Received by/Company: (Signature)						•		Date/		_		- 11		LAB US	E-ONLY	Comments:		
S Pace									ace				0 9:	:19	Table Acctri			 	-		
te/nquistber by/ Company: ((Signatu			Received by/Company: (Signature)						I Date/Time:					Template:				Trip Blank Received: Y N NA			
	ace		4[[12v 9:19] te/Time: Received by/Company: (Signature)									Prelogin:				HCL MeOH TSP Other					
ચે Relinquished by/Company: (Signatu પ્ર ા	ıre)	Date	y time:	Fime: Received by/Company: (Signature)					Date/Time:				PM:				Non Conformance(s): Page:	. [
Ö								_							PB:				YES / NO		

EMSL Analytical, Inc. 3410 Winnetka Avenue North New Hope, MN 55427 (763) 449-4922

Terry Borgerding Pace Analytical – MN Field Services 1700 Elm Street SE Suite 200 Minneapolis, MN 55414

January 05, 2021

EMSL Order #: 352011456

RE: Iron Mountain Grede 20-04074

Dear Terry Borgerding:

EMSL Analytical, Inc. received samples for the project identified above on December 18, 2020. The sample(s) were analyzed in the EMSL Analytical, Inc. laboratory unless otherwise noted. Analytical results are summarized in the following report.

Analytical results are reported on an "as received" basis unless otherwise noted. Where possible, the samples will be retained by the laboratory for 60 days following issuance of the initial final report. The samples will be disposed of or returned at that time. Arrangements can be made for extended storage by contacting me at this time.

We appreciate your decision to use EMSL Analytical, Inc. for this project. We are committed to being your vendor of choice to meet your analytical needs.

If you have any questions please contact me at the above phone number.

Sincerely,

Mark Erickson

Laboratory Manager

Pace Analytical Services – MN Field Department

352011456

M5 analysis

4 samples, 3 runs and 1 blank

20-04074 – Iron Mountain Grede

Custody	The samples were received on 12/18/2020 by Mark Erickson. The samples were delivered at ambient temperature in good condition. No leaks or sample loss was evident.
Analysis	The samples were analyzed for particulate matter using the analytical procedures in EPA Method 5, Determination of Particulate Matter Emissions from Stationary Sources (40 CFR Part 60, Appendix A).
QC Notes	For M5 analysis, all weights were performed on Balance IH-35-05 (Ohaus Explorer EX125) which is calibrated by NBS Calibrations through 09/2021. No reagent correction factors were applied to the reported fractions. The reagent blank was calculated but not applied to the runs.
Reporting Notes	Gravimetric analyses are considered accurate to +/- 0.5 mg. Negative weights between 0 and -0.5 mg are set to 0 in the calculation and not investigated. Negative weights greater than -0.5 mg are investigated. For M5 analysis, no reported weights were greater than -0.5 mg.

LIMS ID	352011456-0001	352011456-0002	352011456-0003
Sample ID	Cupola Exhaust T1R1	Cupola Exhaust T1R2	Cupola Exhaust T1R3
	0.11.40 5 . ///	0.000 5	0.06747
Filter ID	0-1143 Date/Time	0-0606 Date/Time	0-0674 Date/Time
Final Weight 1 (g)	0.50624 1/4/21 10A	0.50636 1/4/21 10A	0.50876 1/4/21 10A
Final Weight 2 (g)	0.50617 1/5/21 9A	0.50647 1/5/21 9A	0.50874 1/5/21 9A
Tare Weight (g)	0.50494 11/4/2020	0.50517 6/30/2020	0.50759 6/30/2020
Net Filter Catch (mg)	1.23	1.30	1.15
Tin ID	0-1421 Date/Time	0-1422 Date/Time	0-1423 Date/Time
Weight 1 (g)	3.27718 1/4/21 10A	3.37942 1/4/21 10A	3.36830 1/4/21 10A
Weight 2 (g)	3.27722 1/5/21 9A	3.37902 1/5/21 9A	3.36797 1/5/21 9A
Tare Weight (g)	3.26055 12/29/2020	3.37467 12/29/2020	3.36126 12/29/2020
Net Acetone Residue (mg)	16.67	4.35	6.71
Acetone Volume (mL)	164	122	154
Total Particulate (mg)	17.90	5.65	7.86
, n, ca m	252011156 0001		т
LIMS ID	352011456-0004		
Sample ID	Cupola Blank T1R0		
L			
Filter ID	0-1174 Date/Time		
Final Weight 1 (g)	0.50452 1/4/21 10A		
Final Weight 2 (g)	0.50449 1/5/21 9A		
Tare Weight (g)	0.50407 11/4/2020		
Net Filter Catch (mg)	0.42		
Г			
Tin ID	0-1424 Date/Time		
Weight 1 (g)	3.34790 1/4/21 10A		
Weight 2 (g)	3.34796 1/5/21 9A		
Tare Weight (g)	3.34670 12/29/2020		
Net Acetone Residue (mg)	1.26		
Acetone Volume (mL)	114		
Total Particulate (mg)	1.68		
Reagent Blank	Acetone		
r			
Tin ID	0-1429		
Initial Volume (ml)	200 Date/Time	•	
Weight 1 (g)	3.33613 1/4/21 10A	•	
Weight 2 (g)	3.33607 1/5/21 9A		
Tare Weight (g)	3.33592 12/29/2020		
Residue (mg)	0.15		
Max Residue (mg)	0.00075		

Pace Analytical Services – MN Field Department

352011456

M202 analysis

4 samples, 3 runs and 1 blank

20-04074 – Iron Mountain Grede

Custody	The samples were received on 12/18/2020 by Mark Erickson. The samples were delivered at ambient temperature in good condition. No leaks or sample loss was evident.
Analysis	The samples were analyzed for particulate matter using the analytical procedures in Appendix M to Part 51 (202 eCFR) Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources.
QC Notes	For M202 analysis, all weights were performed on Balance IH-35-05 (Ohaus Explorer EX125) which is calibrated by NBS Calibrations through 09/2021. No reagent correction factors were applied to the reported fractions. The train blank was calculated but not applied to the runs.
Reporting Notes	Gravimetric analyses are considered accurate to +/- 0.5 mg. Negative weights between 0 and -0.5 mg are set to 0 in the calculation and not investigated. Negative weights greater than -0.5 mg are investigated. For M202 analysis, no reported weights were greater than -0.5 mg.

LIMS ID	352011456-0001	352011456-0002	352011456-0003	352011456-0004
Sample ID	Cupola Exhaust T1R1	Cupola Exhaust T1R2	Cupola Exhaust T1R3	Cupola Blank T1R0
Organic Catch				
Beaker ID	0-1425	0-1426	0-1427	0-1428
Initial Solvent Vol. (ml)	132 Date/Time	108 Date/Time	140 Date/Time	106 Date/Time
Organic FW 1 (g)	3.39009 1/4/21 10A	3.55383 1/4/21 10A	3.34344 1/4/21 10A	3.27442 1/4/21 10A
Organic FW 2 (g)	3.38995 1/5/21 9A	3.55372 1/5/21 9A	3.34359 1/5/21 9A	3.27462 1/5/21 9A
Tare Weight (g)	3.38847 12/29/2020	3.55182 12/29/2020	3.34142 12/29/2020	3.27427 12/29/2020
Organic Catch (mg)	1.48	1.90	2.17	0.35
Inorganic Catch				
Vessel ID	A0713325	A0713326	A0713327	A0713328
Sample Vol. (mL)	128	90	128	50
DI Added (mL)	75 Date/Time	75 Date/Time	75 Date/Time	75 Date/Time
Weight 1 (g)	3.90665 1/4/21 10A	3.89286 1/4/21 10A	3.83609 1/4/21 10A	3.91114 1/4/21 10A
Weight 2 (g)	3.90654 1/5/21 9A	3.89278 1/5/21 9A	3.83592 1/5/21 9A	3.91098 1/5/21 9A
Tare Weight (g)	3.90328 12/16/2020	3.88789 12/16/2020	3.83336 12/16/2020	3.91027 12/16/2020
Net Inorg Catch (mg)	3.26	4.89	2.56	0.71
Resp. DI added (mL)	0	0	0	0
Volume Titrated (mL)	0	0	0	0
NH3 Correction (mg)	0.00	0.00	0.00	0.00
Corrected Inorg Catch (mg)	3.26	4.89	2.56	0.71
CPM (mg)	4.74	6.79	4.73	1.06
Reagent Blanks	Acetone	Hexane	DI Water	
Beaker ID	0-1429	0-1430	A0713329	-
Initial Volume (ml)	200 Date/Time	200 Date/Time	200 Date/Time	
Weight 1 (g)	3.33613 1/4/21 10A	3.36508 1/4/21 10A	3.88292 1/4/21 10A	
Weight 2 (g)	3.33607 1/5/21 9A	3.36497 1/5/21 9A	3.88305 1/5/21 9A	
Tare Weight (g)	3.33592 12/29/2020	3.36475 12/29/2020	3.88319 12/16/2020	
Residue (mg)	0.15	0.22	-0.14	_
Max Residue (mg)	0.00075	0.00110	-0.00070	

											_										
10	CHAIN-	OF-CU	OF-CUSTODY Analytical Request Document				LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here														
/ _Pace Analytical*	Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevent fields				35701 151																
Company: Pace Analp) Address: 1800 EIM Report To:	Lical		Billing Info		1 '-)		ALL SHADED AREAS are for LAB USE ONLY												
Address: 1800 ElM	54					FSD)			Container Preservative Type ** Lab Project Manager:												
Report To: Terry Borg	erding		Email To:	Ciara	Ru	:KRe														odium hydroxide, (5) zinc acetate, bic acid, (B) ammonium sulfate,	
Copy To: Beth KelM			Site Collec	tion Info/A	\ddress:					(C) ammonium hydroxide, (D) TSP, (U) Unpreserved, (O) Other Analyses Lab Profile/Line:											
Customer Project Name/Number:	ede 20-0	State: County/City: Time Zone Collected: 1. 20-04074 MI Hingsford []PT[]MT[]CT[]ET				_				Analy	yses_					Lab Sa	ly Seals Present/Intact Y N NA				
Phone: Email: 6/2 - 723-0/8/	Site/Facility ID		-	Compliance Monitoring? [] Yes [] No													Custo	ly Signatures Present Y N NA tor Signature Present Y N NA s Intact Y N NA			
11101 0 1 1 (0)0000000000000000000000000	Purchase Orde Quote #:	r#:			DW PWS DW Locat	ion Code:						<i>~</i>							Correct Suffic	t Bottles Y N NA sient Volume Y N NA s Received on Ice Y N NA	
Collected By (signature):	Turnaround Da	te Require	ed:		[] Yes	ely Packed o						2	2	Y						USDA F	Headspace Acceptable Y N NA Regulated Soils Y N NA es in Holding Time Y N NA
Sample Disposal: [] Dispose as appropriate [] Return [] Archive:	[] 2 Day [[] Yes	red (if appli	cable):	_	N/	M	15	0	7						Residu Cl Str Sample pH Str	al Chlorine Present Y N NA rips: pH Acceptable Y N NA	
* Matrix Codes (Insert in Matrix box Product (P), Soil/Solid (SL), Oil (OL			sue (TS), B	ioassay (B)					202	202	707	M 202	202						Lead A	cetate Strips:	
Customer Sample ID ,	Matrix *	Comp / Grab		ted (or ite Start) Time	Compo	osite End	Res Cl	# of Ctns	M	ź	\$	M	Z					ľ	Lab Sa	umple # / Comments:	
Cupola Exhaust RI	AR	COMP	12/18	830	12/16	1056		5	1	7	7	1	7.								
cupala Exhaust T,R2	AR	comp	12/16	1230	13/16	1456		5	1	/	1	1	7		7 3. 5 37 3				•		
cupalor Exhaust T. R.z	AR	conp	12/17	753	12/17	1017		5	1	1	1	7	/						. ,		
Cupola Extanst R. Cupola Extanst T.R. Cupola Extanst T.R. Cupola Elonk T.B.	AR	6126	12/16	1600	12/16	1600		3		/	1	1				\dashv		_			
					ļ						<u> </u>			\dashv				\dashv			
			 		 .	 			-		├—		_			-					
			<u> </u>	-	 	-		1		 	 		\dashv			\dashv		+			
										<u> </u>			-	+	-+	\dashv					
																\neg					
Customer Remarks / Special Conditi	ons / Possible H	lazards:	Type of Ice	e Used:	Wet	Blue Dr	y No	ne		SHC	RT HO	LDS PI	RESENT	T (<72 l	hours):	Υ	N	N/A		Lab Sample Temperature Info:	
			Packing M	iaterial Use	:d:	,				Lab	Tracki	ng#:		,	231	62	54	0		Temp Blank Received: Y N NA Therm ID#: Cooler 1 Temp Upon Receipt:oC	
7 7 #			Radchem	sample(s) s	creened (<	500 cpm):	Y N	NA		Sam	ples re FEDEX			Client	Co	urier	Ρ̈́a	ce Cou	rier	Cooler 1 Therm Corr. Factor:oC Cooler 1 Corrected Temp:oC	
Relinquished by/Company: (Signatu	re)	Date/Time: Regaved by/Company, (Signature)				ure)			Date/	Γime:		-		MTJL	LABL	ISE ON	LY	Comments:			
modeler mobilant	pace	12	118/20	1000	(l	MS	1Pa	u				18/2	ا ما	1:00	Table						
Velinduished by/Company: Nighatu	re) Pace		/Time: -{18{20	II:ou	וכומאוו		: (Signat SL —	NN)	WI WI		Date/	rime:	1200	3:3 è	Acctn Temp Prelo	late:				Trip Blank Received: Y N NA HCL MeOH TSP Other	
Selinquished by/Company: (Signatu	re)	Date	/Time:		Rèceived t	y/Company	: (Signat	ure)			Date/	lime:			PM: PB:					Non Conformance(s): Page: YES / NO of:	
Pace Analytical FSD 20-04074		•					Repor	Date	2/5/2	2021					•		_			Grede, LLC - Iron Mountain Page B-36 of 36	

Appendix C

Calculation Equations and Report Nomenclature

Intermediate Calculation Summaries

Kingsford, MI Pace Project No. 20-04074 ain Appendix C
Intermediate Data Summary
Main Plant Pouring & Cooling Disa Pouring - 324484

Test 1

Parameter Sample Duration, Minutes	Run 1 84	Run 2 84	Run 3 84
Barometric Pressure, inches Hg	28.431	28.431	28.431
Static Pressure Of Duct, Inches H ₂ O	-1.5	-1.5	-1.5
Absolute Pressure Of Duct, Inches Hg	28.32	28.32	28.32
Meter Coefficient	0.9916	0.9916	0.9916
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.250	0.250	0.250
Area Of Nozzle Opening, Square Feet	0.000341	0.000341	0.000341
Average Sq. Root of ΔPs, Inches H ₂ O	0.7482	0.7609	0.7613
Average ΔH, Inches H ₂ O	2.50	2.65	2.66
Average Stack Temperature, °F	90.08	89.17	91.38
Average Stack Temperature, °R	549.75	548.84	551.05
Average Meter Temperature, °F	52.27	64.83	68.21
Average Meter Temperature, °R	511.94	524.50	527.88
Meter Volume, Cubic Feet	70.38	73.54	73.85
Dry Standard Sample Volume, Cubic Feet	68.84	70.23	70.08
Collected Condensate Volume, ml	25.0	34.8	26.2
Moisture Content Of Flue Gas, % v/v	1.68	2.28	1.73
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.78	28.71	28.77
Source Gas Velocity, Feet Per Second	44.13	44.89	44.96
Actual Gas Volume Flow, ACFM	8,318	8,462	8,474
Standard Gas Volume Flow, SCFM	7,562	7,706	7,686
Dry Standard Gas Volume Flow, DSCFM	7,435	7,530	7,553
Isokinetic Variation, %	101.6	102.4	101.9

Kingsford, MI Pace Project No. 20-04074 Intermediate Data Summary
Main Plant Pouring & Cooling No. 6 HMP - 324632

Test 1

Parameter Sample Duration, Minutes	Run 1 84	Run 2 84	Run 3 84
Barometric Pressure, inches Hg	28.66	28.66	28.66
Static Pressure Of Duct, Inches H ₂ O	-0.35	-0.35	-0.35
Absolute Pressure Of Duct, Inches Hg	28.63	28.63	28.63
Meter Coefficient	0.9916	0.9916	0.9916
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.371	0.371	0.371
Area Of Nozzle Opening, Square Feet	0.000751	0.000751	0.000751
Average Sq. Root of ΔPs , Inches H_2O	0.3982	0.4119	0.4050
Average ΔH, Inches H ₂ O	3.46	3.63	3.57
Average Stack Temperature, °F	83.67	89.46	94.13
Average Stack Temperature, °R	543.34	549.13	553.80
Average Meter Temperature, °F	54.31	55.60	66.73
Average Meter Temperature, °R	513.98	515.27	526.40
Meter Volume, Cubic Feet	82.92	84.98	85.33
Dry Standard Sample Volume, Cubic Feet	81.63	83.48	82.04
Collected Condensate Volume, ml	15.7	15.8	7.0
Moisture Content Of Flue Gas, % v/v	0.90	0.88	0.40
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.86	28.86	28.92
Source Gas Velocity, Feet Per Second	23.19	24.11	23.78
Actual Gas Volume Flow, ACFM	4,371	4,545	4,483
Standard Gas Volume Flow, SCFM	4,065	4,182	4,091
Dry Standard Gas Volume Flow, DSCFM	4,028	4,145	4,074
Isokinetic Variation, %	101.0	100.4	100.4

Kingsford, MI Pace Project No. 20-04074 In Appendix C
Intermediate Data Summary
Main Plant Pouring & Cooling No. 7 HMP - 324662
Test 1

Parameter Sample Duration, Minutes	Run 1 96	Run 2 72	Run 3 72
Barometric Pressure, inches Hg	28.65	28.65	28.65
Static Pressure Of Duct, Inches H ₂ O	-0.5	-0.5	-0.5
Absolute Pressure Of Duct, Inches Hg	28.61	28.61	28.61
Meter Coefficient	0.996	0.996	0.996
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.260	0.260	0.260
Area Of Nozzle Opening, Square Feet	0.000369	0.000369	0.000369
Average Sq. Root of ΔPs , Inches H_2O	0.721	0.734	0.726
Average ΔH, Inches H ₂ O	2.45	2.54	2.51
Average Stack Temperature, °F	90.67	94.54	95.75
Average Stack Temperature, °R	550.34	554.21	555.42
Average Meter Temperature, °F	67.40	72.63	80.06
Average Meter Temperature, °R	527.07	532.30	539.73
Meter Volume, Cubic Feet	86.19	66.30	66.20
Dry Standard Sample Volume, Cubic Feet	82.86	63.12	62.16
Collected Condensate Volume, ml	13.6	10.8	11.6
Moisture Content Of Flue Gas, % v/v	0.77	0.80	0.87
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.88	28.87	28.86
Source Gas Velocity, Feet Per Second	42.27	43.17	42.75
Actual Gas Volume Flow, ACFM	8,645	8,830	8,744
Standard Gas Volume Flow, SCFM	7,932	8,045	7,950
Dry Standard Gas Volume Flow, DSCFM	7,871	7,980	7,880
Isokinetic Variation, %	101.4	101.6	101.3

Pace Analytical FSD 20-04074

Kingsford, MI Pace Project No. 20-04074 ain Appendix C
Intermediate Data Summary
Main Plant Pouring & Cooling Disa Pouring - 324678

Test 1

			_
Parameter	Run 1	Run 2	Run 3
Sample Duration, Minutes	72	72	72
Barometric Pressure, inches Hg	28.45	28.45	28.45
Static Pressure Of Duct, Inches H ₂ O	-0.25	-0.25	-0.25
Absolute Pressure Of Duct, Inches Hg	28.43	28.43	28.43
Meter Coefficient	0.9959	0.9959	0.9959
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.310	0.310	0.310
Area Of Nozzle Opening, Square Feet	0.000524	0.000524	0.000524
Average Sq. Root of ΔPs, Inches H ₂ O	0.531	0.526	0.530
Average ∆H, Inches H ₂ O	2.85	2.90	2.92
Average Stack Temperature, °F	70.58	61.13	65.63
Average Stack Temperature, °R	530.25	520.80	525.30
Average Meter Temperature, °F	79.29	86.08	85.67
Average Meter Temperature, °R	538.96	545.75	545.34
Meter Volume, Cubic Feet	70.50	70.98	71.23
Dry Standard Sample Volume, Cubic Feet	65.89	65.52	65.80
Collected Condensate Volume, ml	5.5	0.7	1.0
Moisture Content Of Flue Gas, % v/v	0.39	0.05	0.07
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.92	28.95	28.95
Source Gas Velocity, Feet Per Second	30.60	30.06	30.38
Actual Gas Volume Flow, ACFM	17,666	17,353	17,539
Standard Gas Volume Flow, SCFM	16,716	16,718	16,753
Dry Standard Gas Volume Flow, DSCFM	16,650	16,709	16,741
Isokinetic Variation, %	100.9	100.0	100.3

Kingsford, MI Pace Project No. 20-04074 ain Appendix C
Intermediate Data Summary
Main Plant Pouring & Cooling Disa Pouring - 324682

Test 1

Parameter Sample Duration, Minutes	Run 2 84	Run 3 84	Run 4 84
Barometric Pressure, inches Hg	28.634	28.634	28.634
Static Pressure Of Duct, Inches H ₂ O	-0.45	-0.45	-0.45
Absolute Pressure Of Duct, Inches Hg	28.60	28.60	28.60
Meter Coefficient	0.9916	0.9916	0.9916
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.310	0.310	0.310
Area Of Nozzle Opening, Square Feet	0.000524	0.000524	0.000524
Average Sq. Root of ΔPs, Inches H ₂ O	0.4489	0.4451	0.4501
Average ∆H, Inches H ₂ O	2.23	2.20	2.24
Average Stack Temperature, °F	63.46	66.04	66.63
Average Stack Temperature, °R	523.13	525.71	526.30
Average Meter Temperature, °F	52.31	56.50	54.85
Average Meter Temperature, °R	511.98	516.17	514.52
Meter Volume, Cubic Feet	66.45	66.05	66.63
Dry Standard Sample Volume, Cubic Feet	65.40	64.48	65.26
Collected Condensate Volume, ml	8.2	9.7	15.1
Moisture Content Of Flue Gas, % v/v	0.59	0.70	1.08
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.90	28.88	28.84
Source Gas Velocity, Feet Per Second	25.65	25.50	25.82
Actual Gas Volume Flow, ACFM	14,807	14,720	14,902
Standard Gas Volume Flow, SCFM	14,286	14,133	14,291
Dry Standard Gas Volume Flow, DSCFM	14,202	14,033	14,137
Isokinetic Variation, %	100.7	100.5	100.9

Kingsford, MI Pace Project No. 20-04074

In Appendix C Intermediate Data Summary Main Plant Pouring & Cooling No. 5 HMP - 324848 Test 1

Parameter Sample Duration, Minutes	Run 1 84	Run 2 84	Run 3 84
Barometric Pressure, inches Hg	28.64	28.64	28.64
Static Pressure Of Duct, Inches H ₂ O Absolute Pressure Of Duct, Inches Hg	-2 28.49	-2 28.49	-2 28.49
Meter Coefficient Pitot Tube Coefficient Nozzle Diameter, Inches Area Of Nozzle Opening, Square Feet	0.9958 0.840 0.210 0.000241	0.9958 0.840 0.210 0.000241	0.9958 0.840 0.210 0.000241
Average Sq. Root of ΔPs, Inches H ₂ O	0.9915	1.0047	1.0035
Average ∆H, Inches H ₂ O	2.27	2.34	2.36
Average Stack Temperature, °F	77.42	78.79	80.38
Average Stack Temperature, °R	537.09	538.46	540.05
Average Meter Temperature, °F	52.42	56.38	60.48
Average Meter Temperature, °R	512.09	516.05	520.15
Meter Volume, Cubic Feet	66.14	67.42	67.75
Dry Standard Sample Volume, Cubic Feet	65.38	66.15	65.95
Collected Condensate Volume, ml	5.8	8.8	7.8
Moisture Content Of Flue Gas, % v/v	0.42	0.62	0.55
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.91	28.89	28.90
Source Gas Velocity, Feet Per Second	57.49	58.35	58.36
Actual Gas Volume Flow, ACFM	10,836	10,999	11,001
Standard Gas Volume Flow, SCFM	10,145	10,271	10,242
Dry Standard Gas Volume Flow, DSCFM	10,103	10,207	10,186
Isokinetic Variation, %	100.7	100.8	100.7

Pace Analytical FSD 20-04074

Kingsford, MI Pace Project No. 20-04074 Appendix C
Intermediate Data Summary
Module Pouring & Cooling Exhaust - 334116
Test 1

	D 4	D 0	D 0
Parameter	Run 1	Run 2	Run 3
Sample Duration, Minutes	84	84	84
Barometric Pressure, inches Hg	28.69	28.69	28.69
Static Pressure Of Duct, Inches H ₂ O	-0.07	-0.07	-0.07
Absolute Pressure Of Duct, Inches Hg	28.68	28.68	28.68
Meter Coefficient	0.9958	0.9958	0.9958
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.346	0.346	0.346
Area Of Nozzle Opening, Square Feet	0.000653	0.000653	0.000653
Average Co. Book of ABo Joshoo II O	0.4440	0.404.4	0.4000
Average Sq. Root of $\triangle Ps$, Inches H_2O	0.4419	0.4314	0.4308
Average ΔH , Inches H_2O	3.26	3.11	3.11
Average Stack Temperature, °F	85.75	92.08	97.33
Average Stack Temperature, °R	545.42	551.75	557.00
Average Meter Temperature, °F	55.06	61.94	68.44
Average Meter Temperature, °R	514.73	521.61	528.11
Meter Volume, Cubic Feet	79.59	78.35	78.90
Dry Standard Sample Volume, Cubic Feet	78.61	76.33	75.92
Collected Condensate Volume, ml	15.3	2.9	12.5
Moisture Content Of Flue Gas, % v/v	0.91	0.18	0.77
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.86	28.94	28.88
Source Gas Velocity, Feet Per Second	25.76	25.26	25.37
Actual Gas Volume Flow, ACFM	7,587	7,439	7,472
Standard Gas Volume Flow, SCFM	7,041	6,825	6,790
Dry Standard Gas Volume Flow, DSCFM	6,977	6,813	6,738
Isokinetic Variation, %	100.9	100.3	100.9

Kingsford, MI Pace Project No. 20-04074 Appendix C
Intermediate Data Summary
Module Pouring & Cooling Exhaust - 334176
Test 1

Parameter	Run 1	Run 2	Run 3
Sample Duration, Minutes	84	84	84
Barometric Pressure, inches Hg	28.47	28.47	28.47
Static Pressure Of Duct, Inches H ₂ O	-0.14	-0.14	-0.14
Absolute Pressure Of Duct, Inches Hg	28.46	28.46	28.46
Meter Coefficient	0.9958	0.9958	0.9958
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	0.425	0.425	0.425
Area Of Nozzle Opening, Square Feet	0.000985	0.000985	0.000985
Average Sq. Root of ΔPs, Inches H ₂ O	0.2287	0.2373	0.2383
Average ΔH, Inches H ₂ O	2.07	2.23	2.27
Average Stack Temperature, °F	80.13	82.25	85.04
Average Stack Temperature, °R	539.80	541.92	544.71
Average Meter Temperature, °F	59.71	64.10	68.13
Average Meter Temperature, °R	519.38	523.77	527.80
Meter Volume, Cubic Feet	63.41	66.27	66.85
Dry Standard Sample Volume, Cubic Feet	61.41	63.66	63.74
Collected Condensate Volume, ml	6.1	14.2	5.7
Moisture Content Of Flue Gas, % v/v	0.47	1.04	0.42
Dry Molecular Wt of Flue Gas, LB/LB-mole	28.96	28.96	28.96
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.91	28.85	28.91
Source Gas Velocity, Feet Per Second	13.30	13.85	13.92
Actual Gas Volume Flow, ACFM	3,918	4,078	4,101
Standard Gas Volume Flow, SCFM	3,645	3,779	3,781
Dry Standard Gas Volume Flow, DSCFM	3,628	3,740	3,765
Isokinetic Variation, %	100.5	101.0	100.5

Kingsford, MI Pace Project No. 20-04074

Appendix C Intermediate Data Summary Cupola Baghouse Inlet Test 1

Parameter	Run 1	Run 2	Run 3
Sample Duration, Minutes	40	56	45
Barometric Pressure, In. Hg	29.106	29.106	29.106
Static Pressure Of Duct, In. H ₂ O	-1.251	-1.251	-1.251
Absolute Pressure Of Duct, In. Hg	29.01	29.01	29.01
Meter Coefficient Average ΔH , Inches H_2O	0.9959	0.9959	0.9959
	1.0	1.0	1.0
Average Stack Temperature, °F	680.0	680.0	695.8
Average Stack Temperature, °R	1139.7	1139.7	1155.4
Average Meter Temperature, °F	33.8	46.1	49.7
Average Meter Temperature, °R	493.4	505.8	509.3
Meter Volume, CF	21.75	30.29	25.21
Dry Standard Sample Volume, DSCF	22.61	30.71	25.38
Collected Condensate Volume, ml	37.9	167.7	167.8
Condensate Moisture Content, % v/v	7.31	20.45	23.73
100% rH Moisture Content, % v/v	NA (>BP)	NA (>BP)	NA (>BP)
Dry Molecular Wt of Flue Gas, LB/LB-m	30.19	30.24	30.30
Wet Molecular Wt of Flue Gas, LB/LB-m	29.29	27.74	27.38

Kingsford, MI Pace Project No. 20-04074

Appendix C Intermediate Data Summary Cupola Baghouse Inlet Test 1

Parameter	Run 1	Run 2	Run 3
Sample Duration, Minutes	45	46	60
Barometric Pressure, In. Hg Static Pressure Of Duct, In. H ₂ O Absolute Pressure Of Duct, In. Hg	28.862	28.862	28.82
	-1.337	-1.337	-1.200
	28.76	28.76	28.73
Meter Coefficient Average ΔH , Inches H_2O	0.9959	0.9959	0.9959
	1.0	1.0	1.0
Average Stack Temperature, °F	687.0	692.8	678.9
Average Stack Temperature, °R	1146.7	1152.4	1138.6
Average Meter Temperature, °F	48.7	50.8	57.9
Average Meter Temperature, °R	508.3	510.5	517.6
Meter Volume, CF	25.27	25.12	33.95
Dry Standard Sample Volume, DSCF	25.28	25.02	33.31
Collected Condensate Volume, ml	88.2	88.3	106.7
Condensate Moisture Content, % v/v	14.11	14.24	13.10
100% rH Moisture Content, % v/v	NA (>BP)	NA (>BP)	NA (>BP)
Dry Molecular Wt of Flue Gas, LB/LB-m	30.21	30.16	30.12
Wet Molecular Wt of Flue Gas, LB/LB-m	28.49	28.43	28.53

Kingsford, MI Pace Project No. 20-04074

Appendix C Intermediate Data Summary Cupola Baghouse Exhaust Test 1

Parameter	Run 1	Run 2	Run 3
Sample Duration, Minutes	120	120	120
Barometric Pressure, inches Hg	28.92	28.92	28.87
Static Pressure Of Duct, Inches H ₂ O	0.001	0.001	0.001
Absolute Pressure Of Duct, Inches Hg	28.92	28.92	28.87
Meter Coefficient	0.9922	0.9922	0.9922
Pitot Tube Coefficient	0.840	0.840	0.840
Nozzle Diameter, Inches	1.000	1.000	1.000
Area Of Nozzle Opening, Square Feet	0.005454	0.005454	0.005454
, treat of the zero opening, equal of each	0.000101	0.000101	0.000101
Average Sq. Root of ΔPs, Inches H ₂ O	0.0530	0.0598	0.0481
Average ∆H, Inches H ₂ O	2.44	3.21	2.08
Average Stack Temperature, °F	172.46	176.46	174.71
Average Stack Temperature, °R	632.13	636.13	634.38
Average Meter Temperature, °F	78.79	87.67	81.52
Average Meter Temperature, °R	538.46	547.34	541.19
Meter Volume, Cubic Feet	106.70	123.14	98.98
Dry Standard Sample Volume, Cubic Feet	100.96	114.85	92.94
Collected Condensate Volume, ml	75.0	70.8	60.1
Moisture Content Of Flue Gas, % v/v	3.38	2.82	2.95
Dry Molecular Wt of Flue Gas, LB/LB-mole	29.21	29.12	29.16
Wet Molecular Wt of Flue Gas, LB/LB-mole	28.83	28.81	28.83
Source Gas Velocity, Feet Per Second	3.53	3.36	3.22
,			
Actual Gas Volume Flow, ACFM	187,622	178,387	170,789
Standard Gas Volume Flow, SCFM	151,478	143,116	137,161
Dry Standard Gas Volume Flow, DSCFM	146,360	139,081	133,109
Isokinetic Variation, %	93.3	111.7	94.4
·			

Calculation Equations

Appendix C - Calculation Equations

Kingsford, MI

EPA Method 2 Calculations

Pace Project No. 20-04074

Main Plant Pouring & Cooling Disa Pouring - 324484

Test 1, Run 2

As reported on Table 22

Flue Gas Linear Velocity:

324484

$$V_s = 85.49 \times C_p \times \sqrt{\Delta P} \times \sqrt{\frac{\overline{T_s}}{P_s \times M_s}}$$

$$V_s = 85.49 \times C_p \times \sqrt{\Delta P} \times \sqrt{\frac{T_s}{P_s \times M_s}}$$
 44.89 = 85.49 x 0.84 x 0.7609 x 549 28.32 x 28.71

Volumetric Flow Rates - ACFM, SCFM, DSCFM:

$$Q = 60 \times v_{\perp} \times A$$

$$8,462 = 60 \times 44.89 \times 3.14$$

$$Q_s = Q \times \left(\frac{528}{T_s}\right) \times \left(\frac{P_s}{29.92}\right)$$

$$Q_s = Q \times \left(\frac{528}{T_s}\right) \times \left(\frac{P_s}{29.92}\right)$$
 7,706 = 8,462 x 528 x 28.32 29.92

$$Q_{sd} = Q_s \times (1 - B_{ws})$$

$$7,530 = 7,706 \times (1 - 0.023)$$

Mass Flow Rate Wet Flue Gas

$$m_g = \frac{4.995 \times Q_{sd} \times G_d}{1 - B_{ws}}$$

$$35,093 = \underbrace{4.995 \quad \text{x} \quad 7,530 \quad \text{x} \quad 0.91176}_{\left(1 \quad - \quad 0.023\right)}$$

Actual Gas Density

$$\rho = \frac{0.04585 \times P_s \times M_s}{\overline{T_s}}$$

Where:

Α Cross-sectional area of duct at sample point (sq. ft.).

 B_{ws} Water vapor in gas stream (proportion by volume).

 C_{p} Pitot tube calibration coefficient.

 G_d Flue gas specific gravity relative to air, dimensionless.

Mass flow rate of wet flue gas (LB/HR). m_{q} =

 M_s Molecular weight of wet flue gas (LB/LB-mole). =

 P_s Absolute gas pressure of duct (Inches Hg).

ΛР Velocity pressure measured by pitot tube (Inches WC).

Q Actual flue gas volumetric flow rate (ACFM).

 Q_s Volumetric gas flow at standard conditions (SCFM). =

 Q_{sd} Dry standard volumetric gas flow rate (DSCFM).

 T_{s} Flue gas temperature (°R).

 V_{s} Flue gas linear velocity (feet per second).

Actual flue gas density (LB/CF). ρ

Appendix C - Calculation Equations

Kingsford, MI

EPA Method 3 Calculations

Pace Project No. 20-04074

Main Plant Pouring & Cooling Disa Pouring - 324484

Test 1, Run 2

As reported on Table 11

Dry Molecular Weight of Flue Gas

$$\begin{split} \boldsymbol{M}_{d} = & \left(0.44 \times \% \, CO_{2}\right) + \left(0.32 \times \% \, O_{2}\right) + \left(0.28 \times \left(\% \, N_{2} + \% \, CO\right)\right) \\ & 28.84 = \left(0.44 \times 0.04\right) + \left(0.32 \times 20.95\right) + \\ & \left(0.28 \times 79.01\right) + \left(0.28 \times 0.000\right) \\ & \text{Md} = 28.96 \text{ by default for non-combustion sources (includes Argon)}. \end{split}$$

Wet Molecular Weight of Flue Gas

$$M_s = M_d \times (1 - B_{yyz}) + (18 \times B_{yyz})$$
 28.71 = 28.96 x (1 - 0.023) + (18 x 0.023)

Percent Excess Air

$$\%EA = 100 \times \frac{\%O_2 - (0.5 \times \%CO)}{(0.264 \times \%N_2) - \left(\%O_2 - (0.5 \times \%CO)\right)}$$

$$\text{Not Applicable = 100 } \times \frac{20.95 - (0.50 \times 0.000)}{(0.264 \times 79.01) - (21.0 - (0.5 \times 0.000))}$$

Fuel F-factor (for comparison)

$$F_o = \frac{20.9 - \% O_2}{\% CO_2}$$
 NA = $\frac{20.9 - 21.0}{0.04}$

Where:

Bws = Water vapor in gas stream (proportion by volume).

%CO = Carbon monoxide in gas stream (percent).

 $%CO_2$ = Carbon dioxide in gas stream (percent).

%EA = Excess air for combustion (percent).

F_o = Fuel F-factor for results comparison.

 M_d = Molecular weight of dry flue gas (LB/LB-mole).

M_s = Molecular weight of wet flue gas (LB/LB-mole).

 $%N_2$ = Nitrogen in gas stream (percent).

 $%O_2$ = Oxygen in gas stream (percent).

Appendix C - Calculation Equations

Kingsford, MI

EPA Method 4 Calculations

Pace Project No. 20-04074

Main Plant Pouring & Cooling Disa Pouring - 324484

Test 1, Run 2

As reported on Table 11

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}}\right) \quad 70.23 = 17.647 \times 73.54 \times 0.9916 \times \frac{28.43 + 2.65}{525}$$

Volume of Water Vapor Sampled

$$V_{w} = 0.047070 \times V_{lc}$$

$$1.64 = 0.0471 \times 34.8$$

Proportion of Water Vapor in Sampled Gas

$$B_{ws} = \frac{V_{w}}{V_{w} + V_{std}}$$

x 100 %MC= 2.28

Where:

 B_{ws} = Water vapor in gas stream (proportion by volume).

 ΔH = Orifice meter differential pressure (Inches WC).

P_b = Barometric pressure (Inches Hg).

 T_m = Sampling train meter temperature (°R).

 V_{lc} = Total volume of liquid collected in sampling train (mls

 V_m = Volume of gas sample measured by gas meter (CF).

 V_{std} = Gas volume corrected to standard conditions (DSCF)

 V_w = Volume of water vapor in gas sample (SCF).

Y = Dry gas meter calibration coefficient.

Grede, LLC - Iron Mountain Appendix C - Calculation Equations

Kingsford, MI

EPA Method 5 Calculations

Pace Project No. 20-04074

Main Plant Pouring & Cooling Disa Pouring - 324484

Test 1, Run 2

As reported on Table 22

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}}\right) \quad 70.23 = 17.647 \times 73.54 \times 0.9916 \times \frac{28.43 + 2.65}{525}$$

Isokinetic Variation

$$I = \left(\frac{0.09450 \times \overline{T_s} \times V_{std}}{P_s \times V_s \times A_n \times \theta \times (1 - B_{ws})}\right)$$
 102.4 =
$$\frac{0.0945 \times 549 \times 70.23}{28.32 \times 44.9 \times 0.0003 \times 84 \times 0.98}$$

Particulate Concentration

$$C_s = 15.432 \times \left(\frac{m_n}{V_{std}}\right)$$
 0.00254 = 15.432 x 0.01158 To.23

Particulate Mass Rate

$$m_p = 0.008571 \times C_s \times Q_{sd}$$
 0.1642 = 0.008571 x 0.00254 x 7,530 Dry Catch PM Only

Where:

 A_n Cross-sectional area of nozzle opening (square feet).

