

Testing Solutions for a Better World

RECEIVED

AUG 0 1 2022

AIR QUALITY DIVISION EMISSION COMPLIANCE TEST FOR THE GENERAL ELECTRIC, COMBUSTION TURBINE, UNIT #CTG1 PREPARED FOR INDECK NILES, LLC AT THE INDECK NILES ENERGY CENTER NILES, MICHIGAN JUNE 21-23, 2022

> Permit No: 75-16B Report Date: July 15, 2022

Corporate Headquarters 1600 W Tacoma Street Broken Arrow, Oklahoma 74012

AIR HYGIENE, INC.

(918) 307-8865 or (888) 461-8778 www.airhygiene.com Remote Testing Offices Las Vegas, NV 89156 Ft. Worth, TX 76028 Humble, TX 77338 Shreveport, LA 71115 Miami, FL 33101 Pittsburgh, PA 15205 •

EMISSION COMPLIANCE TEST FOR THE GENERAL ELECTRIC, COMBUSTION TURBINE, UNIT #CTG1 PREPARED FOR INDECK NILES, LLC AT THE INDECK NILES ENERGY CENTER NILES, MICHIGAN JUNE 21-23, 2022

Prepared and Reviewed by:

Darin Grimes Sr. Testing Solutions Specialist

Τ.

Cole McBride, QSTI Sr. Project Manager certify that this testing was conducted and this report was created in conformance with the requirements of ASTM D7036

Thomas K. Graham, PE, QSTI Director of AHU

(this page intentionally left blank)

CERTIFICATION OF INFORMATION

I certify under penalty of law that I believe the information provided in this document is true, accurate and complete. I am aware that there are significant civil and criminal penalties, including the possibility of fine or imprisonment or both, for submitting false, inaccurate or incomplete information.

ma

Cole McBride, QSTI Sr. Project Manager Air Hygiene International, Inc.

July 4, 2022 Date

FACILITY CERTIFICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attached documents and, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil and criminal penalties, including the possibility of fine or imprisonment or both, for submitting false, inaccurate or incomplete information.

I am the responsible official with direct knowledge and overall responsibility for the information contained in this report.

Name

Title

Signature

Date

(this page intentionally left blank)

Table of Contents

1.0		1
1.1	TEST PURPOSE AND OBJECTIVES	1
1.2	SUMMARY OF TEST PROGRAM	1
1.1	2.1 Participating Organizations	1
1.1	2.2 Industry	1
	2.3 Air Permit Requirements	1
		1
		ł
	2.6 Emission Points	2
	2.7 Emission Parameters Measured	2
	2.8 Dates of Emission Test	<i>L</i>
1	2.9 Federal Certifications	Z
1.3	KEY PERSONNEL	2
2.0	SUMMARY OF TEST RESULTS	2
3.0	SOURCE OPERATION	-
3.1	PROCESS DESCRIPTION	3
3.2	SAMPLING LOCATION	4
4.0	SAMPLING AND ANALYTICAL PROCEDURES	4
4.1	TEST METHODS	4
4.2	INSTRUMENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS	5

APPENDICES

Appendix A T	est Results and	Calculations
--------------	-----------------	--------------

- Appendix B Emission Data Records
- Appendix C Calibration Gas Certifications
- Appendix D Quality Assurance and Quality Control Data
- Appendix E Fuel Analysis Records
- Appendix F Stratification Test Data
- Appendix G Equipment Calibration Records

Emissions Compliance Test General Electric, Combustion Turbine, Unit #CTG1 Indeck Niles, LLC Indeck Niles Energy Center Niles, Michigan June 21-23, 2022

1.0 INTRODUCTION

Air Hygiene International, Inc. (Air Hygiene) has completed the Emissions Compliance Test for carbon monoxide (CO), total hydrocarbons/volatile organic compounds (THC/VOC), sulfur dioxide (SO₂) from sulfur (S) in fuel, particulate matter (PM), sulfuric acid mist (SAM as H₂SO₄), and formaldehyde (HCHO) from the exhaust of the General Electric, Combustion Turbine, Unit #CTG1 for Indeck Niles, LLC at the Indeck Niles Energy Center in Niles, Michigan. This report details the background, results, process description, and the sampling/analysis methodology of the stack sampling survey conducted on June 21-23, 2022.

1.1 TEST PURPOSE AND OBJECTIVES

The purpose of the test was to conduct an initial compliance emission test to document levels of selected pollutants at base (maximum) load with duct burners in operation [BaseDB]. The information will be used to confirm compliance with the operating permit issued by the Michigan Department of Environment, Great Lakes, and Energy (EGLE). The specific objective was to determine the emission concentration of CO, THC/VOC, SO₂ from fuel S, PM, SAM, and HCHO from the exhaust of Indeck Niles, LLC's General Electric, Combustion Turbine, Unit #CTG1.

1.2 SUMMARY OF TEST PROGRAM

The following list details pertinent information related to this specific project:

- 1.2.1 Participating Organizations
 - Michigan Department of Environment, Great Lakes, and Energy (EGLE)
 - Indeck Niles, LLC
 - Kiewit Corporation
 - Air Hygiene
- 1.2.2 Industry
 - Electric Utility / Electric Services
- 1.2.3 Air Permit Requirements
 - Permit Number: 75-16B
- 1.2.4 Plant Location
 - Indeck Niles Energy Center in Niles, Michigan
 - GPS Coordinates [Latitude 41.85831, Longitude -86.22417]
 - Physical Address: 2200 Progressive Dr., Niles, Michigan 49120
 - Federal Registry System / Facility Registry Service (FRS) No. 110017413985
 - Source Classification Code (SCC) 20100201
- 1.2.5 Equipment Tested
 - General Electric, Combustion Turbine, Unit #CTG1

