

RECEIVED

Pace Analytical Services, LLC 1700 Elm Street SE Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444 www.pacelabs.com

DEC 05 2018

AIR QUALITY DIVISION

Comprehensive Emissions Test Report

Port Inland Plant Particulate Compliance Testing

Testing Date(s): October 2, 2018 Report Date: November 27, 2018 Revision Date: No revision to date

Report Prepared For:

Keith Miller Graymont 800 Hill Avenue Superior, WI 54880

Telephone No.: (715) 394-1719 E-mail Address: kmiller@graymont.com

Report Preparation Supervised By:

Terry Borgerding Pace Analytical Services, LLC 1700 Elm Street, Suite 200 Minneapolis, MN 55414 Telephone No.: (612) 607-6374 E-mail Address: terry.borgerding@pacelabs.com

Pace Project No. 18-01077 RECEIVED

DEC 0 2018 Graymont Western Lime AIR QUALITY DIVISIONge 1 of 22

Subject Facility: Graymont Western Lime Port Inland Plant 181 W County Road 432 Gulliver, MI 49840

Regulatory Permit No.: ROP: MI-ROP-N7362-2015 SRN: N7362

Subject Emission Sources: Lime Kiln

Kiln 1

Test Locations: Baghouse Exhaust

SV-2

Report Date 11/27/2018

Regulatory Summary

Subject Facility:	Graymont Western Lime
	Port Inland Plant
Plant Address:	181 W County Road 432
	Gulliver, MI 49840

Air Permit No.:	ROP: MI-ROP-N7362-2015
Facility ID No .:	SRN: N7362

Emission Unit IDs	Emission Unit Name	Regulated Constituent	Regulatory Citations	Regulatory Limit	Average Test Result
Kiln 1 Lime Kiln	DM 40	40 CFR 52.21(j)	≤0.1 LB/Ton of stone feed (TSF)	0.075 LB/TSF	
	Lime Kiin	PW-10	R 336.1205 R 336.1331	≤7.5 LB/HR	4.84 LB/HR

RECEIVED

DEC 05 2018

AIR QUALITY DIVISION

Introduction

Pace Analytical Services, LLC personnel conducted particulate emission compliance testing on the Lime Kiln Baghouse exhaust at the Graymont Western Lime (Graymont) facility located in Gulliver, Michigan. Dan Schoess, Nate Hibbard, and Isaac Prichett performed on-site testing activities on October 2, 2018. Terry Borgerding provided administrative project management. Keith Miller with Graymont coordinated plant activities during testing. Jeremy Howe with the Michigan Department of Environmental Quality (MDEQ) was on-site to witness testing. Pace Analytical Services, LLC prepared a comprehensive test protocol that was submitted to the MDEQ and approved prior to testing. On-site activities consisted of the following measurements:

- Particulate, three independent one-hour samplings.
- Oxygen, monitoring periods concurrent with above.
- Carbon dioxide, integrated bags collected concurrent with above and analyzed by FTIR.
- Volumetric airflow, measurements collected in conjunction with isokinetic testing.

The project objectives were to quantify particulate emission constituents and compare them to applicable air emissions regulations stipulated by MDEQ and the facility permit. These measurements were performed while processing 64.4 TPH of limestone. Quality protocols comply with regulatory compliance testing requirements.

Subsequent sections summarize the test results and provide descriptions of the process and test methods. Supporting information and raw data are in the appendices.

Results Summary

Results of PM-10 determinations are summarized in Table 1. The PM-10 emission rate averaged 4.84 LB/HR and 0.075 LB/TSF at 0.011 GR/DSCF. The PM-10 emission limits for this source are 0.1 LB/TSF and 7.5 LB/HR. Subsequent tables provide expanded detail of the testing results.

Less than PM-10 filterable (EPA Method 201A), organic wet catch and inorganic wet catch (EPA Method 202) were combined to report PM-10.

The glass lined sample probe of the EPA Method 201A/202 sample train was accidentally broken during the port change of Run 1. The test team replaced the probe (causing a three hour delay) and attempted to continue the run but experienced CPM filter plugging issues when the run was restarted and could not complete the run. Though the samples were processed, the run was invalid as only 7 of 12 traverse points were sampled and replacing the broken probe caused a significant delay in purging and processing per EPA Method 202. An additional run (Run 4) was performed and Runs 2, 3 and 4 are reported to determine compliance.