Water vapor in gas stream (proportion by volume).

Particulate concentration of gas stream (GR/DSCF).

Orifice meter differential pressure (Inches WC). ΛН

1 Isokinetic variation of sampling rate (percent).

Total particulate collected in sampling train (grams). m_n

Particulate mass flow rate (LB/HR). $m_{\rm p}$

 P_b Barometric pressure (Inches Hg).

P Absolute gas pressure of duct (Inches Hg).

 Q_{sd} Dry standard volumetric gas flow rate (DSCFM).

Sampling train meter temperature (°R). T_{m}

T, Flue gas temperature (°R).

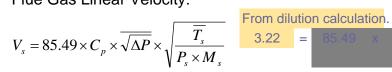
 V_{m} Volume of gas sample measured by gas meter (CF).

 V_{std} Gas volume corrected to standard conditions (DSCF)

Flue gas linear velocity (feet per second).

Dry gas meter calibration coefficient.

A Total sampling time of run (minutes).


Kingsford, MI Pace Project No. 20-04074

Appendix C - Calculation Equations

EPA Method 2 Calculations Cupola Baghouse Exhaust Test 1, Run 3

As reported on Table 30

Flue Gas Linear Velocity:

Volumetric Flow Rates - ACFM, SCFM, DSCFM:

$$Q = 60 \times v_{\perp} \times A$$

$$170,789 = 60 \times 3.22 \times 884.63$$

$$Q_s = Q \times \left(\frac{528}{T_s}\right) \times \left(\frac{P_s}{29.92}\right)$$

$$Q_s = Q \times \left(\frac{528}{T_s}\right) \times \left(\frac{P_s}{29.92}\right)$$
 136,721 = 170,789 x 528 x 28.78 29.92

$$Q_{sd} = Q_s \times (1 - B_{ws})$$

$$132,683 = 136,721 \times (1 - 0.030)$$

Mass Flow Rate Wet Flue Gas

$$m_g = \frac{4.995 \times Q_{sd} \times G_d}{1 - B_{ws}}$$

$$549,688 = \underbrace{4.995 \times 132,683 \times 0.80491}_{\text{(1 - 0.030)}}$$

Actual Gas Density

$$\rho = \frac{0.04585 \times P_s \times M_s}{\overline{T_s}}$$

Where:

Cross-sectional area of duct at sample point (sq. ft.). Α =

 B_{ws} Water vapor in gas stream (proportion by volume).

 C_{p} Pitot tube calibration coefficient.

 G_d Flue gas specific gravity relative to air, dimensionless.

Mass flow rate of wet flue gas (LB/HR). m_q =

 M_s Molecular weight of wet flue gas (LB/LB-mole). =

 P_s Absolute gas pressure of duct (Inches Hg).

ΛР Velocity pressure measured by pitot tube (Inches WC).

Q Actual flue gas volumetric flow rate (ACFM).

 Q_{s} Volumetric gas flow at standard conditions (SCFM). =

 Q_{sd} Dry standard volumetric gas flow rate (DSCFM).

 T_{s} Flue gas temperature (°R).

 V_s Flue gas linear velocity (feet per second).

Actual flue gas density (LB/CF). ρ

Appendix C - Calculation Equations

Kingsford, MI Pace Project No. 20-04074

EPA Method 3 Calculations Cupola Baghouse Exhaust Test 1, Run 3

As reported on Table 19

Dry Molecular Weight of Flue Gas

$$M_d = (0.44 \times \% CO_2) + (0.32 \times \% O_2) + (0.28 \times (\% N_2 + \% CO))$$

$$29.16 = (0.44 \times 2.69) + (0.32 \times 18.25) + (0.28 \times 79.06) + (0.28 \times 0.000)$$

Wet Molecular Weight of Flue Gas

$$M_s = M_d \times (1 - B_{yyz}) + (18 \times B_{yyz})$$
 28.83 = 29.16 x (1 - 0.030) + (18 x 0.030)

Percent Excess Air

$$\%EA = 100 \times \frac{\%O_2 - (0.5 \times \%CO)}{(0.264 \times \%N_2) - (\%O_2 - (0.5 \times \%CO))}$$

696% = 100
$$\times$$
 18.25 - (0.50 \times 0.000) (0.264 \times 79.06) - (18.3 - (0.5 \times 0.000))

Fuel F-factor (for comparison)

$$F_o = \frac{20.9 - \% O_2}{\% CO_2}$$
 0.985 = $\frac{20.9 - 18.3}{2.69}$

Where:

Bws = Water vapor in gas stream (proportion by volume).

%CO = Carbon monoxide in gas stream (percent).

 $%CO_2$ = Carbon dioxide in gas stream (percent).

%EA = Excess air for combustion (percent).

F_o = Fuel F-factor for results comparison.

 M_d = Molecular weight of dry flue gas (LB/LB-mole).

M_s = Molecular weight of wet flue gas (LB/LB-mole).

 $%N_2$ = Nitrogen in gas stream (percent).

 $%O_2$ = Oxygen in gas stream (percent).

Kingsford, MI
Pace Project No. 20-04074

Appendix C - Calculation Equations

EPA Method 4 Calculations
Cupola Baghouse Exhaust
Test 1, Run 3

As reported on Table 19

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}}\right) \quad 92.94 = 17.647 \times 98.98 \times 0.9922 \times \frac{28.87 + 2.08}{541} \times \frac{2.08}{541}$$

Volume of Water Vapor Sampled

$$V_{w} = 0.047070 \times V_{lc}$$
 2.83 = 0.0471 x 60.1

Proportion of Water Vapor in Sampled Gas

$$B_{ws} = \frac{V_w}{V_w + V_{std}}$$

$$0.0295 = \frac{2.83}{2.83 + 92.94}$$

Where:

 B_{ws} = Water vapor in gas stream (proportion by volume).

 ΔH = Orifice meter differential pressure (Inches WC).

P_b = Barometric pressure (Inches Hg).

 T_m = Sampling train meter temperature (°R).

 V_{lc} = Total volume of liquid collected in sampling train (mls

 V_m = Volume of gas sample measured by gas meter (CF).

 V_{std} = Gas volume corrected to standard conditions (DSCF)

 V_w = Volume of water vapor in gas sample (SCF).

Y = Dry gas meter calibration coefficient.

Appendix C - Calculation Equations

Kingsford, MI Pace Project No. 20-04074

EPA Method 5 Calculations Cupola Baghouse Exhaust Test 1, Run 3

As reported on Table 30

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}}\right) \quad 92.94 = 17.647 \times 98.98 \times 0.9922 \times \frac{28.87 + 2.08}{541} \times \frac{208}{13.6}$$

Isokinetic Variation

$$I = \left(\frac{0.09450 \times \overline{T_s} \times V_{std}}{P_s \times V_s \times A_n \times \theta \times (1 - B_{ws})}\right) \qquad 94.7 = \frac{0.0945 \times 634 \times 92.94}{28.78 \times 3.2 \times 0.0055 \times 120 \times 0.97}$$

Particulate Concentration

$$C_s = 15.432 \times \left(\frac{m_n}{V_{std}}\right)$$
 0.00110 = 15.432 x 0.00664 Ory Catch PM Only

Particulate Mass Rate

$$m_n = 0.008571 \times C_s \times Q_{sd}$$
 1.2539 = 0.008571 x 0.00110 x 132,683 Dry Catch PM Only

Where: A_n = Cross-sectional area of nozzle opening (square feet).

 B_{ws} = Water vapor in gas stream (proportion by volume).

 C_s = Particulate concentration of gas stream (GR/DSCF).

 ΔH = Orifice meter differential pressure (Inches WC).

I = Isokinetic variation of sampling rate (percent).

 m_n = Total particulate collected in sampling train (grams).

 m_p = Particulate mass flow rate (LB/HR).

 P_b = Barometric pressure (Inches Hg).

P_s = Absolute gas pressure of duct (Inches Hg).

 Q_{sd} = Dry standard volumetric gas flow rate (DSCFM).

 T_m = Sampling train meter temperature (°R).

 T_s = Flue gas temperature (°R).

 V_m = Volume of gas sample measured by gas meter (CF).

 V_{std} = Gas volume corrected to standard conditions (DSCF)

 V_s = Flue gas linear velocity (feet per second).

Y = Dry gas meter calibration coefficient.

 θ = Total sampling time of run (minutes).

Appendix C - Calculation Equations

Kingsford, MI Pace Project No. 20-04074 Instrumental Method Calculations
Cupola Baghouse Inlet

Test 1, Run 2

Page 1 of 2

Analyzer Calibration Error:

$$A_{E} = \frac{C_{AR} - C_{Cyl}}{S_{FS}} \times 100$$

$$0.01\% = 110.0 - 110.0 \times 100$$
(high gas)
$$CO PPM$$

System Calibration Bias:

$$B_{Sys} = \frac{C_{SR} - C_{AR}}{S_{FS}} \times 100$$
 0.01% = 48.52 - 48.50 x 100 (upscale)

System Drift:

$$D_{Sys} = \frac{C_{SR_F} - C_{SR_I}}{S_{FS}} \times 100 \quad \text{(absolute)} \quad 0.40\% = \underbrace{-48.08 - 48.52}_{110} \times 100 \quad \text{(upscale)}$$

Gas Concentration Corrected for System Bias:

$$C_{Gas} = \left(\overline{C} - C_{0_{SR}}\right) \frac{C_{Cyl}}{\left(\frac{C_{SR_I} + C_{SR_F}}{2}\right) - C_{0_{SR}}}$$

$$CO PPM, Dry$$

$$\frac{49.60}{2}$$

$$PPM, Dry 10.21 = (10.8 - 1.12) \times \frac{49.61}{2} + \frac{1.12}{2}$$

Conversion to Weight/Volume Basis:

$$C_{mg/dscm} = C_{Gas} \times \frac{M_{Gas}}{24.04}$$
 11.893 = 10.2134 x 28.01 CO mg/dscm

Emission Rate:

$$E_{R} = 6.243 \times 10^{-8} \times C_{mg/dscm} \times DSCFM \times 60$$
CO LB/HR

 $0.673 = 6.24E-08 \times 11.8926 \times 15.106 \times 10.673$

Kingsford, MI Pace Project No. 20-04074

Appendix C - Calculation Equations

Instrumental Method Calculations
Cupola Baghouse Inlet
Test 1, Run 2

Page 2 of 2

Where:

 A_E = Analyzer calibration error, percent of span. B_{Sys} = System calibration bias, percent of span. D_{Sys} = System calibration drift, percent of span.

C = Average gas concentration response from analyzer, PPM (or %).

C_{0SR} = Average of initial and final system calibration bias check responses for the zero gas, PPM (or %).

 C_{AR} = Analyzer direct calibration response, PPM (or %). $C_{C_{VI}}$ = Actual concentration of calibration gas, PPM (or %).

 $\begin{array}{lll} C_{SR} & = & System \ calibration \ response, \ PPM \ (or \%). \\ \\ C_{SRF} & = & Final \ system \ calibration \ response, \ PPM \ (or \%). \\ \\ C_{SRI} & = & Initial \ system \ calibration \ response, \ PPM \ (or \%). \\ \\ C_{gas} & = & Concentration \ adjusted \ for \ system \ bias, \ PPM \ (or \%). \\ \\ \end{array}$

 $C_{mg/dscm}$ = Constituent concentration converted to mg/dscm. M_{Gas} = Molecular weight of target constituent, lb/lb-mole.

E_R = Emission rate of constituent, LB/HR.

S_{FS} = System measurement span, full scale.

DSCFM = Dry standard cubic feet per minute.

6.243x10⁻⁸ = Conversion factor, mg/cm to LB/CF.

60 = Conversion factor, minutes to hours.

Kingsford, MI Pace Project No. 20-04074

Appendix C - Calculation Equations

Gas Concentration and Emission Rate

Cupola Baghouse Inlet

Test 1, Run 2

As reported on Table 10

Mass Analysis to Weight/Volume Concentration:

$$C_{mg/dscm} = \frac{m}{V_{std}}$$
 NA = NA (Carbon Monoxide)

Volume/Volume Concentration to Weight/Volume Concentration:

$$C_{mg/dscm} = C_{PPM-d} \times \frac{MW}{24.055}$$
 11.9 = 10.2 $\times \frac{28.01}{24.055}$ (Carbon Monoxide)

Weight/Volume Concentration to Volume/Volume Concentration:

$$C_{PPM-d} = C_{mg/dscm} \times \frac{24.055}{MW}$$
 10.2 = 11.9 x 24.055 (Carbon Monoxide)

Constituent Emission Rate:

$$E_{Gas} = (6.243 \times 10^{-8}) \times 60 \times C_{mg/dscm} xDSCFM$$

$$0.673 \qquad 6.243 \text{E-}08 \text{ x} \qquad 60 \qquad \text{x} \qquad 11.9 \qquad \text{x} \qquad 15.106 \text{ Carbon Monoxide})$$

Where: $C_{mg/dscm} = Constitute$

Constituent Concentration, mg/cubic meter.

 C_{PPM-d} = Constituent Concentration, PPM v/v, dry basis.

DSCFM = Volumetric Airflow, dry standard cubic feet per minute.

 $\begin{array}{lll} E_{gas} & = & Constituent \ Emission \ Rate, \ LB/HR. \\ m & = & Mass \ of \ Constituent \ Collected, \ \mu g. \\ MW & = & Molecular \ Weight \ of \ Constituent. \end{array}$

V_{std} = Standard Volume of Air Sample, dry standard cubic meters.

24.055 = Ideal gas molar volume at 293 °K and 760 mm Hg, liters/g-mole.

6.243x10⁻⁸ = Conversion From mg/dscm To LB/CF. 60 = Conversion From Minutes to Hours.

Note: Calculations on this page are shown for dry basis concentrations.

Kingsford, MI Pace Project No. 20-04074

Appendix C - Calculation Equations

Gas Concentration and Emission Rate

Cupola Baghouse Inlet

Test 1, Run 2

As reported on Table 10

Wet to Dry Concentration Correction:

$$C_{dry} = \frac{C_{wet}}{\left(1 - \frac{MC_{source}}{100}\right)}$$
 10.2 = $\frac{8.12}{1}$ (Carbon Monoxide)

Dry to Wet Concentration Correction:

$$C_{wet} = C_{dry} \times \left(1 - \frac{MC_{source}}{100}\right)$$
 8.12 = 10.2 x | 1 - 20.45 | (Carbon Monoxide)

Wet Analytical Basis to Wet Stack Basis

$$C_{wet-s} = \frac{C_{wet-a}}{\left(1 - \frac{MC_{analyses}}{100}\right)} \times \left(1 - \frac{MC_{source}}{100}\right)$$
 Not applicable to this data set.

Where:

 C_{dry} = Constituent Concentration, PPM v/v, dry basis. C_{wet} = Constituent Concentration, PPM v/v, wet basis.

C_{wet-a} = Constituent Analyzed Concentration, PPM v/v, wet basis.

 $C_{\text{wet-s}}$ = Constituent Stack Concentration, PPM v/v, wet basis.

MC_{analyses} = Gas Moisture Content at Analyses, %v/v. MC_{source} = Gas Moisture Content of Source Gas, %v/v.

Report Nomenclature

Abbreviations, Symbols, and Nomenclature

41 1	Lask as a CM and a Company and	ETID	For the Transfer of Life and
"Hg	Inches of Mercury (pressure)	FTIR	Fourier Transform Infrared
"WC	Inches Water Column (pressure)	g	Gram
°C	Degrees Centigrade or Celsius	GC	Gas Chromatograph(y)
°F	Degrees Fahrenheit	GPD	Gallons Per Day
°K	Degrees Kelvin (absolute)	GPH	Gallons Per Hour
°R	Degrees Rankin (absolute)	GR	Grains
% v/v	Percent by volume	H ₂ O	Water
% w/w	Percent by weight	H₂S HAP	Hydrogen Sulfide
ACFM	Actual Cubic Feet per Minute		Hazardous Air Pollutant
AP-42	Compilation of Air Pollutant Emission	HAPs	Hazardous Air Pollutants
	Factors, Volume I, Stationary Point	Hg	Mercury
DACT	and Area Sources.	HP	Hour
BACT	Best Available Control Technology	HR	Hour
BH	Baghouse	ln.	Inch or Inches
BHP BTU	Brake Horsepower British Thermal Unit	KLB kW	Thousand Pounds Kilowatt
	Centimeter	kWH	Kilowatt Hour
c c ³	Cubic Centimeter		
_	Cubic Centimeter Cubic Centimeter	l LB	liter Pound or Pounds
cc CAA	Clean Air Act	LDAR	Leak Detection and Repair
CAA	Clean Air Act Amendments		Meter
CE		m m³	Cubic Meter
CE	Control Equipment (in Reg. ID Nos.) Control Efficiency	MACT	Maximum Achievable Control
CEM	Continuous Emissions Monitor	MACI	Technology
CEMS	Continuous Emissions Monitoring	MC	Moisture Content
CLIVIS	System		Microgram
CF	Cubic Feet	μg μl	Microliter
CFR	Code of Federal Regulations	μm	Micrometer (micron)
C ₁	Carbon (as carbon)	mg	Milligram
O₁ CH₄	Methane	MGAL	Thousand Gallons
C ₃ H ₈	Propane	Min.	Minute or Minutes
cm	Cubic Meter	ml	Milliliter
CO	Carbon Monoxide	mm	Millimeter
CO_2	Carbon Dioxide		Million British Thermal Units
DGS	Distiller's Grains with Solubles	MMSCF	
DDGS	Dry Distiller's Grains with Solubles	MS	Mass Spectrometry
DRE	Destruction/Reduction Efficiency	MSDS	Material Safety Data Sheet
DSCF	Dry Standard Cubic Feet	mW	Megawatt
DSCFM	Dry Standard Cubic Feet per Minute	MW	Molecular Weight
dscm	Dry Standard Cubic Meter	N_2	Nitrogen
dscmm	Dry Standard Cubic Meter per Minute	NA	Not Applicable
dsl	Dry Standard Liter	NAAQS	National Ambient Air Quality
EPA	Environmental Protection Agency		Standards
EP	Emission Point	NESHAP	National Emission Standards for
ESP	Electrostatic Precipitator		Hazardous Air Pollutants
EU	Emission Unit	NO_2	Nitrogen Dioxide
FID	Flame Ionization Detector	NO_x	Nitrogen Oxides (quantified as NO ₂)
FGR	Flue Gas Recirculation	NSPS	New Source Performance Standard
FPD	Flame Photometric Detector	O_2	Oxygen
FPM	Feet Per Minute	PĒMS	Parametric (or Predictive) Emissions
FPS	Feet Per Second		Monitoring System
FR	Federal Register	PID	Photo Ionization Detector
FT or ft	Foot or Feet	PM	Particulate Matter
FT^3	Cubic Feet		

Abbreviations, Symbols, and Nomenclature

PM₁₀ Particulate Matter with an

aerodynamic diameter equal to or less

than 10 microns

PM-10 PM₁₀

PM_{2.5} Particulate Matter with an

aerodynamic diameter equal to or less

than 2.5 microns

PM-2.5 PM_{2.5}

PPB Parts Per Billion (see variation below)

PPM Parts Per Million

PPMv Part Per Million by volume

PPMv-dry Parts Per Million by volume, dry basis
PPMv-wet Parts Per Million by volume, wet basis
PPMw Parts Per Million by Weight (mg/l)
PSIA Pounds per Square Inch, Absolute
PSIG Pounds per Square Inch, Gauge
PTE Permanent Total Enclosure

RA Relative Accuracy

RATA Relative Accuracy Test Audit

rH Relative Humidity

RTO Regenerative Thermal Oxidizer or

Recuperative Thermal Oxidizer

SCF Standard Cubic Feet

SCFM Standard Cubic Feet per Minute

scm Standard Cubic Meter

scmm Standard Cubic Meter per Minute

Scr. Scrubber

SIC Standard Industrial Classification

SO₂ Sulfur Dioxide SO_x Sulfur Oxides Sq. Ft. Square Feet

TCD Thermal Conductivity Detector

TO Thermal Oxidizer
TPD Tons Per Day
TPH Tons Per Hour
TPY Tons per year
TRS Total Reduced Sulfur

TOD Total Consequent Dest's

TSP Total Suspended Particulate Matter

TTE Temporary Total Enclosure USEPA United States Environmental

Protection Agency

VHAP Volatile Hazardous Air Pollutant VOC Volatile Organic Compound VOCs Volatile Organic Compounds

WC Water Column

WDGS Wet Distiller's Grains with Solubles

Abbreviations, Symbols, and Nomenclature

State Environmental Agency Acronyms

	o r. goney r. o. o y o		
ADEM	Alabama Department of	NHDES	New Hampshire Department of Environmental Services
ADEC	Environmental Management Alaska Department of Environmental	NJDEP	New Jersey Department of
ADEQ	Conservation Arizona Department of Environmental	NMED	Environmental Protection New Mexico Environment Department
ADEQ	Quality Arkansas Department of		New York State Department of Environmental Conservation
CARB	Environmental Quality California Air Resources Board	NCDENR	North Carolina Department of Environment & Natural Resources
CDPHE	Colorado Department of Public Health	NDDEQ	North Dakota Department of Environmental Quality
CDEP	& Environment Connecticut Department of	OEPA	Ohio Environmental Protection Agency
DNREC	Environmental Protection Delaware Natural Resources &	ODEQ	Oklahoma Department of
FDEP	Environmental Control Florida Department of Environmental	ODEQ	Environmental Quality Oregon Department of Environmental
GEPD	Protection Georgia Environmental Protection	PDEP	Quality Pennsylvania Department of
IDEQ	Division Idaho Department of Environmental	RIDEM	Environmental Protection Rhode Island Department of
	Quality Illinois Environmental Protection	SCDHEC	Environmental Management South Carolina Department of Health
IEPA	Agency		& Environmental Control South Dakota Department of
IDNR	Iowa Department of Natural Resources		Environment & Natural Resources
KDHE	Kansas Department of Health & Environment	TDEC	Tennessee Department of Environment & Conservation
KDEP	Kentucky Department for Environmental Protection	TCEQ	Texas Commission on Environmental Quality
LDEQ	Louisiana Department of Environmental Quality	UDEQ	Utah Department of Environmental Quality
MDEP	Maine Department of Environmental	VANR	Vermont Agency of Natural Resources
MDE	Protection Maryland Department of the	VDEQ	Virginia Department of Environmental Quality
MDEP	Environment Massachusetts Department of	WSDNR	Washington State Department of
EGLE	Environmental Protection Michigan Department of Environment,	WVDEP	Natural Resources West Virginia Division of
MPCA	Great Lakes, and Energy Minnesota Pollution Control Agency	WDNR	Environmental Protection Wisconsin Department of Natural
MDEQ	Mississippi Department of Environmental Quality		Resources
MDNR	Missouri Department of Natural Resources		

MDEQ

NDEE

NDEP

Montana Department of

Nebraska Department of Environment

Nevada Division of Environmental

Environmental Quality

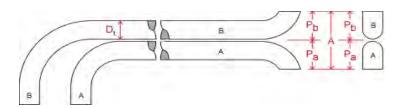
and Energy

Protection

Appendix D

Quality Assurance Information

Sampling Train Calibration Data

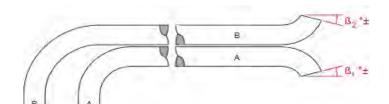

Kingsford, MI

Pace Project No. 20-04074

Appendix D

S-Type Pitot Verification Certificate
Pitot Tube No.: 3_01
Verification Date: 1/2/2020

S-Type Pitot Contruction and Mechanical Integrity Verification



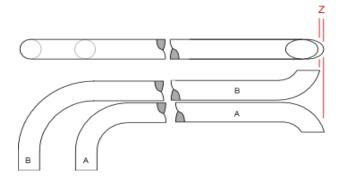
Tube Obstruction Check
Check for Tip Damage
Face Planes Parallel
Pass
Part of an Assemby?
Nozzle Clearance
Thermocouple Clearance
Pass

Tubing Diameter - D_t ($^3/_{16}$ " to $^3/_8$ ") 5/16" Pass Distance Between Face Planes - A 0.930" Pass Base to Face Plane A Distance - P_a 0.450" Pass Base to Face Plane B Distance - P_b 0.480" Pass

Criterion: 1.05Dt $\leq P \leq$ 1.5Dt, $P_a = P_{b(\pm 2\% \text{ of A})}$

Face Plane Alignment Verification

Longitudinal Deflection


Plane A 2° Pass Plane B 4° Pass

Criterion: β_1 and $\beta_2 \le \pm 5^\circ$

Transverse Deflection

Plane A 2° Pass Plane B 2° Pass

Criterion: α₁ and α₂ ≤ ±10°

Longitudinal Alignment - Z 0.010" Pass Criterion: Z ≤ 0.125"

Transverse Alignment - W
Criterion: W ≤ 0.03125"

0.004" Pass

Verification performed pursuant to Pace Standard Operating Procedure: S-FSD-E-006

Verification specifications are: **Met** Assigned baseline coefficient: **0.840**

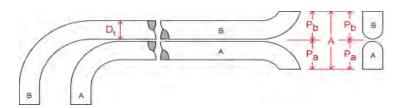
Caliper ID CL-4
Protractor ID AG-1

Verified/Certified¹ By:

Z. Eckstrom

1/2/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP S-FSD-Q-004.

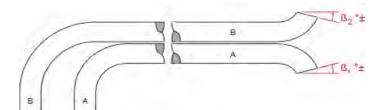

Kingsford, MI

Pace Project No. 20-04074

Appendix D

S-Type Pitot Verification Certificate
Pitot Tube No.: 3_41
Verification Date: 1/2/2020

S-Type Pitot Contruction and Mechanical Integrity Verification



Tube Obstruction Check
Check for Tip Damage
Face Planes Parallel
Pass
Part of an Assemby?
Nozzle Clearance
Thermocouple Clearance
Pass

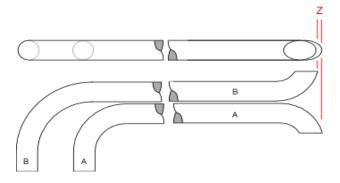
Tubing Diameter - D_t ($^3/_{16}$ " to $^3/_8$ ") 5/16" Pass Distance Between Face Planes - A 0.940" Pass Base to Face Plane A Distance - P_a 0.470" Pass Base to Face Plane B Distance - P_b 0.470" Pass

Criterion: 1.05Dt $\leq P \leq 1.5$ Dt, $P_a = P_{b(\pm 2\% \text{ of A})}$

Face Plane Alignment Verification

α₂°±
Α α₁°±

Longitudinal Deflection


Plane A 1° Pass Plane B 3° Pass

Criterion: β_1 and $\beta_2 \le \pm 5^\circ$

Transverse Deflection

Plane A 2° Pass Plane B 2° Pass

Criterion: α_1 and $\alpha_2 \le \pm 10^{\circ}$

Longitudinal Alignment - Z 0.005" Pass Criterion: Z ≤ 0.125"

Transverse Alignment - W
Criterion: W ≤ 0.03125"

0.000" Pass

Verification performed pursuant to Pace Standard Operating Procedure: S-FSD-E-006

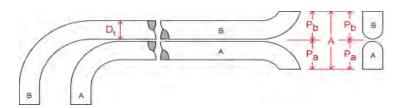
Verification specifications are: **Met** Assigned baseline coefficient: **0.840**

Caliper ID CL-4
Protractor ID AG-1

Verified/Certified¹ By:

Z. Eckstrom

1/2/2020

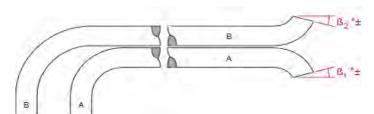

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP S-FSD-Q-004.

Pace Project No. 20-04074

Appendix D

S-Type Pitot Verification Certificate
Pitot Tube No.: 4_02
Verification Date: 1/3/2020

S-Type Pitot Contruction and Mechanical Integrity Verification



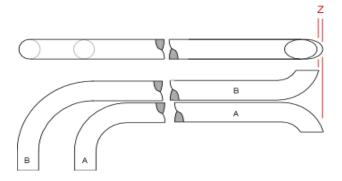
Tube Obstruction Check
Check for Tip Damage
Face Planes Parallel
Pass
Part of an Assemby?
Nozzle Clearance
Thermocouple Clearance
Pass

Tubing Diameter - D_t ($^3/_{16}$ " to $^3/_8$ ") 5/16" Pass Distance Between Face Planes - A 0.935" Pass Base to Face Plane A Distance - P_a 0.460" Pass Base to Face Plane B Distance - P_b 0.475" Pass

Criterion: 1.05Dt $\leq P \leq 1.5$ Dt, $P_a = P_{b(\pm 2\% \text{ of A})}$

Face Plane Alignment Verification

Longitudinal Deflection


Plane A 4° Pass Plane B 0° Pass

Criterion: β_1 and $\beta_2 \le \pm 5^\circ$

Transverse Deflection

Plane A 5° Pass Plane B 0° Pass

Criterion: α_1 and $\alpha_2 \le \pm 10^{\circ}$

Longitudinal Alignment - Z 0.000" Pass Criterion: Z ≤ 0.125"

Transverse Alignment - W
Criterion: W ≤ 0.03125"

0.004" Pass

Verification performed pursuant to Pace Standard Operating Procedure: S-FSD-E-006

Verification specifications are: **Met** Assigned baseline coefficient: **0.840**

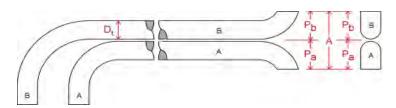
Caliper ID CL-4
Protractor ID AG-1

Verified/Certified¹ By:

Z. Eckstrom

1/3/2020

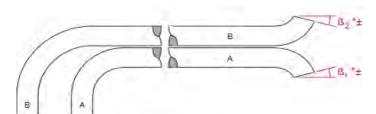
¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP S-FSD-Q-004.


Kingsford, MI

Pace Project No. 20-04074

Appendix D

S-Type Pitot Verification Certificate Pitot Tube No.: 4 06 **Verification Date:** 1/3/2020


S-Type Pitot Contruction and Mechanical Integrity Verification

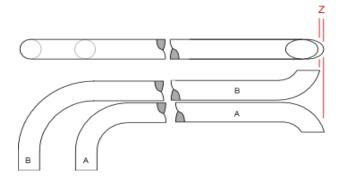
Tube Obstruction Check Pass Check for Tip Damage **Pass** Face Planes Parallel **Pass** Part of an Assemby? Yes Nozzle Clearance **Pass** Thermocouple Clearance **Pass** Tubing Diameter - D_t ($^3/_{16}$ " to $^3/_8$ ") 5/16" **Pass** Distance Between Face Planes - A 0.932" **Pass** Base to Face Plane A Distance - Pa 0.482" **Pass** Base to Face Plane B Distance - Pb 0.450" **Pass**

Criterion: 1.05Dt $\leq P \leq$ 1.5Dt, $P_a = P_{b(\pm 2\% \text{ of A})}$

Face Plane Alignment Verification

Longitudinal Deflection

Plane A 2° Plane B 0°


Pass Pass

Criterion: β_1 and $\beta_2 \le \pm 5^\circ$

Transverse Deflection

Plane A **Pass** Plane B **2° Pass**

Criterion: α_1 and $\alpha_2 \le \pm 10^{\circ}$

Longitudinal Alignment - Z 0.021" **Pass** Criterion: Z ≤ 0.125"

Transverse Alignment - W Criterion: W ≤ 0.03125"

0.004" **Pass**

Verification performed pursuant to Pace Standard Operating Procedure: S-FSD-E-006

Verification specifications are: Met Assigned baseline coefficient: 0.840

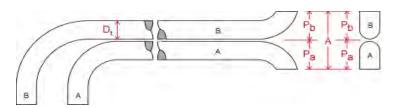
Caliper ID CL-4 Protractor ID AG-1

Verified/Certified¹ By:

Z. Eckstrom

1/3/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP S-FSD-Q-004.

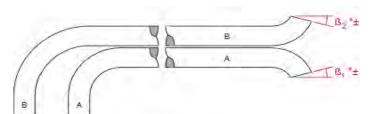

Kingsford, MI

Pace Project No. 20-04074

Appendix D

S-Type Pitot Verification Certificate
Pitot Tube No.: 6_10
Verification Date: 12/26/2019

S-Type Pitot Contruction and Mechanical Integrity Verification



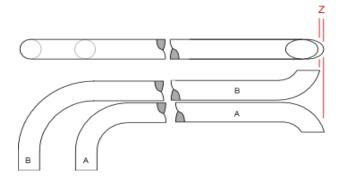
Tube Obstruction Check
Check for Tip Damage
Face Planes Parallel
Pass
Part of an Assemby?
Nozzle Clearance
NA
Thermocouple Clearance
NA

Tubing Diameter - D_t ($^3/_{16}$ " to $^3/_8$ ") 3/8 " Pass Distance Between Face Planes - A 1.098" Pass Base to Face Plane A Distance - P_a 0.555" Pass Base to Face Plane B Distance - P_b 0.543" Pass

Criterion: 1.05Dt $\leq P \leq 1.5$ Dt, $P_a = P_{b(\pm 2\% \text{ of A})}$

Face Plane Alignment Verification

Longitudinal Deflection


Plane A 4° Pass Plane B 3° Pass

Criterion: β_1 and $\beta_2 \le \pm 5^\circ$

Transverse Deflection

Plane A 1° Pass Plane B 1° Pass

Criterion: α_1 and $\alpha_2 \le \pm 10^{\circ}$

Longitudinal Alignment - Z 0.006" Pass Criterion: Z ≤ 0.125"

Transverse Alignment - W
Criterion: W ≤ 0.03125"

0.010" Pass

Verification performed pursuant to Pace Standard Operating Procedure: S-FSD-E-006

Verification specifications are: **Met** Assigned baseline coefficient: **0.840**

Caliper ID CL-4
Protractor ID AG-1

Verified/Certified¹ By:

J. Kokkinen

12/26/2019

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

10/15/2020

Appendix D Calibration/Verification Certificate Isokinetic Control Module No. CM_1 DTM Serial No. 33227

	of Mounted The		Displays (°F	T	emperature Ref	ference Standard	No. Omega CL23A	1	
	Stack Display	% (R - absolute)	Me	eter Inlet Displa	ay	Met	Meter Outlet Display		
Target	Results .	% Diff.	Target	Results .	% Diff.	<u>Target</u>	<u>Results</u>	% Diff.	
1800	1798	0.09%	200	198	0.30%	200	201	0.15%	
1500	1499	0.05%	150	146	0.66%	150	148	0.33%	
1000	999	0.07%	100	96	0.71%	100	96	0.71%	
500	498	0.21%	75	71	0.75%	75	71	0.75%	
200	201	0.15%	50	46	0.78%	50	46	0.78%	
100	100	0.00%	25	21	0.82%	25	21	0.82%	
0	3	0.65%	0	-2	0.43%	0	-2	0.43%	
Verifi	Verification Status: Pass		Verifi	cation Status:	Pass	Verifi	cation Status:	Pass	
	EPA M-2 & 5 criterion is 1.5% °R.		EPA M-5 criterion of 5.4°F for highlighted range is met.			i	criterion of 5.4°F for highl	ighted range is met.	
	nger Outlet Dis		Oven Display			Probe Display			
<u>Target</u>	<u>Results</u>	% Diff.	<u>Target</u>	<u>Results</u>	% Diff.	<u>Target</u>	<u>Results</u>	% Diff.	
200	194	0.91%	350	340	1.23%	350	348	0.25%	
150	144	0.98%	300	292	1.05%	300	298	0.26%	
100	94	1.07%	250	242	1.13%	250	248	0.28%	
75	69	1.12%	200	192	1.21%	200	198	0.30%	
50	46	0.78%	150	141	1.48%	150	147	0.49%	
25	21	0.82%	100	92	1.43%	100	97	0.54%	
0	-1	0.22%	50	43	1.37%	50	51	0.20%	
Verifi	cation Status:	Pass	Verifi	cation Status:	Pass	Verifi	cation Status:	Pass	
	EPA M-2 & 202	criterion is 1.5% °R.	EPA M-5 crite	erion of 5.4°F for highlight	ed range is not met.	EPA M-5	criterion of 5.4°F for highl	ighted range is met.	

Dry Test Meter and Orifice Periodic Calibration

Volume Reference Standard WTM No. WTM-2

Orifice Diff. Press., ∆H	Dry Test Meter Vol.	Wet Test Meter Vol.	•	st Meter ature, °F	Wet Test Meter	Elapsed Time	Gas Meter Coefficient	Orifice Coefficient
Inches WC	Cubic Ft.	Cubic Ft.	<u>Inlet</u>	<u>Outlet</u>	Temp., °F	<u>Minutes</u>	<u> </u>	<u>∆H@</u>
0.5	5.412	5.3	77.0	76.0	67.4	13.294	0.9944	1.780
1	6.100	6.0	77.0	75.0	67.1	10.754	0.9982	1.815
1.75	6.745	6.7	75.0	72.5	66.6	9.137	1.0039	1.840
2.5	10.871	10.6	79.5	75.5	67.1	12.055	0.9875	1.829
3.5	20.470	20.1	80.0	77.0	67.3	19.439	0.9954	1.840
		ange 0.99 - 1.0 Spec. ± 0.02 o		Met Pass	9	Coefficients rom Average	0.9959 0.0084	1.821
	•	Spec. ± 0.2 of	•	Pass	Max. ∆ f	rom Average		0.041

Verified/Certified1:

Verified/Certified1: K. Althoff 10/15/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

12/4/2020

Appendix D Calibration/Verification Certificate Isokinetic Control Module No. CM_3 DTM Serial No. 661003

Verification	of Mounted Th	ermocouple	Displays (°F) T	emperature Ref	erence Standard	No. Omega CL23A		
	on: % Difference ≤ 1.59			-			Ü		
	Stack Display		Me	eter Inlet Displa	ay	Meter Outlet Display			
<u>Target</u>	<u>Results</u>	% Diff.	<u>Target</u>	<u>Results</u>	% Diff.	<u>Target</u>	<u>Results</u>	% Diff.	
1800	1799	0.04%	200	198	0.30%	200	199	0.15%	
1500	1499	0.05%	150	147	0.49%	150	148	0.33%	
1000	998	0.14%	100	96	0.71%	100	98	0.36%	
500	498	0.21%	75	71	0.75%	75	73	0.37%	
200	201	0.15%	50	46	0.78%	50	48	0.39%	
100	100	0.00%	25	22	0.62%	25	24	0.21%	
0	2	0.43%	0	-1	0.22%	0	0	0.00%	
Verification Status: Pass		Verifi	cation Status:	Pass	Verifi	cation Status:	Pass		
EPA M-2 & 5 criterion is 1.5% °R.				criterion of 5.4°F for highl	ighted range is met.		criterion of 5.4°F for highli	ghted range is met.	
Impir	nger Outlet Dis	play	Oven Display				Probe Display		
<u>Target</u>	<u>Results</u>	% Diff.	<u>Target</u>	<u>Results</u>	% Diff.	<u>Target</u>	<u>Results</u>	% Diff.	
200	196	0.61%	350	357	0.86%	350	354	0.49%	
150	146	0.66%	300	307	0.92%	300	304	0.53%	
100	96	0.71%	250	257	0.99%	250	254	0.56%	
75	71	0.75%	200	207	1.06%	200	204	0.61%	
50	48	0.39%	150	156	0.98%	150	153	0.49%	
25	23	0.41%	100	106	1.07%	100	104	0.71%	
0	0	0.00%	50	57	1.37%	50	55	0.98%	
Verifi	cation Status: EPA M-2 & 202	Pass criterion is 1.5% °R.		cation Status: erion of 5.4°F for highlight	Pass ed range is not met.		cation Status: criterion of 5.4°F for highli	Pass ghted range is met.	