- 1.2.6 Emission Points
 - Exhaust from the General Electric, Combustion Turbine, Unit #CTG1
 - For CO, THC/VOCs, and HCHO, one sample point in the stack from the General Electric, Combustion Turbine, Unit #CTG1, determined after conducting a stratification test
 - For all PM testing, 24 sampling points in the stack from the General Electric, Combustion Turbine, Unit #CTG1
 - For all SAM testing, one sample point in the stack from the General Electric, Combustion Turbine, Unit #CTG1

1.2.7 Emission Parameters Measured

- CO
- THC/VOC
- SO₂ from fuel S
- PM (filterable PM [Method 5] and total PM₁₀/PM_{2.5} [Methods 5 and 202])
- SAM as H₂SO₄
- HCHO
- Flow
- H₂O
- CO₂
- O₂
- 1.2.8 Dates of Emission Test
 - June 21-23, 2022
- 1.2.9 Federal Certifications
 - Stack Testing Accreditation Council AETB Certificate No. 3796.02
 - International Standard ISO/IEC 17025:2005 Certificate No. 3796.01

1.3 KEY PERSONNEL

Indeck Niles, LLC:	Tom Krysiak (tkrysiak@indeckenergy.com)	716-225-6478
Kiewit Corporation:	Derek Goettemoeller (Derek.Goettemoeller@Kiewit.com)	913-905-9068
Air Hygiene:	Cole McBride (cmcbride@airhygiene.com)	918-307-8865
Air Hygiene:	Swanson Bierman	918-307-8865
Air Hygiene:	Colby Gniech	918-307-8865
Air Hygiene:	Harold Jones	918-307-8865
Air Hygiene:	Jason Hass	918-307-8865
Air Hygiene:	Trevor Thompson	918-307-8865
Air Hygiene:	Sean Barnes	918-307-8865

2.0 SUMMARY OF TEST RESULTS

Results from the sampling conducted on Indeck Niles, LLC's General Electric, Combustion Turbine, Unit #CTG1 located at the Indeck Niles Energy Center on June 21-23, 2022 are summarized in the following table and relate only to the items tested.

The results of all measured pollutant emissions were below the required limits. All testing was performed without any real or apparent errors. All testing was conducted according to the approved testing protocol.

TABLE 2.1SUMMARY OF GENERAL ELECTRIC, COMBUSTION TURBINE,UNIT #CTG1 RESULTS

Parameter	BaseDB Load Emissions	Permit Limits
Turbine Fuel Flow (SCFH)	3,151,294	
Duct Burner Fuel Flow (SCFH)	47,200	
Total Fuel Flow (SCFH)	3,198,494	
Power Output (megawatts)	368.0	
CO (ppmvd)	0.00	
CO (ppm@15%O ₂)	0.00	4
CO (lb/hr)	0.00	24.7
CO (ton/year) at 8760 hr/year	0.02	
VOC (as CH ₄) (ppmvd)	0.00	
VOC (as CH ₄) (ppm@15%O ₂)	0.00	4
VOC (as CH₄) (lb/hr)	0.00	
VOC (as CH ₄) (ton/year) at 8760 hr/year	0.00	
HCHO (ppbvd)	13.87	
HCHO (ppb@15%O₂)	9.34	
HCHO (lb/hr)	0.08	
HCHO (ton/year) at 8760 hr/year	0.33	9.3
Filterable PM (mg)	1.15	
Filterable PM (gr/dscf)	9.70E-05	
Filterable PM (lb/hr)	0.90	9.9
Filterable PM (ton/year) at 8760 hr/year	3.92	
Total PM ₁₀ /PM _{2.5} (mg)	5.13	
Total PM ₁₀ /PM _{2.5} (gr/dscf)	4.20E-04	
Total PM ₁₀ /PM _{2.5} (lb/hr)	3.97	19.8
Total PM ₁₀ /PM _{2.5} (ton/year) at 8760 hr/year	17.39	
Fuel Sulfur (grains / 100 scf)	0.0031	
SO ₂ from fuel sulfur (lb/hr)	0.028	11.7
SO ₂ from fuel sulfur (lb/MMBtu)	8.41E-06	0.060
SAM (as H₂SO₄) (mg)	0.0086	
SAM (as H₂SO₄) (gr/dscf)	3.43E-06	
SAM (as H₂SO₄) (Ib/hr)	0.03	4.6
SAM (as H ₂ SO ₄) (ton/year) at 8760 hr/year	0.14	ter ter

3.0 SOURCE OPERATION

3.1 PROCESS DESCRIPTION

Indeck Niles, LLC owns and operates the Indeck Niles Energy Center located at 2200 Progressive Dr., in Niles, Michigan. The facility includes two combined-cycle natural gas fired combustion turbine generators (CTGs). The two CTGS are rated at 3,651 million British thermal unit per hour (MMBtu/hr) and are coupled with heat

recovery steam generators (HRSG) in a two-on-one configuration with a steam turbine generator. Each HRSG is equipped with a natural gas-fired duct burner rated at 71 MMBtu/hr to provide heat for additional steam production. The HRSGs are not capable of operating independently from each CTG. Each CTG/HRSG is equipped with dry low NOx burners (DLNB), selective catalytic reduction (SCR), and an oxidation catalyst.

3.2 SAMPLING LOCATION

The stacks are vertical, circular, and measure 21.7 feet (ft) (260 inches) in diameter at the test ports which are approximately 159 ft above grade level with an exit elevation of approximately 170 ft above grade level. The test ports are located approximately 55.2 ft (662 inches) [2.5 dia] downstream and approximately 11 ft (132 inches) [0.5 dia] upstream from the nearest disturbances. Air Hygiene has field verified the measurable dimensions. Non-field verified dimensions are provided by Indeck Niles, LLC. All exhaust samples for gaseous emissions were continuously drawn from the exhaust system at the sample ports from a single point determined after conducting a stratification test for oxides of nitrogen (NOx) and O_2 . During the stratification test three points were traversed from each of the four ports. The probe was allowed to remain at a point for at least two times the system response time. For PM testing, an initial velocity traverse was performed across the stack from 24 total points to confirm the absence of cyclonic flow. All PM sampling occurred from the same 24 points by leaving the probe at each for an equal amount of time. For SAM testing, all sampling occurred from a single point in the stack.

