1.0 EXECUTIVE SUMMARY

MOSTARDI PLATT conducted a compliance test program for Holcim (US) Inc. d/b/a Lafarge Alpena at the Alpena Plant in Alpena, Michigan, on the Clinker Coolers KG5 Fan 92 and 93 Stacks on July 29, 2021. This report summarizes the results of the test program and test methods.

The test locations, test date, and test parameter are summarized below.

TEST INFORMATION					
Test Locations	Test Date	Test Parameter			
Clinker Coolers KG5 Fan 92 and 93 Stacks	July 29, 2021	Filterable Particulate Matter (FPM)			

The purpose of the test program was to demonstrate compliance with Title 40, Code of Federal Regulations, Part 60 (40CFR60), and 40CFR63, Subpart LLL "National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants."

Test Location	Parameter	Date	Emission Rate	Emission Limit	CPMS SSOL*
Clinker Cooler KG5 Fan 92 Stack	FPM	7/29/2021	0.013 lb/ton	0.07 lb/ton	6.33
Clinker Cooler KG5 Fan 93 Stack	FPM	7/29/2021	0.018 lb/ton	0.07 lb/ton	5.53

^{*}The CPMS SSOL was based on mA recorded by CPMS during testing.

The identifications of the individuals associated with the test program are summarized below.

TEST PERSONNEL INFORMATION						
Location	Address	Contact				
Test Facility	Holcim (US) Inc. Alpena Plant 1435 Ford Avenue Alpena, MI 49707	Mr. Travis Weide Area Environmental & Public Affairs Manager 989-358-3321 travis.weide@lafargeholcim.com				
Testing Company Supervisor	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Mr. Daniel Kossack Project Supervisor 630-993-2100 (phone) ctrezak@mp-mail.com				
Testing Company Personnel		Mr. Scott McGough Project Supervisor Mr. Jeff Meyerhoff Test Engineer Mr. Donald Jordan Test Engineer Mr. William Petrovich Test Engineer				

2.0 TEST METHODOLOGY

Emission testing was conducted following the United States Environmental Protection Agency (USEPA) methods specified in 40CFR60, Appendix A in addition the Mostardi Platt Quality Manual. Schematics of the test section diagrams and sampling trains used are included in Appendix A and B respectively. Calculation nomenclature are included in Appendix C. Laboratory analysis for each test run are included in Appendix D. The computerized reference method test data is included in Appendix E. CEM data and process data as provided by Holcim (US) Inc. are also included in Appendix F.

The following methodologies were used during the test program:

Method 1 Sample and Velocity Traverse Determination

Test measurement points were selected in accordance with USEPA Method 1, 40CFR60, Appendix A. The characteristics of the measurement location are summarized below.

	TEST POINT INFORMATION									
Test Location	Stack Dimensions	No. of Ports	Port Length (Inches)	Upstream Diameters	Downstream Diameters	Test Parameter	Number of Sampling Points			
Clinker Cooler KG5 Fan 93 Stack (Identical)	62" x 75.5"	7	4.5"	>0.5	>2.0	FPM	28			

			·
		,	

Method 2 Volumetric Flow Rate Determination

Gas velocity was measured following USEPA Method 2, 40CFR60, Appendix A, for purposes of calculating stack gas volumetric flow rate and emission rates on a lb/hr basis. A 9-foot-long S-type pitot tube, 0-10" differential pressure gauge, and K-type thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Copies of field data sheets are included in Appendix G. Calibration data are presented in Appendix H. This testing met the performance specifications as outlined in the Method.

Method 3 Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Per section 8.6 of EPA Method 2 (i.e., "for processes emitting essentially air, an analysis need not be conducted"), carbon dioxide and oxygen (CO₂/O₂) analysis was not be performed per EPA Method 3 or 3A. Instead, a dry molecular weight of 29.0 was assumed.

Method 5 Filterable Particulate Matter (FPM) Determination

Particulate matter was sampled in accordance with USEPA Method 5, 40CFR60, Appendix A. The particulate matter sampling train was manufactured by Environmental Supply Corporation and meets all specifications required by Method 5. Velocity pressures were determined simultaneously during sampling with an S-type pitot tube and inclined manometer. All temperatures will be measured using K-type thermocouples with calibrated digital temperature indicators. The probe and filter temperatures were maintained at 248°F */_ 25°F throughout sampling.