Dry Test Meter and Orifice Periodic Calibration Volume Reference Standard WTM No. WTM-2

Orifice Diff. Press., ∆H	Dry Test Meter Vol.	Wet Test Meter Vol.	•	st Meter ature, °F	Wet Test Meter	Elapsed Time	Gas Meter Coefficient	Orifice Coefficient
Inches WC	Cubic Ft.	Cubic Ft.	Inlet	Outlet	Temp., °F	<u>Minutes</u>	<u> </u>	<u>∆H@</u>
0.5	5.784	5.7	84.5	81.0	72.5	14.277	0.9944	1.828
1	5.429	5.3	85.5	81.0	72.7	9.473	0.9925	1.833
1.75	6.128	6.0	81.5	80.0	72.8	8.251	0.9898	1.899
2.5	11.165	10.9	85.0	80.5	72.4	12.482	0.9933	1.862
3.5	13.351	13.1	87.0	82.0	73.0	12.684	0.9910	1.889
		tange 0.99 - 1.0		Met	•	Coefficients	0.9922	1.862
	Meter Range	Spec. ± 0.02 of	f Avg	Pass	Max. ∆ f	rom Average	0.0024	
	Orifice Range	Spec. ± 0.2 of	Avg	Pass	Max. ∆ f	rom Average		0.037

Verified/Certified1:

Verified/Certified1: K. Althoff 12/4/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

Appendix D Calibration/Verification Certificate

11/13/2020

Isokinetic Control Module No. CM_5 DTM Serial No. 351158

	of Mounted Th		Displays (°F	Т	emperature Ref	erence Standard	No. Omega CL23A	\
	on: % Difference≤ 1.59 Stack Display	% (*R - absolute)	Me	eter Inlet Displa	ay	Meter Outlet Display		
Target	<u>Results</u>	% Diff.	Target	<u>Results</u>	% Diff.	Target	<u>Results</u>	% Diff.
1800	1800	0.00%	200	198	0.30%	200	205	0.76%
1500	1499	0.05%	150	146	0.66%	150	154	0.66%
1000	999	0.07%	100	95	0.89%	100	101	0.18%
500	497	0.31%	75	70	0.93%	75	76	0.19%
200	198	0.30%	50	45	0.98%	50	51	0.20%
100	96	0.71%	25	21	0.82%	25	27	0.41%
0	-1	0.22%	0	-2	0.43%	0	3	0.65%
Verification Status: Pass		Verif	ication Status:	Pass	Verifi	cation Status:	Pass	
		criterion is 1.5% °R.	EPA M-5 criterion of 5.4°F for highlighted range is met.				criterion of 5.4°F for highl	ighted range is met.
	nger Outlet Dis		_	Oven Display		Probe Display		
<u>Target</u>	<u>Results</u>	% Diff.	<u>Target</u>	<u>Results</u>	% Diff.	<u>Target</u>	<u>Results</u>	% Diff.
200	199	0.15%	350	349	0.12%	350	354	0.49%
150	147	0.49%	300	299	0.13%	300	305	0.66%
100	96	0.71%	250	249	0.14%	250	242	1.13%
75	71	0.75%	200	199	0.15%	200	204	0.61%
50	46	0.78%	150	149	0.16%	150	154	0.66%
25	22	0.62%	100	98	0.36%	100	104	0.71%
0	-2	0.43%	50	50	0.00%	50	55	0.98%
Verification Status: Pass EPA M-2 & 202 criterion is 1.5% °R.				cation Status:	Pass lighted range is met.		cation Status: erion of 5.4°F for highlight	Pass ed range is not met.

Verified/Certified1:

Dry Test Meter and Orifice Periodic Calibration

Volume Reference Standard WTM No. WTM-2

Orifice Diff. Press., ΔH	Dry Test Meter Vol.	Wet Test Meter Vol.	•	st Meter ature, °F	Wet Test Meter	Elapsed Time	Gas Meter Coefficient	Orifice Coefficient
Inches WC	Cubic Ft.	Cubic Ft.	<u>Inlet</u>	<u>Outlet</u>	Temp., °F	<u>Minutes</u>	<u> </u>	<u>∆H@</u>
0.5	5.728	5.7	76.5	78.0	70.2	15.143	0.9982	2.032
1	5.399	5.3	77.0	77.0	70.1	10.083	0.9914	2.053
1.75	5.376	5.3	74.0	76.5	70.2	7.701	0.9903	2.098
2.5	12.567	12.4	77.0	77.0	70.2	14.958	0.9899	2.076
3.5	13.308	13.1	79.5	79.0	71.2	13.468	0.9880	2.108
		ange 0.99 - 1.0 Spec. ± 0.02 o		Met Pass	•	Coefficients rom Average	0.9916 0.0067	2.074
	•	Spec. ± 0.2 of	•	Pass	Max. ∆ f	rom Average		0.041

Verified/Certified1: K. Althoff 11/13/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

11/10/2020

Appendix D Calibration/Verification Certificate Isokinetic Control Module No. CM_11 DTM Serial No. 352457

	of Mounted The		Displays (°F	T	emperature Ref	erence Standard	No. Omega CL23A	
	on: % Difference≤ 1.59 Stack Display	% (°R - absolute)	Me	eter Inlet Displa	av	Meter Outlet Display		
Target	Results	% Diff.	Target	<u>Results</u>	% Diff.	<u>Target</u>	Results	% Diff.
1800	1804	0.18%	200	204	0.61%	200	206	0.91%
1500	1505	0.26%	150	153	0.49%	150	154	0.66%
1000	1004	0.27%	100	103	0.54%	100	103	0.54%
500	500	0.00%	75	78	0.56%	75	78	0.56%
200	202	0.30%	50	53	0.59%	50	54	0.78%
100	100	0.00%	25	28	0.62%	25	29	0.82%
0	2	0.43%	0	4	0.87%	0	5	1.09%
Verification Status: Pass		Verifi	cation Status:	Pass	Verifi	cation Status:	Pass	
		criterion is 1.5% °R.	EPA M-5 criterion of 5.4°F for highlighted range is met.				criterion of 5.4°F for highl	ighted range is met.
-	ger Outlet Dis		_	Oven Display		Probe Display		
<u>Target</u>	<u>Results</u>	% Diff.	<u>Target</u>	<u>Results</u>	% Diff.	<u>Target</u>	<u>Results</u>	% Diff.
200	202	0.30%	350	351	0.12%	350	352	0.25%
150	152	0.33%	300	301	0.13%	300	301	0.13%
100	102	0.36%	250	251	0.14%	250	251	0.14%
75	77	0.37%	200	200	0.00%	200	201	0.15%
50	53	0.59%	150	150	0.00%	150	151	0.16%
25	29	0.82%	100	100	0.00%	100	101	0.18%
0	6	1.30%	50	51	0.20%	50	52	0.39%
Verifi	cation Status: EPA M-2 & 202	Pass criterion is 1.5% °R.		cation Status: criterion of 5.4°F for highl	Pass ighted range is met.		cation Status: criterion of 5.4°F for highl	Pass ighted range is met.

Dry Test Meter and Orifice Periodic Calibration

Volume Reference Standard WTM No. WTM-2

Orifice Diff. Press., ∆H	Dry Test Meter Vol.	Wet Test Meter Vol.	•	st Meter ature, °F	Wet Test Meter	Elapsed Time	Gas Meter Coefficient	Orifice Coefficient
Inches WC	Cubic Ft.	Cubic Ft.	<u>Inlet</u>	<u>Outlet</u>	Temp., °F	<u>Minutes</u>	<u> </u>	<u>ΔH@</u>
0.5	6.152	6.0	89.0	84.0	73.4	15.755	0.9985	1.974
1	7.955	7.8	86.5	84.0	73.6	14.729	0.9954	2.061
1.75	5.759	5.7	82.5	82.0	73.8	8.157	0.9922	2.102
2.5	13.291	13.1	86.0	82.5	73.8	15.862	0.9960	2.121
3.5	22.279	21.9	87.5	84.5	73.4	22.603	0.9971	2.136
	Preferential R	ange 0.99 - 1.	01	Met	Average	e Coefficients	0.9958	2.079
	Meter Range	Spec. ± 0.02 c	of Avg	Pass	Max. ∆ f	rom Average	0.0036	
	Orifice Range	Spec. ± 0.2 o	f Avg	Pass	Max. ∆ f	rom Average		0.105

Verified/Certified1:

Verified/Certified1: K. Althoff 11/10/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

Appendix D

Atmospheric Barometer Certificate
Barometer No.: DB_35
Calibration Date: 9/22/2020

Make and Model: Motorola Razr Pace SOP No.: ENV-SOP-FIELD-0030

Serial Number: TA4310EWR9 Reference Standard: DB-33

Barometer Range: 11-31 Inches Hg Acceptance Criterion: 0.10 Inches Hg

Reference	As Fou	nd	As Left			
Barometric Pressure Inches Hg	Barometer Rdg Inches Hg	Difference Inches Hg	Barometer Rdg Inches Hg	Difference Inches Hg		
29.58	29.61	0.03	29.61	0.03		
	Acceptance Criterion	0.10		0.10		
	Acceptance Status	Pass		Pass		

Reference Barometric Pressure is determined from the raw mercury in glass absolute pressure reading of 29.58 and applying the appropriate temperature correction factor of 0 for 67°F at the time and place of calibration/verification.

Verified/Certified¹ By: Stanley Broome 9/22/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

Appendix D

Atmospheric Barometer Certificate
Barometer No.: DB_60
Calibration Date: 8/6/2020

Make and Model: iPhone 6 Pace SOP No.: ENV-SOP-FIELD-0030

Serial Number: FK1VJWZUHFLR Reference Standard: Princo-2

Barometer Range: 11628 Inches Hg Acceptance Criterion: 0.10 Inches Hg

Reference	As Fou	nd		As Left			
Barometric Pressure Inches Hg	Barometer Rdg Inches Hg	Difference Inches Hg	-	Barometer Rdg Inches Hg	Difference Inches Hg		
29.14	29.10	0.05		29.10	0.05		
	Acceptance Criterion	0.10			0.10		
	Acceptance Status	Pass			Pass		

Reference Barometric Pressure is determined from the raw mercury in glass absolute pressure reading of 29.25 and applying the appropriate temperature correction factor of -0.109 for 70°F at the time and place of calibration/verification.

Verified/Certified¹ By: K. Althoff 8/6/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

Appendix D

Atmospheric Barometer Certificate
Barometer No.: DB_72
Calibration Date: 8/6/2020

Make and Model: Apple iPhone 7 Pace SOP No.: ENV-SOP-FIELD-0030

Serial Number: DX3XCJXMHG6W Reference Standard: Princo-2

Barometer Range: Inches Hg Acceptance Criterion: 0.10 Inches Hg

Reference	As Found		As Left
Barometric Pressure Inches Hg	Barometer Rdg Inches Hg	Difference Inches Hg	Barometer Rdg Difference Inches Hg Inches Hg
29.14	29.16	0.02	29.16 0.02
	Acceptance Criterion	0.10	0.10
	Acceptance Status	Pass	Pass

Reference Barometric Pressure is determined from the raw mercury in glass absolute pressure reading of 29.25 and applying the appropriate temperature correction factor of -0.109 for 70°F at the time and place of calibration/verification.

Verified/Certified¹ By: K. Althoff 8/6/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

Appendix D

Digital Manometer Calibration Certificate
Digital Manometer No.: DM_46
Calibration Date: 7/15/2020

Make and Model:Fluke 922Pace SOP No.:ENV-SOP-FIELD-0033Serial Number:44280430Reference Standard:Manometer #1 and #2Pressure Range:16.5 Inches of WaterAcceptance Criterion:1.00%Of Scale

Reference	As Fo	As Found		Left
Pressure	EDM Rdg	Difference	EDM Rdg	Difference
In. H ₂ O	In. H ₂ O	% of Scale	In. H ₂ O	% of Scale
-14.90	-14.86	0.27%	-14.86	0.27%
-8.30	-8.31	0.04%	-8.31	0.04%
-0.80	-0.80	0.02%	-0.80	0.02%
0.00	0.00	0.00%	0.00	0.00%
0.80	0.80	0.01%	0.80	0.01%
8.30	8.30	0.01%	8.30	0.01%
14.90	14.86	0.24%	14.86	0.24%
	Average % Difference	0.08%	Average % Difference	0.08%
	Maximum % Difference	0.27%	Maximum % Difference	0.27%
	Acceptance Status	Pass	Acceptance Status	Pass
			Leak Check	Pass

Verified/Certified¹ By: T. Rehling 7/15/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

Appendix D

Digital Manometer Calibration Certificate
Digital Manometer No.: DM_48
Calibration Date: 10/1/2020

Make and Model:Fluke 922Pace SOP No.:ENV-SOP-FIELD-0033Serial Number:49810028Reference Standard:Manometer #1 & #2Pressure Range:16.5 Inches of WaterAcceptance Criterion:1.00%Of Scale

Reference	As Fo	ound	As	Left
Pressure	EDM Rdg	Difference	EDM Rdg	Difference
In. H₂O	In. H ₂ O	% of Scale	In. H ₂ O	% of Scale
-14.90	-14.91	0.07%	-14.91	0.07%
-8.30	-8.33	0.19%	-8.33	0.19%
-0.80	-0.82	0.10%	-0.82	0.10%
0.00	0.00	0.00%	0.00	0.00%
0.80	0.82	0.09%	0.82	0.09%
8.30	8.35	0.33%	8.35	0.33%
14.90	14.94	0.22%	14.94	0.22%
	Average % Difference	0.14%	Average % Difference	0.14%
	Maximum % Difference	0.33%	Maximum % Difference	0.33%
	Acceptance Status	Pass	Acceptance Status	Pass
			Leak Check	Pass

Verified/Certified¹ By: K. Althoff 10/1/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

Appendix D Scale/Balance Calibration Certificate

Electronic Digital Scale No.: DS_38

Calibration Date: 7/8/2020

ENV-SOP-FIELD-0029 Make and Model: Smart Weigh Pro Pocket Pace SOP No.: Serial Number: A17-286 Reference Standard: HWS-001 & 602981 Weight Range: 2000 Grams Acceptance Criterion: 0.50% Of Weight

Reference	As F	As Found		Left
Weight Grams	Scale Rdg Grams	Difference % of Ref. Wt.	Scale Rdg Grams	Difference % of Ref. Wt.
200	200	0.15%	200	0.15%
300	300	0.13%	300	0.13%
500	501	0.12%	501	0.12%
1000	1001	0.12%	1001	0.12%
1500	1502	0.13%	1502	0.13%
	Average % Difference Maximum % Difference Acceptance Status	0.15%	Average % Difference Maximum % Difference Acceptance Status	0.15%

Verified/Certified¹ By: K. Althoff 7/8/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

Appendix D

Scale/Balance Calibration Certificate

Electronic Digital Scale No.: DS_42

Calibration Date: 4/7/2020

Make and Model:Smart Weigh Pro PocketPace SOP No.:ENV-SOP-FIELD-0029Serial Number:A18-242Reference Standard:HWS-001 & 602981Weight Range:2000 GramsAcceptance Criterion:0.50%Of Weight

Reference	As F	As Found		As Left		
Weight Grams	Scale Rdg Grams	Difference % of Ref. Wt.	Scale Rdg Grams	Difference % of Ref. Wt.		
200	200	0.00%	200	0.00%		
300	300	0.03%	300	0.03%		
500	500	0.02%	500	0.02%		
1000	1000	0.02%	1000	0.02%		
1500	1500	0.03%	1500	0.03%		
	Average % Difference Maximum % Difference Acceptance Status	0.03%	Average % Difference Maximum % Difference Acceptance Status	0.03%		

Verified/Certified¹ By: T. Rehling 4/7/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

Appendix D Scale/Balance Calibration Certificate Electronic Digital Scale No.: DS 45

Calibration Date: 7/8/2020

Make and Model: Smart Weigh Pro Pocket Pace SOP No.: ENV-SOP-FIELD-0029 Serial Number: A18-242 Reference Standard: HWS-001 & 602981 Weight Range: 2000 Grams Acceptance Criterion: 0.50% Of Weight

Reference	As F	As Found		Left
Weight Grams	Scale Rdg Grams	Difference % of Ref. Wt.	Scale Rdg Grams	Difference % of Ref. Wt.
200	200	0.00%	200	0.00%
300	300	0.03%	300	0.03%
500	500	0.02%	500	0.02%
1000	1000	0.03%	1000	0.03%
1500	1501	0.03%	1501	0.03%
	Average % Difference Maximum % Difference Acceptance Status	0.02% 0.03% Pass	Average % Difference Maximum % Difference Acceptance Status	0.03%

Verified/Certified¹ By: K. Althoff 7/8/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to SOP S-FSD-Q-004.

Kingsford, MI

Pace Project No. 20-04074

Appendix D

Thermocouple Display Calibration Certificate
Thermocouple Display No.: TC_33
Calibration Date: 3/9/2020

Make and Model: Omega HH12B Pace SOP No.: ENV-SOP-FIELD-0031 Serial Number: 111305 Reference Standard: Omega CL23A

Temperature Range: 2000 Fahrenheit - °F Acceptance Criterion: 1.50% °R (°F+460)

As Found			As L	_eft
Display Rdg	Difference	D	isplay Rdg	Difference
°F	% of Rdg		°F	% of Rdg
1800	0.00%		1800	0.00%
1500	0.00%		1500	0.00%
1000	0.00%		1000	0.00%
500	0.00%		500	0.00%
200	0.06%		200	0.06%
100	0.07%		100	0.07%
0	0.04%		0	0.04%
erage % Difference	0.03%	Average %	Difference	0.03%
mum % Difference	0.07%	Maximum %	Difference	0.07%
Acceptance Status	Pass	Accepta	ance Status	Pass
		Channel 2	Verification	Pass
	Display Rdg	Display Rdg Difference % of Rdg 1800 0.00% 1500 0.00% 1000 0.00% 500 0.00% 200 0.06% 100 0.07% 0 0.04%	Display Rdg Difference % of Rdg 1800 0.00% 1500 0.00% 1000 0.00% 500 0.00% 200 0.06% 100 0.07% 0 0.04% Acceptance Status Pass Accepta	Display Rdg °F Difference % of Rdg Display Rdg 1800 0.00% 1800 1500 0.00% 1500 1000 0.00% 1000 500 0.00% 500 200 0.06% 200 100 0.07% 100 0 0.04% 0

Verified/Certified¹ By: T. Rehling 3/9/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI

Pace Project No. 20-04074

Appendix D

Thermocouple Display Calibration Certificate
Thermocouple Display No.: TC_38
Calibration Date: 3/9/2020

Make and Model: Omega HH12B Pace SOP No.: ENV-SOP-FIELD-0031 Serial Number: 130634 Reference Standard: Omega CL23A

Temperature Range: 2000 Fahrenheit - °F Acceptance Criterion: 1.50% °R (°F+460)

Reference	As Found		As L	_eft
Temperature	Display Rdg	Difference	Display Rdg	Difference
°F	°F	% of Rdg	°F	% of Rdg
1800	1800	0.00%	1800	0.00%
1500	1500	0.00%	1500	0.00%
1000	1000	0.00%	1000	0.00%
500	500	0.00%	500	0.00%
200	201	0.15%	201	0.15%
100	100	0.04%	100	0.04%
0	0	0.02%	0	0.02%
	Average % Difference	0.03%	Average % Difference	0.03%
	Maximum % Difference	0.15%	Maximum % Difference	0.15%
	Acceptance Status	Pass	Acceptance Status	Pass
	Acceptance Status	r a33		
			Channel 2 Verification	Pass

Verified/Certified¹ By: T. Rehling 3/9/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI

Pace Project No. 20-04074

 $\begin{array}{c} Appendix\ D \\ \textbf{Thermocouple\ Display\ Calibration\ Certificate} \end{array}$ Thermocouple Display No.: TC_41.1 Calibration Date: 2/12/2020

Make and Model: Omega HHC201 Pace SOP No.: ENV-SOP-FIELD-0031 180082 Serial Number: Reference Standard: Omega CL23A

Temperature Range: 2000 Fahrenheit - °F Acceptance Criterion: 1.50% °R (°F+460)

Reference	As Fo	As Found		As Left		
Temperature °F	Display Rdg °F	Difference % of Rdg	Display Rdg °F	Difference % of Rdg		
1800	1799	0.03%	1799	0.03%		
1500	1499	0.03%	1499	0.03%		
1000	1000	0.01%	1000	0.01%		
500	500	0.01%	500	0.01%		
200	200	0.03%	200	0.03%		
100	100	0.02%	100	0.02%		
0	0	0.00%	0	0.00%		
	Average % Difference Maximum % Difference Acceptance Status	0.02% 0.03% Pass	Average % Difference Maximum % Difference Acceptance Status Channel 2 Verification	0.02% 0.03% Pass Pass		

Verified/Certified¹ By: T. Rehling 2/12/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI

Pace Project No. 20-04074

 $\begin{array}{c} Appendix\ D \\ \textbf{Thermocouple\ Display\ Calibration\ Certificate} \end{array}$ Thermocouple Display No.: TC_41.2

Calibration Date: 2/12/2020

Make and Model: Omega HHC201 Pace SOP No.: ENV-SOP-FIELD-0031 180082 Serial Number: Reference Standard: Omega CL23A

Temperature Range: 2000 Fahrenheit - °F Acceptance Criterion: 1.50% °R (°F+460)

Reference	As Fo	ound	As l	_eft
Temperature °F	Display Rdg °F	Difference % of Rdg	Display Rdg °F	Difference % of Rdg
1800	1799	0.03%	1799	0.03%
1500	1499	0.04%	1499	0.04%
1000	1000	0.03%	1000	0.03%
500	500	0.02%	500	0.02%
200	200	0.03%	200	0.03%
100	100	0.05%	100	0.05%
0	0	0.00%	0	0.00%
	Average % Difference Maximum % Difference Acceptance Status	0.03% 0.05% Pass	Average % Difference Maximum % Difference Acceptance Status Channel 2 Verification	0.03% 0.05% Pass Pass

Verified/Certified¹ By: T. Rehling 2/12/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI

Pace Project No. 20-04074

 $\begin{array}{c} Appendix\ D \\ \textbf{Thermocouple\ Display\ Calibration\ Certificate} \end{array}$ Thermocouple Display No.: TC_44.1 Calibration Date: 10/31/2020

Make and Model: Omega HHC201 Pace SOP No.: ENV-SOP-FIELD-0031 180097 Serial Number: Reference Standard: Omega CL23A

Temperature Range: 2000 Fahrenheit - °F Acceptance Criterion: 1.50% °R (°F+460)

Reference	As Fo	ound	As I	_eft
Temperature °F	Display Rdg	Difference	Display Rdg	Difference
	°F	% of Rdg	°F	% of Rdg
1800	1799	0.03%	1799	0.03%
1500	1500	0.03%	1500	0.03%
1000	999	0.06%	999	0.06%
500	500	0.03%	500	0.03%
200	200	0.06%	200	0.06%
100	100	0.07%	100	0.07%
0	0	0.07%	0	0.07%
	Average % Difference Maximum % Difference Acceptance Status	0.05% 0.07% Pass	Average % Difference Maximum % Difference Acceptance Status Channel 2 Verification	0.05% 0.07% Pass NA

Verified/Certified¹ By: K. Althoff 10/31/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI

Pace Project No. 20-04074

 $\begin{array}{c} Appendix\ D \\ \textbf{Thermocouple\ Display\ Calibration\ Certificate} \end{array}$ Thermocouple Display No.: TC_44.2 Calibration Date: 10/31/2020

Make and Model: Omega HHC201 Pace SOP No.: ENV-SOP-FIELD-0031 180097 Serial Number: Reference Standard: Omega CL23A

Temperature Range: 2000 Fahrenheit - °F Acceptance Criterion: 1.50% °R (°F+460)

Reference	As Fo	ound	As L	As Left		
Temperature	Display Rdg	Difference	Display Rdg	Difference		
°F	°F	% of Rdg	°F	% of Rdg		
1800	1799	0.03%	1799	0.03%		
1500	1499	0.03%	1499	0.03%		
1000	1000	0.03%	1000	0.03%		
500	500	0.03%	500	0.03%		
200	199	0.09%	199	0.09%		
100	99	0.11%	99	0.11%		
0	0	0.09%	0	0.09%		
	Average % Difference Maximum % Difference Acceptance Status	0.06% 0.11% Pass	Average % Difference Maximum % Difference Acceptance Status Channel 2 Verification	0.06% 0.11% Pass NA		

Verified/Certified¹ By: K. Althoff 10/31/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI

Pace Project No. 20-04074

 $\begin{array}{c} Appendix\ D \\ \textbf{Thermocouple\ Display\ Calibration\ Certificate} \end{array}$ Thermocouple Display No.: TC_47.1 Calibration Date: 4/10/2020

ENV-SOP-FIELD-0031 Make and Model: Omega HCC201 Pace SOP No.: 190033 Serial Number: Reference Standard: Omega CL23A

Temperature Range: 2000 Fahrenheit - °F Acceptance Criterion: 1.50% °R (°F+460)

Reference	As Fo	ound	As l	As Left		
Temperature	Display Rdg	Difference	Display Rdg	Difference		
°F	°F	% of Rdg	°F	% of Rdg		
1800	1799	0.04%	1799	0.04%		
1500	1499	0.03%	1499	0.03%		
1000	999	0.04%	999	0.04%		
500	500	0.04%	500	0.04%		
200	200	0.06%	200	0.06%		
100	100	0.04%	100	0.04%		
0	0	0.04%	0	0.04%		
	Average % Difference	0.04%	Average % Difference	0.04%		
	Maximum % Difference	0.06%	Maximum % Difference	0.06%		
	Acceptance Status	Pass	Acceptance Status Channel 2 Verification	Pass NA		

Verified/Certified¹ By: T. Rehling 4/10/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Kingsford, MI

Pace Project No. 20-04074

 $\begin{array}{c} Appendix\ D \\ \textbf{Thermocouple\ Display\ Calibration\ Certificate} \end{array}$ Thermocouple Display No.: TC_47.2 Calibration Date: 4/10/2020

Make and Model: Omega HCC201 Pace SOP No.: ENV-SOP-FIELD-0031 190033 Serial Number: Reference Standard: Omega CL23A

Temperature Range: 2000 Fahrenheit - °F Acceptance Criterion: 1.50% °R (°F+460)

Reference	As Fo	ound	As L	As Left		
Temperature	Display Rdg	Difference	Display Rdg	Difference		
°F	°F	% of Rdg	°F	% of Rdg		
1800	1800	0.02%	1800	0.02%		
1500	1500	0.02%	1500	0.02%		
1000	1000	0.00%	1000	0.00%		
500	500	0.04%	500	0.04%		
200	200	0.03%	200	0.03%		
100	100	0.05%	100	0.05%		
0	1	0.13%	1	0.13%		
	Average % Difference	0.04%	Average % Difference	0.04%		
	Maximum % Difference	0.13%	Maximum % Difference	0.13%		
	Acceptance Status	Pass	Acceptance Status Channel 2 Verification	Pass NA		

Verified/Certified¹ By: T. Rehling 4/10/2020

¹ Certifying personnel identity validated by computer login and data entry tracking pursuant to Pace FSD SOP ENV-SOP-FIELD-0004.

Calibration Gas Certifications

Term: 96 Months

Reference Standard:

Praxair Distribution, Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732

Fax: +1 (419) 729-7411 PGVP ID: F12018

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

PRAXAIR PKG ROSEVILLE MN P 2455 ROSEGATE ROSEVILLE MN 55113-2717 Customer Reference: NO2=1.1ppm Certificate Issuance Date: 10/08/2018
Praxair Order Number: 70730454
Part Number: NI CO245NS1ZEAS

Fill Date: 09/21/2018

Lot Number: 700018264GB

Cylinder Style & Outlet: AS CGA 660

Cylinder Pressure and Volume: 2000 psig 140 ft3

Expiration Date: 10/02/2026

Certified Concentration

		certifica concentian	
Expiration Date:		10/02/2026	NIST Traceable
	Cylinder Number:	CC93519	Expanded Uncertainty
	246 ppm	Carbon monoxide	± 0.4 %
	247 ppm	Nitric oxide	± 0.3 %
	247 ppm	Sulfur dioxide	± 0.6 %
	Balance	Nitrogen	

Certification Date: 10/02/2018

Certification Information:

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1.

Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

1. Component: Carbon monoxide

Requested Concentration: 245 ppm
Certified Concentration: 246 ppm
Instrument Used: Horiba VIA 510
Analytical Method: NDIR
Last Multipoint Calibration: 10/04/2018

First Analysis Data:							Date	09/25/2018	}
	Z:	0	R:	250.8	C:	246	Conc:	246	
	R:	0 250.8	Z:	0	C:	246	Conc:	246	
	Z:	0	C:	246	R:	250.8	Conc:	246	
	LION	l· nnm				lean Tes	t Assav	246 nnn	n

2. Component: Nitric oxide

Requested Concentration: 245 ppm
Certified Concentration: 247 ppm
Instrument Used: Thermo-42i LS
Analytical Method: Chemiluminescence
Last Multipoint Calibration: 09/17/2018

First	t Analysis	Date	09/25/201	18				
Z:	0	R:	255	C:	247	Conc:	247	
Z: R: Z:	255	Z:	0	C:	247	Conc:	247	
Z:	0	C:	247	R:	255	Conc:	247	
UOM: ppm					lean Tes	t Assay:	247 pp	om

3. Component: Sulfur dioxide

Analyzed By

Requested Concentration: 245 ppm
Certified Concentration: 247 ppm
Instrument Used: AMETEK 921
Analytical Method: UV Spectrometry
Last Multipoint Calibration: 09/17/2018

First	First Analysis Data: Date 09/25/2018										
Z:	0	R:	506	C:	248	Conc:	248				
R:	506	Z:	0	C:	247	Conc:	247				
Z:	0	C:	248	R:	506	Conc:	248				
UOM: ppm Mean Test Assay: 248 ppm											

Concentration / Uncertainty: 250.6 ppm ±0.3% Expiration Date: 03/16/2026

Traceable to: SRM # / Sample # / Cylinder #: 2636a / 57-F-15 / FF30792

SRM Concentration / Uncertainty: 247.1 PPM / ±0.5 PPM SRM Expiration Date: 03/26/2018

١	Secon	d Analy	Date						
	Z:	0	R:	0	C:	0	Conc:	0	
	R:	0	Z:	0	C:	0	Conc:	0	
	Z:	0	C:	0	R:	0	Conc:	0	
	UOM: ppm Mean Test Assay:								ppm

Type / Cylinder #: GMIS / EB0005134

Reference Standard: Type / Cylinder #: GMIS / CC192721

Concentration / Uncertainty: 255 ppm ±0.3% Expiration Date: 02/24/2026

Traceable to: SRM # / Sample # / Cylinder #: 1687b / 41-L-12 / FF10415 SRM Concentration / Uncertainty: 985.3 PPM / ±2.1 PPM

SRM Expiration Date: 05/01/2020

Sec	ond Analy	sis Data	a:			Date	10/02/2018	
Z:	0	R:	255	C:	247	Conc:	247	
R:	255	Z:	0	C:	247	Conc:	247	
Z:	0	C:	248	R:	255	Conc:	248	
UO	M: ppm			M	ean Tes	t Assay:	247	ppm

Reference Standard: Type / Cylinder #: GMIS / EB0015349

 $\begin{array}{c} \mbox{Concentration / Uncertainty: } \mbox{ 506 ppm $\pm 0.573\%} \\ \mbox{Expiration Date: } \mbox{ 01/04/2026} \end{array}$

Traceable to: SRM # / Sample # / Cylinder #: 1661a / 94-I-14 / FF28055

SRM Concentration / Uncertainty: 494.6 PPM / .00794 SRM Expiration Date: 09/14/2018

	Seco	nd Anal	ysis Data	Date	10/02/	2018			
	Z:	0	R:	506	C:	247	Conc:	247	
	R:	506	Z:	0	C:	247	Conc:	247	
	Z:	0	C:	248	R:	506	Conc:	248	
UOM: ppm					М	ean Tes	st Assav:	247	ppm

Certified By

ed By

FSD 20-04074 Report Date 2/5/2021 Page D-29 of 45

Praxair Distribution, Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732

Fax: +1 (419) 729-2411 **PGVP ID: F12020**

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

PRAXAIR PKG ROSEVILLE MN P 2455 ROSEGATE ROSEVILLE MN 55113-2717

Certificate Issuance Date: 06/24/2020 Praxair Order Number: 71360746 Part Number: NI CD10O28E-AS Customer PO Number: 79351935

Fill Date: 06/04/2020 Lot Number: 700010156F3 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 140 ft3

Certified Concentration

		certifica concentitution	
Expiration Date:		06/24/2028	NIST Traceable
Cylinder Number:		CC95749	Expanded Uncertainty
9.93	%	Carbon dioxide	± 1.2 %
10.9	%	Oxygen	± 0.4 %
	Balance	Nitrogen	

Certification Information:

Certification Date: 06/24/2020

Term: 96 Months

Z: 0

R:

Z: 0

Z:

Z:

Reference Standard:

Traceable to:

UOM: %

Ω

Reference Standard:

Expiration Date: 06/24/2028

Date

Conc:

Conc: 0

Conc: 0

%

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1.

Do Not Use this Standard if Pressure is less than 100 PSIG.

O2 responses have been corrected for CO2 interference

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data:

Carbon dioxide Component: Requested Concentration: 10.0 % Certified Concentration: 9.93 % Instrument Used: MKS 2030 Analytical Method: FTIR Last Multipoint Calibration: 06/01/2020

ı									
	First	Analysis	s Data:				Date	06/24/2020	
	Z:	0	R:	15.3	C:	10.1	Conc:	9.93	
	R:	15.3	Z:	0	C:	10.1	Conc:	9.93	
	Z: R: Z:	0	C:	10.1	R:	15.3	Conc:	9.93	
	UOM	l: %			M	ean Tes	t Assay:	9.93 %	

Component:

Analyzed By

Requested Concentration: 11.0 % Certified Concentration: 10.9 % Instrument Used: Servomex 575 Analytical Method: Paramagnetic Last Multipoint Calibration: 06/22/2020

First	Analysis	Data:				Date	06/24/20	020
Z:	0	R:	22.49	C:	10.9	Conc:	10.9	
R:	22.5	Z:	0	C:	10.9	Conc:	10.9	
Z:	0	C:	10.9	R:	22.5	Conc:	10.9	
UON	l: %			M	ean Tes	t Assay:	10.9	%

Mine Mount

Certified By

SRM Expiration Date: 08/23/2021 Second Analysis Data: Date

Expiration Date: 12/02/2027 SRM # / Sample # / Cylinder #: 2659a / 71-D-04 / CAL015785

0 R: Conc: 0 0 C: 0 R: 0 Z: 0 C: 0 Conc: 0 0 0 0 Conc: 0 UOM: % Mean Test Assay:

Type / Cylinder #: GMIS / EB0054692

C:

C:

Type / Cylinder #: GMIS / SGAL2224

0

0

Mean Test Assay:

Expiration Date: 08/02/2026

Concentration / Uncertainty: 15.05 % ±0.27%

SRM Concentration / Uncertainty: 15.633% / ±0.037%

0

0

Concentration / Uncertainty: 22.49 % ±0.3%

SRM Concentration / Uncertainty: 20.72 / ±0.043

SRM Expiration Date: 02/07/2025

Traceable to: SRM # / Sample # / Cylinder #: 2745 / 9-C-03 / CAL016000

R:

7:

Edward E Zucal

FSD 20-04074 Report Date 2/5/2021 Page D-30 of 45

Praxair Distribution, Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732

Tel: +1 (419) 729-7732 Fax: +1 (419) 729-2411 PGVP ID: F12020

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

PRAXAIR PKG ROSEVILLE MN P 2455 ROSEGATE ROSEVILLE MN 55113-2717 Certificate Issuance Date: 03/17/2020 Praxair Order Number: 71274090 Part Number: NI CO112NS1ZEAS Customer PO Number: 79263469 Fill Date: 03/04/2020

Lot Number: 700010064WE

Cylinder Style & Outlet: AS CGA 660

Cylinder Pressure and Volume: 2000 psig 140 ft3

Certified Concentration

	J	
Expiration Date:	03/17/2028	NIST Traceable
Cylinder Number:	CC128093	Expanded Uncertainty
116 ppm	Nitric oxide	± 0.4 %
110 ppm	Sulfur dioxide	± 0.8 %
110 ppm	Carbon monoxide	± 0.6 %
Balance	e Nitrogen	

For Reference Only:

NO2 0.8 ppm

Certification Information:

Certification Date: 03/17/2020

Term: 96 Months

Expiration Date: 03/17/2028

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1.

Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data: (R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

Nitric oxide
 Requested Concentration: 112 ppm
 Certified Concentration: 116 ppm

Instrument Used: Thermo-42i LS
Analytical Method: Chemiluminescence
Last Multipoint Calibration: 03/03/2020

First	Analysis	Data:				Date	03/10/2020)
Z:	0	R:	255	C:	115	Conc:	115	
R:	255	Z:	0	C:	115	Conc:	115	
Z:	0	C:	115	R:	255	Conc:	115	
Luom	l: ppm			М	ean Tes	st Assav:	115 ppr	m

2. Component: Sulfur dioxide

Requested Concentration: 112 ppm
Certified Concentration: 110 ppm
Instrument Used: AMETEK 921
Analytical Method: UV Spectrometry
Last Multipoint Calibration: 03/04/2020

	t Analysis	Data:				Date	03/10/202	0
Z:	0 509 0	R:	509	C:	111	Conc:	111	
R:	509	Z:	0	C:	111	Conc:	111	
Z:	0	C:	111	R:	509	Conc:	111	
Ιυοι	M: ppm			M	ean Tes	t Assav:	111 pp	m

3. Component: Carbon monoxide

Analyzed By

Requested Concentration: 112 ppm
Certified Concentration: 110 ppm
Instrument Used: Horiba VIA 510
Analytical Method: NDIR
Last Multipoint Calibration: 02/20/2020

	Analysis	Data:				Date	03/10	/2020
Z: R: Z:	0	R:	250	C:	110.4	Conc:	110	
R:	250	Z:	0	C:	110.2	Conc:	110	
Z:	0	C:	110.3	R:	250	Conc:	110	
UOM	l: ppm			N	lean Test	Assay:	110	ppm

Reference Standard: Type / Cylinder #: GMIS / DT0006335

Concentration / Uncertainty: 254.55 ppm ±0.214% Expiration Date: 04/28/2026

Traceable to: SRM # / Sample # / Cylinder #: 1687b / 41-L-32 / FF10415

SRM Concentration / Uncertainty: 985 / .00213 SRM Expiration Date: 05/01/2020

Seco	nd Anal	ysis Data	1:			Date	03/17/2	2020
	0	R:	255	C:	117	Conc:	117	
R:	255	Z:	0	C:	117	Conc:	117	
Z:	0	C:	117	R:	255	Conc:	117	
UOM	: ppm			M	ean Tes	t Assay:	117	ppm

Reference Standard: Type / Cylinder #: GMIS / DT0029404

Concentration / Uncertainty: 509 ppm ±0.387%

Expiration Date: 12/14/2027

Traceable to: SRM # / Sample # / Cylinder #: 1661a / 94-I-XX / FF22309

SRM Concentration / Uncertainty: 495 / 0.38 SRM Expiration Date: 08/30/2021

Seco	nd Analy	sis Data	1:			Date	03/17/	2020
Z:	0	R:	509	C:	110	Conc:	110	
R:	509	Z:	0	C:	110	Conc:	110	
Z:	0	C:	110	R:	509	Conc:	110	
иом	: ppm			M	ean Tes	t Assay:	110	ppm

Reference Standard: Type / Cylinder #: GMIS / CC179337

Concentration / Uncertainty: 249.9 ppm ±0.27% Expiration Date: 03/16/2026

Traceable to: SRM # / Sample # / Cylinder #: 2636a / 57-F-15 / FF30792

SRM Concentration / Uncertainty: 247.1 / ±0.5 PPM
SRM Expiration Date: 03/26/2018

Secon	d Analy	sis Data				Date		
Z:	0	R:	0	C:	0	Conc:	0	
R:	0	Z:	0	C:	0	Conc:	0	
Z:	0	C:	0	R:	0	Conc:	0	
UOM:	ppm			Me	ean Tes	st Assay:		ppm

Certified By

Edward E Zucal

Praxair Distribution. Inc. 10210 North Freeway Houston, TX 77037 Tel: 1-281-880-4445

Tel: 1-281-880-4445 Fax: 1-281-880-4449

Customer & Order Information:

PACE ANALYTICAL SERVICES INC 1700 ELM ST SE, DEPT 1251 FIELD SERVICES AIR GARAGE

MINNEAPOLIS, MN 55414

Praxair Order Number: 73931383

Customer PO Number: BETH KELM EMAIL

Certificate Issuance Date: 4/12/2019

Certification Date: 4/12/2019 Lot Number: 70017910101 Part Number: AI HX40MC-AS

DocNumber: 67205 Expiration Date: 4/11/2024

CERTIFICATE OF ANALYSIS

Certified Standard

n-Hexane Air	40.0 ppm Balance	39.9 ppm Balance	1	± 5 %
Component	Requested Concentration (Molar)	Certified Concentration (Molar)	•	Analytical Uncertainty

Cylinder Style: AS

Cylinder Style: A3

Cylinder Pressure @ 70 F: 2000 psig

Cylinder Volume: 142.8 ft3
Valve Outlet Connection: CGA 590
Cylinder Number(s): CC158131

Fill Date: 4/11/2019 Filli

Analysis Date: 4/12/2019

Filling Method: Gravimetric

Die Cats

Certifier: Brian Courts

Approved Signer: Abel Navarrete

Key to Analytical Techniques:

Reference Analytical Instrument - Analytical Principle

Varian 450-GC - Gas Chromatography with FID

The gas calibration cylinder standard prepared by Praxair Distribution, Inc. is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard provided is certified against Praxair Distribution, Inc. Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST), Measurement Canada, or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution, Inc.. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

Praxair Distribution, Inc. 10210 North Freeway Houston, TX 77037 Tel: 1-281-880-4445

Fax: 1-281-880-4449

Customer & Order Information:

PACE ANALYTICAL SERVICES INC 1700 ELM ST SE, DEPT 1251 FIELD SERVICES AIR

GARAGE

MINNEAPOLIS, MN 55414

Praxair Order Number: 73931383

Customer PO Number: BETH KELM EMAIL

Certificate Issuance Date: 4/12/2019

Certification Date: 4/12/2019 Lot Number: 70017910101 Part Number: AI HX25MC-AS

DocNumber: 67206 Expiration Date: 4/11/2024

CERTIFICATE OF ANALYSIS

Certified Standard

Component	(Moiai)	(IVIOIAI)	1/CICICIDITE	Unicertainty
Component	Requested Concentration (Molar)	Certified Concentration (Molar)	•	Analytical Uncertainty

Cylinder Style: AS

Fill Date: 4/11/2019 Analysis Date: 4/12/2019 Filling Method: Gravimetric

Cylinder Pressure @ 70 F: 2000 psig Cylinder Volume: 142.8 ft3

Valve Outlet Connection: CGA 590 Cylinder Number(s): CC171522

Certifier: Brian Courts

Approved Signer: Abel Navarrete

Key to Analytical Techniques:

Analytical Instrument - Analytical Principle

Varian CP-4900 Micro GC - Gas Chromatography with TCD

The gas calibration cylinder standard prepared by Praxair Distribution, Inc. is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard provided is certified against Praxair Distribution, Inc. Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST), Measurement Canada, or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution, Inc.. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

Praxair Distribution, Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732

Tel: +1 (419) 729-7732 Fax: +1 (419) 729-2411 PGVP ID: F12020

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

PRAXAIR PKG ROSEVILLE MN P 2455 ROSEGATE ROSEVILLE MN 55113-2717 Certificate Issuance Date: 02/05/2020 Praxair Order Number: 71228421 Part Number: NI CO50MNS3ZEAS Customer PO Number: 79216841 Fill Date: 01/22/2020

Lot Number: 700010022WH

Cylinder Style & Outlet: AS CGA 660

Cylinder Pressure and Volume: 2000 psig 140 ft3

Certified Concentration

	Cortifica Concentitation	
Expiration Date:	02/03/2028	NIST Traceable
Cylinder Number:	CC350671	Expanded Uncertainty
51.0 ppm	Nitric oxide	± 0.5 %
49.0 ppm	Sulfur dioxide	± 0.8 %
49.6 ppm	Carbon monoxide	± 0.2 %
Balance	Nitrogen	

For Reference Only:

NO2 0.3 ppm

Certification Information:

Certification Date: 02/03/2020

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

Term: 96 Months

Expiration Date: 02/03/2028

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1.

Do Not Use this Standard if Pressure is less than 100 PSIG.

Analytical Data:

1. Component: Nitric oxide

Requested Concentration: 50 ppm
Certified Concentration: 51.0 ppm
Instrument Used: Thermo-42i LS

Analytical Method: Chemiluminescence
Last Multipoint Calibration: 01/10/2020

First	t Analysis	Data:				Date	01/27/20	020
Z:	0	R:	103.3	C:	50.8	Conc:	50.8	
R:	103.3	Z:	0	C:	50.9	Conc:	50.9	
Z:	0	C:	50.7	R:	103.4	Conc:	50.7	
UON	1: ppm			N	lean Tes	t Assay:	50.8 p	mac

2. Component: Sulfur dioxide

Requested Concentration: 50 ppm
Certified Concentration: 49.0 ppm
Instrument Used: AMETEK 921
Analytical Method: UV Spectrometry
Last Multipoint Calibration: 01/10/2020

First	Analysis	Data:				Date	01/27/	2020
Z:	0	R:	97.2	C:	49.5	Conc:	49.5	
R:	97.1	Z:	0	C:	49.4	Conc:	49.4	
Z:	0	C:	49.4	R:	97.3	Conc:	49.4	
UOM	: ppm			M	lean Tes	t Assav:	49.4	mag

3. Component: Carbon monoxide

Requested Concentration: 50 ppm
Certified Concentration: 49.6 ppm
Instrument Used: Horiba VIA 510
Analytical Method: NDIR
Last Multipoint Calibration: 01/13/2020

First	01/27/2020)						
Z:	0	R:	50.2	C:	49.7	Conc:	49.7	
R:	50.2	Z:	0	C:	49.6	Conc:	49.6	
Z:	0	C:	49.6	R:	50.2	Conc:	49.6	
HOM	l· nnm			M	oan Tos	t Accave	40.6 pp	m

Analyzed By Gr

Gregory Brodbeck

Reference Standard: Type / Cylinder #: GMIS / DT0027997

Concentration / Uncertainty: 103.3 ppm ±0.3% Expiration Date: 05/15/2027

Traceable to: SRM # / Sample # / Cylinder #: C1303210.03 / N/A / APEX1223951

SRM Concentration / Uncertainty: 100.1 / .2997 SRM Expiration Date: 07/27/2020

Seco	nd Analy	Date	02/03/20	020				
Z:	0	R:	103.3	C:	51.3	Conc:	51.3	
R:	103.2	Z:	0	C:	51.2	Conc:	51.2	
Z:	0	C:	51.3	R:	103.2	Conc:	51.3	
UOM	l: ppm			N	lean Tes	t Assay:	51.3	ppm

Reference Standard: Type / Cylinder #: GMIS / DT0006731

Concentration / Uncertainty: 97.2 ppm ±0.818% Expiration Date: 01/12/2024

Traceable to: SRM # / Sample # / Cylinder #: 1694a / 95-J-88 / CAL016706

SRM Concentration / Uncertainty: 98.07 / .00795 SRM Expiration Date: 12/11/2015

Seco	nd Analy	sis Data	a:			Date	02/03/	2020
Z:	0	R:	97.2	C:	48.6	Conc:	48.6	
R:	97.2	Z:	0	C:	48.7	Conc:	48.7	
Z:	0	C:	48.6	R:	97.3	Conc:	48.6	
иом	: ppm			M	lean Tes	t Assay:	48.6	ppm

Reference Standard: Type / Cylinder #: GMIS / DT0012181

Concentration / Uncertainty: 50.2 ppm ±0.144% Expiration Date: 07/03/2026

Traceable to: SRM # / Sample # / Cylinder #: 1678c / 4-L-26 / FF18339 SRM Concentration / Uncertainty: 49.136 ppm / ±0.065 PPM

SRM Expiration Date: 02/04/2021

Secon	d Analys	Date	02/03/2020				
Z:	0	R:	0	C:	0	Conc:	0
R:	0	Z:	0	C:	0	Conc:	0
Z:	0 C :		0	R: 0 Con		Conc:	0
UOM:	ppm		st Assay:	ppm			

Certified By

Edward E Zuca

Praxair Distribution, Inc. 6055 Brent Drive Toledo OH 43611 Tel: +1 (419) 729-7732

Fax: +1 (419) 729-2411 **PGVP ID: F12020**

CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

PRAXAIR PKG ROSEVILLE MN P 2455 ROSEGATE ROSEVILLE MN 55113-2717

Certificate Issuance Date: 07/16/2020 Praxair Order Number: 71382017 Part Number: NI CD20O3E-AS Customer PO Number: 79373728

Fill Date: 06/25/2020 Lot Number: 700010177F2 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 140 ft3

Certified Concentration

Expiration Date:	07/16/2028	NIST Traceable
Cylinder Number:	DT0033087	Expanded Uncertainty
20.0 %	Carbon dioxide	± 0.6 %
21.0 %	Oxygen	± 0.4 %
Balance	Nitrogen	

Certification Information:

Certification Date: 07/16/2020

Term: 96 Months

Reference Standard:

Expiration Date: 07/16/2028

Type / Cylinder #: GMIS / CC110516

C:

C:

Type / Cylinder #: GMIS / SGAL2224

Expiration Date: 12/02/2027

SRM # / Sample # / Cylinder #: 2659a / 71-D-04 / CAL015785

0

0

Mean Test Assay:

Concentration / Uncertainty: 20.23 % ±0.235%

Traceable to: SRM # / Sample # / Cylinder #: PRM# 3222577.01 / n/a / FF27613

SRM Concentration / Uncertainty: 20.008% / ±0.028%

0

0

Concentration / Uncertainty: 22.49 % ±0.3%

R:

7:

SRM Expiration Date: 04/01/2020

Expiration Date: 01/13/2026

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1.

Do Not Use this Standard if Pressure is less than 100 PSIG.

O2 responses have been corrected for CO2 interference

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data:

Carbon dioxide Component: Requested Concentration: 20.0 % Certified Concentration: 20.0 % MKS 2030 Instrument Used:

Analytical Method: FTIR Last Multipoint Calibration: 07/01/2020

First	Analysi	s Data:		Date	07/16/2020)		
Z: R: Z:	0	R:	17.1	C:	16.8	Conc:	20	
R:	17.1	Z:	0	C:	16.9	Conc:	20.1	
Z:	0	C:	16.8	R:	16.9	Conc:	20	
UOM	: %			M	ean Test	Assay:	20 %	

Component:

Requested Concentration: 21.0 % Certified Concentration: 21.0 % Instrument Used: Servomex 575 Analytical Method: Paramagnetic Last Multipoint Calibration: 06/22/2020

First	t Analysi	s Data:				Date	07/16/20	20
Z:	0	R:	22.5	C:	21	Conc:	21	
R:	22.5	Z:	0	C:	21	Conc:	21	
Z:	0	C:	21	R:	22.5	Conc:	21	
UON	1 : %			M	lean Tes	t Assay:	21 %	6

Mine Mount

SRM Concentration / Uncertainty: 20.72 / ±0.043 SRM Expiration Date: 08/23/2021

Z:

R:

Z:

UOM:

Z: 0

R:

Z: 0

Reference Standard:

Traceable to:

UOM: %

Ω

Second Analysis Data: 0 R: 0 0 Z: 0 0 0

Conc: 0 C: 0 C: 0 Conc: 0 0 Conc: 0 Mean Test Assay:

Date

Date

Conc:

Conc: 0

Conc: 0

%

Certified By

Edward E Zucal

Analyzed By

Information contained herein has been prepared at your request by qualified experts within Praxair Distribution, Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Praxair Distribution, Inc., arising out of the use of the information.

Grede, LLC - Iron Mountain

FSD 20-04074 Report Date 2/5/2021 Page D-35 of 45

Praxair Distribution, Inc. 10210 North Freeway Houston, TX 77037 Tel: 1-281-880-4445

Filling Method: Gravimetric

Tel: 1-281-880-4445 Fax: 1-281-880-4449

Customer & Order Information:

PACE ANALYTICAL SERVICES INC 1700 ELM ST SE, DEPT 1251 FIELD SERVICES AIR

GARAGE

MINNEAPOLIS, MN 55414

Praxair Order Number: C73931383

Customer PO Number: BETH KELM EMAIL

Certificate Issuance Date: 4/12/2019

Certification Date: 4/12/2019 Lot Number: 70017910101 Part Number: AI HX15MC-AS

DocNumber: 67210 Expiration Date: 4/11/2024

CERTIFICATE OF ANALYSIS

Certified Standard

n-Hexane	15.0 ppm	15.0 ppm	1	± 5 %
Component	Requested Concentration (Molar)	Certified Concentration (Molar)	•	Analytical Uncertainty

Cylinder Style: **AS** Fill Date: **4/11/2019**

Cylinder Pressure @ 70 F: 2000 psig Analysis Date: 4/12/2019

Cylinder Volume: 142.8 ft3
Valve Outlet Connection: CGA 590
Cylinder Number(s): LCCO-SA3511

Certifier: Brian Courts Approved Signer: Abel Navarrete

Key to Analytical Techniques:

Reference Analytical Instrument - Analytical Principle

Varian CP-4900 Micro GC - Gas Chromatography with TCD

The gas calibration cylinder standard prepared by Praxair Distribution, Inc. is considered a certified standard. It is prepared by gravimetric, volumetric, or partial pressure techniques. The calibration standard provided is certified against Praxair Distribution, Inc. Reference Materials which are either prepared by weights traceable to the National Institute of Standards and Technology (NIST), Measurement Canada, or by using NIST Standard Reference Materials where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by volume (e.g., ppmv) unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

IMPORTANT

The information contained herein has been prepared at your request by personnel within Praxair Distribution, Inc.. While we believe the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Praxair Distribution, Inc. arising out of the use of the information contained herein exceed the fee established for providing such information.

Pace Analytical
FSD 20-04074
Report Date 2/5/2021
Grede, LLC - Iron Mountain
Page D-36 of 45

Gas Stratification Determination

Kingsford, MI Pace Project No. 20-04074

Appendix D Gas Stratification Determination Cupola Baghouse Inlet Test 1

Traverse	0	2	C	02	TH	HC	С	0	S	02	
Point From Wall		<u>%v/v</u>	<u>%v/v, Dry</u>		, Dry	<u>PPM</u>	PPM, Wet		l, Dry	PPM, Dry	
1 8.0		8.	72	11	11.69		0.28		9.13		.14
2	24.0	8.8	81	11	.57	0.:	28	11	.05	18	.83
3	40.0	8.8	84	11	.55	0.3	26	8.	87	16	.45
Average Concentration		ı 8. ⁻	79	11.60		0	27	9.	68	17.47	
Difference	from Mean	Conc.	<u>%</u>	Conc.	<u>%</u>	Conc.	<u>%</u>	Conc.	<u>%</u>	Conc.	<u>%</u>
1		-0.07	0.8%	0.09	0.8%	0.01	3.9%	-0.55	5.7%	-0.34	1.9%
2		0.02	0.3%	-0.03	0.3%	0.01	2.4%	1.37	14.2%	1.36	7.8%
3		0.05	0.6%	-0.05	0.5%	-0.02	6.3%	-0.82	8.4%	-1.02	5.9%
Max Deviation (abs)		0.07	0.8%	0.09	0.8%	0.02	6.3%	1.37	14.2%	1.36	7.8%
Stratification Status		Unstra	atified	Unstr	atified	Not I	Jsed	Not	Used	Not l	Jsed
Sampling ⁷	Traverse	1 P	oint	1 P	oint						

Sample Traverse Point SpecificationsSystem Response Time:1MinutesRequired Traverse Points1Pause between Points:1ReadingsDwell Time Per Point:4Readings

Point Locations for Round Duct Use Most Representative Point

Stratification Specification - EPA 7E, Section 8.1.2

Unstratified: ≤ 5% or 0.5 PPM¹ max deviation

Minimal Strat: ≤ 10% or 1.0 PPM¹ max deviation

Stratified: > 10% or 1.0 PPM¹ max deviation

Gas Monitor Calibration Summary

Kingsford, MI Pace Project No. 20-04074

Appendix D Gas Monitor Calibration Summary Cupola Baghouse Inlet Test 1

	n (O2), %v/v	Cal Set 1	Cal Set 2	Cal Set 3
Calibration Erro	r: Zero Gas Value	0.00		
	Low Gas Value			
	Mid Gas Value	10.90		
	High Gas Value	21.00		
	Cal Date	12/15/2020		
	Cal Time	7:46		
	Zero Reading	0.06		
	Low Reading			
	Mid Reading	11.05		
	High Reading	21.05		
	Zero Gas Error, %	0.29%		
	Low Gas Error, %	0.2370		
	Mid Gas Error, %	0.70%		
	High Gas Error, %	0.26%		
Suntam Black			40/4E/0000	40/45/000
System Bias:	Cal Date	12/15/2020	12/15/2020	12/15/202
	Pre Bias Start	8:21	10:11	12:0
	Post Bias End	10:23	12:13	14:3
	CE Rdg for Span	11.05	11.05	11.0
	Pre Zero Reading	0.09	0.03	0.0
	Post Zero Reading	0.03	0.00	-0.0
	Pre Span Reading	10.89	10.88	10.8
	Post Span Reading	10.88	10.82	10.7
	Pre Zero Bias. %	0.16%	-0.14%	-0.27%
	Post Zero Bias, %	-0.14%	-0.27%	-0.39%
		-0.75%		-1.08%
	Pre Span Bias, %	-0.75%	-0.80%	
			-1.08%	-1.329
	Post Span Bias, %			
	Zero Drift, %	0.30%	0.12%	0.12%
				0.12% 0.24%
Carbon	Zero Drift, % Upscale Drift, %	0.30% 0.06%	0.12% 0.28%	0.12% 0.24%
	Zero Drift, % Upscale Drift, % Dioxide, %v/v	0.30% 0.06% <u>Cal Set 1</u>	0.12%	0.12% 0.24%
	Zero Drift, % Upscale Drift, % Dioxide, %v/v r: Zero Gas Value	0.30% 0.06%	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v Ir: Zero Gas Value Low Gas Value	0.30% 0.06% <u>Cal Set 1</u> 0.00	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v In: Zero Gas Value Low Gas Value Mid Gas Value	0.30% 0.06% <u>Cal Set 1</u> 0.00 9.93	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v or: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value	0.30% 0.06% Cal Set 1 0.00 9.93 20.00	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46	0.12% 0.28%	0.12% 0.24%
	Zero Drift, % Upscale Drift, % Dioxide, %v/v r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v r: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v In: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v In: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v In: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v In: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, %	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v In: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, %	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11%	0.12% 0.28%	0.129 0.249
	Zero Drift, % Upscale Drift, % Dioxide, %v/v In: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, %	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22%	0.12% 0.28%	0.129 0.249
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v Ir: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, %	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35%	0.12% 0.28% Cal Set 2	0.129 0.249 Cal Set
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v Ir: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020	0.12% 0.28% Cal Set 2	0.129 0.249 Cal Set
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v Ir: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % High Gas Error, % Cal Date Pre Bias Start	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21	0.12% 0.28% Cal Set 2 12/15/2020 10:11	0.129 0.249 Cal Set 12/15/202 12:0
	Zero Drift, % Upscale Drift, % Dioxide, %v/v Ir: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23	0.12% 0.28% Cal Set 2 12/15/2020 10:11 12:13	0.129 0.249 Cal Set 12/15/202 12:0 14:3
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v Ir: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89	0.12% 0.28% Cal Set 2 12/15/2020 10:11 12:13 9.89	0.129 0.249 Cal Set 12/15/202 12:0 14:3 9.8
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v T: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03	0.12% 0.28% Cal Set 2 12/15/2020 10:11 12:13 9.89 -0.03	0.129 0.249 Cal Set 12/15/202 12:0 14:3 9.8 -0.0
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v T: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 -0.03	0.12% 0.28% Cal Set 2 12/15/2020 10:11 12:13 9.89 -0.03 -0.04	0.129 0.249 Cal Set 12/15/202 12:0 14:3 9.8 -0.0 -0.0
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v T: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Zero Reading Pre Span Reading	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 -0.03 9.82	0.12% 0.28% Cal Set 2 12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87	0.129 0.249 Cal Set 12/15/202 12:0 14:3 9.8 -0.0 -0.0 9.9
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v T: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading Mid Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 -0.03 9.89 -0.03 9.82 9.87	0.12% 0.28% Cal Set 2 12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95	0.129 0.249 Cal Set 12/15/202 12:0 14:3 9.8 -0.0 -0.0 9.9 9.8
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v T: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Zero Reading Pre Span Reading	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 -0.03 9.82	0.12% 0.28% Cal Set 2 12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87	0.129 0.249 Cal Set 12/15/202 12:0 14:3 9.8 -0.0 -0.0 9.9 9.8
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v T: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Span Reading Post Span Reading	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 -0.03 9.89 -0.03 9.82 9.87	0.12% 0.28% Cal Set 2 12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95	0.129 0.249 Cal Set 12/15/202 12:0 14:3 9.8 -0.0 9.9 9.8 -0.079
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v T: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Span Reading Pre Zero Bias, % Post Zero Bias, % Post Zero Bias, %	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 -0.03 9.89 -0.03 9.82 9.87 -0.02% -0.03%	0.12% 0.28% Cal Set 2 12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95 -0.03% -0.07%	0.129 0.249 Cal Set 12/15/202 12:0 14:3 9.8 -0.0 9.9 9.8 -0.079 -0.129
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v T: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Span Reading Pre Span Reading Pre Zero Bias, % Post Zero Bias, % Post Zero Bias, % Pre Span Bias, %	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 -0.03 9.89 -0.03 -0.03 9.82 9.87 -0.02% -0.03% -0.03% -0.03%	0.12% 0.28% Cal Set 2 12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95 -0.03% -0.07% -0.06%	0.12% 0.24% Cal Set: 12/15/202: 12:0: 14:3: 9.8: -0.0: 9.9: 9.8: -0.07% -0.12% 0.32%
Calibration Erro	Zero Drift, % Upscale Drift, % Dioxide, %v/v T: Zero Gas Value Low Gas Value Mid Gas Value High Gas Value Cal Date Cal Time Zero Reading Low Reading High Reading High Reading Zero Gas Error, % Low Gas Error, % Mid Gas Error, % High Gas Error, % Cal Date Pre Bias Start Post Bias End CE Rdg for Span Pre Zero Reading Post Zero Reading Post Span Reading Pre Zero Bias, % Post Zero Bias, % Post Zero Bias, %	0.30% 0.06% Cal Set 1 0.00 9.93 20.00 12/15/2020 7:46 -0.02 9.89 20.07 -0.11% -0.22% 0.35% 12/15/2020 8:21 10:23 9.89 -0.03 -0.03 9.89 -0.03 9.82 9.87 -0.02% -0.03%	0.12% 0.28% Cal Set 2 12/15/2020 10:11 12:13 9.89 -0.03 -0.04 9.87 9.95 -0.03% -0.07%	0.12%

Pace Analytical FSD 20-04074

Grede, LLC - Iron Mountain Page D-40 of 45

Kingsford, MI Pace Project No. 20-04074

Appendix D Gas Monitor Calibration Summary Cupola Baghouse Inlet Test 1

Mice High Cal	Gas Value Gas Value Date Time Di Reading Reading Reading Reading Di Gas Error, % Gas Error, % Gas Error, % Date Bias Start Bias Start Bias End Rdg for Span Zero Reading Span Reading Span Reading Zero Bias, % Taylor Span Bias,	0.00 15.00 25.90 39.90 12/15/2020 8:37 0.05 15.21 25.11 39.87 0.12% 0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	12/15/2020 10:03 11:59 15.21 0.26 0.24 15.44 15.34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	12/15/2020 11:5: 14:1! 15:2' 0.07 15:34 15:2: 0.49% 0.05% 0.31% 0.01%
Carbon Monoxi Calibration Error: Zer Low Mice Higg Zer Low Mice Higg Zer Low Mice Higg Zer Pos CE Pre Pos Pre Pos Zer Ups Calibration Error: Zer Low Mice Higg Cal Zer Cal Zer Cal Zer	Gas Value Date Time Date Time Date Reading Reading Reading Date Date Time Date Reading Reading Date Date Date Date Date Date Date Date	25.90 39.90 12/15/2020 8:37 0.05 15.21 25.11 39.87 0.12% 0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1: 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Calbration Error: Zer Low Mice Higg Zer Low Mice Higg Zer Low Mice Higg Cal Pre Pos CE Pre Pos Pre Pos Zer Ups Calibration Error: Zer Low Mice Higg Cal Zer Cal Zer Cal Zer	n Gas Value Date Time o Reading Reading Reading n Reading o Gas Error, % Gas Error, % Gas Error, % Gas Error, % Date Bias Start t Bias End Rdg for Span Zero Reading t Zero Reading t Span Reading t Span Reading Zero Bias, % t Zero Bias, % t Span Bias, % t Span Bias, % o Drift, % cale Drift, %	39.90 12/15/2020 8:37 0.05 15.21 25.11 39.87 0.12% 0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1 15:2 0.0 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Cal	Date Time Define	12/15/2020 8:37 0.05 15.21 25.11 39.87 0.12% 0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Cal Zer Lov Mich Hig Zer Lov Mich Hig System Bias: Cal Pre Pos CE Pre Pos Pre Pos Pre Pos Zer Ups Calibration Error: Zer Lov Mich Hig Cal Zer Cal Zer	Time De Reading Reading Reading De Reading De Gas Error, % De Gas Error, Med Error, De Gas Error	8:37 0.05 15.21 25.11 39.87 0.12% 0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1: 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Zer Low Mich Hig Zer Low Mich Hig System Bias: Cal Pre Pos CE Pre Pos Pre Pos Zer Ups Calibration Error: Zer Low Mich Hig Cal Zer Cal Zer	Reading Reading Reading Reading Reading Gas Error, % Gas Error, % Gas Error, % Gas Error, % Date Bias Start t Bias End Rdg for Span Zero Reading t Zero Reading Span Reading t Span Reading Zero Bias, % t Zero Bias, % t Span Bias, % t Span Bias, % t Span Bias, % t Span Bias, % t O Drift, % cale Drift, %	0.05 15.21 25.11 39.87 0.12% 0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1: 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Lov Micheller Lo	Reading Reading Reading Reading Gas Error, % Gas Error, % Gas Error, % Gas Error, % Date Bias Start t Bias End Rdg for Span Zero Reading t Zero Reading t Span Reading Zero Bias, % t Zero Bias, % t Span Bias, % t Span Bias, % t Span Bias, % t O Drift, % cale Drift, %	15.21 25.11 39.87 0.12% 0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1: 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Alibration Error: Zer Calibration Error: Zer	Reading n Reading n Reading n Gas Error, % Gas Error, % n Gas Error, % n Gas Error, % Date Bias Start t Bias End Rdg for Span Zero Reading t Zero Reading Span Reading t Span Reading Zero Bias, % t Zero Bias, % t Span Bias, % n Oprift, % cale Drift, %	25.11 39.87 0.12% 0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1: 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Alignormal Expension of the Carbon Monoxicalibration Error: Zer Low Micker Calker Calker Calker Calker Carbon Monoxicalibration Error: Zer Low Micker Calker	n Reading D Gas Error, % Gas Error, % Gas Error, % Date Bias Start It Bias End Rdg for Span Zero Reading It Zero Reading Span Reading Expan Bias, % Expan Bi	39.87 0.12% 0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Alignormal Expension of the Carbon Monoxicalibration Error: Zer Low Micker Calker Calker Calker Calker Carbon Monoxicalibration Error: Zer Low Micker Calker	n Reading D Gas Error, % Gas Error, % Gas Error, % Date Bias Start It Bias End Rdg for Span Zero Reading It Zero Reading Span Reading Expan Bias, % Expan Bi	39.87 0.12% 0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Carbon Monoxi Calibration Error: Zer Lov Mici Hig Pre Pos Pre Pos Zer Ups Carbon Monoxi Calibration Error: Zer Lov Mici Hig Cal Zer	o Gas Error, % Gas Error, % Gas Error, % Gas Error, % Date Bias Start t Bias End Rdg for Span Zero Reading t Zero Reading t Span Reading t Span Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % o Drift, % cale Drift, %	0.12% 0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5: 14:1: 15:2 0.2 0.0 15:3 15:2: 0.49% 0.05% 0.31% 0.01% 0.43%
Carbon Monoxi Calibration Error: Zer Low Mick High Pre Pos Pre Pos Zer Ups Carbon Monoxi Calibration Error: Zer Low Mick High Cal Zer Zer Carbon Monoxi Cal Zer Cal Zer	Gas Error, % Gas Error, % Gas Error, % Date Bias Start t Bias End Rdg for Span Zero Reading t Zero Reading span Reading t Span Reading Zero Bias, % t Zero Bias, % t Span Bias, % t Span Bias, % o Drift, % cale Drift, %	0.53% -1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1: 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Pystem Bias: Cal Pre Pos Pre Pos Pre Pos Pre Pos Zer Ups Carbon Monoxi Salibration Error: Zer Low Mic Hig Cal Zer	Gas Error, % n Gas Error, % Date Bias Start t Bias End Rdg for Span Zero Reading t Zero Reading Span Reading Span Reading Expan Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % D Drift, % Cale Drift, %	-1.97% -0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1: 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Arbon Monoxicalibration Error: Zer Cal Pres Pos Pres Pos Pres Pos Zer Ups Carbon Monoxicalibration Error: Zer Low Michelig Cal Zer Zer Carbon Error: Zer Low Michelig Cal Zer Zer Low Michelig Cal Zer Zer	n Gas Error, % Date Bias Start t Bias End Rdg for Span Zero Reading t Zero Reading span Reading t Span Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % o Drift, % cale Drift, %	-0.08% 12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Carbon Monoxi Calibration Error: Zer Low Mic Hig Cal Cal Pre Pos Are Pos Are Pos Are	Date Bias Start t Bias End Rdg for Span Zero Reading t Zero Reading Span Reading t Span Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % o Drift, % cale Drift, %	12/15/2020 8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1: 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Pre Pos CE Pre Pos Pre Pos Pre Pos Zer Ups Carbon Monoxi Calibration Error: Zer Lov Mic Hig Cal Zer	Bias Start t Bias End Rdg for Span Zero Reading t Zero Reading Span Reading t Span Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % o Drift, % cale Drift, %	8:37 10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	10:03 11:59 15:21 0.26 0.24 15:44 15:34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	11:5 14:1: 15:2 0.2 0.0 15:3 15:2 0.499 0.059 0.319 0.019
Pos CE Pre Pos Pre Pos Zer Ups Carbon Monoxi Calibration Error: Zer Lov Mic Hig Cal Zer	t Bias End Rdg for Span Zero Reading t Zero Reading Span Reading t Span Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % o Drift, % cale Drift, %	10:07 15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57%	11:59 15.21 0.26 0.24 15.44 15.34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	14:1 15.2 0.2 0.0 15.3 15.2 0.49% 0.05% 0.31% 0.01%
CE Pre Pos Pre Pos Pre Pos Zer Ups Carbon Monoxi Calibration Error: Zer Lov Mic Hig Cal Zer	Rdg for Span Zero Reading t Zero Reading Span Reading t Span Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % o Drift, % cale Drift, %	15.21 0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57% 0.54% 0.57%	15.21 0.26 0.24 15.44 15.34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	15.2 0.0 15.3 15.2 0.49% 0.05% 0.31% 0.01%
Pre Pos Pre Pos Pre Pos Pre Pos Zer Ups Carbon Monoxi Calibration Error: Zer Lov Mid Hig Cal Zer	Zero Reading t Zero Reading Span Reading t Span Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % Dorift, % cale Drift, %	0.05 0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57% 0.54% 0.57%	0.26 0.24 15.44 15.34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	0.2 0.0 15.3 15.2 0.499 0.059 0.319 0.019
Pos Pre Pos Pre Pos Zer Ups Carbon Monoxi Calibration Error: Zer Lov Mid Hig Cal Zer	t Zero Reading Span Reading t Span Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % t Span Bias, % Dorift, % cale Drift, %	0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57% 0.54% 0.57%	0.24 15.44 15.34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	0.0 15.3 15.2 0.499 0.059 0.319 0.019
Pos Pre Pos Pre Pos Zer Ups Carbon Monoxi Calibration Error: Zer Lov Mid Hig Cal Zer	t Zero Reading Span Reading t Span Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % t Span Bias, % Dorift, % cale Drift, %	0.26 15.21 15.44 0.00% 0.54% 0.00% 0.57% 0.54% 0.57%	15.44 15.34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	0.0 15.3 15.2 0.499 0.059 0.319 0.019
Pre Pos Pre Pos Pre Pos Zer Ups Carbon Monoxi Calibration Error: Zer Lov Mid Hig Cal Zer	Span Reading t Span Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % t Span Bias, % o Drift, % cale Drift, %	15.21 15.44 0.00% 0.54% 0.00% 0.57% 0.54% 0.57%	15.34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	15.3 15.2 0.499 0.059 0.319 0.019
Position Properties Positi	t Span Reading Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % t Span Bias, % t O Drift, % cale Drift, %	15.44 0.00% 0.54% 0.00% 0.57% 0.54% 0.57%	15.34 0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	15.2 0.49% 0.05% 0.31% 0.01% 0.43%
Carbon Monoxi Calibration Error: Zer Lov Mic Hig Cal Zer	Zero Bias, % t Zero Bias, % Span Bias, % t Span Bias, % t Span Bias, % t Drift, % cale Drift, %	0.00% 0.54% 0.00% 0.57% 0.54% 0.57%	0.54% 0.49% 0.57% 0.31% 0.06% 0.26%	0.49% 0.05% 0.31% 0.01% 0.43%
Carbon Monoxi Calibration Error: Zer Lov Mic Hig Cal Zer	t Zero Bias, % Span Bias, % t Span Bias, % Do Drift, % Cale Drift, %	0.54% 0.00% 0.57% 0.54% 0.57%	0.49% 0.57% 0.31% 0.06% 0.26%	0.05% 0.31% 0.01% 0.43%
Carbon Monoxi Calibration Error: Zer Lov Mich Hig Cal Zer Zer Carbon Monoxi Aich Aich Cal Zer	Span Bias, % t Span Bias, % D Drift, % Cale Drift, %	0.00% 0.57% 0.54% 0.57%	0.57% 0.31% 0.06% 0.26%	0.31% 0.01% 0.43%
Carbon Monoxi Calibration Error: Zer Lov Mic Hig Cal Cal Zer	t Span Bias, % Dorift, % Cale Drift, % de, PPM	0.57% 0.54% 0.57%	0.31% 0.06% 0.26%	0.01% 0.43%
Carbon Monoxi Calibration Error: Zer Lov Mic Hig Cal Cal Zer	Drift, % cale Drift, % de, PPM	0.54% 0.57%	0.06% 0.26%	0.43%
Carbon Monoxi Calibration Error: Zer Lov Mic Hig Cal Cal Zer	cale Drift, % de, PPM	0.57%	0.26%	
Carbon Monoxi Calibration Error: Zer Lov Mic Hig Cal Cal Zer	de, PPM			0.30%
Calibration Error: Zer Lov Mid Hig Cal Cal Zer		Cal Set 1		
Lov Mic Hig Cal Cal Zer	Coc Value		Cal Set 2	Cal Set 3
Mic Hig Cal Cal Zer	Jas value	0.00		
Hig Cal Cal Zer	Gas Value			
Cal Cal Zer	Gas Value	49.60		
Cal Cal Zer	n Gas Value	110.00		
<u>Cal</u> Zer	Date	12/15/2020		
Zer	Time	7:46		
	Reading	0.12		
	=	0.12		
	Reading	40.50		
	Reading	48.50		
	Reading	110.01		
	Gas Error, %	0.11%		
	Gas Error, %			
Mic	Gas Error, %	-1.00%		
Hia	Gas Error, %	0.01%		
	Date	12/15/2020	12/15/2020	12/15/202
	Bias Start	8:21	10:11	12:0
	t Bias End	10:23	12:13	14:3
	Rdg for Span	48.50	48.50	48.5
				
	Zero Reading	0.64	0.96	1.2
	t Zero Reading	0.96	1.28	1.1
	Span Reading	48.81	48.52	48.0
Pos	t Span Reading	48.52	48.08	51.0
Pre	Zero Bias, %	0.47%	0.77%	1.059
	t Zero Bias, %	0.77%	1.05%	0.97%
	Span Bias, %	0.28%	0.01%	-0.39%
		0.01%	-0.39%	2.27%
	r Snan Blas %		0.28%	0.08%
Zei Ups	t Span Bias, % Drift, %	0.30%	U.Z070	2.65%

Kingsford, MI Pace Project No. 20-04074

Appendix D

Gas Monitor Calibration Summary Cupola Baghouse Inlet Test 1

Sulfur D	Dioxide, PPM	<u>Cal Set 1</u>	Cal Set 2	Cal Set 3
Calibration Erro	r: Zero Gas Value	0.00		
	Low Gas Value			
	Mid Gas Value	49.00		
	High Gas Value	110.00		
	Cal Date	12/15/2020		·
	Cal Time	7:46		
	Zero Reading	0.13		
	Low Reading			
	Mid Reading	49.97		
	High Reading	111.07		
	Zero Gas Error, %	0.12%		·
	Low Gas Error, %			
	Mid Gas Error, %	0.88%		
	High Gas Error, %	0.97%		
System Bias:	Cal Date	12/15/2020	12/15/2020	12/15/2020
	Pre Bias Start	8:21	10:11	12:04
	Post Bias End	10:23	12:13	14:32
	CE Rdg for Span	49.97	49.97	49.97
	Pre Zero Reading	0.69	1.08	1.80
	Post Zero Reading	1.08	1.80	1.91
	Pre Span Reading	47.39	47.35	46.88
	Post Span Reading	47.35	46.88	46.62
	Pre Zero Bias, %	0.50%	0.86%	1.51%
	Post Zero Bias, %	0.86%	1.51%	1.62%
	Pre Span Bias, %	-2.34%	-2.38%	-2.81%
	Post Span Bias, %	-2.38%	-2.81%	-3.04%
	Zero Drift, %	0.36%	0.65%	0.11%
	Upscale Drift, %	0.04%	0.43%	0.24%

Kingsford, MI Pace Project No. 20-04074 Appendix D
Calibration Gas List
Cupola Baghouse Inlet
Test 1

Calibration Gas Parameter		High Level Calibration Gas		Mid Level Ca	llibration Gas	Low Level Calibration Gas		
Calibration	Oas i arameter	Certified Value	Certificate No.	Certified Value	Certificate No.	Certified Value	Certificate No.	
O2	Oxygen (O2)	21	DT0033087	10.9	CC95749			
CO2	Carbon Dioxide	20	DT0033087	9.93	CC95749			
THC	Propane	39.9	CC158131	25.9	CC171522	15	SA3511	
CO	Carbon Monoxide	246	CC93519	110	CC128093	49.6	CC350671	
SO2	Sulfur Dioxide	110	CC128093	49	CC350671			

VE Observer Certifications

AEROMET ENGINEERING INC. CERTIFIES THAT

Zachary Eckstrom

hos qualified as a CERTIFIED VISIBLE

per Tille 40 Part 60 Appendix A Issued: 11/04/2020

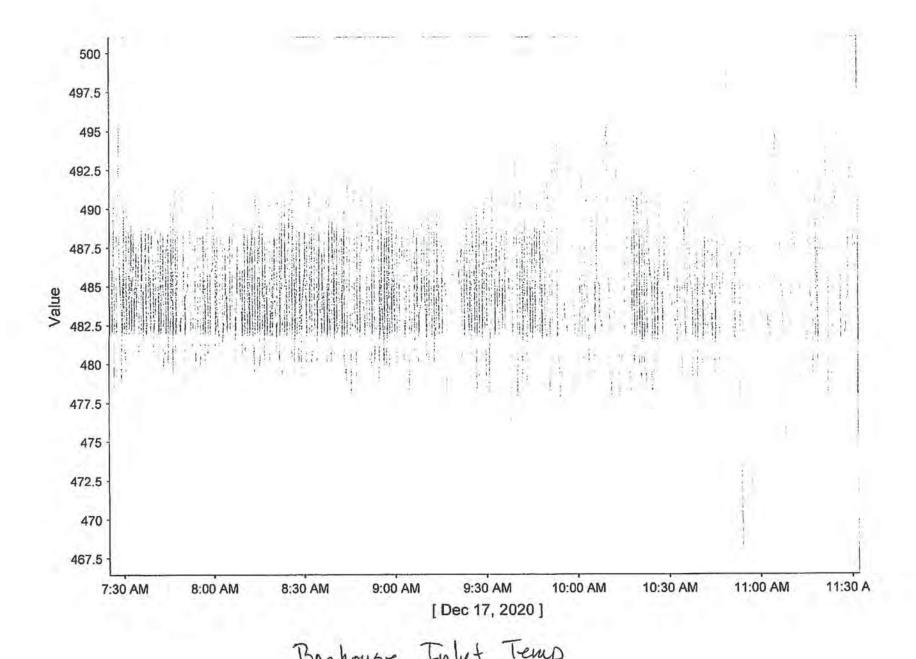
Certification of Visible Opacity Reading

Zachary Eckstrom

qualified to conduct EPA Method 9 Tests for visible opacity in accordance with the methods established for such qualification in 40 CFR Part 60 Appendix A.

