TRC

CONTINUOUS EMISSIONS MONITORING SYSTEM RELATIVE ACCURACY TEST AUDIT DETERMINATION

Performed At USG-Otsego Paper, Inc. USG-Otsego Facility EUTURBINE1 (North – Unit 24) EUTURBINE2 (South – Unit 25) Otsego, Michigan

Test Dates April 2 and 5, 2024

Report No. TRC Environmental Corporation Report 583368A

Report Submittal Date May 8, 2024

TRC Environmental Corporation 207C Eisenhower Lane South Lombard, Illinois 60148 USA

T (312) 533-2042

Report Certification

I certify that to the best of my knowledge:

- Testing data and all corresponding information have been checked for accuracy and completeness.
- Sampling and analysis have been conducted in accordance with the approved protocol and applicable reference methods (as applicable).
- All deviations, method modifications, or sampling and analytical anomalies are summarized in the appropriate report narrative(s).

Davi Fini

Gavin Lewis Project Manager

May 8, 2024 Date

TRC was operating in conformance with the requirements of ASTM D7036-04 during this test program.

Jon T. Howard TRC Emission Testing Manager

TRC Report Number 583368A

TRC

TABLE OF CONTENTS

1.0 INTRODUCTION 1.1 Project Contact Information	
2.0 FACILITY DESCRIPTION	5
3.0 SUMMARY OF RESULTS 3.1 CEMS RATA Test Matrix 3.2 CEMS RATA Results	5
4.0 DISCUSSION OF RESULTS	7
5.0 TEST PROCEDURES 5.1 Determination of the Concentration of Gaseous Pollutants 5.1.1 O ₂ Determination by USEPA Method 3A 5.1.2 NO _x Determination by USEPA Method 7E 5.1.3 Determination of F-Factors by USEPA Method 19	7 8 8
6.0 QUALITY ASSURANCE PROCEDURES	8
7.0 TEST RESULTS SUMMARIES	.0

APPENDIX

Part 75 ECMPS Reporting Information	
Qualified Individual Certificate(s)	20
Continuous Emissions Monitoring System (CEMS) and Plant Operating Data	22
Sample Location Information	44
Sampling Train Diagram	50
Calculation Nomenclature and Formulas	51
Processed Field Data Sheets	55
Gaseous Calibration Data	69
NO2-to-NO Conversion Data	
Response Time Data	91
Analyzer Interference Data	
Calibration Gas Certification Data	
EGLE Acknowledgement Letter and Test Protocol	

CONTINUOUS EMISSIONS MONITORING SYSTEM RELATIVE ACCURACY TEST AUDIT DETERMINATION

1.0 INTRODUCTION

TRC Environmental Corporation (TRC) performed an oxide of nitrogen (NO_x) and oxygen (O₂) relative accuracy test audit (RATA) determination of the continuous emission monitoring system (CEMS) associated with the natural gas fired combustion turbines EUTURBINE1 (North-Unit 24) and EUTURBINE2 (South-Unit 25) on April 2 and 5, 2024 at the USG-Otsego Paper, Inc. facility located in Otsego, Michigan. The tests were authorized by and performed for USG-Otsego Paper, Inc.

This test program was performed to demonstrate compliance with Michigan Department of Environmental Quality (MDEQ) Renewable Operating Permit (ROP) No. MI-ROP-A0023-2019b. The test program was conducted according to the TRC Test Protocol 583368 dated February 6, 2024.

Participants		and the second second second
Test Facility	USG-Otsego Paper, Inc. USG-Otsego Facility 320 N. Farmer Street Otsego, Michigan 49078	Franklin Knowles Environmental Compliance Supervisor 269-384-6351 (phone) <u>fknowles@usg.com</u>
Air Emissions Testing Body (AETB)	TRC Environmental Corporation 207C Eisenhower Lane South Lombard, Illinois 60148	Gavin Lewis Project Manager 219-613-0163 (phone) glewis@trccompanies.com

1.1 Project Contact Information

The tests were coordinated through Franklin Knowles, Environmental Compliance Supervisor, of Otsego Paper and conducted by Rome Rothgeb, Ryan Novosel and Gavin Lewis of TRC. Documentation of the on-site ASTM D7036-04 Qualified Individual(s) (QI) can be found in the appendix to this report.