4.0 SAMPLING AND ANALYTICAL PROCEDURES

4.1 TEST METHODS

The emission test on the General Electric, Combustion Turbine, Unit #CTG1 at the Indeck Niles Energy Center was performed following United States Environmental Protection Agency (EPA) methods described by the Code of Federal Regulations (CFR). Table 4.1 outlines the specific methods performed on June 21-23, 2022.

Pollutant or Parameter	Sampling Method	Analysis Method	
Sample Point Location	EPA Method 1	Equal Area Method	
Stack Flow Rate	EPA Method 2	S-Type Pitot Tube	
Oxygen	EPA Method 3A	Paramagnetic Cell	
Carbon Dioxide	EPA Method 3A	Nondispersive Infrared Analyzer	
Stack Moisture Content	EPA Method 4	Gravimetric Analysis	
Particulate Matter	EPA Method 5	Front Half Filterables	
Carbon Monoxide	EPA Method 10	Nondispersive Infrared Analyzer	
Stack Flow Rate	EPA Method 19	Dry Oxygen F Factor	
Total Hydrocarbons	EPA Method 25A	Flame Ionization Detector	

TABLE 4.1 SUMMARY OF SAMPLING METHODS

Pollutant or Parameter	Sampling Method	Analysis Method	
Particulate Matter	EPA Method 202	Back Half Condensables	
Formaldehyde	EPA Method 320	Fourier Transform Infrared with StarBoost Filter	
Sulfuric Acid Mist	EPA CTM-013	Ion Chromatography	
Fuel Content and Sulfur Analysis	ASTM D-1945 and D3246	Fuel Gas Sample and Laboratory Analysis	

4.2 INSTRUMENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS

The sampling and analysis procedures used during these tests conform with the methods outlined in the Code of Federal Regulations (CFR), Title 40, Part 60, Appendix A, Methods 1, 2, 3A, 4, 5, 10, 19, 25A; 40 CFR 51, Appendix M, Method 202; 40 CFR 63, Appendix A, Method 320; and Conditional Test Method (CTM)-013.

Figure 4.1 depicts the sample system used for the real-time gas analyzer tests. The gas sample was continuously pulled through the probe and transported, via heat-traced Teflon® tubing, to a heated head pump and into the FTIR then to a stainless-steel minimum-contact condenser designed to dry the sample. Transportation of the sample, through Teflon® tubing, continued into the sample manifold within the mobile laboratory via a stainless steel/Teflon® diaphragm pump. From the manifold, the sample was partitioned to the real-time analyzers through rotameters that controlled the flow rate of the sample. Exhaust samples were routed to the wet based analyzer prior to gas conditioning.

Figure 4.1 shows that the sample system was also equipped with a separate path through which a calibration gas could be delivered to the probe and back through the entire sampling system. This allowed for convenient performance of system bias checks as required by the testing methods.

All instruments were housed in a climate controlled, trailer-mounted mobile laboratory. Gaseous calibration standards were provided in aluminum cylinders with the concentrations certified by the vendor. EPA Protocol No. 1 was used to determine the cylinder concentrations where applicable (i.e., NOx calibration gases).

Table 4.2 provides a description of the analyzers used for the instrument portion of the tests. All data from the continuous monitoring instruments were recorded on a Logic Beach Portable Data Logging System which retrieves calibrated electronic data from each instrument every one second and reports an average of the collected data every 30 seconds. For target compounds measured with the Fourier transform infrared (FTIR) spectrometer, interferograms consisting of 30 co-added scans were recorded continuously during the test periods, and provided approximately 30-second average concentrations. Spectral data was analyzed by the MKS MG2000 software.

Figure 4.2 represents the sample system used for the PM tests. A heated stainless-steel probe with a glass liner and nozzle was inserted into the sample ports of the stack to extract gas measurements from the emission stream through a filter and glass impinger train. Flow rates are monitored with oil filled manometers and total sample volumes are measured with a dry gas meter. Glassware that is used to collect and analyze Method 202 condensable particulate samples is cleaned prior to the test with soap and water, and rinsed using tap water, deionized water, acetone, and finally, hexane. After cleaning, Air Hygiene incorporates a glassware bake at 300°C for six hours rather than the alternative of collecting a field train proof blank.

Figure 4.3 represents the sample system used for the SAM tests. A heated stainless-steel probe with a glass liner was inserted into the sample ports of the stack to extract gas measurements from the emission stream through a

filter and glass impinger train. Flow rates are monitored with oil filled manometers and total sample volumes are measured with a dry gas meter.