Certification Date: November 04, 2020

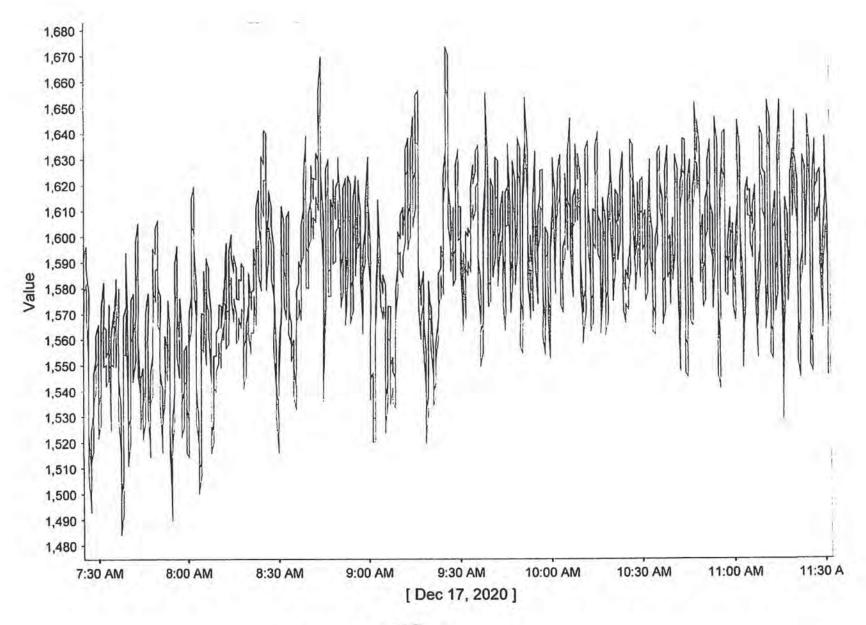
Expiration Date: May 04, 2021


AeroMet Instructor: Douglas Young

Appendix E


Source/Process/Plant Information

Process Operating Data




Pace Analytical FSD 20-04074 Grede, LLC - Iron Mountain Page E-4 of 51

Blower Amps

Stack Temp

Blast Rate

Pace Analytical FSD 20-04074 Grede, LLC - Iron Mountain Page E-7 of 51

DAILY CHARGE LOG

DATE: 12 / 17 / 20

WEIGHT VARIANCE CHECK

- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)
- 3. Notify Melt Supervisor if variation exceeds limits.

T. T. T. T. T.	
BED STONE:	(200)
	-

TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHA
432	1	1500	1000	0	235	2/2	120	15	100	
435	2		122							
439	3		1		-					
442	4		= =			1				
445	5				+50°	7			9	
449	6							1		
457	フ	1250V	1250	0	235	2/2	120	104	(100)	
454	8				1					
457	9			1	Hiso !	P	Time	1 7	(Hodis	
518	10								73	
518	1									
525	2									
529	3							7 2+		
542	4							7 = 3 (0	
546	5									
52/9	· 6									
553	7				173					
539	8	1100	1400	0	935	2/2	120	10	100	
607	9									
607"	20									
610	1									
614	2						7 7 -			

SCALE TOLERANCE CHECK

	CHARGE SCALE	ZERO	STEEL	RETURNS	PIGS
TIME CHECKED::	WEIGHT IN:				
EMPL ID NO.:	WEIGHT OUT:			1 35 5	
EWI LID NO	LUMP SCALE (ACTUAL)		1		

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

TATT	VCHA	DCE	I OC	CONT	INUED)
DAIL	I LITA	NGC		CUNI	HAGEDI

TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	СОКЕ	ILMENITE/ FEMN	SI CARBIDE	75% LUMP FESI	LIME	CHARG
617	23									
620	201									1
627	25	15 - 73				7 7				- 4
630	26									
637	27		- 2							
640	28					u =1				
643	29	1			7		-W 9.			4
646	30	1100	1400	Ø	235	2/2	120	10H	(00)	4.7
650	1	1		25.1					. 4 /	100
656	7									()
659	3					-			4	
707	4				2000		K	1 499 11		
710	5			- i					,	
713	6	l territ								
717	7								St 17	
724	8								11. 19.	T.
227	9		194	40		1				
736	40					W			1 2.00	
737	1				11 -	1				
741	7	-	Lane.							
748	2		1"	1.0					-	-
757	1		y = N		A by			100		1
754	5	-			235		100			
800	6	100	1400	0	235	12/2	120	0	120	
805						distan		Tank		2 4
811	8	1 = .) T.T.					
814	. 9		1 200							
817	50	Tage!	2.71			i Tage				
826		, ,,,					0		-	
830	2		9					Y		
834	13		Vice I			,		(7)		

DAILY CHARGE LOG

DATE: 12/17/20

WEIGHT VARIANCE CHECK

- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)
- 3. Notify Melt Supervisor if variation exceeds limits.

47	8
V	0

BED STONE: 75% LUMP LIME CHA CHARGE FRAG. RETURN / ILMENITE / SI COKE PIG TIME NUMBER STEEL DUCT FEMN CARBIDE FESI STONE CLO 1100 1400 235 1.20 120 60 2 8 6 70 1000 1007 2

SCALE TOLERANCE CHECK

	CHARGE SCALE:	ZERO	STEEL	RETURNS	PIGS
TIME CHECKED::	WEIGHT IN:				1 1 1 1 1 1 1
EMPL ID NO.:	WEIGHT OUT:				
EWI E ID No	LUMP SCALE (ACTUAL):		1		

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

1013

022

A.

+ Strice Revised: 05/15/10 Revision 4A

DAILY CHARGE LOG (CONT	INU	ED I
------------------------	-----	------

TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKÉ	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	STONE	CHARG
1025	76	1100	1400	0	235	2/2	120	Ø	120	
1030	7					1				
1033	8		E M				(- y 1			
1037	5					Term.				
104)	86		= , ;		holder			-		-
1047	1				16.4	12.7	1	10.5	1-2-27	
1052	2.	(ATT)			79	1			,	
1057		N		1	7/60					
1100	4.	1500	1000	0	236	2/2	120	05	120	
1105	1 8.				200	6-31	1.78.56			
1108	6.			TOTAL STREET	*,				+205	
1113	7.			- Edition				-		
1119	8.	1500	1000	0	235	2/2	04	408	120	
1123			V.							
1128	_							(+200	
/137	1			-						1
	1		PDE-						N T	-
	3		SA	1	1	3	100			
	4.		11	-1/			Y I			_
	5		W	10						-
	6		1						10 No.	
4	7	1			-	1	10		N.	-
	8			1	1 (')	WC	1			-
	5			1	10	VC		100	1 (-
	100		16.0						·	10
	1			3						-
1	2						1			
	13						1		-	-
	4			1.85						-
	5			1	4			-		
	6		1		1					

DAILY CHARGE LOG

DATE: 12 / 16 / 20

WEIGHT VARIANCE CHECK

- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)
- 3. Notify Melt Supervisor if variation exceeds limits.

				BED S'	TONE	00 1				
TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHAR
429	1	1500	1000	0	235	2/21/2	120	15	100	
433	2								1	
437	3				5			17		
441	4				+252					
446	5									
450	6		2 11		3.75	/ /				-
454	7	1250	1250	0	235	2/21/2	120	10¥	100	-
458	8		to.							/
502	9		~						4100/	-
522	10			-	11.0					
526 .					+100					-
531	2								7	
535	3							-		-
539	5									
543	6								77	
547 552	7									
556	8	1100	1400*	0	235	2/2/2	120	10	100	4
602	9	17700		(e.3		3 70 1			1	1
605	20							*		
608	1									
7 11	1				1 - 1				(A)	

SCALE TOLERANCE CHECK

The second secon	CHARGE SCALE:	ZERO	STEEL	RETURNS	PIGS
TIME CHECKED::	WEIGHT IN:			12.35	
FLOR DAIO	WEIGHT OUT:				
EMPL ID NO.:	CLUMP SCALE (A CITUAL):	Discount of the last	1		

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

DAIL	CHA	RGELOG	(CONTINUED)
			1

TIME	CHARGE	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE/ FEMN	SI CARBIDE	75% LUMP FESI	LIME	CHARG
614.	3	1100	1400	Ø	235	2/2/2	120	10	100	076181
619-	4					11/2				
636	5									To.
629	6							Page 1		
632	7				VI-	G				
6360	8			*	V			Q.C.		
640	9									
644	30						100	1	4.	
651	1:				11.0	X.	1		1300	
654	2	1100	1400	0	235	2/25	120	0	100	Befo
657	3				72.7	1.		1200		
705	ч						[[] X 2			
708	5				1					
711	6		3.	1.		The second	<i>i</i> -)[
744	7				34	1000		1-11	11-02	100
718	8			1	J.,					
723	9	1						l later	1.0	
726	40								10.00	
733	-1									100
736	2.		1		4 7 7			1		-
740	3					17			-670	100
755	4							H		
800 .	5	100								
804	6									
807	7			111					1	
810	8	-						1	1.0	
814	9									-
820	50				, , , , , , , , , , , , , , , , , , ,					,
824	- 1			1			-			
827		11		1		3				-
830	3									

(25)

DATE: 12 / 16 / 20

WEIGHT VARIANCE CHECK

- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)
- 3. Notify Melt Supervisor if variation exceeds limits.

8			BED STONE:					- 4		
TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME	CHAI
833	4	1100	1400	p	235	2/2%	100	Ø	100	07618
936	5		1223					74 E		
839	6									
843	, 7				11		17 = 1			
843	8									
853°	9		1		1		-			/
901	60				(+50 V)				+1000	8_
904	1						11 - 17			
907	2									
911	3									
914	4								,	
918	_5									
925	6									
935	9									
938	8				le En					
941	9.									
944	70									
948	t									147
951	2							12-31		
954	3									
1000	4"								¥31	
1005	5									

SCALE TOLERANCE CHECK

	CHARGESCALE	ZERO	STEEL	RETURNS	PIGS
TIME CHECKED::_	WEIGHT IN:				
EMPL ID NO.:	WEIGHT OUT:			*	
EMITE ID NO	DUMP SCALE (ACTUAL)	1			

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

DATTY	CHARGEL	OCIC	INITINO	IED)
1771111	CHARGEL	0010	COLVILIA	1 1

	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	STONE	CHARG
1008	6	1100	1400	0	235	2/2	120	10	100	076180
1013	7									
1016	8					1				
1022	9									
1026	80		15.00		1 4	N 1 2			1 2	
1029	1						-			-
1032	2									
1037	3							140		
1040	4									_
1044	5									
1051	6			2.1						
1054	7									
1057	8								-	
1104	9						179		1.3	
1107	90								1.3	
1110	1				127					
1141	2								150	
1145	3								381	
1148	4					(200	*		102
1154	5							•		1
1158	6		100		-					
1207	7									
12/0	8				-	1	900	1	100	
1215	9						-	1		
1278	100									
1223								=		
1227	2					1	1	-/		-
1535	3								-	-
12:35	4						1		-	-
1240	5		1 1 = = 1	-			1	15	-	-
1244	6									

DATE: 12 / 16 / 20

WEIGHT VARIANCE CHECK

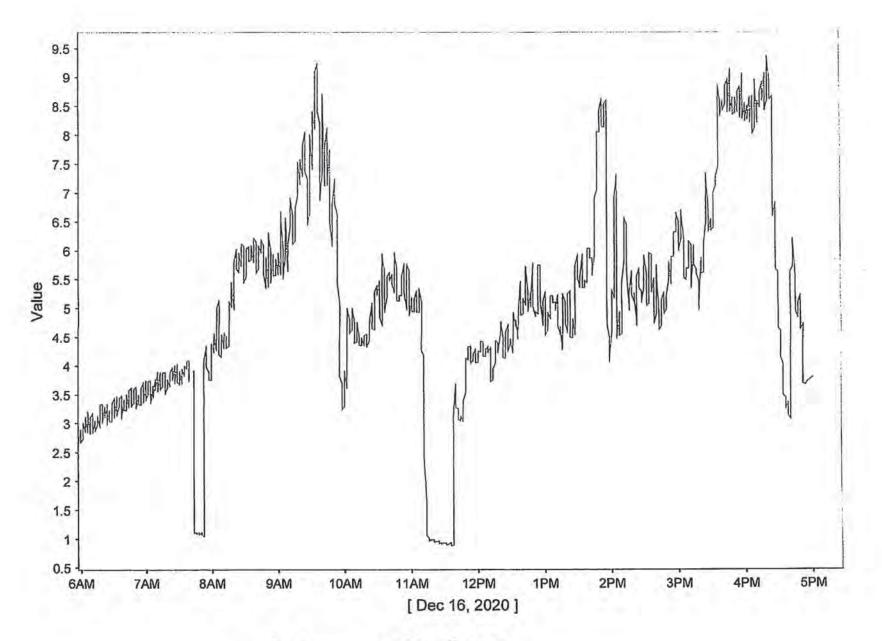
- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)
- 3. Notify Melt Supervisor if variation exceeds limits.

11		
10		

_	

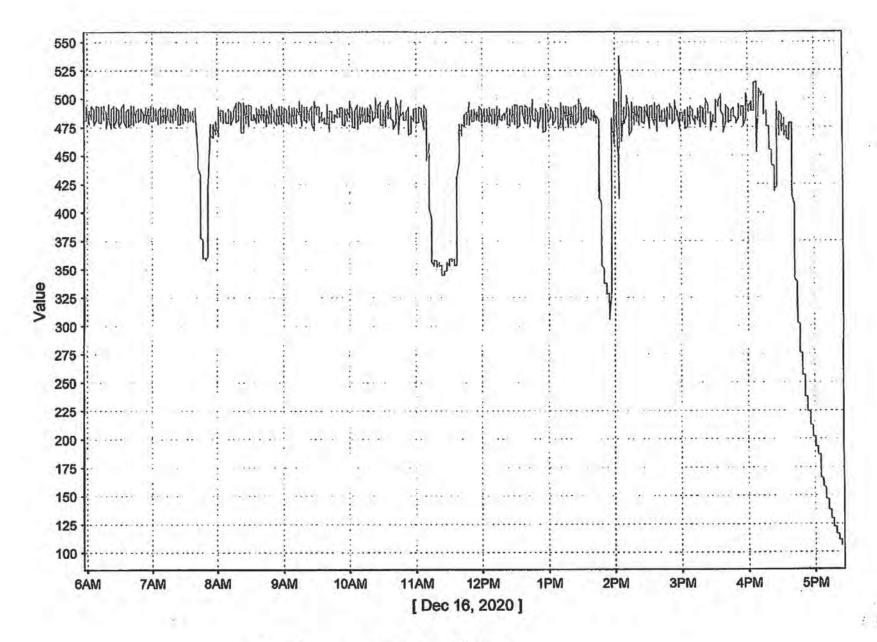
_					DED 3	TONE:					
	TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHAI
1	1247	107	1100	1400	0	235	2/2	120	0	100	
	1253	- 8									
	1250	9	4-1								
	102	110									
	108.										
	111	2			1			v=			
	114	3									
ì	117.	Y								N	
	127.	5									
	130	6	4-							10	
	130	7						7-7-1		16	
	142.	8					3				
	145.	. 5		1					AME :	Y	
	153	120								Table 1	
	156.	1	<u>.</u>								3 21
1	159	7-		1 2	11/10						
	202	3	- V								
	211	4					711			10	
	214	5	1 = = ;		4						
	.218.	6								1	
	225	7						E L	4		
	229						19			1000	

SCALE TOLERANCE CHECK

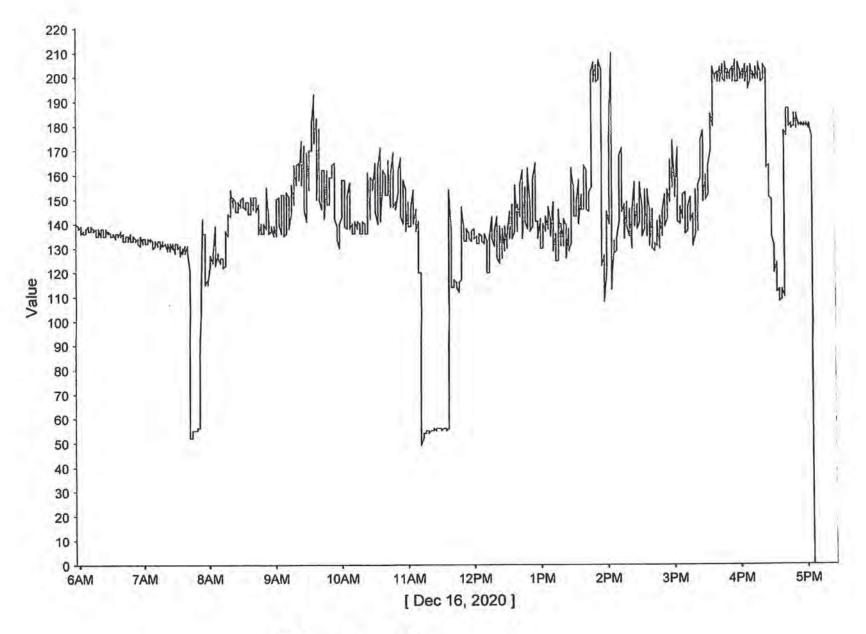

The state of the s	CHARGE SCALE;	ZERO	STEEL	RETURNS	PIGS	
TIME CHECKED::	WEIGHT IN:					0.77
EMPL ID NO.:	WEIGHT OUT:					
EIVII L ID IVO	LUMP SCALE (ACTUAL):	1				

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

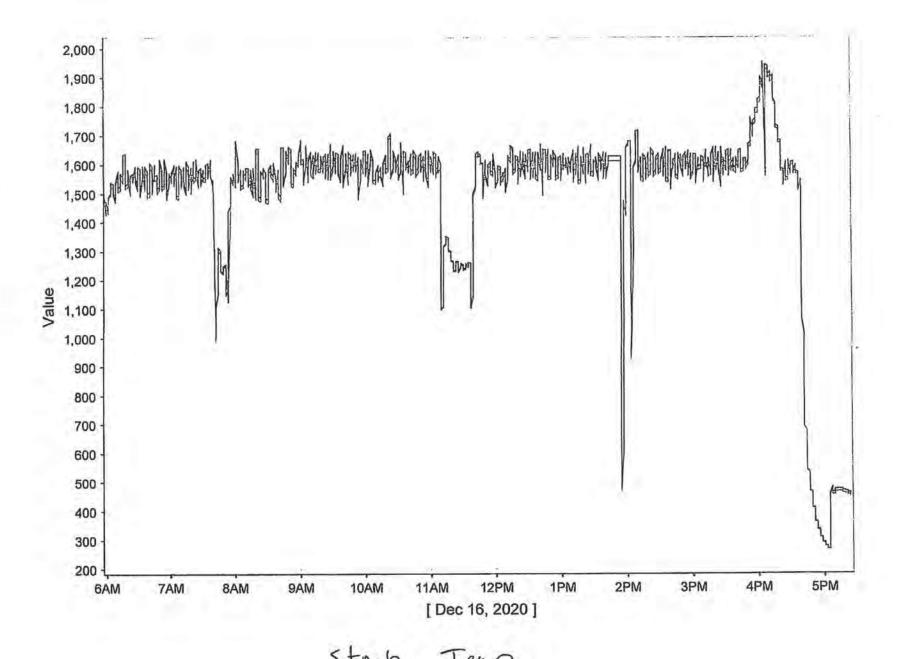
tle


TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHARG
833	129	1100	1400	Ø	235	2/2	120	Ø	100	078158
2.35	130	1		4.5	L NU	ALT 1	1			
238.	1.					4	14.9	grand,	100	1.7
241	2				1	1				
245	3.		13 Z	1	(100)					
250	4	1500	1000	0	235	2/2	120	10*	100	
255.	5				F	11				
259	6				1620C				19 == 3	
302	. 7.	1500	100	0	235	2/2	04	40*	Office	D
311	8	,			19.				9	1 .
3-14	9			哦。					4100	
316	140	3.0		W.						X
3 22	1:								HUO V	y
13.33	2									
S. T.	3								1.50	
1.44							1		1.	
	5		11 (-	, V	1	
	6							2 3 7 . 3	200	
150.	7				10				38 3	Į.ii.
j	8				5	111				G.
	9				111	11/7		and .	1 .	3 - 1
	150			7		1.0	1 6 1	1.1	."1	
				d	W.O.	1 an				
				10			2			
				1	1					
	25		2			/_/	1		1000	
1.				. ,		-			25.00	5
- 2	~~	1	122		,	-05			***	
1.					7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3			
164	32		: 15			2		+		7.

4.5

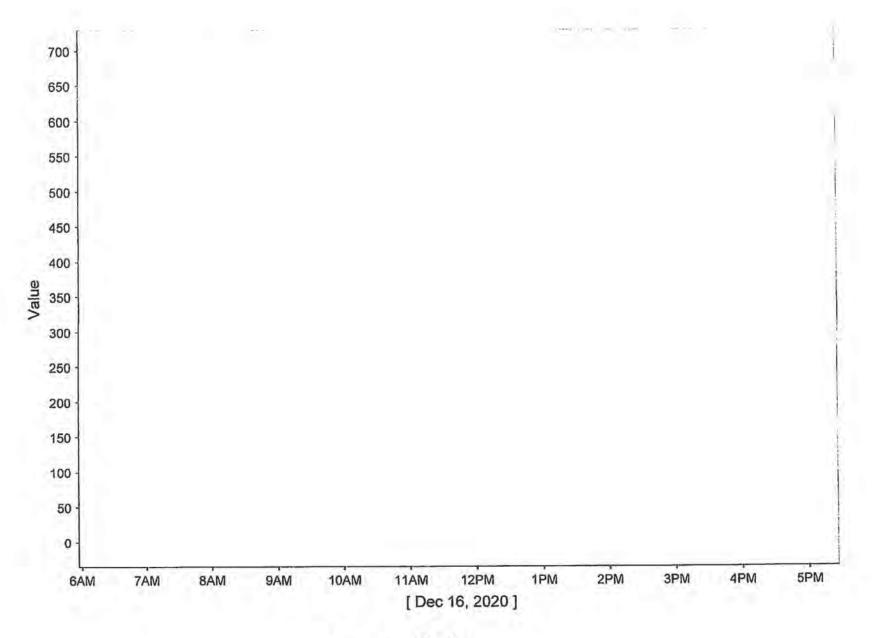

Baghouse Diff. Press

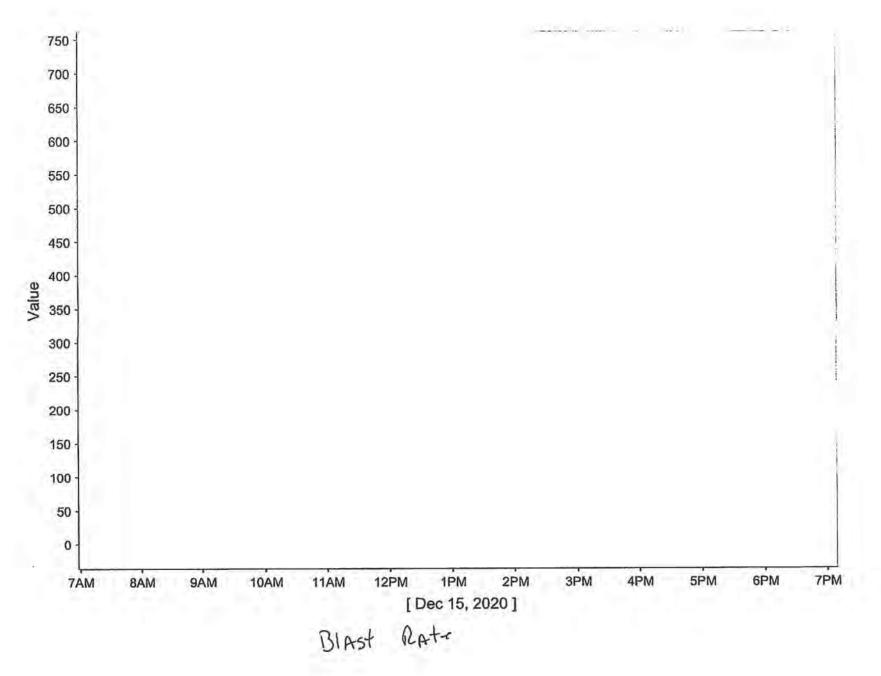
Pace Analytical FSD 20-04074 Grede, LLC - Iron Mountain Page E-18 of 51

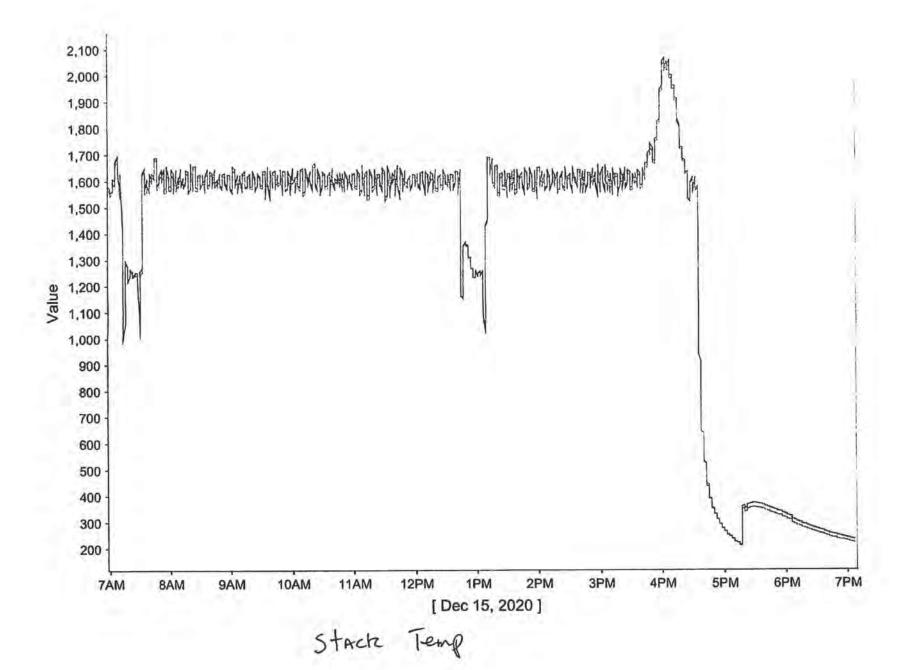


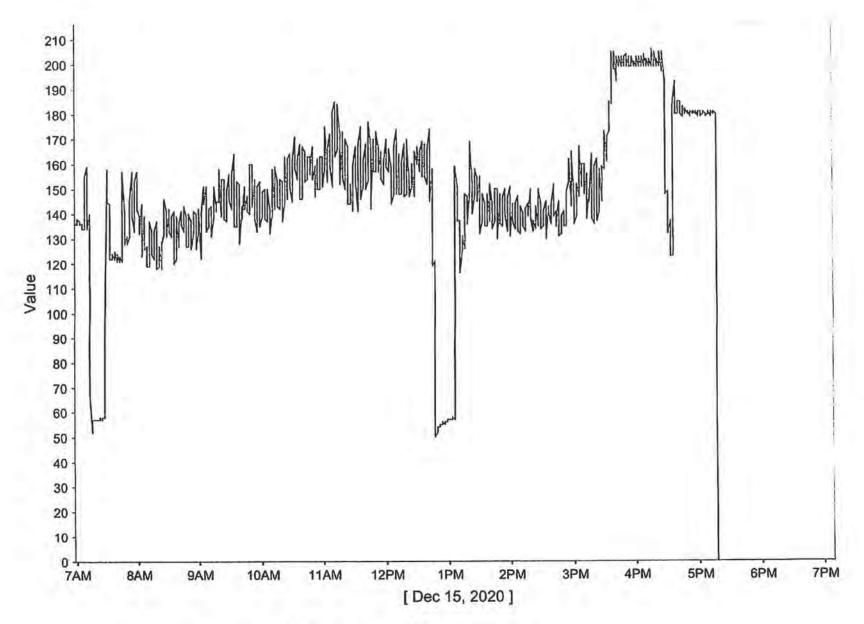
Baghouse Inlet Temp

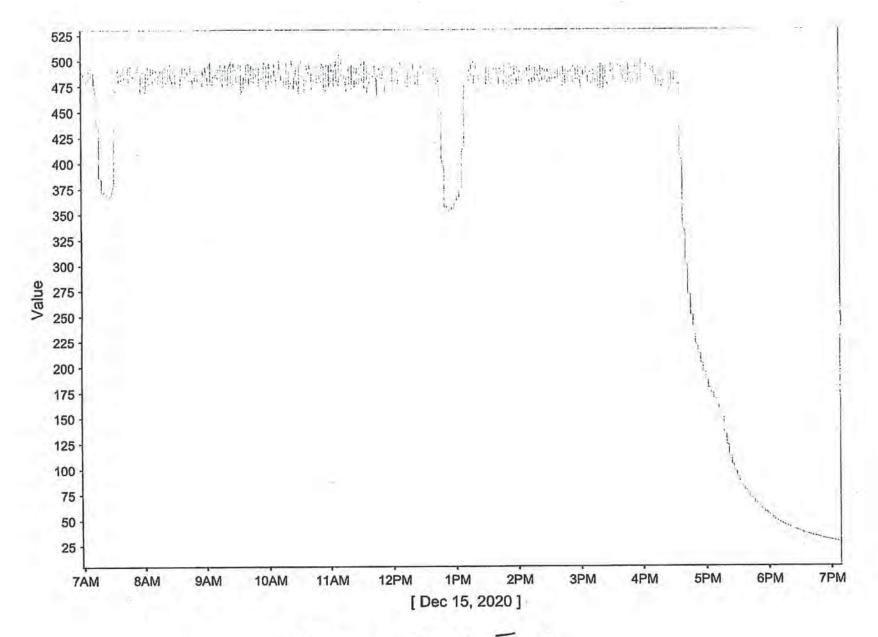
Pace Analytical FSD 20-04074 Grede, LLC - Iron Mountain Page E-19 of 51

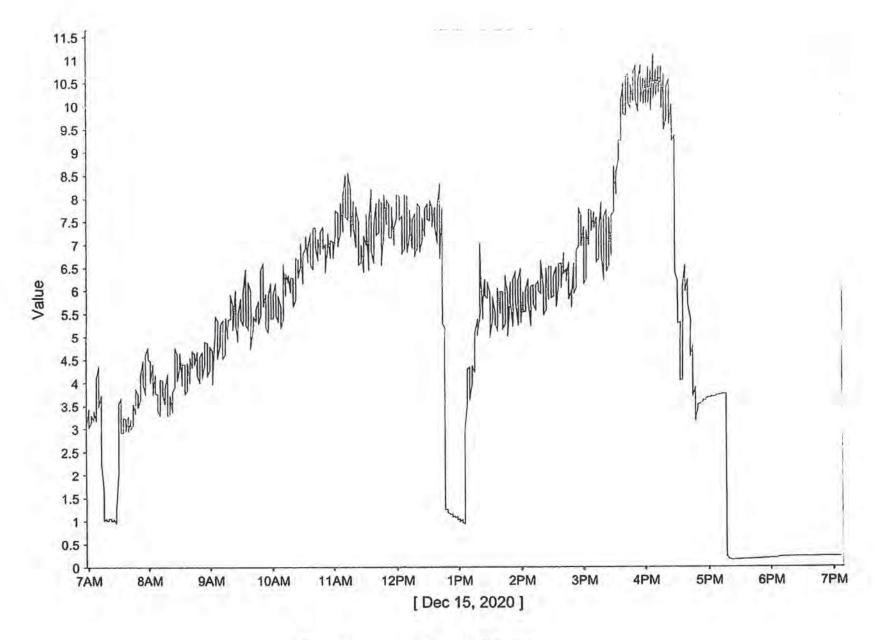

Blower


Pace Analytical FSD 20-04074


Grede, LLC - Iron Mountain Page E-21 of 51


Report Date 2/5/2021


Grede, LLC - Iron Mountain Page E-22 of 51



Blower Amps

Baghouse Inlet Temp

Bag house Diff. Press

Pace Analytical FSD 20-04074 Grede, LLC - Iron Mountain Page E-27 of 51

DATE: 12 / 15 / 20

WEIGHT VARIANCE CHECK

- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)
- 3. Notify Melt Supervisor if variation exceeds limits.

	BED STONE:	(2009
-		

TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME STONE	CHA
445	1	1500	1000	Ø	035	2/2/2	120	15	100	
448	2					1 4 -1		4	1	T.
451	3		1		The same					
494	4		1		13.		7 7		-	
457	5							ST.	100	1 1
501	6				ELECT			4.50		
504	7	1250*	1250	Ø	235	2/2/2	120	10+	100	
507	8						7 - 14		41	/
510	9					/			(+100)	
545	10				(4100y)		T.	1.7 (1000	l t-t
548	1				(1)					
554	2						1			
600	3									
603	4									
606	5					A == 3				_
609	6									
612	7			(11000					
617	8	1100*	1400*	Ø	235	2/2/2	120	10	100	
622	9									
628	20									
631	1					1				_
1.29	1 2			(+250	Y		179		

SCALE TOLERANCE CHECK

	DC:122 - CHILLIA					_
	CHARGE SCALE	ZERO	STEEL	RETURNS	PIGS	
TIME CHECKED::	WEIGHT IN:			-12	de la	
m m m 110	WEIGHT OUT:	/		172 = 1		
EMPL ID NO.:	LUMP SCALE (ACTUAL):		1			

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

DATTY	CHARGE	TOCI	CONT	NUED)
I I MILL	LIMBLE		COLATI	

TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME	CHARGE
642	- 3	1100	1400	ø	235	2/2/2	120	10	100	076.180
645	4		CE	5 75	122					
051	.5				1_1_1	140				
	6				7					
658	7			-		The Martin		1		
701	8	100	VI -		140			11000		
705	9	Y				THE .				
231	30	Koes	MOD	\$	235	2/2/2	120	QOE	100	
736	11		-							
741	2		ly late and			1			7	
745	3				_		1			
752	4				L				15.0	
757	5			1					Sec	
802	6	45.7					100			
807	7					- 1	<i>16.</i>	250		-
811	8	W				= 1		1 = 1	9.0	
8 16	9									
820	40			1 80	2 1 7.4				= 1	
824	1							7 1		
828	2					1	4-		11.39	
833	3			1.1.161	1	1				-
837	y'		5 . Wi	(4100	-	100		1	
841	5			III Z			1		1 2	
850	6		4					N T		77.75
854	7			1				120		3
859	8	96		1		AUT -			*	
904	9		4				1	* *		
909	50				4	150				
913	1		* A.S.					100 =		
918	2	1			111		de la			4
922	2									200

DATE: 12/15/20

WEIGHT VARIANCE CHECK

- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)
- 3. Notify Melt Supervisor if variation exceeds limits.

18				BED S	STONE:					
TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME	CHAR
926	4	1100	1400	Ø	235	2/2/2	120	d	100	076A
931	5	4								_
936	6	1 E . (1								
940	7									
944	8				100					
948	9	1							1	
952	60									
957	1									
1001	2									
1005	3									
1009	4				1 0		$_{1}$ \subseteq \subseteq			v
1013	5				40					
1017	6							1 1		
1022	7							19		
1026	8									-
1031	9									<u> </u>
1035	70									-
1040	I									-
1044	2									_
1048	3							1		-
1052	ц					1				-
1057	5						1.			

SCALE TOLERANCE CHECK

						-
	CHARGE SCALE	ZERO	STEEL	RETURNS	PIGS	
TIME CHECKED:	WEIGHT IN:					
T1 (D) T2 110	WEIGHT OUT:					
EMPL ID NO.:	LUMP SCALE (ACTUAL):		1			

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

DAILY	CHAR	CFIO	GICO	NTTNI	IFD)
DALLI	CILLIA		GILO	TATITAL	

TIME	CHARGE NUMBER	FRAG. STEEL	RETURN/ DUCT	PIG	COKE	ILMENITE/ FEMN	SI CARBIDE	75% LUMP FESI	LIME	CHARG
101	6	1100	1400	0	235	2/2/2	120	0	100	
1105	7		. = 1			Sei- 3				
1109	8			,	15.4					
1113	.9					30	L THE		1	-
ווֹזִי	80	24.1	95.70		17-9-				ve i	
1121	1		# I U							
1125	2							Le II	100	
1125	3				1			- 25-17	W -5	-
1134	y									
1138	5									
142	6						4.50		*:	94.
1146	7	4.0	1 T. 200 T		4.5			1.0	75	. 4
1150	8								7-14-5	
1154	9								22.0	1
113-8	90	-								
1202	1	1				N Tabl				
1205	2									
1211	3		(J. J. T. S.		
1215	4	4					-		-4	
1219	5									
1223	(a						12.2		P. E	
1227	7							1		1
123]	8								4.4	
1235	9					7		0.5		
1235	100		-							
1243	1			V	y == Y					
rug	2					, ,		E I	7.	
1)1	3									
115	4									
119	5					J. E				100
123	6	AL -					7			

WEIGHT VARIANCE CHECK

- 1. Record the weight on one complete charge.
- 2. Place clock number (Charger)
- 3. Notify Melt Supervisor if variation exceeds limits.