The data in this report are indicative of emission characteristics of the measured sources for process conditions at the time of the test. Representations to other sources and test conditions are beyond the scope of this report.

Graymont Western Lime

Port Inland Plant Gulliver, MI Pace Project No. 18-01077 Table 1

Parameter Date of Run Time of Run	Run 2 10/2/18 1420-1610	Run 3 10/2/18 1700-1834	Run 4 10/2/18 1920-2050	Average
Limestone Feed, TPH	64.4	64.4	64.4	64.4
Volumetric Flow Rate (Rounded to 100 CFM) ACFM DSCFM	87,700 50,100	87,000 50,500	86,000 49,800	86,900 50,100
Gas Temperature, °F Gas Moisture Content, %v/v	379 7.7	373 6.8	373 7.1	375 7.2
Gas Composition, %v/v, dry Carbon Dioxide, CO ₂ Oxygen, O ₂ Nitrogen, N ₂ (by difference) Particulate Concentration, GR/DSCE	24.0 6.7 69.3	23.3 6.6 70.1	24.2 6.5 69.3	23.8 6.6 69.6
< 10 µm Particulate Matter	0.0114	0.0111	0.0113	0.0113
Particulate Mass Rate, LB/HR < 10 µm Particulate Matter	4.91	4.82	4.80	4.84
Regulatory Units, LB/Ton Stone Feed < 10 µm Particulate Matter	0.0762	0.0748	0.0745	0.0752

RECEIVED

DEC 05 2018

AIR QUALITY DIVISION

Report Date 11/27/2018

Graymont Western Lime

Port Inland Plant Gulliver, MI Pace Project No. 18-01077

Major Gases and Moisture Results Lime Kiln Baghouse Exhaust Test 1

Table 2

Parameter Date of Run Time of Run	Run 2 10/2/18 1420-1610	Run 3 10/2/18 1700-1834	Run 4 10/2/18 1920-2050
Major Gas Constituents - Instrumental, % v/v Drv Basis (as measured)			
Carbon Dioxide	24.00	23.30	24.20
Oxygen	6.70	6.60	6.50
Nitrogen (by difference)	69.30	70.10	69.30
Wet Basis (calculated)			
Carbon Dioxide	22.16	21.71	22.47
Oxygen	6.19	6.15	6.04
Nitrogen	63.98	65.30	64.36
Portable Oxygen Monitor Result			
Time Weighted Average, %O ₂	6.7	6.6	6.5
Moisture Collected, ml	61.0	51.0	51.5
Moisture Content, %v/v	7.68	6.85	7.14
Moisture Content if Saturated, %v/v Relative Humidity, % rH	NA (T>BP) NA (T>BP)	NA (T>BP) NA (T>BP)	NA (T>BP) NA (T>BP)
Molecular Weight of Flue Gas, lb/lb-mole Dry Wet	32.11 31.03	31.99 31.03	32.13 31.12

NA (T>BP) = Not applicable, gas temperature is greater than boiling point of water (supersaturation is possible).

Graymont Western Lime

Port Inland Plant Gulliver, MI Pace Project No. 18-01077 Particulate Results Lime Kiln Baghouse Exhaust Test 1