The filter media are high purity quartz that meet all requirements of Method 5. All sample contact surfaces of the train were washed with HPLC reagent-grade acetone. These washes were placed in sealed and marked containers for analysis.

All sample recoveries were performed at the test site by the test crew. All final particulate sample analyses were performed by Mostardi Platt personnel at the laboratory in Elmhurst, Illinois.

Laboratory analysis data are found in Appendix D. Calibration data are presented in Appendix H.

3.0 TEST RESULT SUMMARIES

Client:

Holcim (US) Inc.

Facility:

Alpena Cement Plant

Test Location: Clinker Cooler KG5 Fan 92 Test Method:

Source Condition	Normal	Normal	Normal	
Date	7/29/21	7/29/21	7/29/21	
Start Time	8:00	10:24	12:38	
End Time	9:33	11:59	14:13	
	Run 1	Run 2	Run 3	Average
Stack Cond	ditions			
Average Gas Temperature, °F	177.8	161.0	162.6	167.1
Flue Gas Moisture, percent by volume	2.0%	1.1%	2.9%	2.0%
Average Flue Pressure, in. Hg	29.19	29.19	29.19	29.19
Gas Sample Volume, dscf	38.165	35.865	37.354	37.128
Average Gas Velocity, ft/sec	15.009	13.844	14.479	14.444
Gas Volumetric Flow Rate, acfm	29,278	27,004	28,244	28,175
Gas Volumetric Flow Rate, dscfm	23,185	22,152	22,696	22,678
Gas Volumetric Flow Rate, scfm	23,649	22,402	23,371	23,141
Isokinetic Variance	103.0	101.3	103.0	102.4
Clinker Production Rate, ton/hr	48.3	46.8	49.2	48.1
CPMS Response, mA	4.60	4.63	4.53	4.59
Filterable Particulate	Matter (Me	thod 5)		
grams collected	0.00738	0.00900	0.00715	0.00784
grains/acf	0.0024	0.0032	0.0024	0.0027
grains/dscf	0.0030	0.0039	0.0030	0.0033
lb/hr	0.593	0.735	0.575	0.634
Ib/ton of clinker	0.012	0.016	0.012	0.013
Site Specific Operating Limi	t (SSOL) D	<u>etermination</u>		
Source Emissions Limit, Ib/ton		0.0	07	
CPMS Zero, mA		4.0	00	
Filterable Particulate Matter, % of Emissions Limit		18.	9%	
SSOL		6.3	33	

		1	

				1	<u>)</u>
Client:	Holcim (US) Inc.			*	
Facility:	Alpena Cement Plant		V.	1	,C
Test Location:	Clinker Cooler KG5 Fan 93		7		
Test Method:	5			The state of the s	
	Source Condition	Normal	Normal	Normal	
	Date	7/29/21	7/29/21	พยาศาสา	`@``\
	Start Time	8:00	10:24	11286	
	End Time	9:33	11:59	14:13	
	Lita Tille	9.55 Run 1	Run 2	Run 3	Average
	Stack Cond		IXUII Z	IXIII J	Average
	Average Gas Temperature, °F	110.5	107.4	109.3	109.1
Flu	Gas Moisture, percent by volume	2.7%	2.5%	1.5%	2.2%
	Average Flue Pressure, in. Hg	29.19	29.19	29.19	29.19
	Gas Sample Volume, dscf	37.16	35.94	35.781	36.294
	Average Gas Velocity, ft/sec	29.902	28.822	28.477	29.067
	Gas Volumetric Flow Rate, acfm	58,329	56,221	55,548	56,699
	Gas Volumetric Flow Rate, dscfm	51,261	49,790	49,498	50,183
	Gas Volumetric Flow Rate, scfm	52,671	51,043	50,267	51,327
	Isokinetic Variance	102.9	102.5	102.6	102.7
	Clinker Production Rate, ton/hr	107.5	106.6	105.8	106.6
	CPMS Response, mA	4.52	4.54	4.51	4.52
	Filterable Particulate	Matter (Me	thod 5)		
	grams collected	0.00825	0.01397	0.00926	0.01049
	grains/acf	0.0030	0.0053	0.0036	0.0040
	grains/dscf	0.0034	0.0060	0.0040	0.0045
	lb/hr	1.505	2.560	1.694	1.920
	lb/ton of clinker	0.014	0.024	0.016	0.018
	Site Specific Operating Limi	t (SSOL) D			
	Source Emissions Limit, Ib/ton		0.0		
Pila bl. P. C	CPMS Zero, mA		4.0		
Filterable Partic	culate Matter, % of Emissions Limit		25.		
	SSOL		5.5	53	