				BED	STONE:				1	
TIME	CHARGE NUMBER	FRAG. STEEL	RETURN / DUCT	PIG	COKE	ILMENITE / FEMN	SI CARBIDE	75% LUMP FESI	LIME	CHA
127	107	1100	1400	0	235	2/2/2	120	B	100	
777	8									
	9				1 1			1125		
,	110									
	1									
1	7							1		
_	3									
157	ч									
201	5-									
	6									
	7									
	8									
	5									
222	120						11			
226	1	15.21								
231	7	4-								
235	3									
239	ч									
243	3	I E								
248	4				ACC					
23-4	7	1500*	1004	ø	235	2/23	120	104	100	
258	8			D.					1 1	
			and the second second	William William		CE CHECK	<			7
			CHA	RGE SO	CALE:	ZERO	STEEL	RETURNS	PIGS	
TIME CH					WEIGHT IN:					
TATELLINE OF THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TO THE PERSON NAMED IN COLUMN TO THE PER	127 132 136 140 144 157 201 205 205 209 214 218 222 226 231 235 238 243 248 254	NUMBER	NUMBER STEEL	TIME NUMBER STEEL DUCT 27 07 100 1400 32 8	TIME CHARGE NUMBER STEEL PLOT PIG 27	TIME NUMBER STEEL DUCT FIG 45-8 27 07 100 400 0 235 32 8	TIME CHARGE STEEL POUT PIG THEN ILMENITE INTENDICT STEEL POUT PIG THEN ILMENITE INTENDICT PIG THEN ILMEN	TIME CHARGE FRAG. RETURN PIG CARE TEMENTE SI FEMN CARBIDE	TIME CHARGE FRAC. NUMBER STEEL PDUCT PIG CARB TIMENITE! SI 75% LUMP FESS 72 72 72 72 72 72 72	TIME CHARGE FRAG. RETURN PIG CARBIDE TOWN T

INITIALS OF SUPERVISOR NOTIFIED OF OUT OF TOLERANCE WEIGHTS:

LUMP SCALE (A CTUAL):

H4 Date Revised: 05/15/10 Revision 4A DAILY CHARGE LOG (CONTINUED) RETURN / DUCT ILMENITE / SI 75% LUMP LIME CHARG CHARGE FRAG. COKE PIG TIME STONE CARBIDE FESI CLOCK NUMBER STEEL 120 2 4 8 43

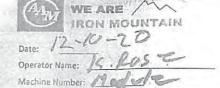
#6 Hunter Pouring Production Entr

Operator Name: STATE Name: Mechine Number: 1

Operator Clock 26433 Page No:

	M. Takes.	1 2	1	1	1	1	-	1	THE .
Time	Part Number	Process Card Temp Range	Ladle Temp	tadle Number	Molds Poured	Run	Pour Shart.	Total Good Molds Poured	Corrective Action
300	3005E1695	2590 - 2620	24		20	440	C	200	
	J449E1673	DESCRIPTION OF THE PERSON OF T	ans.	3	00			20	
do tes	ABC	-	2605	8	20	-	_	20	
	The state of the s		2597	80	20.		1	20	
		1	2012	5	30	_	1	20	
	in the second	- 0.15	2573	6	20	1	-	3	
		A STATE OF	275	7	20		-	200	
-			2607	8	20	-	<u> </u>	90	, a s , a s
			2003	4	20	1	1	9	
			2470	10	20		_	30	
			رماو	81	200	-	-	200	
			2,13	12	20	-	-	20	
		- # ₁₂	noy.	19	20	-	-	200	
		- 137	26/2	pg.	20	c=	_	200	1 R/C
			1617		20	_	-	20	
			9613	1	مد	-	-	20	
		- 1	COL	12	20	-	140	20	
			9001	18	20	-	-	20	
			9619	19	20	-	_	20	
ý.			2602	20	20	_	-	20	
4	4		8020	DV	مد	-	-	20	
	Obo	0.00		32	20		- 1	20	t 1 / 1
10:09	8F6783	2570 -200	1578	-1	17	35	1	16	

Pace Analytical FSD 20-04074


Grede, LLC - Iron Mountain Page E-34 of 51

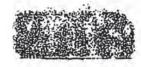
	Part Number	Process Card Temp Range	Ladle Temp	Ladle - Number	Molds Poured	Run Outs	Pour Short	Molds Poured	Stop And Notify Superviso Corrective Action
CON	865783	2570 -2600	2599	2	18	50	-	18	1
104	246463	2570 2600	2586	1	18	35	_	18	,
			2528	2	15	-	~	18	
	x62008280	2540 - 2570	2541	1.	18	34	cm	18	
	1 - 10 1 44		2540	-	12	-	C	18	
		23413	2586	3	12	52	-	8	
259	0207090	2570-2600	The Market	1	9	60.	-	9	
1221	100 m	- 70 9530	000	2	9	-	6	9	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		202	3.	9	0	Oo.	0	
,			0-00	10	0			0	5 10.5
	-K	20 20	4)OO	1	7			0	41
	8	4 2 6 2 1	200		1	_	_	-	
			3112	6	7		-	7	100
105	X62068957	0600 - 2120	3403	1	20	60.	1000	20	e e
		-	2200	2	200	-	200	30	
			2628	3	20	200		200	
334	246463	2570-2600	2522	7	18	54	-	18	
		- 400	2012	0 3	12		000	Æ	
			2576		18	2.1	4	18	
			73/0				n.s	1663	
		7 44		7.4			1		
					J. 7.		- 3°	-	
					f* 4	1		- ,i	\$ 4 \$ 1
	1					4			V-
14		A 7.0 - T.A.	14	. *	*				
					4		1,14		
		- C+							
	*					2>			
	g======	- 6							
		1		2.1	(31				
				F					
		F - 12-1							
- 1		-	-	- 2					

module Hunter

Pouring Production Entry Form

Shift: 131
Operator Clock: 03609 C

Time	Part Number	Process Card Temp Range	Ladle Temp	Ladle Number	-Molds Poured	Run Outs	Pour Short	Total Good Molds Poured	Corrective Action
	29599325	2585 - 4	2637	1	14	308	3	14	
		- 1	2625	2	14	1		13	
		*	2630	3	14			14	
		-	2633	Y	14			14	
		[-]	2630	5	14			14	
		12 · 2	2637	6	14		Ty	19	
			2620	2	14		1.0	14	-13-41 (8)
			2696	8	14	200		14	
		-	2626	6	14			14	
			2622	10	14			14	190
		- 1	2626	11	14	120		14	
		-	2142	12	14			14	
			2616	17	24			14	
		- 1	2145	1	14			14	
		- ` ` `	2645	1	14			19	
			3666	16	14			14	
		- 2	1/3		KH			14	
		- 7	120	· V	10/		110	14	A ANS


^{*} If More Than Two Runouts Stop And Notify Supervisor Corrective Action Required

^{**} All Out Of Range Temperature Readings Must Include Corrective Action Taken (Wait, Chill, Pig)

HOUR	GOAL	ACTUAL	COMMENTS	HOUR	GOAL	ACTUAL	COMMENTS
1	H65 DM90 DF110			7	H65 DM90 DF110		
2	H65 DM90 DF110			8	H65 DM90 DF110		
3	H65 DM90 DF110			9	H65 DM90 DF110		
4	H65 DM90 DF110			10	H65 DM90 DF110		
5	H65 DM90 DF110			11	H65 DM90 DF110		
6	H65 DM90 DF110			12	H65 DM90 DF110	-4.8	

Page No:

Time	Part Number	Process Card Temp Range	Ladle Temp	Ladle Number	Molds Poured	Run Outs	Pour Short	Total Good Molds Poured	If More Than Two Runnous Stop And Notify Superviso Corrective Action
	29549375	2585- 4	2656	18	14			14	
		-	2648	20	14	1	I.	13	
		-	2465	2/	14			1-4	
			2661	22	14	1		13	
	29505904	2510-2550	2541	23	19	283		19	
		-	2536	24	19			19	
		7.	2549	25	19			19	
			2526	26	19			19	
	1		2522	27	19			19	
		-	2546	28	29	1307.5		19	
			2549	29	19			19	
			2549	30	19			19	
			2542	31	19			19	
			2544	32	19			19	
			2530	3.3	19			19	
			2536	34	19			19	
	Y		2534	35	19			19	
			2541	36	19			19	
			2537	37	17			17	
		1 2		38					
				39				(4.2)	
		1-1-		39		*			
		-							
		1-							
		-							
		-						1	
		-				-	1		
		-		0.1					

Module

10	7.48	
1	14	WE
W	M_M	OMET
`\		IRO
<u> </u>	THE PERSON NAMED IN	

MIATHUOM M

Pouring Production Entry Form

Machine Humber: A cod u

Time	Part Number	Process Card Temp Rang	e Ladle Temp	Ladle Number	Molds Poured	Run	Pour Short	Total Good Molds*	Corrective Action
	29549325	2585- +	2586	1	14	1		13	
			2683	2	14	1		13	
	1	.8.	2601	3	14	Ţ,		14	
		(4.00 m)	2605	4	14	1		13	
			2604	5	14	2	- 1	12	
			2607	4	14	6		8	
			26/0	77	14	1	-	13	
			2417	8	14		(14	
			2605	5	14			14	
			26/2	10	14			14	
		7 Table 1	2600	11.	14		lalı	14	
			2605	2	14	4,		14	
			2615	13	14			14	
		7. 2. 1.	245	14.	14	201	H	14	
		-	2618	15	14		*	14	
	27505904	1520 -2550		16	19			19	
	1224,1		2548		19		1	19	
		1-1-	2550	18	19			19	

If More Than Two Rumouts Stop And Notify Supervisor Corrective Action Required
 All Out Of Kanga Temperature Readings Must Include Corrective Action Taken (Walt, Chill, Pig)

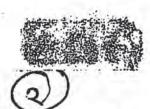
HOUR	GOAL ·	ACTUAL	COMMENTS	HOUR	GOAL	ACTUAL	COMMENTS
1	H65 DM90 DF110			7	H85 DM90 DF110	1.29	
2	H85 DM90 DF110			8.:	H65 DM90 DF110		
Pace A FSD 20	nalytical 190 DF110 0-04074		Report Date 2	2/5/2 0 21	HS6 DM90 DF110		Grede, LLC - Iron Mountain Page E-38 of 51

Machine Number: Modul

Page No: 2

Time	Part Number	Process Card Temp Range	Ladle Temp	tadle Number	Molds Poured	Run Outs	Pour Short	Total Good Molds Poured	If More Then Two Runnout Stop And Notify Supervisor Corrective Action
	29505904	2520-2550	2549	19	19			19	
			2644	20	19			19	
			2548	21	19	1		19	
			2537	22	19			19	
		-	2533	23	19	1		19	
			2526	24	19	-	5.4	19	- 1
			2540	25	19			19	
			2547	26	19		7	19	
			2541	27	19			19	
			2528	28	19		-1	19	
			2533	29	19			19	
			2528	30	12	W		12	
	28644325	2585- 4	2640	31	M	P.,	. 1	14	
		- 1	2147	32	14		(4) (4)	14	
			2435	33	14		2.6 Ja	14	
	i .		2625	34	19			14	4
		NT 1953	1 2 3	35		7			•
			221					A. 12	
ā.		Par L							
						100			
		-				(T)		¥	
		J 755-5							
		1 11 (-1)	4	1.5			5		
Pace A	malytical 0-04074	- Re	port Date 2/	5/2021		1		Grede, LL	C - Iron Mountain Page E-39 of 51

DISA FORMA


Martine Number: PormA

FSD 20-04074

Pouring Production Entry Form

Operator God: 76063

Total Good Ladle Run Molds Poured Corrective Action Kozyczs 20 1 7. 13. 238628 1.5 244 K034455 20 210 20 2570 20 20 20 - Iron Mountain Report Date 2/5/2021

	Part Number	Process Card Temp Range	Ladle Temp	Ladle Number	Molds Poured	Run Cuts	Pour Short	Molds Poured	Stop And Notify Supervisor Corrective Action
938	3535406	2620 - 2650	2633	1	20			20	
152	1.		262	12	20	11		20	
		- R. T.	2624	3	20	II		20	
			2626	4	20			20	
			2636	5	20			20	1
	11	-1	2638	. 6	20			20	(3.3)
h n	Y	-1	2137	12	20			20	\sim
	1,1,	-1 .	2630	. 8	20			200	
		100	2136	.9	20			20	
	1 - 2 - 2 - 1 - 1	1 -3 - 3	2626	W	24		1	20	80
	, Y	-1	2644	И	20		J.	20	
	A A	-1	2642	12	20		3	20	41.44.
	15,	j	264)	13	24		2.5 13- 1	2	5 .
1.0	**		2638	14	20		4	20	***
			2620	15	20			20	
-	- Ko Dales	200	1	10		-	~		
mak	K034655	2570 - 2/60	2483	Ÿ	1	1	. (0)	幽	Aide -
-	130		2583	2	20	D.	1	20	6
	W 100 100 100	2, X	2593	13	20	,	1	20	(40)
	17.15	- i	2586	- 4	20			20	
	=	-1.1	2595	9	20		1	20	** 1
nsu	295 12746	2600 - 2670		1	17	1		16	
1470			209.	2	17			1-	
			2633	2	ック			17	6,1
			2539	4	17			17	
- 1	, A	-i \.`	2625		n			17	
	1 2 10 =		2473	6				17	7
			1					I See	17.

Pouring Production Entry Form

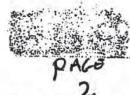
Operator Name: PormA

Shift: 1
Operator Clock: 76053
Page No: 3

Time	Part Number	Process Card Temp Range	Ladie Temp	Ladie Number	Molds Poured	Run	Pour	Total Goo Molds Poured	Corrective Action
CA:	29512740	200 -2620	2620	is	17			17	
		4	2626	. 13	12			17	
			2020	14	17			v	(20)
			2632	15	h			17	820
			2632	. 66	17			17	L
			2636	n	17			17	
			2638	18	17			1	
			2642	19	17			17	
	40	-	2642	20	9			4	NIN-THE STATE OF
	R034658	2870-2600	2577	1	20		1	20	
		-	2581	1	20		40000	20	
	46	-	2581	3	20	10.00		20	
		1 1 - 1	2596	4	20			20	
		-	2574	3	20		1.	20	
				4		hors			
		-	===)	2			2		
				8		199		19 34	
								Vod.	
					4		ray il ray i la process		
							1./2.	1/ = 1 00-3-4-5	
								100	
-+					100			A PAGE	785.2
e Analy 20-040	tical		ort Date 2/5/2			1		Grede, LL	C - Iron Mountain Page E-42 of 51

(6)	Costing Integrity
100	

Pouring Production Entry Form


Operator Name: Poli/Out /

Time	Part Number	Process Card Temp Range	Ladle Temp	Ladle Number	Molds Poured	Run	Pour	Total Good Molds :Poured	Corrective Action
537	Part Number	2500-2000 3000 (200)	2890	L	20	0.0		20	ATT.
	M-EL-	PES	2582	. 2	21	-	44	21	
3.1			2476	3	20		77.	20	
			2571	. 4	20		16	00	
		•	2971	. 5	20	1	*	19	The same
			2575		20	E.		20	0
(=)	()	t based	25.79	. 2	14			14	1288
		B 2 4 7	2574	8	20			20	60
	1-1-	11.	2893	. 9	20			20	<u> </u>
	essentia e Mig	+ ,	2573	10	20			20	199 .
	.5. 1	i , ,	2580	, n	20	1.500 0.200 0.200		20	
	. 1	41 -91	2593	:2	20	Asian .		20	
- 1	1 "1	7.1	2592	13	20	Hickory		20	
	- V	- 1	2587	14	20			20	/* N
	V 13		2591	115	20		- AND LINE	40	ners \
	Ŷ ⁱ	- 1	2598	16	20			20	
	1 1		200	17	20			20	7
***	V 1	TOTAL	2594	: 18	20			20	
355	29812740	2600 2000	2014		17			17	
-	.1		2607	2	n			17	1
·*		1 1 1	2620	3	11			17	
. 7			2619	4	18	4	1	17	
e Analy	tical-		621	- 5	1			Grede LLC	- Iron Mountain

Pace Analytical FSD 20-04074

Report Date 2/5/2021

Page E-43 of 51

	Part Number	Process Card Temp Range	Ladle Temp	Ladle Number	Molds Poured	Run Outs	Pour Short	Molds Poured	Stop And Notify Supervisi Corrective Action
Cont.	29512740	. 2600 - 2670	2600)	6	n			n	
	, and a		2613	7	17			17	
		V	2624	9	n	E		12	
		A h -4	205	9	17			17	
		-	2631	10	n			12	
	. C.		2623	n	· N			17	; <i>(</i>)
	•		2622	n	n			n	
	. *		2609	13	17			17	
			2615	M	n			1	
		-9 ""	20.49	13	17			17	
	3'		2669:	16	17			17	
	· · · \	3,1	2601		17	CI.		17	
1.,	F-7 - 7		2606	118	12			12	
\		entro.	2510	19	17			רו	
			2609	oc	17		Ľ.	17	395
			2007	21	17	10.4	ŧχ	n	139
J.L			2607	22	18	1		17	ř.
		T 4 3 1 1	2604	23	17	121		17	
		2.5	2611	29	12			17	7
1	1 1		2004	25	17		* +	17	
	1 74		2668	26	и			11	
		TT- 12	204	:27	n	+ =		17	
	. 4.	25%	2601	. 28			4	17	
Œ			2604	29	17			17	
V.			2613	30	n			17	493
			2607	.31	13			13	0.
147			2604	32	17			120	à
ce Anal			2606		n			า	C - Iron Mountain Page E-44 of 51

15	
AF	
图 图 图	Casting Integrity
1	

Pouring Production Entry Form

Time	Part Number	Process Cand Temp Range	Ladle Temp	Ladle Number	Molds Poured	Run	Pour Short	Total Good Molds Poured	Corrective Action
con	29512748	2600 - 2671	26/6	38	8			8	
			1.4	39			I E	12 U	
				110					
			1			1-0	1		
		-			100		A). 1		
	i ir			E 16			N		*
	Ċ.	-	•						
1-1		-			-				
			*				1	1 1	A
		-							
		L-7-1		17.8	10	1	Gì		
						7	1		
-01	States 1 (g)	-							
		• 2	1.0		3 = 1			4	
		7-1			9		Ŵ.		
		DEF							
			7.3						
			-41	7.4	56				
				- =4		ŒΥ		. 7	
				1			74		
1				15	0				
e Analy 20-040	tical		rt Date 2/5/2				d	Grede, LLC	- Iron Mountain Page E-45 of 51

1	
G	Casting Integrity

Pouring Production Entry Form

Shift: 151 Operator Gock: 07689.7 Page No: 1

Time	Part Number	Process Card Temp Range	Ladio Temp	Ladle Number	Molds Poured	Run	Pour Short	Total Good Molds Poured	Corrective Action
5:45	969987	SC70 75030	2599	1	12			12	1
		-	2006	2	12		147	12	
		- L	2594	3	12	•		12	
	1.		2587	4	12			12	
			2584	5	12			12	
	ASS .		2591	0	12			12	
		F 35	2609	ר	12		1 10	12	
· · · · · ·			2588	8	12			12	
-			2594	9	12.			12	
		-	2594	10	12			12	
			2600	.71	12			12	
	1		2011	12	12			15	
-1			2684	13	13			12	
			9005	14	10-		II	12	
t **	lige Live		2610	15	2	1 1		2	
7:55	3687801	2570-0660		i	11	D.		11	
	Heavy Job		2599	8	11			11:	
	DOORS AT 18	sec.	2592	3	. 11			11	

H More Than Two Runours Stop And Notify Supervisor Corrective Action Regulard
 All Out Of Range Temperature Readings Must Include Corrective Action Taken (Walt, Chill, Pig)

HOUR	GOAL	ACTUAL	COMMENTS	KOUR	GOAL	ACTUAL	COMMENTS
1	H85 DM90 DF110	0.0		7.	H85 DM90 DF110		
12	HGS DM90 DF110	V. 3		8	H85 DM90 DF110		
-	llytical 4074 DMS0 DF110		Report Dat	e 2/5/2029	H85 DM90 DF110	Grede	, LLC - Iron Mountain

Machine Number: 560

14.7

Page No: 2

time	Part Number .	Process Card Temp Range	Ladle Temp	Ladle Number	Malds Poured	Run Outs	Pour	Total Good Molds Poured	If More Than Two Runnouts Stop And Notify Supervisor Corrective Action
No	3687801	2570 0000	2598	4	11	[4]		11	
)) (:		2600	5	11	(E)	1 1	11	
1	pours slow 1850	c	9890	6	14		4	11	
	1		2595	7	11	Til	l i	11	1
			2000	8	5		,	5	& piss
:05	2835602	50505060	2631	1	14			14	110
			2621	2	14			14	
			17/337	3	14	E		14	
			Tak	4	14		1	14-	
	1	-	2650	5	14	E	100	14	21
2			2648	G	14		1.0	14	1.00
		- "a ₁	2046	7	14			14	
1 37	*	L. R.	2633	9	14		1	14	
			2630	9	14			14	1 + 10
	8 2 x x 4		2643	10	14			14	Total series
			2023	11	14	E	6	14	
		T 10 T	2640	12.	14			14	7.7
	MA THE		0033	131	14		1	14	
	*		0639	14	14			14	
7			2004	15	14			14	La Vie
		1	2629	16	14		5.3	14	
	7	1/2 100	2641	ĺή	.14		1999	14	
		vill-of	24,25	18	14	1	A.	14	1
			2621	19	14		1	_	
ace A	na ytical -04074		port Date 2	30	14			Grede, 4L	C Iron Mountain Page E-47 of 51

10	
U	Casting Integrity

Pouring Production Entry Form

Shift: 157 Operator Clock: 076007 Page No: 3

Time	Part Number	Process Card Temp Range	Ladle Temp	tadle Number	Molds Poured	Run ·	Pour	Total Good Molds Poured	Corrective Action
Mas	2835'600	2000-2000	2600	24	14		12	14	
	,	-	333	25	14		UT.	14	
	*	. 300	2649	200	14			14	
		- 1 A	0649	27	14			14	
			2000	38	14	-		14	
L	- 6% 5		2031	29	14		1	13	
	, A		9630	30	14	10.4	1	14	
71			V637	31	14			14	4
			3639	32	14			14	
			X644	155	14	t		13	
		- (JAK.	34	14			14	
			2049	35	14	4		14	1
		12	2640	1000	14			14	
			2640	1.73	14			14	
			2000	38	14		R. T	14	
J.			2631	100	4		J	4	
3:RC	GE1350	X630 0000	2630	1	19			12	
	to A.J.		26302	495	12		,	12	

^{*} If More Train 1 we supports Stop And Notify Supervisor Corrective Action Required
** All Out Of Renautemperature Readings Must Include Corrective Action Taken (Walt, Chill, Pig)

HOUR	GOAL	ACTUAL .	· COMMENTS	HOUR	GOAL	ACTUAL	COMMENTS
1	H85 DM90 DF110			7	H85 DM90 DF110		*
2	H85 DM80 DF110	188	. 4	8	H65 DM90 DF110		
ace An	alytical DMB0 DF110	/	Report Date 2/	5/2029	H85 DM90 DF110	Gre	ede, LLC - Iron Mountain Page E-48 of 51

Machine Number:

Page No: _ +

Time	Part Number	Process Card Temp Range	Ladle Temp	Ladie Number	Molds Poured	Run Outs	Pour Short	Total Good Molds Poured	If More Than Two Runnouts Stop And Notify Supervisor Corrective Action
	YSE/350	OFFICE OF SERVICES	2034	3	12			12	
1:00	2835602	30-20-2000 30-20-2000	2630	1	14	(E)		14	- 4
			2634	ব	14	-		14	
		- 1.	2630	3	14			14	
		0 1 C+		01		5			
1						71		1	
m								1	
						NE	- 1		
		TAST		. 1			1	1	
			1	12			*	1	
14							1		
		BES.						MG.	
7		II HERL					0		
		(VJ=-					II. I		
							101		
		-							
		-							
			1						2.534.
	A							Y Y	
		1.0						1	
) L					1000
				l I					
					165		1		
Pace A	nalytical -04074	THE STATE OF	eport Date 2					Grede, LL	C - Iron Mountain Page E-49 of 51

-	1.
	34
(5)	Costing Integrity
COLLO	12-6-20

Pouring Production Entry Form

Date: 17-6-20
Operator Name: Errak Sunkapps
Machine Number 2

Shift: 16 1 Operator Clock: 076087

Time	Part Number	Process Card Temp Range	Ladle Temp	Ladle Number	Molds Poured	Run Cuts	Pour Short	Total Good Molds Poured	Corrective Action
5:50	29505904	3530 -3550	2527	1	18	-	~	18	
-1			2524	'2	18	3	-	18	
			2523	3.	18	-	-	18	
		-	2537	4	18.	-	_	18	
			2525	. 2	19		1	18	
		a la sala	2537	6	18	-	-	18	
			2502	7	18/		-	18	
			2549	8	19.	-	-	19	
			2542	9	19.	-	-	19	
1			0520	10	19:	-	2	19	ř
			2537	11	19.	-	-	19	
	\$ · · ·		2539	12	19:	-	_	19	
4.1			2543	13	19:	-	1	19	
			35.18	14	19.	_	_	A	
			3550	15	19.	•	-	19	
		- **	2539	16	19:	1	•	19	
			2548	17	19		-	19	
Ťį,		MILH E	2535	18	19:	-	-01	19	
		11-4	2530	19	19.	-	-	19	
			2531	20	191	-	-	19	
			2524	21	12.	·	-	19	
			2572	32	19:	_	,	19	
Pace An	alytical		2550	>3	19:	_	1	lgrede, L	.C - Iron Mountain

	Part Number	Process Card Temp Range	Ladle Temp	Ledia Number	Molds Poured	Run Outs	Pour Short	Molds Poured	Stop And Notify Supervisor Corrective Action
	29505904	9230 - 3220	2524	24	19.	-	_	19	
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	2533	35	19.	_	-	19	
			2525	26	19:	-	~	19	-
		n/ 5-4	2548	57	19:	-	-	19	
3.7			2540	28	19.	-		19	
d	1	8	25.30	24	19	-	-	19	
	•		2530	30	19	-	-	19.	
	·Au		2546	31	18	-	-	18	
	1		2523	34	19:	-	-	19	
			2543	33	19	_	_	19	
			2543.	34	19	-	-	19	
E			2548	35	19	-	-	19	
		Here a	2542	36	19	-	-	19	
			27.42	3)	19	-	-	19	
			2550		19:	-	-	19	
			2548	1.	19.	-	-	19	
	day. '		2530		19	1	-	19	
		4.8	127						
		-							
	7			1			1		
					(-			1/2	
N.				1	1			4/-	
-		-				1			_C - Iron Mountain

Appendix F

Test Protocol and Pretest Correspondence

Test Plan Approval Letter

DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

SRN: B1577, Dickinson County

CADILLAC DISTRICT OFFICE

December 4, 2020

VIA E-MAIL ONLY

Mr. Tom White Grede, LLC – Iron Mountain 801 South Carpenter Avenue Kingsford, Michigan 49802

Dear Mr. White:

SUBJECT: Approval of Protocol for Emissions Testing.

The Michigan Department of Environment, Great Lakes, and Energy (EGLE), Air Quality Division (AQD) has completed our review of the protocol for the emissions testing at Grede, LLC – Iron Mountain located in Kingsford, Dickinson County. This protocol was received by the DEQ on November 17, 2020. Testing is scheduled to begin December 8, 2020. Testing is required by Renewable Operating Permit MI-ROP-B1577-2020 and Title 40 of the Code of Federal Regulations (CFR), Part 63, Subpart EEEEE. Emissions will be determined as listed below:

Source	Method*	Parameter	Limit	Unit	
	9	VE	0	%OP	
	4 0 0/0 4 4 4 0	CO.	21.0	lb/hr	
	1,2,3/3A,4,10	CO	250.0	mg/scm	
	1 2 2/2	SO2	13.8	lb/hr	
	1,2,3/3A,4,6C	302	170	mg/scm	
		PM10	1.30	lb/hr	
		PM	0.011	lb/1000lb	
EU-P009 CUPOLA	1,2,3/3A,4,5D,202		0.006	gr/dscf	
		PM	or		
			0.10	lb/tn	
			or		
			0.0005	gr/dscf	
	1,2,3/3A,4,29	TMHAP	or		
			0.008	lb/tn	
	3/3A,4,25A	VOHAP	20	ppmvd @10%O2	
EU-P016 MAIN		PM	0.010	gr/dscf	
PLANT POURING	1,2,3/3A,4,5,29		c	or	
I LANT I OUNING		TMHAP	0.0008	gr/dscf	
EU-P036 MODULE		PM	0.010	gr/dscf	
POURING	1,2,3/3A,4,5,29		C	or	
1 OUNING		TMHAP	0.0008	gr/dscf	

Mr. Tom White Grede, LLC – Iron Mountain Page 2 of 4 December 4, 2020

Appendix

*EPA Method

VE = visual emissions

CO = carbon monoxide

SO2 = sulfur dioxide

PM10 = particulate matter ten microns or less in diameter

PM = particulate matter

TMHAP = total metal hazardous air pollutants as defined in Subpart EEEEE

VOHAP = volatile organic hazardous air pollutants as defined in Subpart EEEEE

%OP = percent opacity

lb/hr = pounds per hour

mg/scm = milligrams per standard cubic meter, corrected to 70F and 29.92"Hg

lb/1000lb = pounds per thousand pounds of exhaust gases

gr/dscf = grains per dry standard cubic foot

lb/tn = pounds per ton of metal charged

ppmvd @10%O2 = part per million as hexane by volume, dry basis

@10%O2 = corrected to ten percent oxygen, dry basis

The proposed methods are acceptable given the following stipulations:

TESTING

- o EMC GD-008 is approved in stacks having cyclonic flow in excess of 20 degrees.
- EU-P009 CUPOLA sampling
 - Each cupola baghouse exit run will require a corresponding inlet flow run.
 - Each cupola baghouse exit run sampling will begin within one hour of the corresponding inlet flow run's sampling end.
 - Temperature will be used as the diluent.
- Visual emissions from each building or structure housing any iron and steel foundry emissions source will be tested to ensure discharges of fugitive emissions to the atmosphere from foundry operations will not exhibit opacity greater than 20 percent (6-minute average), except for one 6-minute average per hour that does not exceed 27 percent opacity.
- o Process conditions that need to be recorded for each test run:
 - EU-P009 CUPOLA
 - Number and weight of charges added to the cupola in tons per hour
 - Afterburner combustion zone temperature on a continuous basis in degrees Fahrenheit
 - Baghouse overall static pressure drop on a continuous basis in inches of water column
 - Baghouse inlet temperature on a continuous basis in degrees Fahrenheit
 - Amperage of the emission control system fan on a continuous basis in amperes
 - EU-P016 MAIN PLANT POURING
 - Main plant pour rate in tons per hour
 - EU-P036 MODULE POURING
 - Module plant pour rate in tons per hour

Mr. Tom White Grede, LLC – Iron Mountain Page 3 of 4 December 4, 2020

- Testing will be performed in accordance with EGLE, AQD, Air Pollution Control Rules, Part 10, Intermittent Testing and Sampling.
- All requirements and specifications of the above methods apply; any modifications of the test methods onsite must be approved by the AQD.
- o The stacks that need to be tested for each source:
 - EU-P009 CUPOLA
 - SV-S009-324644
 - EU-P036 MODULE POURING
 - SV-S036-334116
 - SV-S036-334176
 - EU-P016 MAIN PLANT POURING
 - SV-S016-324632
 - SV-S016-324662
 - SV-S016-324678
 - SV-S016-324682
 - SV-S016-324484
 - SV-S016-324848

REPORT

- All process data listed above to include:
 - Each individual reading.
 - Average/total for each run.
- o Results from audit samples.
- All pre-test and post-test meter box calibration, pitot tube calibration, nozzle calibration and field data sheets.
- All calibration and cyclonic flow checks.
- All data reported in tabular format.
- o Certificate of Analysis sheets for all calibration gases used.
- o All aborted, failed or repeated runs must be included in the report.

Please submit a complete copy of the final test report to both:

Mr. Michael Conklin
Environmental Engineer
Upper Peninsula District Office
EGLE-Air Quality Division
1504 West Washington Street
Marquette, Michigan 49855

Ms. Karen Kajiya-Mills Supervisor Technical Programs Unit EGLE-Air Quality Division Constitution Hall, 2nd Floor South 525 West Allegan Street Lansing, Michigan 48909 Mr. Tom White Grede, LLC – Iron Mountain Page 4 of 4 December 4, 2020

Please inform Michael Conklin, of the Marquette District Office, at 906-202-0013 or conklinm1@michigan.gov and me of any change in the test date. If you have any questions regarding this letter, please contact me at the telephone number or email address listed below.

Sincerely,

Life

Jeremy Howe

Environmental Quality Analyst

Air Quality Division

231-878-6687 / howej1@michigan.gov

cc/via email: Mr. Tyler Hill, Grede, LLC – Iron Mountain

Mr. Thomas Halverson, Pace Analytical

Mr. Terry Borgerding, Pace Analytical

Mr. Paul Blindauer, GEI Consultants

Ms. Karen Kajiya-Mills, EGLE

Mr. Ed Lancaster, EGLE

Mr. Michael Conklin, EGLE

Test Protocol Document

Pace Analytical Services, LLC 1700 Elm Street SE Minneapolis, MN 55414 Phone: 612.607.1700 www.pacelabs.com

Particulate, Metals, VOC, SO₂, CO, Opacity Emissions Testing Protocol

Plant Name: Grede, LLC - Iron Mountain Protocol Date: November 13, 2020 Revision Date: No revisions to date Testing Dates: Dec. 8-10 & 15-17, 2020

Client Test Coordinator:

Tyler Hill Grede, LLC - Iron Mountain 801 South Carpenter Avenue Kingsford, MI 49802

Telephone No.: (906) 779-0201 E-mail Address: tyler.hill@grede.com

Testing Firm Coordinator:

Terry Borgerding
Pace Analytical Services, LLC
1700 Elm Street, Suite 200
Minneapolis, MN 55414

Telephone No.: (612) 607-6374 Facsimile No.: (612) 607-6388

E-mail Address: terry.borgerding@pacelabs.com

Subject Facility:

Grede, LLC - Iron Mountain 801 South Carpenter Avenue Kingsford, MI 49802

Regulatory Permit No.: MI-ROP-B1577-2020 SRN: B1577

Subject Emission Sources:

Cupola EU-P009
Module Pouring & Cooling EU-P036
Main Plant Pouring & Cooling EU-P016

Test Locations:

Cupola Baghouse Exhaust 324644
Module Pouring & Cooling 2 Stacks
Main Plant Pouring & Cooling 6 Stacks

Grede, LLC - Iron Mountain
Pace Analytical

FSD 20-04074

Test Protocol

Report Date 2/5/2021

Page 1 of 53

Grede, LLC - Iron Mountain Page F-8 of 60

Table of Contents

Cover Page1	1
Table of Contents	2
Plant Contact Information	3
Testing Firm Information	3
Regulatory Contact Information	3
Pace Project Organization	4
Facility and Process Description 5	5
Testing Schedule	3
Individual Source Requirements	
EU-P009 - Cupola 7	7
EU-P016 & EU-P036 - Main Plant Pouring and Cooling &	
Module Pouring and Cooling)
Test Report	2
Safety Consideration	3
Attachments14	4
Attachment 1 - Test Location Schematics	5
Attachment 2 - Abbreviations, Symbols, and Nomenclature	5
Attachment 3 - Calculation Equations29	9
Attachment 4 - Test Method Summaries	9
Attachment 5 - Quality Statement52	2

Plant/Source Information

Subject Facility: Grede, LLC - Iron Mountain

801 South Carpenter Avenue

Kingsford, MI 49802

Plant Contact: Tom White

Company Affiliation: Grede, LLC - Iron Mountain
Office Address: 801 South Carpenter Avenue

Kingsford, MI 49802

Telephone Number: (906) 779-0257

Facsimile Number: -

E-mail Address: tom.white@grede.com

Reason for Test: ROP Permit Requirement

40 CFR Part 63 Subpart EEEEE (Steel Foundry MACT)

Testing Firm Information

Project Contact: Terry Borgerding

Testing Firm: Pace Analytical Services, LLC
Office Location: 1700 Elm Street, Suite 200

Minneapolis, MN 55414

Telephone Number: (612) 607-6374 Facsimile Number: (612) 607-6388

E-mail Address terry.borgerding@pacelabs.com

Subcontractors: EMSL Analytical

Element One

Regulatory Contact Information

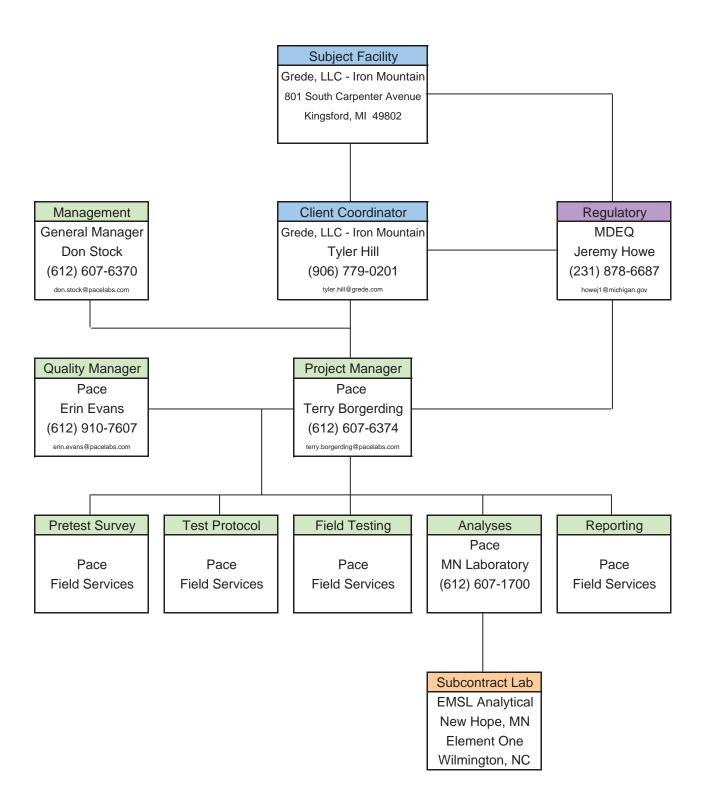
Regulatory Agency: Michigan Department of Environmental Quality

Testing Contact: Jeremy Howe

Office Location: Cadillac District Office

120 West Chapin Street

Cadillac, MI 49601


Telephone Number: (231) 878-6687 Facsimile Number: (231) 775-4050

E-mail Address howej1@michigan.gov

Grede, LLC - Iron Mountain Test Protocol Page 3 of 53

Project Organization

Page F-11 of 60

Note: Chart based on anticipated participants at the time of protocol development and is subject to change.

Report Date 2/5/2021

FSD 20-04074

Facility and Process Description

Target Operating Conditions:

Single Condition at 90+% Capacity

The Grede, LLC - Iron Mountain (Grede) facility produces gray iron castings, typically for industrial machinery and various transportation industry customers. The major processes at Grede include raw material handling (metals, fluxes, and metallurgical coke), metal melting, mold and core production, casting and finishing.

Grede operates a main foundry and a module foundry under one roof. A single WRIB Company high efficiency cupola (EU-P009) provides all of the molten iron used by the main and module foundry. The cupola has a maximum melt rate of 20 tons per hour. Molten iron is stored in an electric holding furnace with a capacity of 28 tons prior to pouring. Emission control equipment for the cupola exhaust includes four natural gas afterburners for VOC and CO, a low efficiency scrubber (quench tank) for SO₂, and a Hartzell Engineering Corp. baghouse for particulate.