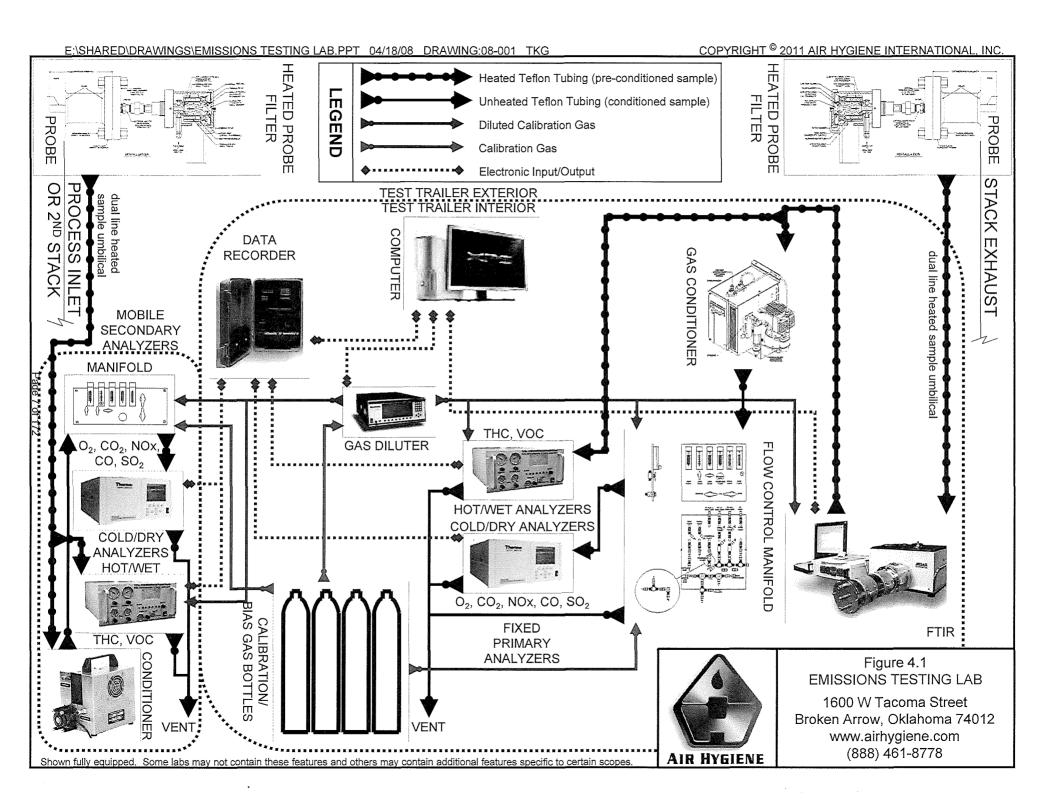
The stack gas analysis for O_2 and CO_2 concentrations was performed in accordance with procedures set forth in EPA Method 3A. The O_2 analyzer uses a paramagnetic cell detector and the CO_2 analyzer uses a continuous nondispersive infrared analyzer.

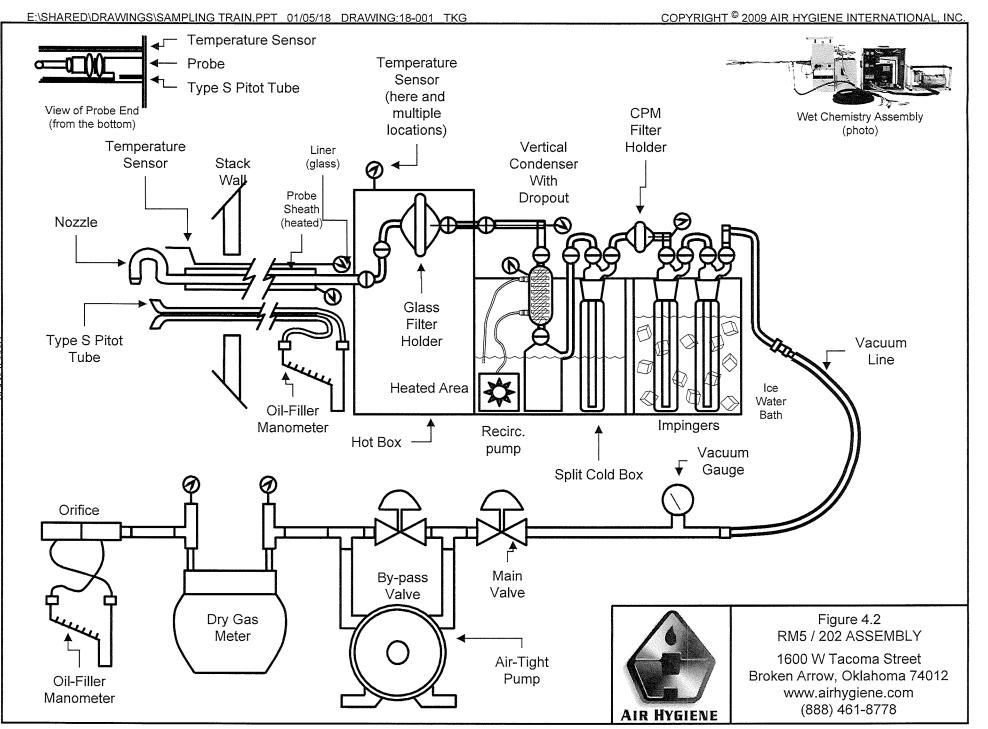
CO emission concentrations were quantified in accordance with procedures set forth in EPA Method 10. A continuous nondispersive infrared (NDIR) analyzer was used for this purpose.

THC emission concentrations were quantified in accordance with procedures set forth in EPA Method 25A. A continuous flame ionization (FID) analyzer was used for this purpose. VOC emission concentrations were assumed as THCs.