Cody Yazzie from the Michigan Department of Environment, Great Lakes, and Energy (EGLE), Air Quality Division (AQD) observed the testing.

2.0 FACILITY DESCRIPTION

Otsego Paper, Inc is a subsidiary of the United States Gypsum Company. The facility manufactures gypsum paper.

The Otsego Paper facility produces electricity from two (2) Mars gas turbines. Turbine 1 is a Mars T-15000 gas turbine and Turbine 2 is a Mars T-16000 designated as EUTURBINE1 and EUTURBINE2, with a maximum heat input rate of 141.5 million British thermal unit per hour (MMBtu/hr) on EUTURBINE1 and a maximum heat input rate of 150.8 MMBtu/hr on EUTURBINE2 at low temperature operating conditions as measured on a higher heating value (HHV) basis. Energy is generated at the combustion turbine by drawing in ambient air by means of burning fuel and expanding the hot combustion gases in the turbine. The hot exhaust gases of each turbine are directed to a multi-pressure ABCO heat recovery steam generator (HRSG). There are also natural gas-fired duct burners associated with each HRSG and coupled to a turbine, designated as EUDUCTBURNER1 and EUDUCTBURNER2, respectively.

The facility has one paper machine, No. 1 Paper Machine (EUPAPERMACHINE1), used to produce paper from 100 percent recycle stock and corrugated material. The paper machine has three fourdriniers and is capable of producing a triple ply sheet.

Plant capacity for base load operations is 11 megawatts (MW) for each turbine and 160,000 pounds per hour (lb/hr) of steam for each HRSG.

EUTURBINE1 has a maximum heat input rate of 141.5 MMBtu/hr, and EUTURBINE2 has a maximum heat input rate of 150.8 MMBtu/hr at low temperature operating conditions.

3.0 SUMMARY OF RESULTS

Location	Parameter	Reference Methods (RM)	No. of Test Runs	Test Run Length (min)
	NOx	7E, 3A	10	21
EUTURBINE1 (Unit 24)	O ₂	3A	10	21
	NOx	7E, 3A	10	21
EUTURBINE2 (Unit 25)	O ₂	3A	10	21

3.1 CEMS RATA Test Matrix

3.2 CEMS RATA Results

			EUTURBINE1	Unit 24)			
			Performance	Performance Specifications (40CFR75)			
Load (MW)	Parameter	Units	Semi-Annual	Annual	Relative Accuracy	Bias Adjustment Factor	
~10.3	NOx	lb/MMBtu	7.5% < RA ≤ 10.0%	RA ≤ 7.5%	4.28 %	1.025	
					-		
	1.		Performance	Specifications (40CFR60)	CEMS P	erformance	
Load (MW)	Parameter	Units	Performance Specification No.	Specifications (40CFR60) Acceptance Criteria	Re	erformance lative curacy	
	Parameter NO _X	Units ppmvd @ 15% O ₂	Specification		Re Ac	lative	

			EUTURBINE2	(Unit 25)				
			Performance	Performance Specifications (40CFR75)				
Load (MW)	Parameter	Units	Semi-Annual	Annual	Relative Accuracy	Bias Adjustment Factor		
~11.3	NOx	lb/MMBtu	7.5% < RA ≤ 10.0%	RA ≤ 7.5%	4.48 %	1.043		
			Performance	Specifications (40CFR60)	CEMS P	erformance		
Load (MW)	Parameter	Units	Specification No.	Acceptance Criteria		lative curacy		
	NOx	ppmvd @ 15% O ₂	2	RA ≤ 20%	4.	75 %		
~11.3	NOX	ppintu @ 15/0 02				15 /0		

Based on the above summary of results, the facility CEMS passed the RATA. The complete test results from this program are tabulated in Section 7.0

4.0 DISCUSSION OF RESULTS

The data acquisition and handling system (DAHS) computer printout for the same time periods as TRC's reference method (RM) testing was used to determine the relative accuracy (RA) of the CEMS. The watches of the test crew were synchronized with the facility's CEM system prior to the commencement of and during each test run. A minimum of ten (10) RATA runs, each 21-minutes in duration, were performed at each turbine unit location while operating greater than 75% of maximum load. The CEMS RATA data, comprised of twenty-one (21) minutes of data points for each test run, was provided to TRC by the facility.

