

Relative Accuracy Test Audit Test Report

Carbon Green BioEnergy, LLC Woodbury Facility Thermal Oxidizer Stack (C10) Lake Odessa, Michigan September 15, 2022

> Report Submittal Date October 3, 2022

> > © Copyright 2022 All rights reserved in Mostardi Platt

Project No. M223603

Corporate Headquarters 888 Industrial Drive Elmhurst, Illinois 60126 630-993-2100

Crown Point, IN | Mendota Heights, MN | Denver, CO | Henderson, NV

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 TEST METHODOLOGY Method 3A Oxygen (O ₂) Determination Method 7E Nitrogen Oxide (NO _x) Determination	2 2 2
3.0 TEST RESULT SUMMARIES	4
4.0 CERTIFICATION	8
APPENDICES	40
Appendix A - Test Section Diagram	10 12
Appendix C - Calculation Nomenclature and Formulas	
Appendix D - Reference Method Test Data (Computerized Sheets)	19
Appendix E - Continuous Emissions Monitoring System Data and Plant Operating Data	
Appendix F - Calibration and Response Time Data	39
Appendix G - Calibration Gas Cylinder Data	
Appendix H - NO ₂ to NO Converter Efficiency Test	53

1.0 EXECUTIVE SUMMARY

Mostardi Platt conducted a Continuous Emissions Monitoring System (CEMS) Relative Accuracy Test Audit (RATA) test program for Carbon Green BioEnergy, LLC at the Woodbury Facility in Lake Odessa, Michigan, on the Thermal Oxidizer Stack (C10) on September 15, 2022. This report summarizes the results of the test program and test methods.

The test location, test date, and test parameters are summarized below.

TEST INFORMATION					
Test Location Test Date Test Parameters					
Thermal Oxidizer Stack (C10)	September 15, 2022	Oxygen (O ₂) and Nitrogen Oxides (NO _x)			

The purpose of the test program was to demonstrate the relative accuracies of the Thermal Oxidizer Stack (C10) O_2 and NO_X analyzers during the specified operating condition. The test results from this test program indicate that each CEMS meets the United States Environmental Protection Agency (USEPA) annual performance specification for relative accuracy as published in 40 Code of Federal Regulations Part 60 (40CFR60).

RATA RESULTS							
Test Location	Date	Parameter	Units	Relative Accuracy Acceptance Criteria	Relative Accuracy (RA)		
Thermal Oxidizer Stack (C10)	9/15/2022	NOx	lb/mmBtu	≤ 20.0% of the mean reference value	1.02%		
		NOx	ppmvd	≤ 20.0% of the mean reference value	0.68%		
		NOx	lb/hr	≤ 20.0% of the mean reference value	0.84%		
		O2	% dry	≤ 20.0% of the mean reference value	0.00%		

The gas cylinders used to perform the RATA are summarized below.

	GAS CYLINDER INFORMATION						
Parameter	Gas Vendor	Cylinder Serial Number	Cylinder Value	Expiration Date			
NOx	Airgas	SG9169555BAL	0.0 ppm	11/15/2029			
NOx	Airgas	EB0075700	45.78 ppm	3/3/2025			
NOx	Airgas	CC495474	91.01 ppm	7/19/2030			
O ₂	Airgas	EB0075700	0.0%	3/3/2025			
O2	Airgas	SG9169555BAL	5.100%	11/15/2029			
O ₂	Airgas	ALM-025276	12.02%	5/17/2030			

The Model 42i operates on the principle that nitric oxide (NO) and ozone (O_3) react to produce a characteristic luminescence with an intensity linearly proportional to the NO concentration. Infrared light emission results when electronically excited NO₂ molecules decay to lower energy states. Specifically,

$$NO+O_3 \rightarrow NO_2+O_2+hv$$

Nitrogen dioxide (NO₂) must first be transformed into NO before it can be measured using the chemiluminescent reaction. NO₂ is converted to NO by a stainless steel NO₂-to-NO converter heated to about 636°C. The flue gas sample is drawn into the Model 42i through the sample bulkhead. The sample flows through a capillary, and then to the mode solenoid valve. The solenoid valve routes the sample either straight to the reaction chamber (NO mode) or through the NO₂-to-NO converter and then to the reaction chamber (NO_X mode). A flow sensor prior to the reaction chamber measures the sample flow. Dry air enters the Model 42*i* through the dry air bulkhead, passes through a flow switch, and then through a silent discharge ozonator. The ozonator generates the ozone needed for the chemiluminescent reaction. At the reaction chamber, the ozone reacts with the NO in the sample to produce excited NO₂ molecules. A photomultiplier tube (PMT) housed in a thermoelectric cooler detects the luminescence generated during this reaction. From the reaction chamber, the exhaust travels through the ozone (O₃) converter to the pump, and is released through the vent.

The NO and NO_X concentrations calculated in the NO and NO_X modes are stored in memory. The difference between the concentrations is used to calculate the NO₂ concentration. The Model 42i outputs NO, NO₂, and NO_X concentrations to the front panel display, the analog outputs, and also makes the data available over the serial or ethernet connection.