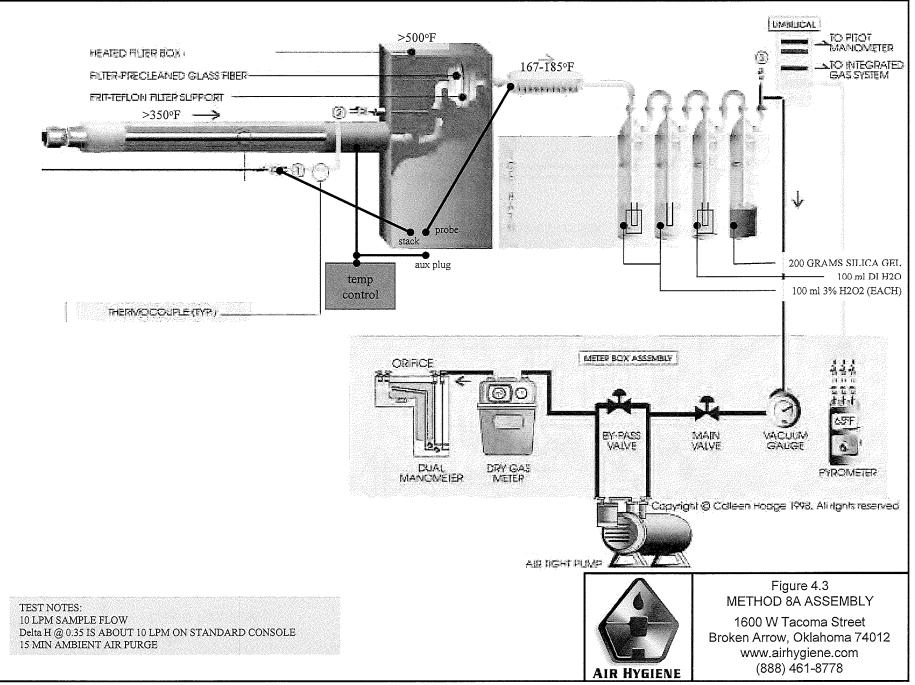
A MKS Instruments - MultiGas[™] Fourier Transform Infrared (FTIR) spectrometer, equipped with StarBoost technology filter, was used for HCHO analysis per EPA Method 320. The FTIR spectrometer spectral resolution was 0.5 cm⁻¹. The system employed a silicon carbide infrared source at 1200°C, a helium neon reference laser, beam splitters, potassium bromide (KBr) cell window, front-surface optical transfer mirrors, and multi-pass absorption cells. MCT detectors were used and cooled with liquid nitrogen in order to maintain a constant temperature of 77 Kelvin. The approximately 5.11-meter multi-pass path cells incorporated aspheric, aberration-correcting mirrors to increase the optical throughput and the detection sensitivity. Transducers and thermocouples were connected directly to the insulated sample cells that provide the pressure and temperatures of the sample streams. During testing, the temperature of the absorption cells was set at 191°C. Elevated temperature prevented gas condensation within the cell and minimized compound adhesion to the cell walls and mirrors. The volume of the absorption cell was 0.5 liters, so at a sample gas flow rate of 4.0 liters per minute, the sample gas in the cell is refreshed approximately four times each minute. Interferograms consisting of 30 co-added scans were recorded continuously during the test periods, and provided approximately 30-second average concentrations.

Parameter	Manufacturer and Model	Range	Sensitivity	Detection Principle
со	THERMO 48 series	User may select up to 10,000 ppm	0.1 ppm	Infrared absorption, gas filter correlation detector, microprocessor-based linearization.
CO ₂	SERVOMEX 1440	0-20%		Nondispersive infrared
нсно	2030 multiple ranges		0.1 ppm	Fourier Transform Infrared – FTIR with StarBoost filter
VOC			0.1 ppm	Flame Ionization Detector
O ₂			0.1%	Paramagnetic cell, inherently linear.


TABLE 4.2 ANALYTICAL INSTRUMENTATION


RECEIVED

AUG 01 2022


kie-22-niles.mi-start#1-CTG1-COMP-rpt

AIR QUALITY DIVISION

rage 8 of 172

APPENDIX A

TEST RESULTS AND CALCULATIONS

TABLE A.1: EMISSIONS TESTING SCHEDULE

Unit	Load	Component	Run	Date	Start	Stop	Time Sync	Duration
CTG1	BaseDB	Stratification Test	1	06/22/22	12:55	13:34	DAHS	00:39
CTG1	BaseDB	CO, VOC, HCHO	1-1	06/22/22	21:37	22:36	DAHS	01:00
CTG1	BaseDB	CO, VOC, HCHO	1-2	06/22/22	22:52	23:51	DAHS	01:00
CTG1	BaseDB	CO, VOC, HCHO	1-3	06/23/22	00:05	01:04	DAHS	01:00
CTG1	BaseDB	Cyc. Flow Chk.	CTG1_PM-V1	06/21/22	12:42	12:57	DAHS	00:15
CTG1	BaseDB	PM	CTG1_PM-1	06/22/22	13:38	16:49	DAHS	03:11
CTG1	BaseDB	PM	CTG1_PM-2	06/22/22	17:11	20:20	DAHS	03:09
CTG1	BaseDB	PM	CTG1_PM-3	06/22/22	21:01	00:09	DAHS	03:08
CTG1	BaseDB	PM	CTG1_PM-4	06/23/22	00:39	03:47	DAHS	03:08
CTG1	BaseDB	SAM	CTG1_100_wdb_8A-1	06/22/22	14:21	16:22	DAHS	02:01
CTG1	BaseDB	SAM	CTG1_100_wdb_8A-2	06/22/22	17:00	19:03	DAHS	02:03
CTG1	BaseDB	SAM	CTG1_100_wdb_8A-3	06/22/22	19:33	21:33	DAHS	02:00