Table 3

Partainteer Kull 12 Kull 12 Kull 12 Kull 12 Date of Run 10/2/18 10/2/18 10/2/18 10/2/18 10/2/18 Time of Run 1420-1610 1700-1834 1920-2050 Sample Duration, Minutes 94.9 89.6 87.2 Average Flue Gas Temperature, °F 378.6 373.2 373.3 Moisture Content of Flue Gas, %v/v 7.7 6.8 7.1 Volumetric Flow Rate (Reunded to 100 CFM) 87,700 86,000 ACFM 57,000 53,600 50,100 50,500 49,800 Particulate Collected, mg Blank Corrected NTP NTP NTP PM ₁₀ Cyclone - 2.5 - 10 µm Filterable NTP NTP NTP PM _{2.5} Cyclone - 2.5 - 10 µm Filterable 0.87 1.05 0.71 CPM _{0RG} - Organic Condensible 0.87 1.05 0.71 CPM _{INORG} - Inorganic Condensible 24.0 21.6 21.3 Actual PM10 Cut Diameter, µm 0.0107 0.0102 0.000481 Inorganic Condensibl	Peremeter	Bup 2	Dun 2	Dun A
Date of Kull 10/2/10 10/2/10 10/2/10 Time of Run 1420-1610 1700-1834 1920-2050 Sample Duration, Minutes 94.9 89.6 87.2 Average Flue Gas Temperature, °F 378.6 373.2 373.3 Moisture Content of Flue Gas, %v/v 7.7 6.8 7.1 Volumetric Flow Rate (Rounded to 100 CFM) 87,700 87,000 86,000 SCFM 54,300 54,200 53,600 50,100 50,500 49,800 Particulate Collected, mg Blank Corrected NTP NTP NTP PM ₁₀ Cyclone - >10 µm Filterable NTP NTP NTP Filter Catch - <2.5 µm Filterable	Parameter Data of Pup	10/2/18	10/2/18	10/2/18
Internation (Minutes) 94.9 89.6 87.2 Average Flue Gas Temperature, °F 378.6 373.2 373.3 Moisture Content of Flue Gas, %v/v 7.7 6.8 7.1 Volumetric Flow Rate (Rounded to 100 GFM) 87,700 87,000 86,000 SCFM 54,300 54,200 53,600 DSCFM 50,100 50,500 49,800 Particulate Collected, mg Blank Corrected NTP NTP PM ₁₀ Cyclone - >10 µm Filterable NTP NTP NTP PM _{2,5} Cyclone - 2.5 - 10 µm Filterable 0.7 0.9 1.0 CPM _{0RG} - Organic Condensible 0.87 1.05 0.71 CPM _{0RG} - Inorganic Condensible 24.0 21.6 21.3 Actual PM10 Cut Diameter, µm 10.4 10.4 10.5 Actual PM2.5 Cut Diameter, µm 0.000298 0.000439 0.000439 Inorganic Condensible PM 0.0107 0.0102 0.0104 Organic Condensible PM 0.03 0.00050 0.00035 Particulate Emi	Time of Run	1/20-1610	1700-1834	1020-2050
Average Flue Gas Temperature, °F 378.6 373.2 373.3 Moisture Content of Flue Gas, %v/v 7.7 6.8 7.1 Volumetric Flow Rate (Rounded to 100 CFM) 87,700 87,000 86,000 SCFM 54,300 54,200 53,600 DSCFM 50,100 50,500 49,800 Particulate Collected, mg Blank Corrected NTP NTP NTP PM ₁₀ Cyclone - >10 µm Filterable NTP NTP NTP NTP Filter Catch - <2.5 µm Filterable	Sample Duration Minutes	0/ 0	200-100-1	87.2
Average Flue Gas Temperature, °F 378.6 373.2 373.3 Moisture Content of Flue Gas, %v/v 7.7 6.8 7.1 Volumetric Flow Rate (Rounded to 100 CFM) 87,700 87,000 86,000 SCFM 54,300 54,200 53,600 50,100 50,500 49,800 Particulate Collected, mg Blank Corrected NTP NTP NTP NTP PM ₁₀ Cyclone - >10 µm Filterable NTP NTP NTP NTP Fliter Catch - <2.5 µm Filterable	Cample Duration, Minutes	54.5	00.0	07.2
Moisture Content of Flue Gas, %v/v 7.7 6.8 7.1 Volumetric Flow Rate (Rounded to 100 CFM) 87,000 86,000 ACFM 87,700 54,200 53,600 DSCFM 50,100 50,500 49,800 Particulate Collected, mg Blank Corrected MTP NTP NTP PM ₁₀ Cyclone - >10 µm Filterable NTP NTP NTP NTP Filter Catch - <2.5 µm Filterable	Average Flue Gas Temperature, °F	378.6	373.2	373.3
Volumetric Flow Rate (Rounded to 100 CFM) ACFM 87,700 87,000 86,000 SCFM 54,300 54,200 53,600 DSCFM 50,100 50,500 49,800 Particulate Collected, mg Blank Corrected NTP NTP NTP PM ₁₀ Cyclone - >10 μm Filterable NTP NTP NTP NTP Filter Catch - <2.5 - 10 μm Filterable	Moisture Content of Flue Gas, %v/v	7.7	6.8	7.1
ACFM 87,700 87,000 86,000 SCFM 54,300 54,200 53,600 DSCFM 50,100 50,500 49,800 Particulate Collected, mg Blank Corrected NTP NTP NTP PM ₁₀ Cyclone - >10 µm Filterable NTP NTP NTP NTP Filter Catch - <2.5 µm Filterable	Volumetric Flow Rate (Rounded to 100 CFM)			