Stack gas was delivered to the analyzer via a Teflon[®] sampling line, heated to a minimum temperature of 250°F. Excess moisture in the stack gas was removed using a refrigerated condenser. The entire system was calibrated in accordance with the Method, using certified calibration gases introduced at the probe, before and after each test run. This testing met the performance specifications as outlined in the Method.

A list of calibration gases used and the results of all calibration and other required quality assurance checks are found in Appendix F. Copies of the gas cylinder certifications are found in Appendix G. The NO_2 to NO converter test can be found in Appendix H. This testing met the performance specifications as outlined in the Method.

Client: Carbon Green BioEnergy, LLC Facility: Woodbury Facility Project #: M223603 Location: Thermal Oxidizer Stack (C10) Date: 9/15/22 Test Method: 7E

NO_x ppmvd RATA

CEM Analyzer Information								
NO _x Monitor/Model: CAI NOXYGEN 650		NO _x Serial # :		TT1012				
1=accept 0=reject	Test Run	Test Date	Start Time	End Time	RM NO _x ppmvd	CEM NO _x ppmvd	(RM-CEM) Difference (di)	(RM-CEM) Difference ² (di ²)
1	1	09/15/22	07:25	07:45	57.7	57.9	-0.2	0.04
1	2	09/15/22	07:58	08:18	57.3	57.4	-0.1	0.01
1	3	09/15/22	08:30	08:50	57.6	57.4	0.2	0.04
1	4	09/15/22	09:09	09:29	60.6	60.4	0.2	0.04
1	5	09/15/22	09:41	10:01	59.7	59.5	0.2	0.04
1	6	09/15/22	10:13	10:33	60.5	60.3	0.2	0.04
1	7	09/15/22	10:48	11:08	59.8	59.6	0.2	0.04
1	8	09/15/22	11:20	11:40	59.1	58.7	0.4	0.16
1	9	09/15/22	11:52	12:12	59.5	58.8	0.7	0.49
0	10	09/15/22	12:25	12:45	58.9	57.9	1.0	1.00
n 9								
				t(0.975)	2.3	06		
		Mean F	Reference M	ethod Value	59.	089	RM avg	
			Mean	CEM Value	58.	889	CEM avg	
Sum of Differences			1.800 di		di	l		
Mean Difference			0.200		d			
Sum of Differences Squared			0.900 di ²					
Standard Deviation			0.260 sd					
Confidence Coefficient 2.5% Error (1-tail)			0.2	200	cc			
Relative Accuracy			0.	68	RA			

Client: Carbon Green BioEnergy, LLC Facility: Woodbury Facility Project #: M223603				Location: Thermal Oxidizer Stack (C10) Date: 9/15/22				
Project #: 10/223603								
				O₂ % (a	ry) RATA			
			r	CEM Analyz	er Information		r	
0)₂ Monit	or/Model:	CAI NOXY	/GEN 650		O ₂ Serial # : TT1012		
1=accept	1=accept Test	Test	Start Time	End Time	RM O ₂ %	CEM O ₂ %	(RM-CEM) Difference	(RM-CEM) Difference ²
0-reject	Run	Date			(ary)	(ary)	(di)	(di²)
1	1	09/15/22	07:25	07:45	2.2	2.2	0.0	0.00
1	2	09/15/22	07:58	08:18	2.3	2.3	0.0	0.00
1	3	09/15/22	08:30	08:50	2.3	2.3	0.0	0.00
1	4	09/15/22	09:09	09:29	2.7	2.7	0.0	0.00
1	5	09/15/22	09:41	10:01	2.7	2.7	0.0	0.00
1	6	09/15/22	10:13	10:33	2.8	2.8	0.0	0.00
1	7	09/15/22	10:48	11:08	3.0	3.0	0.0	0.00
1	8	09/15/22	11:20	11:40	2.7	2.7	0.0	0.00
1	9	09/15/22	11:52	12:12	2.8	2.8	0.0	0.00
0	10	09/15/22	12:25	12:45	2.6	2.6	0.0	0.00
				n	9)		
				t(0.975)	2.3	06		
Mean Reference Method Value			2.611		RM avg			
Mean CEM Value			2.611		CEM avg			
Sum of Differences			0.000		di			
Mean Difference			0.000		d			
Sum of Differences Squared			0.000 di ²		di²			
Standard Deviation			n 0.000 sd					
Confidence Coefficient 2.5% Error (1-tail)) 0.000 cc		cc			
Relative Accuracy			0.	00	RA			

©Mostardi Platt

APPENDICES

GASEOUS TRAVERSE FOR ROUND DUCTS

- Job: Carbon Green BioEnergy, LLC Woodbury, Illinois
- Date: September 15, 2022
- Test Location: Thermal Oxidizer Stack (C10)
- Stack Diameter (Feet): 6.0

Stack Area (Square Feet): 28.27

No. Sample Points: 3

No of Ports: 1

Port Length (Inches): 8.0

Distance from inside wall at port to traverse point:

- 1. 5.0 Feet (83.3 % of diameter)
- 2. 3.0 Feet (50.0 % of diameter)
- 3. 1.0 Feet (16.7 % of diameter)

USEPA Methods 3A and 7E Extractive Gaseous Sampling Diagram

Project No. M223603 Thermal Oxidizer Stack (C10)