TEST RESULTS AND CALCULATIONS

CO, VOC, HCHO, and SO₂ from Fuel S Emissions Data

	Basedb	Basedb	Basedb	
Parameter	Load, Run - 1	Load, Run - 1	Load, Run - 1	Average
	1	2	3	
Date (mm/dd/yy)	06/22/22	06/22/22	06/23/22	06/22/22
Start Time (hh:mm:ss)	21:37:26	22:52:26	0:05:26	0:05:26
End Time (hh:mm:ss)	22:36:56	23:51:56	1:04:56	23:51:56
Run Duration (min / run)	60	60	60	60
Bar. Pressure (in. Hg)	29.20	29.21	29.21	29.21
Amb. Temp. (°F)	80	79	78	79
Rel. Humidity (%)	50	52	55	52
Spec. Humidity (Ib water / Ib air)	0.011200	0.011270	0.011539	0.011336
Turbine Fuel Flow (SCFH)	3,147,387	3,150,027	3,156,467	3,151,294
Duct Burner Fuel Flow (SCFH)	47,200	47,200	47,200	47,200
Total Fuel Flow (SCFH)	3,194,587	3,197,227	3,203,667	3,198,494
Stack Flow (RM19) (SCFH)	69,636,004	69,064,793	69,212,231	69,304,343
Stack Moisture (% Method 320)	9.4	9.4	9.2	9.3
Power Output (megawatts)	367.3	367.8	368.8	368.0
CO (ppmvd)	0.00	0.00	0.00	0.00
CO (ppm@15%O ₂)	0.00	0.00	0.00	0.00
CO (lb/hr)	0.00	0.00	0.01	0.00
CO (ton/year) at 8760 hr/year	0.00	0.00	0.05	0.02
VOC (as CH ₄) (ppmvd)	0.000	0.000	0.000	0.000
VOC (as CH ₄) (ppm@15%O ₂)	0.000	0.000	0.000	0.000
VOC (as CH ₄) (lb/hr)	0.00	0.00	0.00	0.00
VOC (as CH ₄) (ton/year) at 8760 hr/year	0.00	0.00	0.00	0.00
HCHO (ppbvd)	24.18	10.20	7.22	13.87
HCHO (ppb@15%O₂)	16.34	6.83	4.84	9.34
HCHO (lb/hr)	0.13	0.05	0.04	0.08
HCHO (lb/MW*hr)	0.00	0.00	0.00	0.00
HCHO (ton/year) at 8760 hr/year	0.57	0.24	0.17	0.33
Fuel Sulfur (grains / 100 scf)	0.0031			0.0031
SO₂ from fuel sulfur (lb/hr)	0.0283			0.0283
SO ₂ from fuel sulfur (lb/MMBtu)	8.41E-06			8.41E-06
CO ₂ (%)	5.26	5.19	5.21	5.22
O ₂ (%)	12.17	12.09	12.09	12.12

GENERAL ELECTRIC, COMBUSTION TURBINE, UNIT #CTG1 BASEDB LOAD DATA SUMMARY

Calculations, Formulas, and Constants

The following information supports the spreadsheets for this testing project.

Given Data:

Ideal Gas Conversion Factor = 385.23 SCF/lb-mol at 68 deg F & 14.696 psia

Fuel Heating Value is based upon Air Hygiene's fuel gas calculation sheet. All calculations are based upon a correction to 68 deg F & 14.696 psia High Heating Values (HHV) are used for the Fuel Heating Value, F-Factor, and Fuel Flow Data per EPA requirements.

ASTM D 3588

Molecular Weight of NOx (lb/lb-mole) = 46.01 Molecular Weight of CO (lb/lb-mole) = 28.00 Molecular Weight of SO₂ (lb/lb-mole) = 64.00 Molecular Weight of THC (propane) (lb/lb-mole) = 44.00 Molecular Weight of VOC (methane) (lb/lb-mole) = 16.00 Molecular Weight of NH₃ (lb/lb-mole) = 17.03 Molecular Weight of HCHO (lb/lb-mole) = 30.03 Molecular Weight of CO₂ (lb/lb-mole) = 44.01

Formulas:

1. Corrected Raw Average (C_{Gas}), 40CFR60, App. A, RM 7E, Eq. 7E-5 (08/15/06)

$$C_{Gas} = \left(C_{Avg} - C_{o}\right) \times \left(\frac{C_{M}}{C_{M} - C_{o}}\right)$$

2. Correction to % O2, 40CFR60, App. A, RM 20, Eq. 20-5 (11/26/02)

$$C_{adj} = C_{Gas(T \text{ arg } et)} \times \left(\frac{20.9\% - AdjFactor}{20.9\% - C_{Gas(O2)}}\right)$$

3. Correction to % O2 and ISO Conditions

$$C_{ISO} = C_{Adj} \times \sqrt{\frac{P_r}{P_o}} \times e^{(19 \times (H_o - 0.00633))} \times \left(\frac{288}{T_a}\right)^{1.53}$$

4. Method 19 stack exhaust flow (scfh) [ref. EPA EMC FAQ Method 19]

$$Q_s = \left(\frac{FFactor \times Q_f \times HHV}{1,000,000}\right) \times \left(\frac{20.9\%}{20.9\% - C_{Gas(O2)}}\right)$$

40CFR60, App. A., RM 19, Table 19-1 Conversion Constant for NOx = 0.0000001194351Conversion Constant for CO = 0.000000726839Conversion Constant for SO₂ = 0.0000001661345Conversion Constant for THC = 0.0000001142175Conversion Constant for VOC (methane) = 0.0000000415336Conversion Constant for NH₃ = 0.0000000442074Conversion Constant for HCHO = 0.000000779534Conversion Constant for CO₂ = 0.0000001142434NOTE: units are lb/ppm*ft³

5. Emission Rate in lb/hr

$$E_{lb/hr} = \frac{C_{Gas}}{10^6} \times \frac{Q_s \times MW}{G}$$

6. Emission Rate in tons per year

$$E_{ton/yr} = \frac{E_{lb/hr} \times hr_{year}}{2000}$$

7. Emission Concentration in lb/MMBtu (O₂ based)

$$E_{lb/MMBtu} = \frac{C_{Gas} \times F_d Factor \times Conv_C \times 20.9\%}{20.9\% - C_{Gas(O2)}}$$

Ì

8. Emission Concentration in g/hp*hr

$$E_{g/hp/hr} = \frac{E_{lb/hr} \times 453.6}{mw \times 1341.022} \text{ or } \frac{E_{lb/hr} \times 453.6}{hp}$$

RM 7E, (08-15-06), 12.1 Nomenclature. The terms used in the equations are defined as follows:

ACE = Analyzer calibration error, percent of calibration span.

