

# MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY ENVIRONMENTAL LABORATORY

P.O. Box 30270 Lansing, MI 48909 TEL: (517) 335-9800 FAX: (517) 335-9600

| Division:  | AQD                                       |                    |                      |
|------------|-------------------------------------------|--------------------|----------------------|
| Report to: | JEFF KORNISKI                             | Lab Work Order # : | 30300128             |
|            | MDEQ-AQD-WARREN                           | Work Site ID :     | P0431                |
|            | SOUTHEAST MICHIGAN DISTRICT OFF           | Site Name :        | DETROIT BULK STORAGE |
|            | 27700 DONALD COURT, WARREN, MI 48092-2793 | Received:          | 03/20/2013           |
|            |                                           | Reported:          | 04/09/2013           |
| Total:     | \$252.00                                  | Collected By:      | JEFF KORNISKI        |

#### Samples Received :

| No: Sample ID | Sample Description | Matrix:  | <b>Collection Date</b> |
|---------------|--------------------|----------|------------------------|
| 01 AC13118    | PET COKE           | SEDIMENT | 03/07/2013             |

I certify that the analysis performed by the MDEQ Environmental Laboratory are accurate and that the laboratory tests were conducted by methods approved by the U.S. Environmental Protection Agency and other appropriate regulatory agencies.

George L. Krisztian, Laboratory Director

Lab Work Order #: 30300128



### MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY ENVIRONMENTAL LABORATORY

P.O. Box 30270 Lansing, MI 48909 TEL: (517) 335-9800 FAX: (517) 335-9600

# Sample Number: AC13118 PET COKE

| CAS#      | Analyte Name                   | Result    | Unit      | RL   | Qualifier | Date Tested | Method   | Analyst |
|-----------|--------------------------------|-----------|-----------|------|-----------|-------------|----------|---------|
|           | Digest Mercury - Sediment      | Completed |           |      |           | 03/27/2013  | 7471     | ТВ      |
| 7439-97-6 | Mercury - Sediment             | ND        | mg/Kg dry | 0.05 |           | 03/28/2013  | 7471     | TS      |
| 7440-36-0 | Antimony - Sediment            | ND        | mg/Kg dry | 0.3  |           | 03/28/2013  | 6020     | ТК      |
| 7440-38-2 | Arsenic - Sediment             | ND        | mg/Kg dry | 0.5  |           | 03/26/2013  | 6020     | ТК      |
| 7440-39-3 | Barium - Sediment              | 1.8       | mg/Kg dry | 1    |           | 03/26/2013  | 6020     | ТК      |
| 7440-41-7 | Beryllium - Sediment           | ND        | mg/Kg dry | 0.2  |           | 03/26/2013  | 6020     | ТК      |
| 7440-43-9 | Cadmium - Sediment             | ND        | mg/Kg dry | 0.2  |           | 03/26/2013  | 6020     | ТК      |
| 7440-47-3 | Chromium - Sediment            | ND        | mg/Kg dry | 2    |           | 03/26/2013  | 6020     | ТК      |
| 7440-48-4 | Cobalt - Sediment              | 0.88      | mg/Kg dry | .5   |           | 03/26/2013  | 6020     | ТК      |
| 7440-50-8 | Copper - Sediment              | ND        | mg/Kg dry | 1    |           | 03/26/2013  | 6020     | ТК      |
|           | Digest Antimony - Sediment     | Completed |           |      |           | 03/22/2013  | 3050     | ТВ      |
|           | Digest Metals - Sediment       | Completed |           |      |           | 03/25/2013  | 3050     | ТВ      |
| 7439-89-6 | Iron - Sediment                | 78        | mg/Kg dry | 5    |           | 04/08/2013  | 6010     | WN      |
| 7439-92-1 | Lead - Sediment                | ND        | mg/Kg dry | 1    |           | 03/26/2013  | 6020     | ТК      |
| 7439-96-5 | Manganese - Sediment           | 1.4       | mg/Kg dry | 1    |           | 03/26/2013  | 6020     | ТК      |
| 7439-98-7 | Molybdenum - Sediment          | 20        | mg/Kg dry | 1    |           | 03/26/2013  | 6020     | ТК      |
| 7440-02-0 | Nickel - Sediment              | 190       | mg/Kg dry | 1    |           | 03/26/2013  | 6020     | ТК      |
| 7782-49-2 | Selenium - Sediment            | ND        | mg/Kg dry | 0.2  |           | 03/26/2013  | 6020     | ТК      |
| 7440-22-4 | Silver - Sediment              | ND        | mg/Kg dry | 0.1  |           | 03/26/2013  | 6020     | ТК      |
| 7440-28-0 | Thallium - Sediment            | ND        | mg/Kg dry | 0.5  |           | 03/26/2013  | 6020     | ТК      |
| 7440-62-2 | Vanadium - Sediment            | 470       | mg/Kg dry | 1    |           | 03/26/2013  | 6020     | ТК      |
| 7440-66-6 | Zinc - Sediment                | 2.2       | mg/Kg dry | 1    |           | 03/26/2013  | 6020     | ТК      |
|           | % Total Solids                 | 99.9      | %         | 0.1  |           | 03/26/2013  | 2540B SM | JW      |
|           | Drying and Grinding - Sediment | COMPLETE  | <u>-</u>  |      |           | 03/26/2013  |          | JW      |