Source operation appeared normal during the entire test program. Each turbine was operated near base load during the RATA.

Data collected from the O_2 and NO_x analyzers were averaged for each test run. A standard fuel factor of 8,710 dscf/MMBtu was used to calculate the NO_x emission rates on a pound per million Btu basis (lb/MMBtu) following the guidelines of USEPA Method 19.

5.0 TEST PROCEDURES

All testing, sampling, analytical, and calibration procedures used for this test program were performed in accordance with the methods presented in the following sections. Where applicable, the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods, USEPA 600/R-94/038c, September 1994 was used to supplement procedures.

5.1 Determination of the Concentration of Gaseous Pollutants

Concentrations of the pollutants in the following sub-sections were determined using one sampling system. The number of points at which sample was collected was determined in accordance with 40CFR75 Appendix A, Section 6.5.6. Sampling was performed at three points (16.7%, 50%, and 83.3%) across one diameter of each turbine exhaust stack.

A straight-extractive sampling system was used. A data logger continuously recorded pollutant concentrations and generated one-minute averages of those concentrations. All calibrations and system checks were conducted using USEPA Protocol gases. Three-point linearity checks were performed prior to sampling, and in the event of a failing system bias or drift test (and subsequent corrective action). System bias and drift checks were performed using the low-level gas and either the mid- or high-level gas prior to and following each test run.

The Low Concentration Analyzers (those that routinely operate with a calibration span of less than 20 ppm) used by TRC are ambient-level analyzers. Per Section 3.12 of Method

7E, a Manufacturer's Stability Test is not required for ambient-level analyzers. Analyzer interference tests were conducted in accordance with the regulations in effect at the time that TRC placed an analyzer model in service.

5.1.1 O₂ Determination by USEPA Method 3A

This method is applicable for the determination of O_2 concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The O_2 analyzer was equipped with a paramagnetic-based detector.

5.1.2 NO_X Determination by USEPA Method 7E

This method is applicable for the determination of NO_x concentrations in controlled and uncontrolled emissions from stationary sources only when specified within the regulations. The NO_x analyzer used a photomultiplier tube to measure the light emitted from the chemiluminescent decomposition of NO₂. A NO_x converter efficiency test was performed on site. The results show the NO_x analyzer passed. Results are appended.

5.1.3 Determination of F-Factors by USEPA Method 19

This method is applicable for the determination of the pollutant emission rate using oxygen (O_2) concentrations and the appropriate F factor (the ratio of combustion gas volumes to heat inputs) and the pollutant concentration. The appropriate F-Factor was selected from Table 19-2 of Method 19.

6.0 QUALITY ASSURANCE PROCEDURES

TRC integrates our Quality Management System (QMS) into every aspect of our testing service. We follow the procedures specified in current published versions of the test Method(s) referenced in this report. Any modifications or deviations are specifically identified in the body of the report. We routinely participate in independent, third-party audits of our activities, and maintain:

- Accreditation from the Louisiana Environmental Laboratory Accreditation Program (LELAP).
- Accreditation from the Stack Testing Accreditation Council (STAC) and the American Association for Laboratory Accreditation (A2LA) that our operations conform with the requirements of ASTM D 7036 as an Air Emission Testing Body (AETB).

These accreditations demonstrate that our systems for training, equipment maintenance and calibration, document control and project management will fully ensure that project objectives are achieved in a timely and efficient manner with a strict commitment to quality. All calibrations are performed in accordance with the test Method(s) identified in this report. If a Method allows for more than one calibration approach, or if approved alternatives are available, the calibration documentation in the appendices specifies which approach was used. All measurement devices are calibrated or verified at set intervals against standards traceable to the National Institute of Standards and Technology (NIST). NIST traceability information is available upon request.

ASTM D7036-04 specifies that: "AETBs shall have and shall apply procedures for estimating the uncertainty of measurement. Conformance with this section may be demonstrated by the use of approved test protocols for all tests. When such protocols are used, reference shall be made to published literature, when available, where estimates of uncertainty for test methods may be found." TRC conforms with this section by using approved test protocols for all tests.