B_{WS} = Moisture content of sample gas as measured by Method 4 or other approved method, percent/100.

CAug = Average unadjusted gas concentration indicated by data recorder for the test run.

C_D = Pollutant concentration adjusted to dry conditions.

C_{Dir} = Measured concentration of a calibration gas (low, mid, or high) when introduced in direct calibration mode.

C_{Gas} = Average effluent gas concentration adjusted for bias.

CM = Average of initial and final system calibration bias (or 2-point system calibration error) check responses for the upscale calibration gas.

 C_{MA} = Actual concentration of the upscale calibration gas, ppmv.

Co = Average of the initial and final system calibration bias (or 2-point system calibration error) check responses from the low-level (or zero) calibration gas.

Cs = Measured concentration of a calibration gas (low, mid, or high) when introduced in system calibration mode.

C_{ss} = Concentration of NOx measured in the spiked sample.

 C_{Spike} = Concentration of NOx in the undiluted spike gas.

C_{cab} = Calculated concentration of NOx in the spike gas diluted in the sample.

Cy = Manufacturer certified concentration of a calibration gas (low, mid, or high).

Cw = Pollutant concentration measured under moist sample conditions, wet basis.

CS = Calibration span.

D = Drift assessment, percent of calibration span.

Ep = The predicted response for the low-level and mid-level gases based on a linear response line between the zero and high-level response.

Eff_{NO2} = NO2 to NO converter efficiency, percent.

H = High calibration gas, designator.

L = Low calibration gas, designator.

M = Mid calibration gas, designator.

NOFinal = The average NO concentration observed with the analyzer in the NO mode during the converter efficiency test in Section 16.2.2.

NOxCorr = The NOx concentration corrected for the converter efficiency.

NOxFinal = The final NOx concentration observed during the converter efficiency test in Section 16.2.2.

NOxPeak = The highest NOx concentration observed during the converter efficiency test in Section 16.2.2.

Q_{spike} = Flow rate of spike gas introduced in system calibration mode, L/min.

Q_{Total} = Total sample flow rate during the spike test, L/min.

R = Spike recovery, percent.

SB = System bias, percent of calibration span.

SB_I = Pre-run system bias, percent of calibration span.

SB_f = Post-run system bias, percent of calibration span.

SB / DAt = Alternative absolute difference criteria to pass bias and/or drift checks.

SCE = System calibration error, percent of calibration span.

SCEI = Pre-run system calibration error, percent of calibration span.

SCE_{final} = Post-run system calibration error, percent of calibration span.

Z = Zero calibration gas, designator.

40CFR60.355(b)(1), (09-20-06), Nomenclature. The terms used in the equations are defined as follows:

Pr = reference combustor inlet absolute pressure at 101.3 kilopascals ambient pressure, mm Hg

 P_o = observed combustor inlet absolute pressure at test, mm Hg

 $H_o = observed$ humidity of ambient air, g H_2O/g air

e = transcendental constant, 2.718

Ta = ambient temperature, K

Small Engine and FTIR Nomenclature. The terms used in the equations are defined as follows:

bhp = brake horsepowerhp = horsepower $Q_{sys} = system flow (lpm)$ $Q_m = matrix spike flow (lpm)$

RM 19, (07-29-06), 12.1 Nomenclature. The terms used in the equations are defined as follows:

AdjFactor = Percent oxygen or carbon dioxide adjustment applied to a target pollutant

B_{va} = Moisture fraction of ambient air, percent.

Btu = British thermal unit

%c = Concentration of carbon from an ultimate analysis of fuel, weight percent.

%cood,%coox = Concentration of carbon dioxide on a dry and wet basis, respectively, percent.

CIP / CDP = Combustor inlet pressure / compressor discharge pressure (mm Hg); note, some manufactures reference as PCD.

E = Pollutant emission rate, ng/J (lb/million Blu).

Ea = Average pollutant rate for the specified performance test period, ng/J (lb/million Btu).

Eao, Eal = Average pollutant rate of the control device, outlet and inlet, respectively, for the performance test period, ng/J (lb/million Btu).

 E_{bt} = Pollutant rate from the steam generating unit, ng/J (lb/million Btu).

 E_{bo} = Pollutant emission rate from the steam generating unit, ng/J (lb/million Btu).

Eci = Pollutant rate in combined effluent, ng/J (lb/million Btu).

 E_{co} = Pollutant emission rate in combined effluent, ng/J (lb/million Btu).

E₄ = Average pollutant rate for each sampling period (e.g., 24-hr Method 6B sample or 24-hr fuel sample) or for each fuel lot (e.g., amount of fuel bunkered), ng/J (lb/million E

E_{dl} = Average inlet SO₂ rate for each sampling period d, ng/J (lb/million Btu).

Eg = Pollutant rate from gas turbine, ng/J (lb/million Btu).

E_{ga} = Daily geometric average pollutant rate, ng/J (lbs/million Btu) or ppm corrected to 7 percent O2.

Ejo, Ej = Matched pair hourly anthmetic average pollutant rate, outlet and inlet, respectively, ng/J (Ib/million Btu) or ppm corrected to 7 percent O2.

Eh = Hourly average pollutant, ng/J (lb/million Btu).

Ehi = Hourly arithmetic average pollutant rate for hour "j," ng/J (lb/million Btu) or ppm corrected to 7 percent O2.

EXP = Natural logarithmic base (2.718) raised to the value enclosed by brackets.