ug / L : microgram / liter (ppb) mg / L : milligram / liter (ppm) ug / Kg : microgram / kilogram (ppb) mg / Kg : milligram / kilogram (ppm) Laboratory Contacts Inorganic Unit Mgr: Kirby Shane Organic Unit Mgr: Carol Smith Systems Mgmt Unit: George Krisztian



# MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY ENVIRONMENTAL LABORATORY

P.O. Box 30270 Lansing, MI 48909 TEL: (517) 335-9800 FAX: (517) 335-9600

| Quanner Code | Quanner Description                                                                                    |
|--------------|--------------------------------------------------------------------------------------------------------|
| 1            | Result(s) and RL(s) are estimated due to low surrogate recovery.                                       |
| 2            | Result is estimated due to high surrogate recovery.                                                    |
| 3            | Result(s) and RL(s) are estimated due to low matrix spike recovery.                                    |
| 4            | Result is estimated due to high matrix spike recovery.                                                 |
| 5            | Result and RL are estimated due to low continuing calibration standard criteria failure.               |
| 6            | Result is estimated due to high continuing calibration standard criteria failure.                      |
| 7            | Result(s) and RL(s) are estimated due to poor precision.                                               |
| 8            | Result(s) and RL(s) are estimated due to low recovery of batch QC.                                     |
| 9            | Result outside QC acceptance criteria.                                                                 |
| А            | Value reported is the mean of two or more determinations.                                              |
| С            | Value calculated from other independent parameters.                                                    |
| D            | Analyte value quantified from a dilution(s); reporting limit (RL) raised.                              |
| Е            | Result is estimated due to high recovery of batch QC.                                                  |
| F            | Amenable cyanide was not analyzed due to low level of total cyanide.                                   |
| G            | Result and RL are estimated due to initial calibration standard criteria failure.                      |
| Н            | Recommended laboratory holding time was exceeded.                                                      |
| I            | Dilution required due to matrix interference; reporting limit (RL) raised.                             |
| J            | Analyte was positively identified. Value is an estimate.                                               |
| JA           | Result is estimated due to multiple Aroclors present.                                                  |
| JC           | Result is estimated since confirmation analysis did not meet acceptance criteria                       |
| JD           | Due to severe degradation, specific Aroclor identification is difficult and quantitation is estimated. |
| К            | RL(s) raised due to matrix interferences.                                                              |
| KR           | RL(s) raised due to low sample volume submitted.                                                       |
| KS           | RL(s) raised due to low total solids.                                                                  |
| KW           | RL(s) raised due to light sample weight.                                                               |
| LB           | Reported library search compounds are tentative identifications with estimated concentrations.         |
| М            | The level of the method preparation blank (MPB) is reported in the qualifier column.                   |
| N            | Non-homogeneous sample made analysis of sample questionable.                                           |
| 0            | Result and RL estimated due to analysis from an open vial.                                             |
| Р            | Recommended sample collection/preservation technique not used; reported result(s) is an estimate.      |
| PI           | Possible interference may have affected the accuracy of the laboratory result                          |
| Q            | Quantity of sample insufficient to perform analyses requested.                                         |
| R            | Result confirmed by re-extraction and analysis.                                                        |
| s            | Supernatant analyzed.                                                                                  |
| Т            | Reported value is less than the reporting limit (RL). Result is estimated.                             |
| V            | Value not available due to dilution.                                                                   |
| W            | Reported value is less than the method detection limit (MDL).                                          |
| X            | Methods 8260 & 624 are used to analyze volatile organics that have boiling points below 200°C.         |
|              | 2-Methylnaphthalene & naphthalene have boiling points above 200°C and are better suited to analysis    |
|              | by methods 8270 or 625 as semivolatile organics.                                                       |
| Z            | Result reported below the RL to meet the TDL in RRD Op Memo 2 ( $10/22/04$ ) multiplied by applicable  |
|              | dilution factor.                                                                                       |

ug / L : microgram / liter (ppb) mg / L : milligram / liter (ppm) ug / Kg : microgram / kilogram (ppb) mg / Kg : milligram / kilogram (ppm) Laboratory Contacts Inorganic Unit Mgr: Kirby Shane Organic Unit Mgr: Carol Smith Systems Mgmt Unit: George Krisztian