7.0 TEST RESULTS SUMMARIES

TRC Report Number 583368A

RATA Type:Nitrogen Oxides (NOx), Ib/MMBtuRegulation:40CFR75RM Used:3A, 7E

Custome	r:	USG-Otsego Paper			Project #:	583368		
Unit ID:		EUTURBINE1	North-U2	4)	CEM Model:	Horiba/CMA-E	C622	
Sample L	_oc:	Stack			CEM Serial #:	41678240071		
Use?					RM	CEM	(RM-CEM)	
1 = Y	Test		Start	End	NOX	NO _X	Difference	Unit Load
0 = N	Run	Date	Time	Time	lb/MMBtu	lb/MMBtu	(di)	(MW)
1	1	4/2/2024	7:35	7:55	0.022	0.021	0.001	10.3
1	2	4/2/2024	8:10	8:30	0.023	0.022	0.001	10.4
1	3	4/2/2024	8:45	9:05	0.023	0.022	0.001	10.4
1	4	4/2/2024	9:19	9:39	0.023	0.022	0.001	10.3
1	5	4/2/2024	9:54	10:14	0.022	0.022	0.000	10.3
1	6	4/2/2024	10:29	10:49	0.022	0.021	0.001	10.2
1	7	4/2/2024	11:03	11:23	0.023	0.023	0.000	10.3
1	8	4/2/2024	11:37	11:57	0.022	0.022	0.000	10.2
1	9	4/2/2024	12:15	12:35	0.022	0.022	0.000	10.2
0	10	4/2/2024	12:53	13:13	0.022	0.021	0.001	10.2

n	9
t(0.025)	2.306
Mean RM Value	0.022 RM avg
Mean CEM Value	0.022 CEM av
Sum of Differences	0.005 di
Mean Difference	0.0006 d avg
Sum of Differences ²	0.000 di^2
Standard Deviation	0.001 sd
Confidence Coefficient	0.000 CC
RA based on RM	4.28 %
Bias Adjustment Factor	1.025 BAF

RATA Type: Regulation: RM Used:

I

Nitrogen Oxides (NO_x), ppmvd at 40CFR60 7E

15% Oxygen

Custome	er:	USG-Otsego Pa	aper		Project #:	583368		
Unit ID:		EUTURBINE1 (North-U24)		CEM Model:	Horiba/CMA-E	C622	
Sample I	_OC:	Stack			CEM Serial #:	41678240071		
		- C			RM	CEM	(RM-CEM)	
Use?					NO _X	NO _X		
1 = Y	Test		Start	End	ppmvd at	ppmvd at	Difference	Unit Load
0 = N	Run	Date	Time	Time	15% Oxygen	15% Oxygen	(di)	(MVV)
1	1	4/2/2024	7:35	7:55	6.0	5.8	0.200	10.3
0	2	4/2/2024	8:10	8:30	6.3	6.0	0.300	10.4
1	3	4/2/2024	8:45	9:05	6.3	6.1	0.200	10.4
1	4	4/2/2024	9:19	9:39	6.1	6.0	0.100	10.3
1	5	4/2/2024	9:54	10:14	6.1	5.9	0.200	10.3
1	6	4/2/2024	10:29	10:49	5.9	5.7	0.200	10.2
1	7	4/2/2024	11:03	11:23	6.3	6.3	0.000	10.3
1	8	4/2/2024	11:37	11:57	6.0	5.9	0.100	10.2
1	9	4/2/2024	12:15	12:35	6.1	6.0	0.100	10.2
1	10	4/2/2024	12:53	13:13	5.9	5.8	0.100	10.2

n	9
t(0.975)	2.306
Mean RM Value	6.078 RM avg
Mean CEM Value	5.944 CEM avg
Sum of Differences	1.200 di
Mean Difference	0.133 d avg
Sum of Differences ²	0.200 di^2
Standard Deviation	0.071 sd
Confidence Coefficient	0.054 CC
RA based on RM	3.09 %