SCFM DSCFM 54,300 50,100 54,200 50,500 53,600 49,800 Particulate Collected, mg Blank Corrected NTP NTP NTP PM ₁₀ Cyclone - >10 µm Filterable NTP NTP NTP NTP PM _{2,5} Cyclone - 2.5 - 10 µm Filterable NTP NTP NTP NTP Filter Catch - <2.5 µm Filterable	ACFM	87,700	87,000	86,000
DSCFM 50,100 50,500 49,800 Particulate Collected, mg Blank Corrected PM10 Cyclone - >10 μm Filterable NTP NTP NTP PM2,5 Cyclone - 2.5 - 10 μm Filterable NTP NTP NTP NTP Filter Catch - <2.5 μm Filterable	SCFM	54,300	54,200	53,600
Particulate Collected, mgBlank Corrected PM_{10} Cyclone - >10 µm FilterableNTPNTP $PM_{2.5}$ Cyclone - 2.5 - 10 µm FilterableNTPNTP $PM_{2.5}$ Cyclone - 2.5 µm Filterable0.70.91.0 CPM_{ORG} - Organic Condensible0.871.050.71 CPM_{INORG} - Inorganic Condensible24.021.621.3Actual PM10 Cut Diameter, µm10.410.410.5Actual PM2.5 Cut Diameter, µm2.412.432.44Particulate Concentration, GR/DSCF0.0002980.0004390.000481Inorganic Condensible PM0.01070.01020.0104Organic Condensible PM0.030.000500.00035Particulate Emission Rate, LB/HR< 10 µm Filterable PM	DSCFM	50,100	50,500	49,800
PM100 Cyclone - >10 μ m FilterableNTPNTPNTPPM2.5 Cyclone - 2.5 - 10 μ m FilterableNTPNTPNTPFilter Catch - <2.5 μ m Filterable0.70.91.0CPM0RG - Organic Condensible0.871.050.71CPMINORG - Inorganic Condensible24.021.621.3Actual PM10 Cut Diameter, μ m10.410.410.5Actual PM2.5 Cut Diameter, μ m2.412.432.44Particulate Concentration, GR/DSCF0.0002980.0004390.000481Inorganic Condensible PM0.01070.01020.0104Organic Condensible PM0.000390.000500.00035Particulate Emission Rate, LB/HR< 10 μ m Filterable PM0.130.190.21Inorganic Condensible PM0.130.190.211.65Particulate Emission Rate, LB/HR0.170.210.15	Particulate Collected ma Blank Corrected			
PM10 CystolicPM215 CyclonePM11 InterablePM11PM11PM11PM2.5 Cyclone $2.5 - 10 \ \mu m$ FilterableNTPNTPNTPFilter Catch - $<2.5 \ \mu m$ Filterable 0.7 0.9 1.0 CPM0RG - Organic Condensible 0.87 1.05 0.71 CPMINORG - Inorganic Condensible 24.0 21.6 21.3 Actual PM10 Cut Diameter, μm 10.4 10.4 10.4 10.5 Actual PM2.5 Cut Diameter, μm 2.41 2.43 2.44 Particulate Concentration, GR/DSCF 0.000298 0.000439 0.000481 Inorganic Condensible PM 0.0107 0.0102 0.0104 Organic Condensible PM 0.00039 0.00050 0.00035 Particulate Emission Rate, LB/HR 4.61 4.41 4.45 Organic Condensible PM 0.13 0.19 0.21 Inorganic Condensible PM 0.13 0.19 0.21 Inorganic Condensible PM 0.17 0.21 0.15	PM ₄₀ Cyclone - >10 um Filterable	NTP	NTP	NTP
PM2.5Cyclone - 2.5 - 10 µm FilterableNTPNTPNTPFilter Catch - $<2.5 \mum$ Filterable0.70.91.0CPM _{ORG} - Organic Condensible0.871.050.71CPM _{INORG} - Inorganic Condensible24.021.621.3Actual PM10 Cut Diameter, µm10.410.410.5Actual PM2.5 Cut Diameter, µm2.412.432.44Particulate Concentration, GR/DSCF0.0002980.0004390.000481Inorganic Condensible PM0.01070.01020.0104Organic Condensible PM0.000390.000500.00035Particulate Emission Rate, LB/HR0.130.190.21Inorganic Condensible PM0.130.190.21Inorganic Condensible PM0.130.190.21Inorganic Condensible PM0.170.210.15	BM Oveland 2.5 10 pm Eilterable			
Filter Catch - <2.5 μ m Filterable 0.7 0.9 1.0 CPM _{ORG} - Organic Condensible 0.87 1.05 0.71 CPM _{INORG} - Inorganic Condensible 24.0 21.6 21.3 Actual PM10 Cut Diameter, μ m 10.4 10.4 10.5 Actual PM2.5 Cut Diameter, μ m 2.41 2.43 2.44 Particulate Concentration, GR/DSCF 0.000298 0.000439 0.000481 Inorganic Condensible PM 0.0107 0.0102 0.0104 Organic Condensible PM 0.00039 0.00050 0.00035 Particulate Emission Rate, LB/HR 10.4 4.41 4.45 Organic Condensible PM 0.13 0.19 0.21 Inorganic Condensible PM 0.13 0.19 0.21 Inorganic Condensible PM 4.61 4.41 4.45 Organic Condensible PM 0.17 0.21 0.15	$PW_{2.5}$ Cyclone - 2.5 - 10 µm Filterable	NIP	NIP	NIP