Sources to be tested include:

EU-P009 - Cupola

EU-P016 & EU-P036 Pouring & Cooling

334176 – Module Plant Exhaust

334116 - Module Plant Exhaust

324662 - No. 7 Hunter

324848 - No. 5 Hunter

324632 - No. 6 Hunter

324484 – Main Plant Pouring Disa

324678 – Main Plant Pouring Disa

324682 – Main Plant Pouring Disa

Test related process and operational details will be recorded by Grede personnel and included in the final report.

Testing Schedule

Testing is presently planned to be conducted over a two week time frame as follows and is subject to change based on production schedules:

Week 1						
Monday	Tuesday	Wednesday	Thursday	Friday		
12/7/2020	12/8/2020	12/9/2020	12/10/2020	12/11/2020		
Travel / Safety Review / Set Up	Test 3 Stacks Main Plant 324484, 324632, 324662 (PM)	Test 3 Stacks Main Plant 324678, 324682, 324848 (PM)	Test 2 Stacks Module Plant 334116, 334176 (PM)			

		Week 2		
Monday	Tuesday	Wednesday	Thursday	Friday
12/14/2020	12/15/2020	12/16/2020	12/17/2020	12/18/2020
Travel / Safety Review / Set Up	Test Cupola Inlet 324644 (VOC, SO ₂ , CO)	Test Cupola Exhaust 324644 (PM & Fugitive Emissions)	Test Cupola Exhaust 324644 (Total Metal HAPs)	

The final test report will be submitted by Grede to the Michigan Department of Environmental Quality (MDEQ) within 60 days of the completion of testing. In cases where multiple sources are tested during a single mobilization, the last day of testing will dictate the start of the 60 days. All sources evaluated during a mobilization will be summarized in a single report.

EU-P009 - Cupola Testing Requirements

	Emissions Testing Constituents					
Source No.	Source Identification	Regulated Constituents	Applicable Rules or Regulations	Emission Limits		
				≤21.0 LB/HR		
		Carbon Monoxide	R 336.1201(3)	≤250.0 mg/m³, corrected to 70°F and 29.92 inches Hg		
		Total Metals HAP	40 CFR 63.7690(a)(2)(i) or (ii) or (iii) or (iv)	≤0.0005 GR/DSCF or ≤0.008 LB/Ton metal charged		
		Particulate (filterable)	R 336.1331	≤0.011 LB/1000 LB exhaust gas		
EU-P009	Cupola Baghouse	PM-10	R 336.1331	≤1.30 LB/HR		
324644	Exhaust	Sulfur Dioxide	R 336.1201(3)	≤170 mg/m³, corrected to 70°F and 29.92 inches Hg		
				≤13.8 LB/HR		
		Volatile Organic HAP (VOHAP)	40 CFR 63.7690(a)(8)	≤20 PPMv @ 10% O₂ as hexane		
		Opacity (fugitive)		40 CFR 63.7690(a)(7)	≤20% 6-minute average, except for one 6-minute average per hour that does not exceed 27%	

Process Monitoring Parameters					
Source Process No. Parameter		Monitoring Method	Target Range		
	Cupola Melt Rate	Manual Log	20 TPH		
FIL DOOD	Baghouse Pressure Drop	Pressure Transducer	≥1 Inch WC		
EU-P009	Afterburner Temperature	Thermocouple	≥1,300°F		
	Control System Fan Amperage		115 - 281 amps		

Pace Analytical FSD 20-04074 Report Date 2/5/2021

	Emissi	ons Testi	ng Metho	ds		
Parameter	Test Method	No. of Runs	Length of Run	Sample Vol/Rate	Report Units	Detection Limit
Locate Test Ports & Traverse Points	EPA Method 1 (details below)	1	NA	NA	NA	NA
Volumetric Airflow (Inlet)	EPA Method 2	3	NA	NA	ACFM SCFM DSCFM	4 Ft./Sec.
Gas Composition (Inlet & Outlet)	Modified EPA Method 3/3A	3	1 Hour	30 Liters	% v/v Mole. Wt. %EA	0.1% v/v
Moisture Content (Outlet for all testing, Inlet during THC, CO, and SO ₂ testing)	EPA Method 4	3	2 Hour	0.5 CFM	% v/v Mole. Wt.	0.3% v/v
Moisture Content (Inlet during PM and Metals testing)	EPA Method 4 Alternative, Wet/dry bulb temp	3	NA	NA	% v/v Mole. Wt.	0.2% v/v
Particulate (Filterable) (Outlet, with PM-10)	EPA Method 5	3	2 Hour	60 DSCF	LB/1000 LB exhaust gas	0.0008 GR/DSCF
PM-10 Particulate (Outlet)	EPA Method 5 EPA Method 202	3	2 Hour	60 DSCF	LB/HR	0.0008 GR/DSCF
Sulfur Dioxide (Inlet)	EPA Method 6C	3	1 Hour	>0.5 LPM	LB/HR mg/m ³	5 PPM v/v
Carbon Monoxide (Inlet)	EPA Method 10	3	1 Hour	>0.5 LPM	LB/HR mg/m ³	1 PPM v/v
Visible Emissions (Fugitive) Observations at the north and south side of the process operation building.	EPA Method 9	3	1 Hour	NA	% Opacity	0 Percent (5% Incr.)
Total Hydrocarbons (Inlet)	EPA Method 25A	3	1 Hour	1 LPM	PPMv @ 10% O ₂ as hexane	2 PPM v/v
Multiple Metals (Outlet) (Antimony, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Lead, Manganese, Nickel, Selenium, and Mercury)	EPA Method 29	3	2 Hour	60 DSCF	GR/DSCF LB/Ton metal charged	Varies

Test Location Details: See test location schematic in Attachment 1.

FSD 20-04074

Special Considerations: The baghouse outlet test location is a mono-vent. The

baghouse outlet sampling points are above the baghouse compartments. Using a 12' probe, 24 points will be monitored

Page F-15 of 60

as diagramed in Figure 1. Airflow, VOC, SO₂, and CO will be measured at the inlet duct on the baghouse.

Audit samples will be provided for Antimony, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Lead, Manganese, Nickel, Selenium, and Mercury.

Mass rate results for measurements collected at the monovent outlet will be adjusted following the temperature differential dilution calculations from EPA Method 5D or other procedure as approved by the regulatory administrator. Concentration results are not adjusted.

EU-P016 & EU-P036 - Main Plant Pouring and Cooling & Module Pouring and Cooling (8 Stacks) Testing Requirements

	Emissions Testing Constituents					
Source Source Regulated No. Identification Constituents		Applicable Rules or Regulations	Emission Limits			
EU-P016 EU-P036	Main Plant Pouring and Cooling & Module Pouring and Cooling	Particulate (filterable)	40 CFR 63.7690(a)(5)(i)	≤0.010 GR/DSCF		
LO-F 030		PM-10	R 336.1331	≤9.0 LB/HR		

Process Monitoring Parameters					
Source No.	Process Parameter	Monitoring Method	Target Range		
EU-P016	Main Plant Pour Rate	Process Log	9-34 TPH		
EU-P036	Module Pour Rate	Process Log	7-13 TPH		

Emissions Testing Methods								
Parameter	Test Method	No. of Runs	Length of Run	Sample Vol/Rate	Report Units	Detection Limit		
Locate Test Ports & Traverse Points	EPA Method 1 (details below)	1	NA	NA	NA	NA		
Volumetric Airflow	EPA Method 2	3	NA	NA	ACFM SCFM DSCFM	4 Ft./Sec.		
Gas Composition Emitting Essentially Air	EPA Method 3 EPA Method 2.8.6	NA	NA	NA	% v/v Mole. Wt.	Assigned Values		
Moisture Content	EPA Method 4	3	1.5+ Hour	0.5 CFM	% v/v Mole. Wt.	0.3% v/v		
Particulate (Filterable) (with PM-10)	EPA Method 5	3	1.5+ Hour	60 DSCF	GR/DSCF	0.0008 GR/DSCF		
PM-10 Particulate	EPA Method 5 EPA Method 202	3	1.5 Hour+	60 DSCF	GR/DSCF LB/HR	0.0008 GR/DSCF		

Test Location Details: See test location schematics in Attachment 1. The Pouring

and Cooling Stack structures will be modified to meet EPA Method 1 minimum distance criteria to mitigate cyclonic flow.

Special Considerations: While significant investment was made to modify some stacks

to mitigate cyclonic flow, if cyclonic flow in excess of 20 degrees is encountered, we will implement the procedures EPA Guidance Document 8 – Particulate Matter Sampling in Cyclonic Flow or the Draft Revision to GD-8 (2003) upon

Grede, LLC - Iron Mountain Test Protocol Page 10 of 53

Pace Analytical
FSD 20-04074 Report Date 2/5/2021

approval from a regulatory administrator. If EPA Guidance Document 8 procedures are not approved, cyclonic flow stacks will not be tested.

A final test report will be compiled by Pace Analytical at the completion of testing. The report will be submitted to the client within 30 days of the last day of sampling. The client will be responsible for submitting report copies as required by regulatory agencies. An electronic copy of the test report will be delivered via e-mail. The final test report will include the following information:

- Name and location of emission facility.
- Identification of emission unit.
- Date of tests.
- Name and address of testing company.
- Certification of project information (client signatures also required).
- Reasons and constituents for test.
- Names of observers and witnesses
- Emission results expressed in the units of the emission limitation criteria.
- Process descriptions as provided by the client.
- Process rate information as provided by the client.
- Descriptions of maintenance activities as provided by the client.
- Discussions of problems or errors encountered.
- Sampling and analytical procedures.
- Analytical results of fuels or process samples as appropriate.
- Dimensioned drawing of sampling location.
- Copies of raw field data.
- Copies of laboratory analytical reports.
- Calculation equations.
- Sampling train calibration data
- Laboratory quality assurance information as appropriate
- Copy of this test plan and other pertinent pretest correspondence.

FSD 20-04074 Report Date 2/5/2021

Safety Considerations

Safety is an important aspect of sampling programs, especially when test teams and observers are in unfamiliar plant surroundings. Plants are required to provide test ports, safe test platforms and access routes. The test firm is required to follow plant safety protocols and rules as well as their own safety program. Attention must be given to special considerations related to testing such as overhead work, solvent usage, compressed gases, flammable materials, open ports and electrical appliances. Observers and regulatory witnesses must comply with both plant and test firm safety protocols. Pace cannot provide PPE for visitors and observers. The following protocols and Personal Protection Equipment (PPE) will be required for this site.

Safety Requirements	Pace Protocol	Plant Protocol
No Smoking		X
Safety Shoes	X	X
Metatarsal Guards		
ESD Shoes or Strap		
Hard Hat	X	Х
Safety Glasses	Χ	Х
Full-Face Shield		
Chemical Resistant Gloves		
Abrasion Resistant Gloves	Χ	
Temperature Insulating Gloves	X	
Full Length Trousers (Waist to Ankle)	Χ	X
Long-Sleeved Shirt		
Fire Retardant Clothing		
Chemical Resistant Suit/Clothing		
Hearing Protection		X
No Facial Hair		
Dust Respirator		
Half-Face Air Purifying Respirator		
Full-Face Air Purifying Respirator		
Self Contained Breathing Apparatus		
Supplied Air Respirator		
Plant Security Log In		X
Plant Safety Training - Facility EHS training will		X
be provided at the facility prior to testing.		Λ
Facility point-of-contact will be assigned to		X
Pace personnel while on-site.		
Spark Permit/Protocols		
Electronic Device Restrictions		
Designated Break/Smoking Areas		Х
Safety Climb System		\ <u>'</u>
Fall Protection (Harness/Tie-off)		X

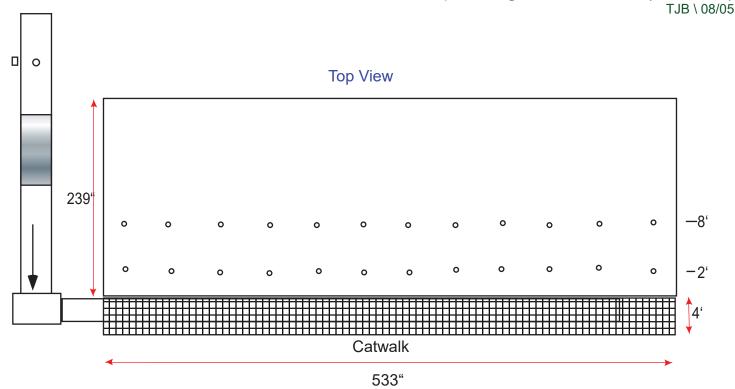
Attachments

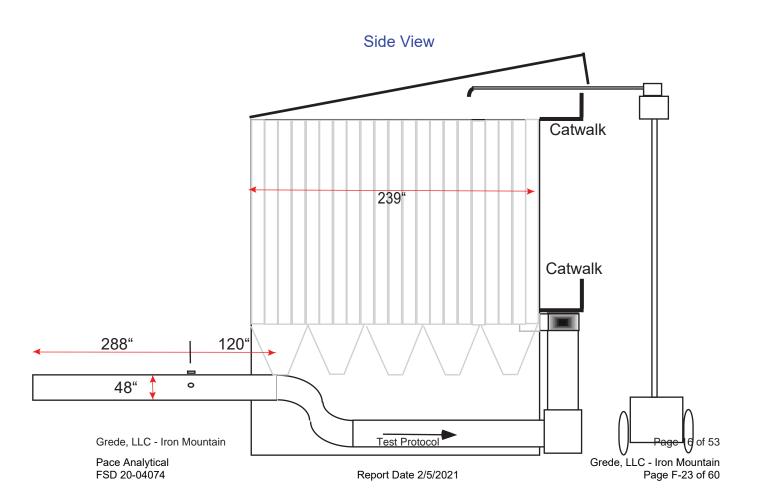
Attachment 1 Test Location Schematics

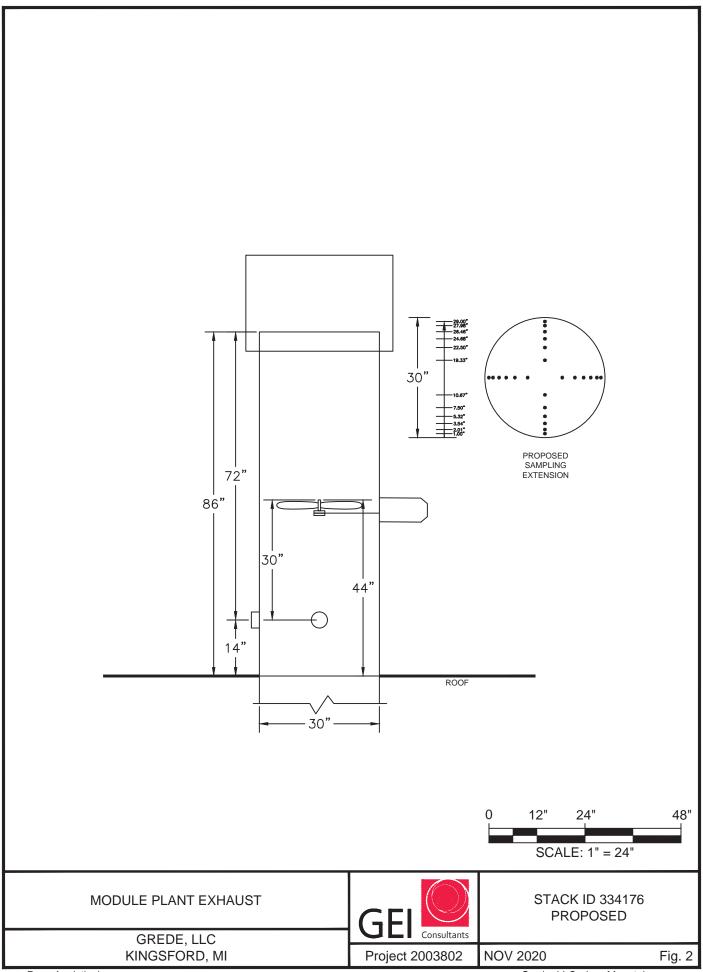
Attachment 2 Abbreviations, Symbols, and Nomenclature

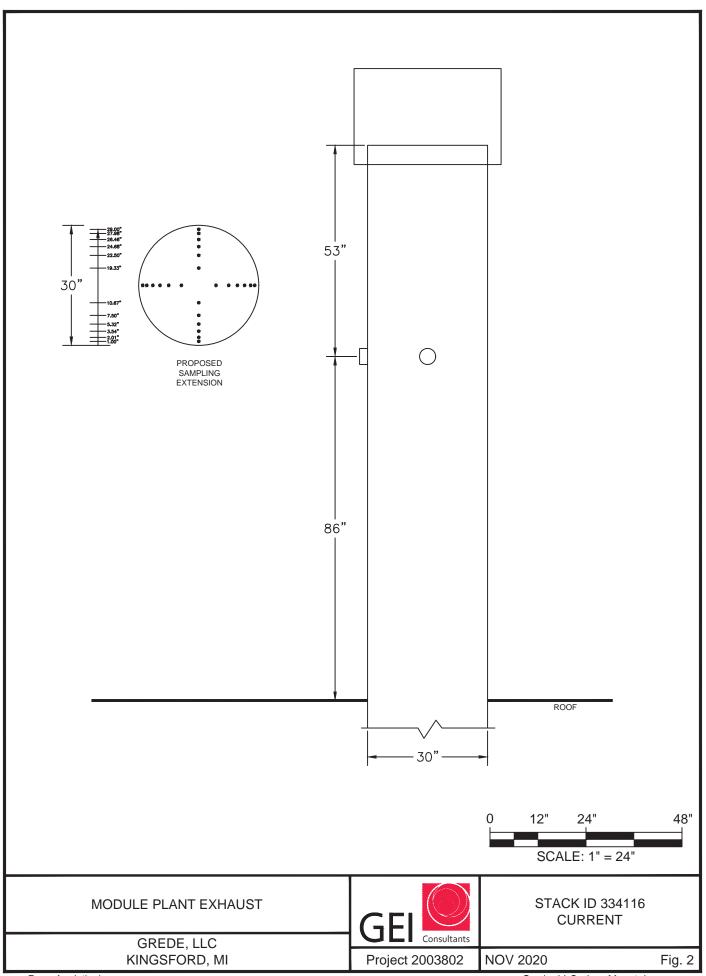
Attachment 3 Calculation Equations

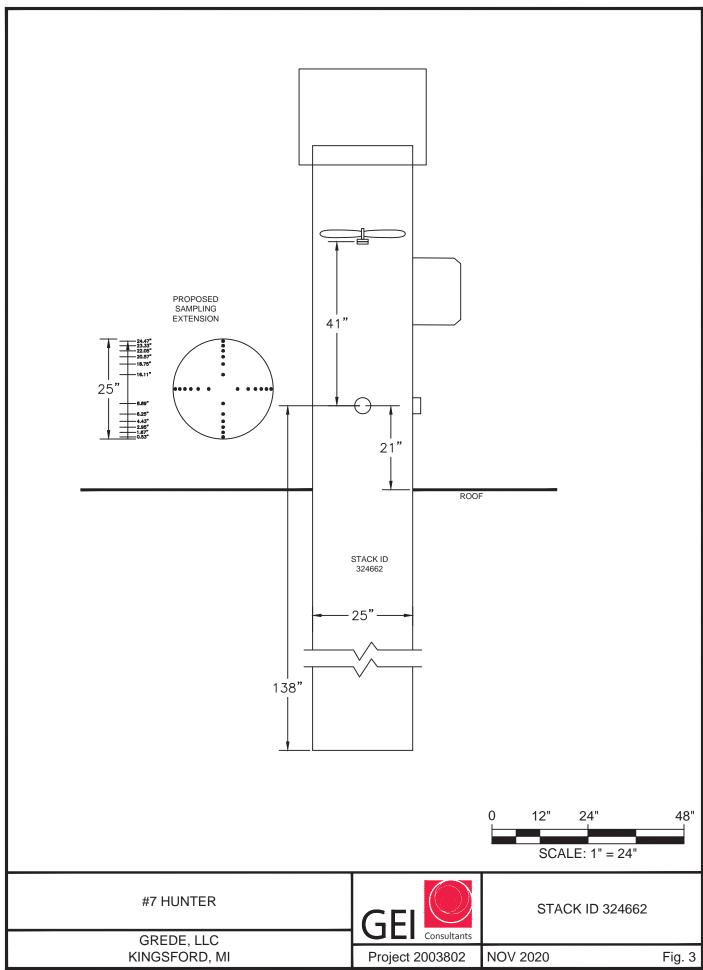
Attachment 4 Test Method Summaries

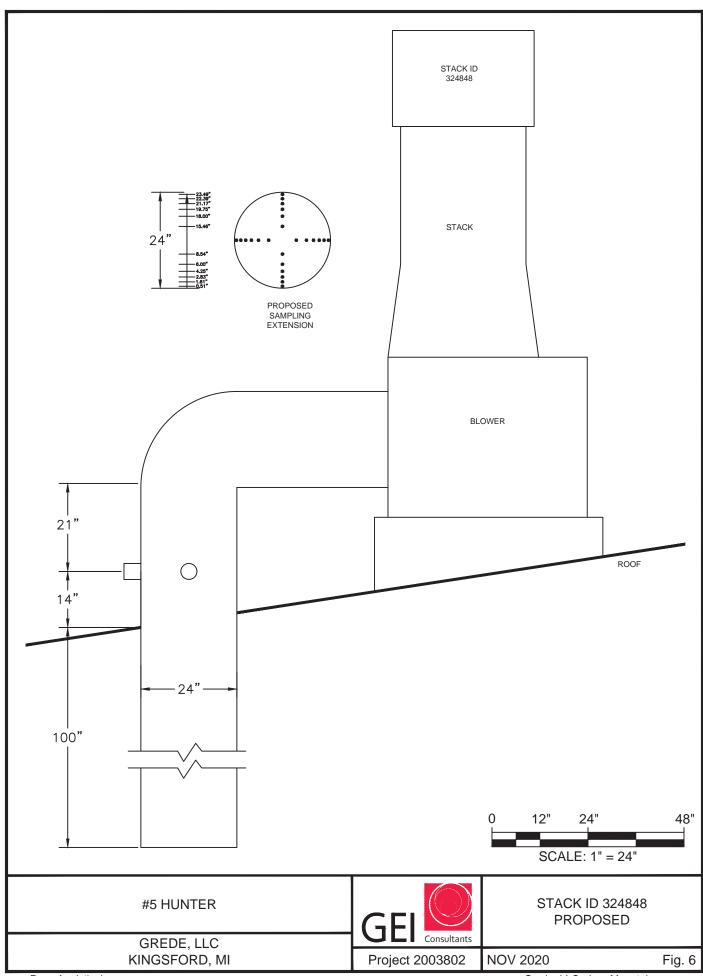

Attachment 5 Quality Statement

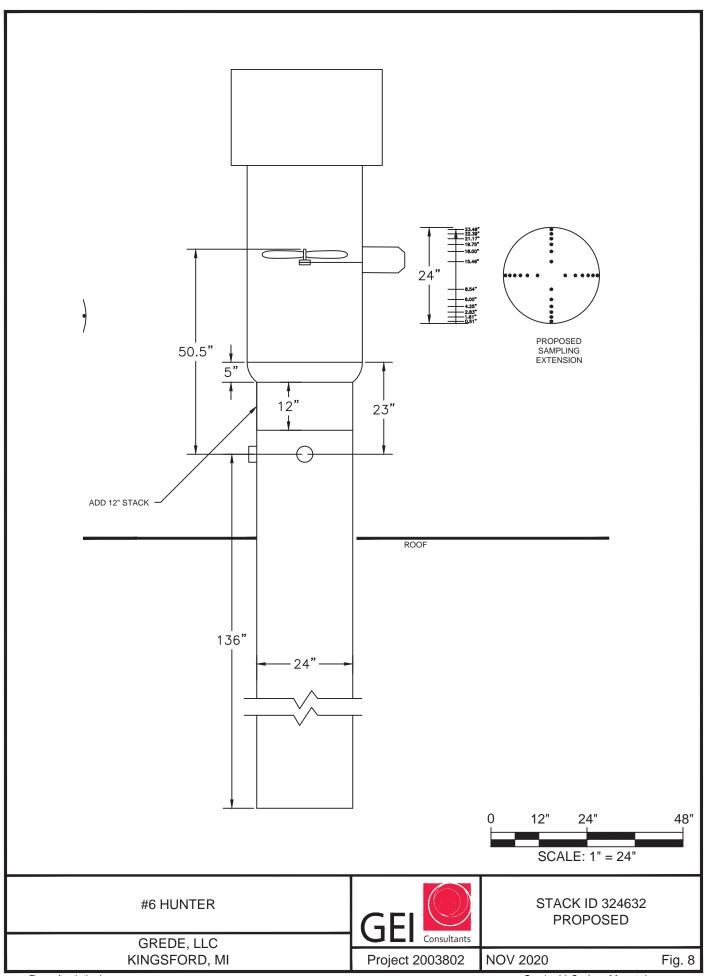

Attachment 1

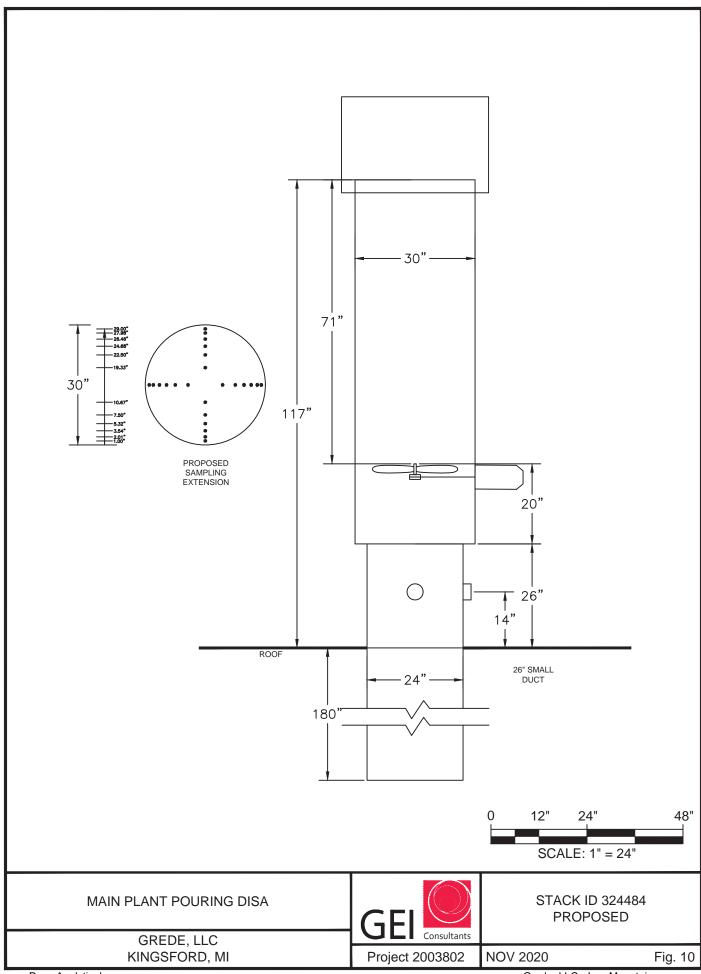

Test Location Schematics

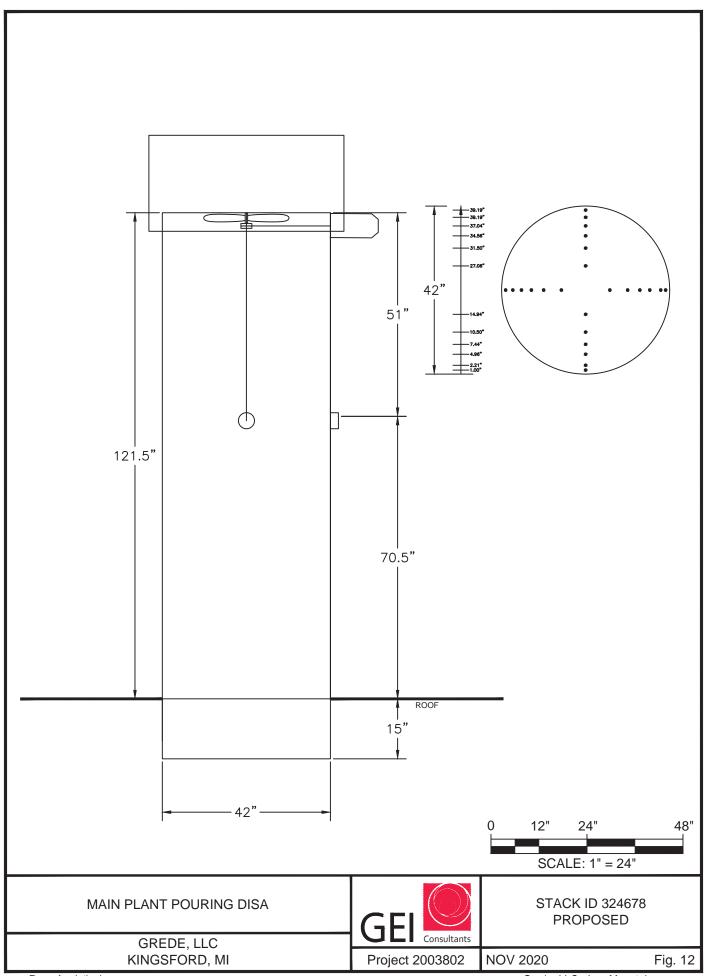


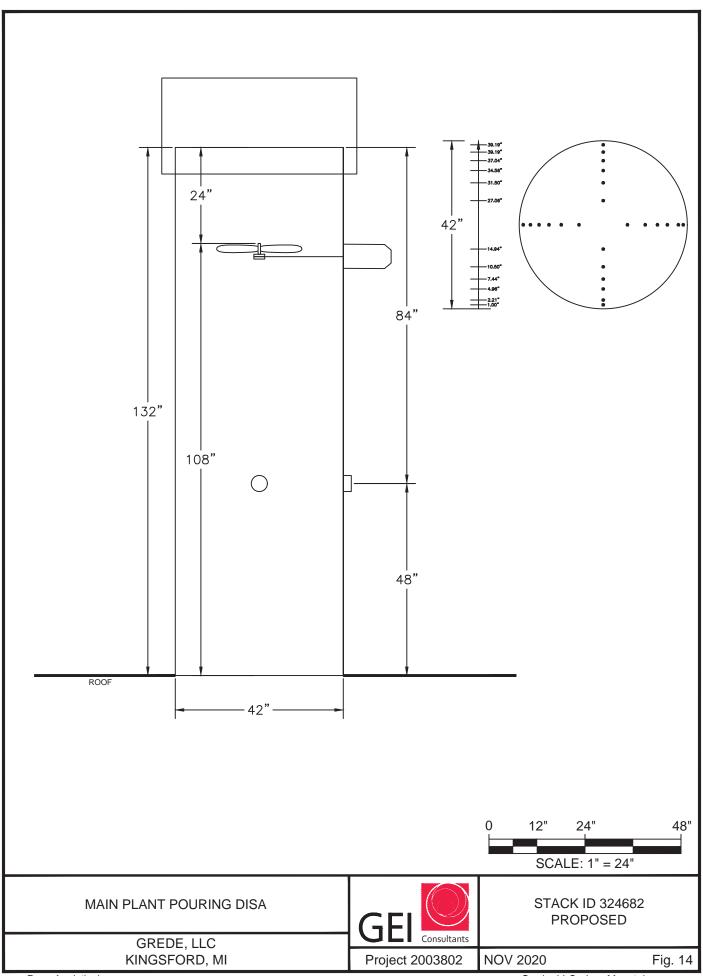

Figure 1
Grede, LLC
Kingsford, MI
Cupola Baghouse Exhaust (EU-P009)











Attachment 2

Abbreviations, Symbols, and Nomenclature

Abbreviations, Symbols, and Nomenclature

DSCF Dry Standard Cubic Feet mW Megawatt DSCFM Dry Standard Cubic Feet per Minute dscm Dry Standard Cubic Meter N2 Nitrogen dscmm Dry Standard Cubic Meter per Minute dsl Dry Standard Liter NAAQS National Ambient Air Quality Standard	cmCubic MetermlMilliliterCOCarbon MonoxidemmMillimeterCO2Carbon DioxideMMBTUMillion British Thermal UnitsDGSDistiller's Grains with SolublesMMSCFMillion Standard Cubic FeetDDGSDry Distiller's Grains with SolublesMSMass Spectrometry	CF Cubic Feet CFR Code of Federal Regulations C1 Carbon (as carbon) CH4 Methane Microliter Micrometer (micron) Milligram MGAL Thousand Gallons	CAAA Clean Air Act Amendments m Meter CE Control Equipment (in Reg. ID Nos.) m³ Cubic Meter CE Control Efficiency MACT Maximum Achievable Control CEM Continuous Emissions Monitor Technology CEMS Continuous Emissions Monitoring MC Moisture Content	ACFM Actual Cubic Feet per Minute AP-42 Compilation of Air Pollutant Emission Factors, Volume I, Stationary Point and Area Sources. BACT Best Available Control Technology BH Baghouse BHP Brake Horsepower BTU British Thermal Unit C Centimeter C Cubic Centimeter C Cubic Centimeter C Cubic Centimeter C Compilation of Air Pollutant Emission HAPs Hazardous Air Pollutant HAP Hazardous Air Pollutant HAPs Hazardous Air Pollutants HAP Haz	AP-42 BACT BH BHP BTU c c³ cCAAA CE CEMS CFR C144 C3H8 CM COC2 DGS DSCFM dscm dsl EPA EP EU FIGR FPD FPS FR or ft F	Compilation of Air Pollutant Emission Factors, Volume I, Stationary Point and Area Sources. Best Available Control Technology Baghouse Brake Horsepower British Thermal Unit Centimeter Cubic Centimeter Cubic Centimeter Cubic Centimeter Clean Air Act Clean Air Act Amendments Control Equipment (in Reg. ID Nos.) Control Efficiency Continuous Emissions Monitor Continuous Emissions Monitor Continuous Emissions Monitoring System Cubic Feet Code of Federal Regulations Carbon (as carbon) Methane Propane Cubic Meter Carbon Monoxide Carbon Dioxide Distiller's Grains with Solubles Dry Distiller's Grains with Solubles Destruction/Reduction Efficiency Dry Standard Cubic Feet Dry Standard Cubic Feet per Minute Dry Standard Cubic Meter Dry Standard Cubic Meter Dry Standard Liter Environmental Protection Agency Emission Point Electrostatic Precipitator Emission Unit Flame Ionization Detector Flue Gas Recirculation Flame Photometric Detector Feet Per Minute Feet Per Second Federal Register Toot or Feet	HAPS Hg HP HR In. KLB kW kWH I LB LDAR m m³ MACT MC µg µl µm mg MGAL Min. ml mm MMBTU MMSCF MS MSDS mW MW N² NA NAAQS	Hazardous Air Pollutants Mercury Horsepower Hour Inch or Inches Thousand Pounds Kilowatt Kilowatt Hour liter Pound or Pounds Leak Detection and Repair Meter Cubic Meter Maximum Achievable Control Technology Moisture Content Microgram Microliter Micrometer (micron) Milligram Thousand Gallons Minute or Minutes Milliliter Million British Thermal Units Million Standard Cubic Feet Mass Spectrometry Material Safety Data Sheet Megawatt Molecular Weight Nitrogen Not Applicable
FDA Environmental Protection Agency NESHAP National Emission Standards for	DSCF Dry Standard Cubic Feet mW Megawatt DSCFM Dry Standard Cubic Feet per Minute dscm Dry Standard Cubic Meter N2 Nitrogen dscmm Dry Standard Cubic Meter per Minute dsl Dry Standard Liter NAAQS National Ambient Air Quality Standards	cm Cubic Meter ml Milliliter CO Carbon Monoxide mm Millimeter CO2 Carbon Dioxide MMBTU Million British Thermal Units DGS Distiller's Grains with Solubles MMSCF Million Standard Cubic Feet DDGS Dry Distiller's Grains with Solubles MS Mass Spectrometry DRE Destruction/Reduction Efficiency MSDS Material Safety Data Sheet DSCF Dry Standard Cubic Feet mW Megawatt DSCFM Dry Standard Cubic Feet per Minute dscm Dry Standard Cubic Meter dsl Dry Standard Liter NAAQS National Ambient Air Quality Standards	CF Cubic Feet CFR Code of Federal Regulations C1 Carbon (as carbon) C3H4 Methane C3H8 Propane C0 Carbon Monoxide C0 Carbon Dioxide DGS Distiller's Grains with Solubles DGS Dry Distiller's Grains with Solubles DRE Destruction/Reduction Efficiency DSCF Dry Standard Cubic Feet DSCFM Dry Standard Cubic Feet per Minute dsl Dry Standard Cubic Meter DI Millingter Mill	CAAA Clean Air Act Amendments CE Control Equipment (in Reg. ID Nos.) CE Control Efficiency CE Continuous Emissions Monitor CEM Continuous Emissions Monitor CEMS Continuous Emissions Monitor CEMS Continuous Emissions Monitor CEMS Continuous Emissions Monitoring System CF Cubic Feet Up Microgram CF Cubic Feet Up Microfiter CFR Code of Federal Regulations C1 Carbon (as carbon) C1 Carbon (as carbon) C3H8 Propane CM Cubic Meter CO Carbon Monoxide CO Carbon Monoxide CO2 Carbon Dioxide DGS Distiller's Grains with Solubles DGS Dry Distiller's Grains with Solubles DGS Dry Standard Cubic Feet DSCFM Dry Standard Cubic Feet pr Minute dscm Dry Standard Cubic Meter CMD MACS Cubic Meter CMD Maximum Achievable Control Maximum Actievable Control Maximum Actievable Control Maximum Actievable Maximum Actievable Control Maximum Actievable Control Maximu	EP ESP EU FID FGR FPD FPM FPS FR	Emission Point Electrostatic Precipitator Emission Unit Flame Ionization Detector Flue Gas Recirculation Flame Photometric Detector Feet Per Minute Feet Per Second Federal Register	NO ₂ NO _x NSPS O ₂ PEMS	Hazardous Air Pollutants Nitrogen Dioxide Nitrogen Oxides (quantified as NO ₂) New Source Performance Standard Oxygen Parametric (or Predictive) Emissions Monitoring System Photo Ionization Detector
ACFM Actual Cubic Feet per Minute AP-42 Compilation of Air Pollutant Emission Factors, Volume I, Stationary Point and Area Sources. BACT Best Available Control Technology BH Baghouse BHP Brake Horsepower BTU British Thermal Unit c Centimeter CUbic Centimeter CAA Clean Air Act CEA Control Equipment (in Reg. ID Nos.) CE Continuous Emissions Monitor CEM Continuous Emissions Monitor CEM Continuous Emissions Monitor CT Cubic Feet CFR Code of Federal Regulations CMA Clean Air Act CHA Methane CMA Cloar Air Act CHA Methane CF Cubic Meter CF COC Carbon Monoxide CMA Methane CHA Methane CHA Methane CHA Methane CHA Methane CHA Cloar Air Act CHA Methane CHA Methane CHA Methane CHA Methane CHA Methane CHA Methane CHA Colar Air Act CHA Methane CHA Cubic Meter CHA Cubic Meter CHA Methane MGAL Thousand Gallons Milligram CHA Milliliter CHA Methane CHA Methane CHA Methane CHA Methane MGAL Thousand Gallons Milligram Mil	ACFM Actual Cubic Feet per Minute AP-42 Compilation of Air Pollutant Emission Factors, Volume I, Stationary Point and Area Sources. BACT Best Available Control Technology BH Baghouse BHP Brake Horsepower BHD British Thermal Unit C Centimeter CC Cubic Centimeter CC Cubic Centimeter CC Cubic Centimeter CC Cubic Centimeter CCAA Clean Air Act CAAA Clean Air Act CEAA Clean Air Act CCE Control Equipment (in Reg. ID Nos.) CE Continuous Emissions Monitor CF Cubic Feet CFR Code of Federal Regulations C1 Carbon (as carbon) C1 Carbon (as carbon) CMA Methane HAP Hazardous Air Pollutant HAPS Hazardous Air Pollutants HaP Hever Pollutants HaP Hour Harardous Air Pollutants HaP Hever Pollutants HaP Hever Pollutants HaP Hever Pollutants HaP Hour Harardous Air Pollutants HaP Hever Pollutants HaP Herardus Air Pollutants HaP Hour Inch Pour Pounds Cat Cubic Peus Pounds HR Hour Inch Pour Pounds HAPS Hazardous Air Pollutants Hap Mercury HaP Hour Hour Harardous Air Pollutants Hap Mercury HaP Hour Hazardous Air Pollutants Hap	ACFM Actual Cubic Feet per Minute AP-42 Compilation of Air Pollutant Emission Factors, Volume I, Stationary Point and Area Sources. BACT Best Available Control Technology BH Baghouse BHP Brake Horsepower BTU British Thermal Unit c Centimeter CC Cubic Centimeter CC Cubic Centimeter CAA Clean Air Act CAAA Clean Air Act Amendments CE Control Equipment (in Reg. ID Nos.) CEM Continuous Emissions Monitor CEM Continuous Emissions Monitor CEM Continuous Emissions Monitoring Mercury HAP Hazardous Air Pollutant HAPs Hazardous Air Pollutants HAP Hazardous Air Pollutants HAPs Hazardous Air Pollutants HAP Hour HAP Hour Haps Hazardous Air Pollutants HAP Hour Haps Hazardous	ACFM Actual Cubic Feet per Minute AP-42 Compilation of Air Pollutant Emission Factors, Volume I, Stationary Point and Area Sources. BACT Best Available Control Technology BH Baghouse BHP Brake Horsepower BTU British Thermal Unit C Centimeter C Cubic Centimeter C Cubic Centimeter C Cubic Centimeter C Compilation of Air Pollutant Emission HAPs Hazardous Air Pollutant HAP Hazardous Air Pollutant HAPs Hazardous Air Pollutants HAPs H		"WC ℃ °F °K °R % v/v	Inches Water Column (pressure) Degrees Centigrade or Celsius Degrees Fahrenheit Degrees Kelvin (absolute) Degrees Rankin (absolute) Percent by volume	g GC GPD GPH GR H ₂ O	Gram Gas Chromatograph(y) Gallons Per Day Gallons Per Hour Grains Water