•				
			-	
				•

4.0 CERTIFICATION

MOSTARDI PLATT is pleased to have been of service to Holcim (US) Inc. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

As the program manager, I hereby certify that this test report represents a true and accurate summary of emissions test results and the methodologies employed to obtain those results. The test program was performed in accordance with the test methods and the Mostardi Platt Quality Manual, as applicable.

APPENDICES

Appendix A - Test Section Diagram

©Mostardi Platt

EQUAL AREA TRAVERSE FOR RECTANGULAR DUCTS

	1321 (Ann 2013) and an annual statement of the statement	x	X	x	X	X	X	x
	Acceptable of section	х	X	x	x	x	x	х
62"	A STATE OF THE STA	X	x	x	x	x	x	х
	A Self-top Miles Conference to the Conference to	X	x	x	x	x	x	x
↓								

75.5"-

Project: Holcim (US) Inc.

Alpena, Michigan

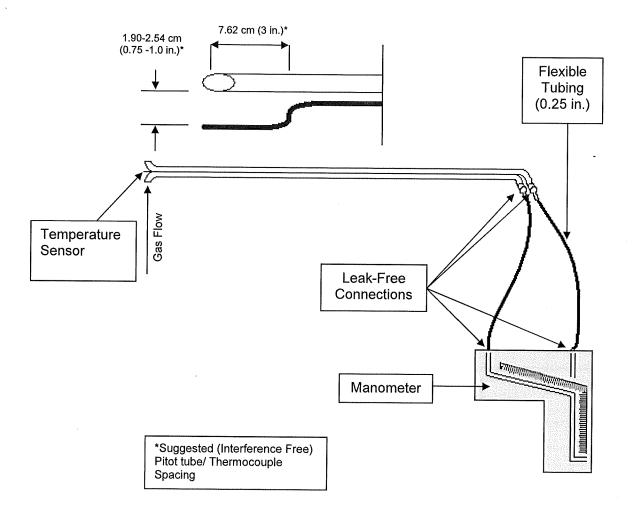
Test Location: Clinker Cooler KG5 Fan 92 and 93 Stacks

(Each Identical)

Test Date: July 29, 2021

Stack Dimensions: 62" x 75.5"

Stack Area: 32.51 Square Feet

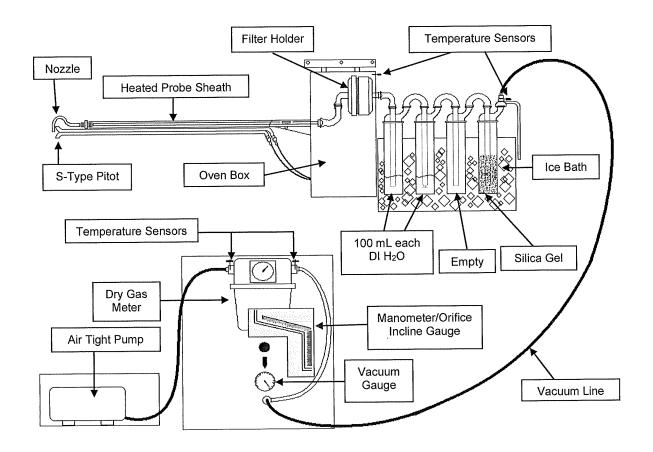

No. Points Per Port: 4

No. of Ports: 7

Appendix B - Sample Train Diagrams

Project No. M2122909A Clinker Coolers KG5 Fan 92 and 93 Stacks

USEPA Method 2 – Type S Pitot Tube Manometer Assembly



ATD-001 USEPA Method 2

Rev. 1.1

8/17/2015

USEPA Method 5- Particulate Matter Sample Train Diagram