CPM _{ORG} - Organic Condensible 0.87 1.05 0.71 CPM _{INORG} - Inorganic Condensible 24.0 21.6 21.3 Actual PM10 Cut Diameter, μm 10.4 10.4 10.5 Actual PM2.5 Cut Diameter, μm 2.41 2.43 2.44 Particulate Concentration, GR/DSCF 0.000298 0.000439 0.000481 Inorganic Condensible PM 0.0107 0.0102 0.0104 Organic Condensible PM 0.00039 0.00050 0.00035 Particulate Emission Rate, LB/HR 0.13 0.19 0.21 Inorganic Condensible PM 0.17 0.21 0.15	Filter Catch - <2.5 µm Filterable	0.7	0.9	1.0
CPM _{INORG} - Inorganic Condensible 24.0 21.6 21.3 Actual PM10 Cut Diameter, μm 10.4 10.4 10.5 10.4 10.5 Actual PM2.5 Cut Diameter, μm 2.41 2.43 2.44 2.43 2.44 Particulate Concentration, GR/DSCF 0.000298 0.000439 0.000481 0.0107 0.0102 0.0104 Organic Condensible PM 0.0107 0.0102 0.0104 0.00039 0.00050 0.00035 Particulate Emission Rate, LB/HR 0.13 0.19 0.21 0.15 Particulate Emission Rate, LB/HR 0.13 0.19 0.21 Inorganic Condensible PM 0.13 0.19 0.21 Inorganic Condensible PM 0.13 0.19 0.21 Inorganic Condensible PM 0.17 0.21 0.15	CPM _{ORG} - Organic Condensible	0.87	1.05	0.71
Actual PM10 Cut Diameter, μ m10.410.410.5Actual PM2.5 Cut Diameter, μ m2.412.432.44Particulate Concentration, GR/DSCF < 10 μ m Filterable PM0.0002980.0004390.000481Inorganic Condensible PM0.01070.01020.0104Organic Condensible PM0.000390.000500.00035Particulate Emission Rate, LB/HR < 10 μ m Filterable PM0.130.190.21Inorganic Condensible PM0.130.190.21Inorganic Condensible PM4.614.414.45Organic Condensible PM0.170.210.15	CPM _{INORG} - Inorganic Condensible	24.0	21.6	21.3
Actual PM10 Cut Diameter, μ m10.410.410.5Actual PM2.5 Cut Diameter, μ m2.412.432.44Particulate Concentration, GR/DSCF < 10 μ m Filterable PM0.0002980.0004390.000481Inorganic Condensible PM0.01070.01020.0104Organic Condensible PM0.000390.000500.00035Particulate Emission Rate, LB/HR < 10 μ m Filterable PM0.130.190.21Inorganic Condensible PM0.130.190.21Inorganic Condensible PM4.614.414.45Organic Condensible PM0.170.210.15				
Actual PM2.5 Cut Diameter, μm 2.41 2.43 2.44 Particulate Concentration, GR/DSCF 0.000298 0.000439 0.000481 Inorganic Condensible PM 0.0107 0.0102 0.0104 Organic Condensible PM 0.00039 0.00050 0.00035 Particulate Emission Rate, LB/HR 0.13 0.19 0.21 Inorganic Condensible PM 0.17 0.21 0.15	Actual PM10 Cut Diameter, µm	10.4	10.4	10.5
Particulate Concentration, GR/DSCF 0.000298 0.000439 0.000481 Inorganic Condensible PM 0.0107 0.0102 0.0104 Organic Condensible PM 0.00039 0.00050 0.00035 Particulate Emission Rate, LB/HR 0.13 0.19 0.21 Inorganic Condensible PM 0.13 0.19 0.21 Inorganic Condensible PM 0.17 0.21 0.15	Actual PM2.5 Cut Diameter, μm	2.41	2.43	2.44
< 10 μm Filterable PM	Particulate Concentration, GR/DSCF			
Inorganic Condensible PM 0.0107 0.0102 0.0104 Organic Condensible PM 0.00039 0.00050 0.00035 Particulate Emission Rate, LB/HR < 10 μm Filterable PM	< 10 µm Filterable PM	0.000298	0.000439	0.000481
Organic Condensible PM 0.00039 0.00050 0.00035 Particulate Emission Rate, LB/HR <td>Inorganic Condensible PM</td> <td>0.0107</td> <td>0.0102</td> <td>0.0104</td>	Inorganic Condensible PM	0.0107	0.0102	0.0104
Particulate Emission Rate, LB/HR< 10 μm Filterable PM	Organic Condensible PM	0.00039	0.00050	0.00035
Particulate Emission Rate, LB/HR0.130.190.21< 10 μm Filterable PM				
< 10 μm Filterable PM0.130.190.21Inorganic Condensible PM4.614.414.45Organic Condensible PM0.170.210.15	Particulate Emission Rate I R/HP			
Inorganic Condensible PM0.130.190.21Organic Condensible PM4.614.414.45Organic Condensible PM0.170.210.15	< 10 um Filterable PM	0 12	0.10	0.24
Organic Condensible PM 0.17 0.21 0.15	 To principation of the principal state of the principal	0.13 1 A1	0.19	U.Z.I 1/15
	Organic Condensible PM	4.01 0.17	0.21	4.43 0.15