Grede, LLC - Iron Mountain Test Protocol Page 26 of 53

Abbreviations, Symbols, and Nomenclature

PM₁₀ Particulate Matter with an aerodynamic

diameter equal to or less than 10

microns

PM-10 PM₁₀

PM_{2.5} Particulate Matter with an aerodynamic

diameter equal to or less than 2.5

microns

PM-2.5 PM_{2.5}

PPB Parts Per Billion (see variation below)

PPM Parts Per Million

PPMv Part Per Million by volume

PPMv-dry Parts Per Million by volume, dry basis PPMv-wet Parts Per Million by volume, wet basis PPMw Parts Per Million by Weight (mg/l) PSIA Pounds per Square Inch, Absolute PSIG Pounds per Square Inch, Gauge PTE Permanent Total Enclosure

RA Relative Accuracy

RATA Relative Accuracy Test Audit

rH Relative Humidity

RTO Regenerative Thermal Oxidizer or

Recuperative Thermal Oxidizer

SCF Standard Cubic Feet

SCFM Standard Cubic Feet per Minute

scm Standard Cubic Meter

scmm Standard Cubic Meter per Minute

Scr. Scrubber

SIC Standard Industrial Classification

SO₂ Sulfur Dioxide SO_x Sulfur Oxides Sq. Ft. Square Feet

TCD Thermal Conductivity Detector

TO Thermal Oxidizer
TPD Tons Per Day
TPH Tons Per Hour
TPY Tons per year
TRS Total Reduced Sulfur

TSP Total Suspended Particulate Matter

TTE Temporary Total Enclosure

USEPA United States Environmental Protection

Agency

VHAP Volatile Hazardous Air Pollutant VOC Volatile Organic Compound VOCs Volatile Organic Compounds

WC Water Column

WDGS Wet Distiller's Grains with Solubles

Grede, LLC - Iron Mountain Test Protocol Page 27 of 53

Pace Analytical FSD 20-04074 Report Date 2/5/2021

Abbreviations, Symbols, and Nomenclature

State Environmental Agency Acronyms

ADEM	Alabama Department of Environmental Management	MDNR	Missouri Department of Natural Resources
ADEC	Alaska Department of Environmental Conservation	MDEQ	Montana Department of Environmental Quality
ADEQ	Arizona Department of Environmental Quality	NDEQ	Nebraska Department of Environmental Quality
ADEQ	Arkansas Department of Environmental Quality	NDEP	Nevada Division of Environmental Protection
CARB	California Air Resources Board	NHDES	New Hampshire Department of Environmental Services
CDPHE	Colorado Department of Public Health & Environment	NJDEP	New Jersey Department of Environmental Protection
CDEP	Connecticut Department of Environmental Protection	NMED	New Mexico Environment Department
DNREC	Delaware Natural Resources & Environmental Control		New York State Department of Environmental Conservation
FDEP	Florida Department of Environmental Protection	NCDENR	North Carolina Department of Environment & Natural Resources
GEPD	Georgia Environmental Protection Division	NDDH OEPA	North Dakota Department of Health Ohio Environmental Protection Agency
IDEQ	Idaho Department of Environmental Quality	ODEQ	Oklahoma Department of Environmental Quality
IEPA	Illinois Environmental Protection	ODEQ	Oregon Department of Environmental Quality
IDNR	Agency Iowa Department of Natural Resources	PDEP	Pennsylvania Department of Environmental Protection
KDHE	Kansas Department of Health & Environment	RIDEM	Rhode Island Department of Environmental Management
KDEP	Kentucky Department for Environmental Protection	SCDHEC	South Carolina Department of Health &
LDEQ	Louisiana Department of Environmental Quality	SDDENR	Environmental Control South Dakota Department of
MDEP	Maine Department of Environmental Protection	TDEC	Environment & Natural Resources Tennessee Department of Environment
MDE	Maryland Department of the Environment	TCEQ	& Conservation Texas Commission on Environmental
MDEP	Massachusetts Department of Environmental Protection	UDEQ	Quality Utah Department of Environmental
MDEQ	Michigan Department of Environmental Quality	VANR	Quality Vermont Agency of Natural Resources
MPCA MDEQ	Minnesota Pollution Control Agency Mississippi Department of	VDEQ	Virginia Department of Environmental Quality
MDLQ	Environmental Quality	WSDNR	Washington State Department of Natural Resources
		WVDEP	West Virginia Division of Environmental Protection
		WDNR	Wisconsin Department of Natural Resources

Attachment 3 Calculation Equations

EPA Method 2 Calculations

Flue Gas Linear Velocity

$$V_s = 85.49 \times C_p \times \sqrt{\Delta P} \times \sqrt{\frac{\overline{T_s}}{P_s \times M_s}}$$

Volumetric Flow Rates - ACFM, SCFM & DSCFM

$$Q = 60 \times v_s \times A$$

$$Q_s = Q \times \left(\frac{528}{T_s}\right) \times \left(\frac{P_s}{29.92}\right) = Q \times 17.647 \times \left(\frac{P_s}{T_s}\right)$$

$$Q_{\rm sd} = Q_{\rm s} \times (1 - B_{\rm ws})$$

Mass Flow Rate of Wet Flue Gas

$$m_g = \frac{4.995 \times Q_{sd} \times G_d}{1 - B_{ws}}$$

Actual Gas Density

$$\rho = \frac{0.04585 \times P_s \times M_s}{\overline{T_s}}$$

Where:

A = Cross-sectional area of duct at sample point (sq. ft.).

B_{WS} = Water vapor in gas stream (proportion by volume).

C_p = Pitot tube calibration coefficient.

Gd = Flue gas specific gravity relative to air, dimensionless.

 m_g = Mass flow rate of wet flue gas (LB/HR).

Ms = Molecular weight of wet flue gas (LB/LB-mole).
Ps = Absolute gas pressure of duct (Inches Hg).

 ΔP = Velocity pressure measured by pitot tube (Inches WC).

Q = Actual flue gas volumetric flow rate (ACFM).

Q_S = Volumetric gas flow at standard conditions (SCFM). Q_{Sd} = Dry standard volumetric gas flow rate (DSCFM).

 T_S = Flue gas temperature (°R).

V_S = Flue gas linear velocity (feet per second).

 ρ = Actual flue gas density (LB/CF).

Grede, LLC - Iron Mountain
Pace Analytical

FSD 20-04074

Test Protocol

Page 30 of 53

Grede, LLC - Iron Mountain Page F-37 of 60

EPA Method 3 Calculations

Dry Molecular Weight of Flue Gas

$$M_d = (0.44 \times \% CO_2) + (0.32 \times \% O_2) + (0.28 \times (\% N_2 + \% CO))$$

Wet Molecular Weight of Flue Gas

$$M_s = M_d \times (1 - B_{ws}) + (18 \times B_{ws})$$

Percent Excess Air

$$\% EA = 100 \times \left(\frac{\% O_2 - (0.05 \times \% CO)}{(0.264 \times \% N_2) - \% O_2 + (0.5 \times \% CO)} \right)$$

Fuel F-factor (for comparison)

$$F_o = \frac{20.9 - \% O_2}{\% CO_2}$$

Where:

B_{ws} = Water vapor in gas stream (proportion by volume).

%CO = Carbon monoxide in gas stream (percent).

%CO₂ = Carbon dioxide in gas stream (percent).

%EA = Excess air for combustion (percent).

 F_0 = Fuel F-factor for results comparison.

 M_d = Molecular weight of dry flue gas (LB/LB-mole).

 M_S = Molecular weight of wet flue gas (LB/LB-mole).

 $%N_2$ = Nitrogen in gas stream (percent).

%O₂ = Oxygen in gas stream (percent).

EPA Method 4 Calculations

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}} \right)$$

Volume of Water Vapor Sampled

$$V_{w} = 0.047070 \times V_{lc}$$

Proportion of Water Vapor in Sampled Gas

$$B_{ws} = \frac{V_{w}}{V_{w} + V_{std}}$$

Moisture Content of Sampled Gas

$$MC = B_{ws} \times 100$$

Where:

B_{ws} = Water vapor in gas stream (proportion by volume).

 ΔH = Orifice meter differential pressure (Inches WC).

MC = Moisture Content, % v/v

P_b = Barometric pressure (Inches Hg).

 T_{m} = Sampling train meter temperature (°R).

V_{IC} = Total volume of liquid collected in sampling train (mls).

 $V_{\rm m}$ = Volume of gas sample measured by gas meter (CF).

V_{std} = Gas volume corrected to standard conditions (DSCF).

 $V_{\rm W}$ = Volume of water vapor in gas sample (SCF).

Y = Dry gas meter calibration coefficient.

EPA Method 5 Calculations

Sample Volume, Standard Conditions

$$V_{std} = 17.647 \times V_m \times Y \times \left(\frac{P_b + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}} \right)$$

Isokinetic Variation

$$I = 0.09450 \times \left(\frac{\overline{T_s} \times V_{std}}{P_s \times V_s \times A_n \times \theta \times (1 - B_{ws})} \right)$$

Particulate Concentration

$$C_s = 15.432 \times \left(\frac{m_n}{V_{std}}\right)$$

Particulate Mass Rate

$$m_p = 0.008571 \times C_s \times Q_{sd}$$

Where:

 $\begin{array}{lll} A_{\text{N}} & = & \text{Cross-sectional area of nozzle opening (square feet).} \\ B_{\text{WS}} & = & \text{Water vapor in gas stream (proportion by volume).} \\ C_{\text{S}} & = & \text{Particulate concentration of gas stream (GR/DSCF).} \\ \Delta H & = & \text{Orifice meter differential pressure (Inches WC).} \\ I & = & \text{Isokinetic variation of sampling rate (percent).} \\ m_{\text{N}} & = & \text{Total particulate collected in sampling train (grams).} \\ \end{array}$

m_n = Total particulate collected in sampling m_p = Particulate mass flow rate (LB/HR).

Pb = Barometric pressure (Inches Hg).

P_S = Absolute gas pressure of duct (Inches Hg). Q_{Sd} = Dry standard volumetric gas flow rate (DSCFM).

 T_m = Sampling train meter temperature (°R).

 T_S = Flue gas temperature (°R).

V_m = Volume of gas sample measured by gas meter (CF). V_{std} = Gas volume corrected to standard conditions (DSCF).

Vs = Flue gas linear velocity (feet per second).
 Y = Dry gas meter calibration coefficient.
 θ = Total sampling time of run (minutes).

Volatile Organic Compound Calculations

Weight/Volume Concentration

$$C_{VOC} = \frac{m_{VOC}}{V_{std}}$$

Volume/Volume Concentration

$$C_{PPM} = \frac{C_{voc} \times 24.04}{MW_{VOC}}$$

VOC Emission Rate

$$E_{VOC} = (6.242 \times 10^{-8}) \times 60 \times C_{VOC} \times DSCFM$$

Where:

 C_{VOC} = Volatile organic compound (VOC) concentration,

mg/dscm

C_{PPM} = Volatile organic compound (VOC) concentration,

PPM v/v

DSCFM = Volumetric airflow, Dry Standard Cubic Feet per Minute

E_{VOC} = Volatile organic compound (VOC) emission rate, LB/HR

 M_{VOC} = Mass of volatile organic compound collected, μg

MW_{VOC} = Molecular weight of volatile organic compound

 V_{std} = Standard volume of air sample, liters

(6.242x10⁻⁸) = Conversion from mg/dscm to LB/DSCF

60 = Conversion from minutes to hours

Combustion Source Emissions Concentration Correction Factors

Concentration Correction for Oxygen Basis

$$C_{P(x\% O_2)} = C_P \times \frac{20.9 - \% O_{2-Basis}}{20.9 - \% O_2}$$

Concentration Correction for Carbon Dioxide Basis

$$C_{P(x\%CO_2)} = C_P \times \frac{\%CO_{2-Basis}}{\%CO_2}$$

Where:

Cp = Pollutant concentration in units of the emission standard.

 $C_{P(x\% O2)}$ = Pollutant concentration corrected to the target percent oxygen basis in units of the emission standard.

C_{P(x% CO2)} = Pollutant concentration corrected to the target percent carbon dioxide basis in units of the emission standard.

%CO₂ = Carbon dioxide in gas stream (percent).

%CO_{2 Basis} = Target correction basis for carbon dioxide (percent).

%O₂ = Oxygen in gas stream (percent).

 $%O_{2-Basis}$ = Target correction basis for oxygen (percent).

= Average concentration of oxygen in the atmosphere.

Instrumental Analyzer Calculations EPA Methods 3A, 6C, 7E and 10

Analyzer Calibration Error

$$A_E = \frac{C_{AR} - C_{Cyl}}{S_{FS}} \times 100$$

System Calibration Bias

$$B_{Sys} = \frac{C_{SR} - C_{AR}}{S_{FS}} \times 100$$

System Drift

$$D_{Sys} = \frac{C_{SR_F} - C_{SR_I}}{S_{ES}} \times 100$$

Gas Concentration Corrected for System Bias

$$C_{PPM} = \left(\overline{C} - C_{0_{SR}}\right) \frac{C_{Cyl}}{\left(\frac{C_{SR_{I}} + C_{SR_{F}}}{2}\right) - C_{0_{SR}}}$$

Conversion to Weight/Volume Units

$$C_{mg/dscm} = C_{PPM} \times \frac{M_{Gas}}{24.04}$$

Emission Rate Calculation

$$E_R = 6.243 \times 10^{-8} \times C_{mo/dscm} \times DSCFM \times 60$$

Where:

 $\begin{array}{lll} A_E & = & \text{Analyzer calibration error, percent of span.} \\ B_{Sys} & = & \text{System calibration bias, percent of span.} \\ D_{Sys} & = & \text{System calibration drift, percent of span.} \end{array}$

C = Average gas concentration response from analyzer, PPM (or %).

C_{OSR} = Average of initial and final system calibration bias check responses for the zero gas, PPM (or %).

C_{AR} = Analyzer direct calibration response, PPM (or %).

C_{Cvl} = Actual concentration of calibration gas, PPM (or %).

C_{SR} = System calibration response, PPM (or %).

C_{SRF} = Final system calibration response, PPM (or %).

C_{SRI} = Initial system calibration response, PPM (or %).

C_{PPM} = Concentration adjusted for system bias, PPM (or %).

C_{mg/dscm} = Constituent concentration converted to mg/dscm.

M_{Gas} = Molecular weight of target constituent, lb/lb-mole.

E_R = Emission rate of constituent, LB/HR.
S_{FS} = System measurement span, full scale.
DSCFM = Dry standard cubic feet per minute.
6.243x10⁻⁸ = Conversion factor, mg/cm to LB/CF.
60 = Conversion factor, minutes to hours.

Grede, LLC - Iron Mountain Test Protocol Page 36 of 53

Gas Concentration Calculations

Weight/Volume Concentration

$$C_{mg/dscm} = \frac{m}{V_{std}}$$

Volume/Volume Concentration

$$C_{PPM} = \frac{C_{mg/cm} \times 24.055}{MW}$$

Emission Rate

$$E_{Gas} = (6.242 \times 10^{-8}) \times 60 \times C_{mg/dscm} \times DSCFM$$

Where:

C_{mg/cm} = Compound Concentration, mg/cubic meter.

C_{ppm} = Compound Concentration, PPM v/v.

DSCFM = Volumetric Airflow, dry standard cubic feet per minute.

E_{Gas} = Compound Emission Rate, LB/HR.

m = Mass of Compound Collected, μg.

MW = Molecular Weight of Compound.

V_{std} = Standard Volume of Air Sample, liters.

 (6.242×10^{-8}) = Conversion From mg/dscm To LB/CF.

= Conversion From Minutes to Hours.

Volatile Organic Compound Calculations EPA Method 25A

Convert Analyzer Response to Carbon Basis

$$C_{ppm-C1} = C_{propane} \times 3$$

Methane Corrected Concentration (as carbon)

$$C_{ppm-(C1-CH4)} = C_{ppm-C1} - C_{ppm-CH4}$$

Weight/Volume Concentration (as carbon)

$$C_{VOC-C1} = \frac{C_{ppm-C1} \times 12.01}{24.04} = C_{ppm-C1} \times 0.5 \text{ or } C_{ppm-(C1-CH4)} \times 0.5$$

Emission Rate (as carbon)

$$E_{VOC-CI} = (6.242 \times 10^{-8}) \times 60 \times C_{VOC-CI} \times SCFM$$

Where:

C_{voc-C1} = VOC Concentration as Carbon, mg/scm. C_{ppm-C1} = VOC Concentration as Carbon, PPM v/v.

 $C_{\text{ppm-(C1-CH4)}}$ = Methane Corrected Concentration as Carbon, PPM v/v.

 $C_{ppm-CH4}$ = Methane Concentration, PPM v/v.

C_{propane} = Average THC Analyzer Concentration, PPM as

propane.

SCFM = Volumetric Airflow, Standard Cubic Feet Per

Minute.

 $E_{\text{voc-C1}}$ = VOC Emission Rate as Carbon, LB/HR.

12.01 = Molecular Weight of Carbon.

(6.242 x 10⁻⁸)= Conversion From mg/scm To LB/SCF. 60 = Conversion from Minutes to Hours.

Attachment 4 Method Summaries

EPA Method 1 specifies test location acceptability criteria and defines the minimum number of traverse points for representative sampling. Linear measurements from upstream and downstream flow disturbances and the duct equivalent diameter are compared and the distances related to number of diameters. A flow disturbance can be defined as anything that changes or upsets the direction of flow within the duct including bends, dampers, fans, shape or size transitions, and open flames. Method 1 stipulates that test ports should be located at least eight diameters downstream and two diameters upstream of any flow disturbance. The minimum acceptable criteria are two diameters downstream and 0.5 diameters upstream of flow disturbances. The test location must also be free of cyclonic or multidirectional flow. Once the distances have been determined, the values are used to select the minimum number of traverse points for representative sampling. Shorter distances require a greater number of traverse points. The test site configuration and measurement details are documented on EPA Method 1 Field Data Sheet.

Pace FSD conducts the method as written with no routine deviations. Project situational deviations are documented at the time of the test.

EPA Method 2 defines procedures used to measure linear velocity and volumetric flow rate of a confined gas stream. Using traverse points determined by EPA Method 1, multiple differential pressure measurements (pitot impact opening versus static pressure) are made using a pitot tube and differential pressure gauge. The individual measurements are averaged and combined with the gas density to calculate the average gas velocity. The velocity and duct cross-sectional area are used to calculate the volumetric flow rate. The volumetric flow rate is expressed as actual cubic feet per minute (ACFM), standard cubic feet per minute (SCFM), and dry standard cubic feet per minute (DSCFM). The technician maintains comprehensive test records on EPA Method 2 Field Data Sheet. Details of the equipment used to measure gas velocity include:

Pitot Tube: S-Type

Differential Pressure Gauge: Oil or Electronic Digital Manometer

Temperature Device: Type K Thermocouple

Barometer Type: Electronic Digital Barometer

Gas Density Determination: EPA Method 3
Gas Moisture Determination: EPA Method 4

Method Defined Quality Control:

Pitot tubes are verified on an annual basis.

- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.

- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.

Pace FSD conducts the method as written with no routine deviations. Project situational deviations are documented at the time of the test.

Modified EPA Method 3/3A defines procedures to quantify carbon dioxide (CO₂) and oxygen (O₂) concentrations from stationary combustion sources. An integrated gas sample is collected simultaneously with other emissions testing. Sample gases are extracted from an emission stream at a constant rate over the course of a test period equal to other test constituents. A Tedlar™, aluminized Mylar™, or other inert material bag contains the collected gas sample prior to sample analyses. Instrumental gas analyzers compliant to EPA Method 3A quantify the CO₂ and O₂ concentrations. Three point instrument calibrations (zero, mid, and high span) are performed to certify the instruments for gas analyses. The technician maintains comprehensive test records on EPA Method 3 and Gas Analysis Field Data Sheets. Equipment used for measuring gas composition includes:

Filter Material: Glass-fiber Filter or equivalent Moisture removal: Condenser and/or sorbent

Bag Material: Tedlar™ or Aluminized Mylar™ or equivalent

Gas Analyzer: Non-dispersive Infrared Detector (CO₂)

Paramagnetic Detector (O₂)

Calibration Gases: EPA Protocol 1

Method Defined Quality Control:

Sampling bag leak check.

Pace FSD conducts the method as written with the following routine sampling deviation:

In the field, the gas sample is analyzed within two hours of collection using a portable O_2 detector. At a later time, potentially outside of the eight hour hold period, the gas sample is re-analyzed using an EPA Method 3A (Orsat) gas analyzer to quantify CO_2 and O_2 concentrations.

The preliminary analysis result from the portable O_2 detector is used to validate the Orsat results. The results are acceptable when the O_2 result from the field and the O_2 result from the lab differ by $\leq 0.3\%$.

Project situational deviations are documented at the time of the test.

EPA Method 4 - Isokinetic defines procedures to measure the moisture content of emission gas streams from stationary sources. The moisture content of the gas stream is determined in conjunction with an isokinetic sampling train. Collected water condensate is measured from the back half of the isokinetic train. Method 4 equations convert the condensed liquid volume to a gas volume. The water vapor volume compared with the dry standard gas volume collected through the isokinetic train determines the moisture content of the emissions gas stream and is reported in percent by volume. Test records are included on the associated isokinetic method data sheet. Equipment used for measuring moisture content includes:

Probe Material: Borosilicate glass or Stainless Steel

Filter Media: Glass or Quartz fiber Impinger Train Material: Borosilicate Glass

Desiccant: Drierite

Condensate Measure: Graduated Cylinder or Electronic Scale

Desiccant Measure: Electronic Scale

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

Page F-49 of 60

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

Project situational deviations are documented at the time of testing.

EPA Method 5 defines procedures to measure particulate emissions from stationary sources. Using traverse points determined from EPA Method 1 and incorporating

procedures from EPA Methods 2, 3, and 4, a sample gas stream is isokinetically drawn from the emission stream. The particulate dry fraction collects in the sampling probe and on a quartz or glass-fiber filter. The probe and filter components of the sampling train are heated to 248°F (±25°F) to prevent moisture condensation and preserve sample integrity. The filtered sample gas stream passes through a series of impingers to condense water vapor and collect gaseous constituents. The first two impingers initially contain deionized water, and the third impinger is empty. A desiccant packed drying column follows the impingers to quantitatively collect the remaining moisture. An ice bath maintains the impinger train temperature (outlet) at 68°F or less. The impinger contents can be discarded or saved for additional analyses. Sample recovery and train clean up are performed after each run using procedures to ensure sample integrity and quantitative recovery. The train operator maintains comprehensive test records on EPA Method 5 Field Data Sheet, Isokinetic Particulate Sampling. Details of particulate testing are outlined below:

Nozzle/Probe Material: Stainless Steel and Borosilicate Glass

Filter Holder Material: Borosilicate Glass with glass or Teflon support Filter Media: Quartz or Glass-fiber, >99.95% efficient at

0.3µm

Impinger Train Material: Borosilicate Glass Impinger Reagents: Deionized Water

Recovery Reagents: Acetone

Deionized water

Control Train: Gas meter, orifice, differential pressure gauges,

pump, valves, temperature monitors and

controllers

Analytical Techniques: Gravimetric

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.

- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be non-contaminating.
- Sampling and recovery reagents are reagent grade or better.
- Analytical balances are calibrated and certified on an annual basis by an external service provider and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.
- Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

Project situational deviations are documented at the time of testing.

EPA Method 202 defines procedures to determine organic and inorganic condensable particulate matter (CPM) emissions from stationary sources. The CPM is collected in a condensate knock-out impinger and Teflon filter after filterable PM has been collected by either Method 5 or Method 201A. The gas stream is sample isokinetically following EPA Method 5 or Method 201A procedures. The gas stream is initially cooled with a spiral condenser using recirculated cool water to maintain a sample gas temperature of 85°F or Condensate from the spiral condenser collects in glass, stemless, dropout impingers. The intent of the condenser and dropout impinger is to minimize gas/water contact to reduce collection of unintended artifacts. The dropout impinger is followed by a second impinger to provide overflow capacity. A TeflonTM filter, also maintained at 85°F or less is used to collect any remaining organic CPM. The filter is followed by an iced, water prepared impinger and desiccant packed drying column to quantitatively collect remaining moisture. Immediately after sampling, the Method 202 CPM condensate is purged with nitrogen (N₂) to liberate dissolved sulfur dioxide (SO₂) gases. The contents of the dropout and backup impingers prior to the CPM filter are measured, weighed, and transferred to an appropriate sample bottle. CPM is quantitatively recovered with water, acetone, and hexane rinses. The CPM filter and water are extracted with hexane and combined with solvent rinses to determine the organic CPM. Following extraction, the water is dried and the residue measured as the inorganic CPM. The combination of both fractions represents the total condensable particulate matter (CPM). The train operator maintains comprehensive test records on appropriate Field Data Sheets.

Filter Holder Material: Glass, Stainless Steel (316 or equivalent), or Fluoropolymer-coated Stainless Steel

Grede, LLC - Iron Mountain

Test Protocol

Page 44 of 53

Pace Analytical

Grede, LLC - Iron Mountain

Filter Media: Teflon, >99.95% efficient at 0.3 um

Impinger Train Material: Borosilicate Glass Impinger Reagents: Deionized Water

Recovery Reagents: Acetone

Hexane

Deionized Water

Control Train: EPA Method 5 Analytical Technique: Gravimetric

Method Defined Quality Control:

- Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).
- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).
- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be non-contaminating.
- Sampling and recovery reagents are reagent grade or better.
- Analytical balances are calibrated and certified on an annual basis by an external service provider and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

Project situational deviations are documented at the time of testing.

EPA Method 6C defines procedures to measure sulfur dioxide (SO₂) from stationary sources. A stainless steel sampling probe and a heat-traced Teflon™ sampling line draw a sample of the gas stream from the duct to a thermo-electric gas conditioner to remove moisture. The sample gas stream is delivered to a fluorescence gas analyzer to quantify SO₂ emissions. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 SO2 standards specific to the target calibration range. A computerized data acquisition system logs SO₂ concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The operator also maintains comprehensive test records on the electronic Project Results Instrumental Workbook. Equipment used for SO₂ testing includes:

> Probe Material: Stainless Steel Moisture Removal: Thermo-electric

Transfer Line: Teflon™

Analytical Technique: Fluorescence Detector

Calibration Gas: EPA Protocol 1

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- System bias check is performed before and after each test.
- Analyzer bias is verified once per test.
- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of $\geq 2x$ the response time observed before starting data collection and recording stratification traverse point values.

Pace FSD conducts the method as written with no routine deviations. Project situational deviations are documented at the time of the test.

FSD 20-04074

EPA Method 9 defines procedures to evaluate the opacity of the plume emitted from a source stack. An independently certified visible emissions observer visually estimates the opacity of the non-moisture plume from the source. The observer positions themselves with the sun (or other light source) at their back and perpendicular to the plume when directly facing the emission point. The observer must also ensure a clear and contrasting background behind the plume. The certified observer then estimates (based on certification trials) the percentage of the background blocked by the source

Page F-53 of 60

plume (plume opacity) in increments of 5%. Observed opacity readings are recorded at 15-second intervals throughout the run. Tabulated results include run average and successive six-minute averages. The spreadsheet software also searches the data set for any group of 24 consecutive readings that yield the highest possible six-minute average. The train operator maintains comprehensive test records on the Visible Emission Observation Form. Details of the opacity evaluation are outlined below:

Evaluation Period: One hour Observation Frequency: 15 Seconds

No. of Observations: 240 No. of Six-minutes Averages: 10

Observer Certifications: Semi-annual

Pace FSD conducts the method as written with no routine deviations. Project situational deviations are documented at the time of the test.

In-Stack Method: Method 10 defines procedures to measure carbon monoxide (CO) emissions from stationary sources. A stainless steel sampling probe and a heat-traced Teflon™ sampling line draw a sample of the gas stream from the duct to a thermoelectric gas conditioner to remove moisture. The sample gas stream is delivered to a gas filter correlation non-dispersive infrared analyzer to quantify CO concentrations. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 CO standards specific to the target calibration range. A computerized data acquisition system logs CO concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The operator also maintains comprehensive test records in the electronic Project Results Instrumental Workbook. Equipment used to conduct Method 10 stack method testing includes:

Probe Material: Stainless Steel Moisture Removal: Thermo-electric

Transfer Line: Teflon™

Analytical Technique: Non-dispersive Infrared

Calibration Gas: EPA Protocol 1

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- System bias check is performed before and after each test.
- Analyzer bias is verified once per test.

- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of $\geq 2x$ the response time observed before starting data collection and recording stratification traverse point values.

Pace FSD conducts the method as written with no routine deviations. Project situational deviations are documented at the time of the test.

EPA Method 25A defines procedures used to measure total hydrocarbons from stationary sources. A stainless steel sampling probe and heat-traced Teflon™ sampling line draw a sample of the gas stream from the duct directly to the analytical system. A total hydrocarbon monitor utilizing a flame ionization detector (FID) quantifies total hydrocarbon concentrations. Zero grade cylinder air or a zero gas generator provides zero gas. Span gases include varying concentrations of EPA Protocol 1 propane (C₃H₈) standards specific to the target calibration range. A computerized data acquisition system logs THC concentrations for one-minute averages. The logged results are integrated to test periods and tabulated with standardized and validated spreadsheets in Microsoft Excel. The analyzer results are multiplied by 3 to report results as carbon (C₁). The operator also maintains comprehensive test records in the electronic Project Results Instrumental Workbook. Equipment used for THC testing includes:

> Probe Material: Stainless Steel Teflon™, (heated) Transfer Line:

Analytical Technique: Flame Ionization Detector (FID)
Calibration Gas: FPA Protocol 1

Calibration Gas: **EPA Protocol 1**

Method Defined Quality Control:

- Sampling system leak-checks are performed before each test and following any component change. Absence of leaks is confirmed through the bias check after each run.
- Calibration gas standards of the highest quality, Protocol 1 or traceable to NIST, are used in calibrations.
- Analyzer calibration error is determined before initial run and after any failed bias or drift test.
- Analyzer bias is verified once per test.
- Calibration drift test is performed after each test run.
- System response time is determined during initial sampling system bias test.
- Stratification test is performed prior to first run.
- Purge time of $\geq 2x$ the response time observed before starting data collection and recording stratification traverse point values.

Page F-55 of 60

Pace FSD conducts the method as written with no routine deviations.

Project situational deviations are documented at the time of the test.

Multimetal: EPA Method 29 defines procedures to measure metal emissions from stationary sources. Using traverse points determined from EPA Method 1 and incorporating procedures from EPA Methods 2, 3, 4, and 5, a sample gas stream is isokinetically drawn from the emission stream. The particulate fraction of metals emissions collects in the sampling probe and on a quartz-fiber filter. The probe and filter components of the sampling train are heated to 248°F (±25°F) to prevent moisture condensation and preserve sample integrity. The filtered sample gas stream passes through a series of reagent-filled impingers to collect the vapor fraction of metals emissions. The first two impingers are prepared with a 5% nitric acid (HNO₃)/10% hydrogen peroxide (H₂O₂) solution and are followed by a dry impinger. Impingers 4 and 5 are prepared with a 4% potassium permanganate (KMnO₄)/10% sulfuric acid (H₂SO₄) absorbing solution followed by another dry impinger. A desiccant packed drying column follows the impingers to quantitatively collect the remaining moisture. A dry impinger may precede the reagent impingers for additional condensate capacity in high moisture sources. An ice bath maintains the impinger train temperature (outlet) at 68°F or less. Sample recovery and train clean-up are performed after each run using procedures to ensure sample integrity and quantitative recovery. The train operator maintains comprehensive test records on EPA Method 29 Field Data Sheet. Details of metals testing are outlined below:

Nozzle/Probe Material: Quartz and Borosilicate Glass

Filter Holder Material: Borosilicate Glass and Teflon™ Filter Support Guartz Fiber, >99.95% efficient at 0.3 µm

Impinger Train Material: Borosilicate Glass

Impinger Reagents: 5% HNO₃ and 10% H₂O₂

4% KMnO₄ and 10% H₂SO₄

Recovery Reagents: Acetone (front-half only)

0.1 N HNO₃ (front-half only) 4% KMnO₄ and 10% H₂SO₄

8N HCI

Deionized Water

Control Train: EPA Method 5

Analytical Technique: Inductively Coupled Plasma-Mass Spectrometry

Cold Vapor Atomic Absorption Spectroscopy

Method Defined Quality Control:

Dry gas meters are verified by wet test meter comparison for a three-point "as found" determination and a full five-point calibration every 500 CF, or 90 days (first occurring). The Pace standard "as left" calibration factor is within ± 1% (the method standard is ± 2%).

- Sample rate orifices are calibrated every 500 CF, or 90 days (first occurring).

- Gas meter volumes are verified at each traverse point by calculating the expected gas volume for each interval and comparing the gas volume metered during the interval.
- Pitot tubes are verified on an annual basis.
- Temperature device operation is confirmed for single point temperature and polarity for each test. Temperature devices undergo a full multipoint verification on an annual basis.
- Electronic barometers are verified for accuracy and calibrated on a semi-annual basis. Aneroid barometers are not used.
- Electronic Digital Manometers (EDMs) are verified for accuracy and calibrated on a semi-annual basis. EDMs are operationally confirmed and leak checked for each run.
- Sampling system leak-checks are performed before and after each run and prior to any component change during a run.
- Sampling is performed at an isokinetic rate between 90 and 110%.
- A field blank is collected to verify site conditions to be non-contaminating.
- Sampling and recovery reagents are reagent grade or better.
- Multipoint analytical systems calibration.
- Analytical calibration is verified hourly.
- Field scales are verified for accuracy over the entire range of use on an annual basis and verified before each use using stainless steel reference weights traceable to national standards maintained by NIST.

The metering system verification cited above is a method QC alternative but considered more rigorous. Pace FSD conducts the method as written with no routine sampling deviations.

Project situational deviations are documented at the time of testing.

Reference Standards. Pace implements a comprehensive program to verify and validate reference standards to further enhance and support method standards. Primary reference standards are directly comparable to a reference base. The National Institute of Standards and Technology (NIST) maintains primary reference materials or very closely traceable secondary standards. These materials are then used to certify secondary or transfer standards for use in quality management programs. Secondary reference standards are calibrated with primary standards using a high precision comparator. Materials that have a documented path to the primary standard are often referred to as traceable to NIST or NIST traceable. Where commercially and feasibly available, Pace uses primary reference standards to perform calibrations and verifications. In other cases, Pace maintains traceable secondary reference standards. Primary and secondary reference standards are used to calibrate and verify equipment and materials. Pace reference standards are calibrated by external vendors that have a formal, registered quality system. Calibrations are performed with equipment and materials that are traceable to NIST.

Quality Controls (not defined in test methods):

Sampling/Recovery Reagents are Reagent Grade or better.

- Reference Temperature Simulator is calibrated annually.
- Reference Pressure Transducer is calibrated annually.
- Reference DryCal airflow meter is calibrated annually.
- Mercury Barometer is a primary reference standard.
- Liquid Manometers are primary reference standards.
- Angle Blocks, Gauge Blocks, and Measuring Rods are verified every five years.
- Angle Gauges are verified each day of use.
- Calipers are verified annually.
- Stainless steel reference weights are verified every five years.
- Analytical balances are calibrated annually and verified at each use.
- Field balances are calibrated annually and verified at each use.

Pace Analytical FSD 20-04074

Attachment 5 Quality Statement

Quality Assurance/Quality Control

Quality Management System. To produce data that is complete, representative, and of known precision and accuracy, Pace Analytical Field Services Division has designed and implemented a rigorous and innovative quality management system. The system was initially based on the USEPA Quality Assurance Handbook for Air Pollution Measurement Systems and continually developed as procedural complexities and standards progressed. The Field Services Division Quality Management System (Pace FSD QMS) is now accredited by the American Association of Laboratory Accreditation (A2LA) to comply with three national accreditation standards:

- ASTM D7036 Standard Practice for Competence of Air Emission Testing Bodies (AETB).
- ISO 17025 General Requirements for the Competence of Testing and Calibration Laboratories
- The NELAC Institute General Requirements for Field Sampling and Measurement Organizations (FSMO)

The Pace FSD QMS includes:

- Quality Programs
 - Ethics policy and training.
 - Corrective Action and Preventative Action (CAPA).
 - Continuous Process Improvement.
 - Documented Demonstrations of Capability.
 - Internal and third party proficiency testing.
 - Qualified Individual program (QI)
 - Internal and external audits.
 - Annual management reviews.
- Documentation and Traceability
 - High quality traceable standards and reagents.
 - Reagent tracking and management system.
 - Use of matrix spikes, duplicate analysis, internal standards, and blanks.
 - Validated workbooks for data collection and results reporting.
 - Electronic quality, training, and safety documents available in-field.
 - Sample security and preservation procedures.
 - Chain of custody maintained from sample collection through laboratory analysis.
- Equipment Calibration
 - Full time staff dedicated to equipment maintenance and calibration.

All equipment and instruments are calibrated by trained personnel on a frequency that meets or exceeds method requirements. Documentation of the Pace Analytical Quality Assurance Program will be available on-site.