RATA Type:	Oxygen (O ₂), % by volume
Regulation:	40CFR60
RM Used:	3A

Custome	r:	USG-Otsego Paper			Project #:	583368		
Unit ID:		EUTURBINE1	(North-U2	(4)	CEM Model:	Horiba/CMA-E	C622	
Sample L	LOC:	Stack			CEM Serial #:	41678240071		
Use?					RM	CEM	(RM-CEM)	
1 = Y	Test		Start	End	O ₂	O ₂	Difference	Unit Load
0 = N	Run	Date	Time	Time	% v/v dry	% v/v dry	(di)	(MW)
1	1	4/2/2024	7:35	7:55	15.5	15.6	-0.100	10.3
1	2	4/2/2024	8:10	8:30	15.5	15.6	-0.100	10.4
1	3	4/2/2024	8:45	9:05	15.5	15.6	-0.100	10.4
1	4	4/2/2024	9:19	9:39	15.5	15.6	-0.100	10.3
1	5	4/2/2024	9:54	10:14	15.5	15.6	-0.100	10.3
1	6	4/2/2024	10:29	10:49	15.6	15.6	0.000	10.2
1	7	4/2/2024	11:03	11:23	15.5	15.6	-0.100	10.3
1	8	4/2/2024	11:37	11:57	15.5	15.6	-0.100	10.2
1	9	4/2/2024	12:15	12:35	15.5	15.6	-0.100	10.2
0	10	4/2/2024	12:53	13:13	15.5	15.6	-0.100	10.2

n	9
t(0.975)	2.306
Mean RM Value	15.511 RM avg
Mean CEM Value	15.600 CEM avg
Mean Difference	-0.089 d avg
Standard Deviation	0.033 sd
Confidence Coefficient	0.026 CC
RA based on RM	0.74 %
RA (Absolute Mean Difference)	0.09 % vol diff.

ł

RATA Type:Nitrogen Oxides (NO_X), Ib/MMBtuRegulation:40CFR75RM Used:3A, 7E

Customer: Unit ID: Sample Loc:		USG-Otsego Paper		Project #:	583368 Horiba/CMA-EC622 41678240073			
		EUTURBINE2 (South) Stack					CEM Model:	
							CEM Serial #:	
Use?					RM	CEM	(RM-CEM)	
1 = Y	Test		Start	End	NOX	NO _X	Difference	Unit Load
0 = N	Run	Date	Time	Time	lb/MMBtu	lb/MMBtu	(di)	(MW)
1	1	4/5/2024	7:23	7:43	0.068	0.065	0.003	11.3
0	2	4/5/2024	7:58	8:18	0.067	0.064	0.003	11.3
1	3	4/5/2024	8:33	8:53	0.067	0.065	0.002	11.3
1	4	4/5/2024	9:08	9:28	0.069	0.066	0.003	11.3
1	5	4/5/2024	9:41	10:01	0.070	0.067	0.003	11.3
1	6	4/5/2024	10:14	10:34	0.071	0.068	0.003	11.2
1	7	4/5/2024	10:50	11:10	0.071	0.068	0.003	11.2
1	8	4/5/2024	11:23	11:43	0.071	0.068	0.003	11.2
1	9	4/2/2024	11:57	12:17	0.073	0.070	0.003	11.2
1	10	4/2/2024	12:30	12:50	0.072	0.069	0.003	11.2

n	9
t(0.025)	2.306
Mean RM Value	0.070 RM avg
Mean CEM Value	0.067 CEM av
Sum of Differences	0.026 di
Mean Difference	0.0029 d avg
Sum of Differences ²	0.000 di^2
Standard Deviation	0.000 sd
Confidence Coefficient	0.000 CC
RA based on RM	4.48 %
Bias Adjustment Factor	1.043 BAF

RATA Type: Regulation: RM Used:

I

I

Nitrogen Oxides (NO_x), ppmvd at 40CFR60 7E

15% Oxygen

Customer: USG-Otsego Paper Unit ID: EUTURBINE2 (South)		Project #:	583368					
		CEM Model: Horiba/CMA-EC622						
Sample	Loc:	Stack			CEM Serial #: 41678240073			
					RM	CEM	(RM-CEM)	
Use?					NOx	NOx		
1 = Y	Test		Start	End	ppmvd at	ppmvd at	Difference	Unit Load
0 = N	Run	Date	Time	Time	15% Oxygen	15% Oxygen	(di)	(MW)
1	1	4/5/2024	7:23	7:43	18.4	17.5	0.900	11.3
1	2	4/5/2024	7:58	8:18	18.2	17.4	0.800	11.3
1	3	4/5/2024	8:33	8:53	18.3	17.5	0.800	11.3
1	4	4/5/2024	9:08	9:28	18.6	18.0	0.600	11.3
1	5	4/5/2024	9:41	10:01	19.1	18.3	0.800	11.3
1	6	4/5/2024	10:14	10:34	19.4	18.4	1.000	11.2
0	7	4/5/2024	10:50	11:10	19.4	18.4	1.000	11.2
1	8	4/5/2024	11:23	11:43	19.3	18.5	0.800	11.2
1	9	4/2/2024	11:57	12:17	19.8	18.9	0.900	11.2
1	10	4/2/2024	12:30	12:50	19.6	18.9	0.700	11.2

n	9		
t(0.975)	2.306		
Mean RM Value	18.967 RM avg		
Mean CEM Value	18.156 CEM avg		
Sum of Differences	7.300 di		
Mean Difference	0.811 d avg		
Sum of Differences ²	6.030 di^2		
Standard Deviation	0.117 sd		
Confidence Coefficient	0.090 CC		
RA based on RM	4.75 %		

RATA Type:	Oxygen (O ₂), % by volume
Regulation:	40CFR60
RM Used:	3A

Customer: Unit ID:		USG-Otsego P	aper		Project #:	583368		
		EUTURBINE2 (South)			CEM Model:	Horiba/CMA-EC622		
Sample L	_oc:	Stack			CEM Serial #:	41678240073		
Use?					RM	CEM	(RM-CEM)	
1 = Y	Test		Start	End	O ₂	O ₂	Difference	Unit Load
0 = N	Run	Date	Time	Time	% v/v dry	% v/v dry	(di)	(MW)
0	1	4/5/2024	7:23	7:43	15.4	15.5	-0.100	11.3
1	2	4/5/2024	7:58	8:18	15.4	15.4	0.000	11.3
1	3	4/5/2024	8:33	8:53	15.4	15.4	0.000	11.3
1	4	4/5/2024	9:08	9:28	15.4	15.5	-0.100	11.3
1	5	4/5/2024	9:41	10:01	15.4	15.4	0.000	11.3
1	6	4/5/2024	10:14	10:34	15.4	15.4	0.000	11.2
1	7	4/5/2024	10:50	11:10	15.4	15.4	0.000	11.2
1	8	4/5/2024	11:23	11:43	15.4	15.4	0.000	11.2
1	9	4/2/2024	11:57	12:17	15.4	15.4	0.000	11.2
1	10	4/2/2024	12:30	12:50	15.4	15.5	-0.100	11.2

n	9
t(0.975)	2.306
Mean RM Value	15.400 RM avg
Mean CEM Value	15.422 CEM avg
Mean Difference	-0.022 d avg
Standard Deviation	0.044 sd
Confidence Coefficient	0.034 CC
RA based on RM	0.36 %
RA (Absolute Mean Difference)	0.02 % vol diff.

Ì

APPENDIX

Part 75 ECMPS Reporting Information - PGVP

Facility Name:	USG-Otsego Paper	
Location ID:	EUTURBINE1 (North-U24) - Stack	
Test Date(s):	4/2/2024	

Testing Parameter	Gas Level Code	Gas Type Code	Cylinder ID No.	Vendor Identifier	Expiration Date	
	Low	O2, BALN	CC478855		1/14/2032	
NO _x -Diluent	Mid	CO, CO2, NO, NOX, SO2, BALN	CC160338	B12023	7/6/2026	
	High	CO, CO2, NO, NOX, SO2, BALN	CC199692	B32024	2/28/2027	
	Low	CO, CO2, NO, NOX, SO2, BALN	CC478855		1/14/2032	
Diluent - O ₂	Mid	CO2, O2, BALN	CC19849	B12023	7/10/2031	
	High	CO2, O2, BALN	CC342262	B12023	6/16/2031	