NTP = Non-Target Parameter, intentionally excluded from the test protocol.

Organic C

Pace Analytical FSD 18-01077

Report Date 11/27/2018

RECEIVED

DEC 05 2018

AIR QUALITY DIVISION

Process Description

Graymont Western Lime operates a rotary lime kiln near Gulliver, Michigan. The operations at this facility are subject to the requirements of air quality operating permit MI-ROP-N7362-2015, issued October 6, 2015. The plant has a maximum lime production rate of 870 tons per day (TPD) and 292,000 tons of lime production per year.

A rotary kiln is a long, cylindrical, refractory-lined furnace that is slightly inclined. The limestone and hot gases pass counter-currently through the kiln. The lime plant consists of a single 235-foot long rotary kiln with a pre-heater and lime cooler. The kiln is fired with coal or a mixture of coal and petroleum coke. Coal and/or petroleum coke is burned near the discharge end of the kiln to provide the necessary heat for the process. The kiln rotates continuously to prevent the drum from sagging, to improve the product contact with the hot gases, and to move the product through the kiln. To maximize fuel efficiency, a product cooler and limestone pre-heater are used to recover heat from the product and the hot gasses. The lime product is discharged from the kiln and then conveyed to various storage silos, where it is screened to size and then shipped to the end user. Lime is used in the metallurgical, pulp and paper, construction, and waste treatment industries.

Emissions from the process consist primarily of particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NO_x), and sulfur dioxide (SO₂) from fuel combustion. Emission controls for the kiln consist of a fabric filter baghouse for PM control, a fuel sulfur content limit and combustion optimization to reduce CO and NO_x emissions. The majority of the SO₂ is collected within the process, owing to reactions with calcium oxide in the kiln.

Test related process and operational details were collected by Graymont personnel and included in Appendix E.