Fc = Ratio of the volume of carbon dioxide produced to the gross calonific value of the fuel from Method 19

F_d, F_w, F_c = Volumes of combustion components per unit of heat content, scm/J (scf/million Btu).

ft3 = cubic feet

G = ideal gas conversion factor

(385.23 SCF/lb-mol at 68 deg F & 14.696 psia)

GCM = gross Btu per SCF (constant, compound based)

GCV = Gross calonfic value of the fuel consistent with the ultimate analysis, kJ/kg (Btu/lb).

GCVp, GCVr = Gross calorific value for the product and raw fuel lots, respectively, dry basis, kJ/kg (Btu/lb).

%H = Concentration of hydrogen from an ultimate analysis of fuel, weight percent.

H_b = Heat input rate to the steam generating unit from fuels fired in the steam generating unit, J/hr (million Btu/hr).

H_a = Heat input rate to gas turbine from all fuels fired in the gas turbine, J/hr (million Btu/hr).

%H2O = Concentration of water from an ultimate analysis of fuel, weight percent.

H_r = Total numbers of hours in the performance test period (e.g., 720 hours for 30-day performance test period).

K = volume of combustion component per pound of component (constant)

K = Conversion factor, 10⁻⁵ (kJ/J)/(%) [10⁶ Btu/million Btu].

K_c = (9.57 scm/kg)/% [(1.53 scf/lb)/%].

Kcc = (2.0 scm/kg)/% [(0.321 scf/b)/%].

Khd = (22.7 scm/kg)/% [(3.64 scf/b)/%].

K_{hw} = (34.74 scm/kg)/% [(5.57 scf/lb)/%].

K_n = (0.86 scm/kg)/% [(0.14 scf/lb)/%].

Ko = (2.85 scm/kg)/% [(0.46 scf/b)/%].

K_s = (3.54 scm/kg)/% [(0.57 scf/lb)/%].

K_{sutur} = 2x10⁴ BtuAvt%-MMBtu

Kw = (1.30 scm/kg)/% [(0.21 scf/b)/%].

lb = pound

In = Natural log of indicated value.

L_p,L_r = Weight of the product and raw fuel lots, respectively, metric ton (ton).

%N = Concentration of nitrogen from an ultimate analysis of fuel, weight percent.

M_% = mole percent

mol = mole

MW = molecular weight (lb/lb-mol)

MW_{AIR} = molecular weight of air (28,9625 [b/lb-mole]

NCM = net Btu per SCF (constant based on compound)

%o = Concentration of oxygen from an ultimate analysis of fuel, weight percent.

%ozd, %ozw = Concentration of oxygen on a dry and wet basis, respectively, percent.

 P_B = barometric pressure, in Hg

Ps = Potential SO2 emissions, percent.

%s = Sulfur content of as-fired fuel lot, dry basis, weight percent.

Se = Standard deviation of the hourly average pollutant rates for each performance test period, ng/J (Ib/million Btu).

%sr = Concentration of sulfur from an ultimate analysis of fuel, weight percent.

S(wt%) = weight percent of sulfur, per lab analysis by appropriate ASTM standard

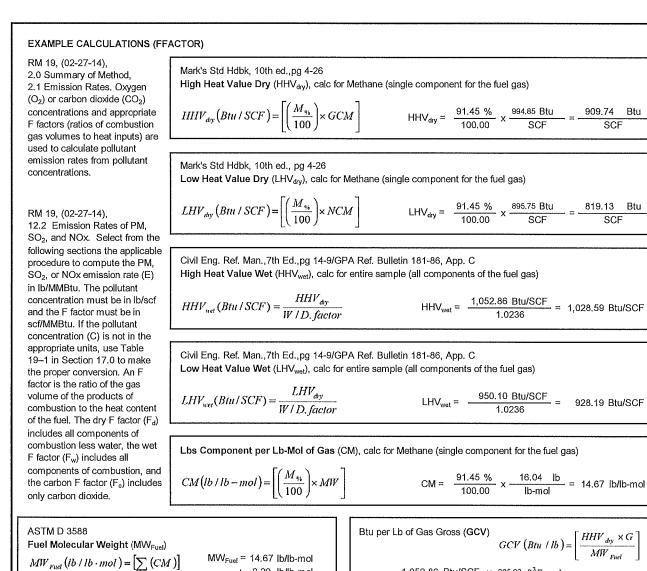
S_i = Standard deviation of the hourly average inlet pollutant rates for each performance test period, ng/J (lb/million Btu).

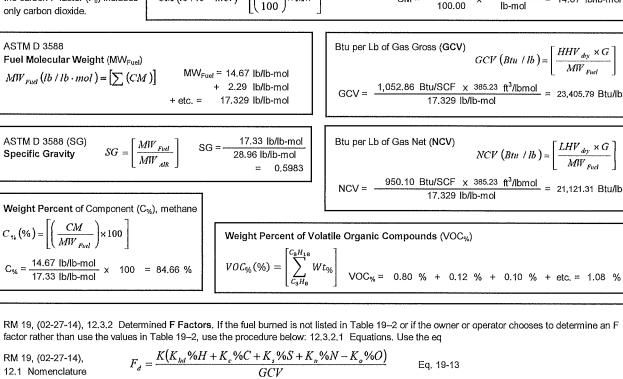
So = Standard deviation of the hourly average emission rates for each performance test period, ng/J (lb/million Btu).

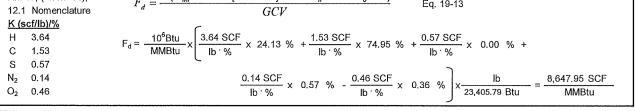
%Sp, %Sr = Sulfur content of the product and raw fuel lots respectively, dry basis, weight percent.

SCF = standard cubic feet

SH = specific humidity, pounds of water per pound of air

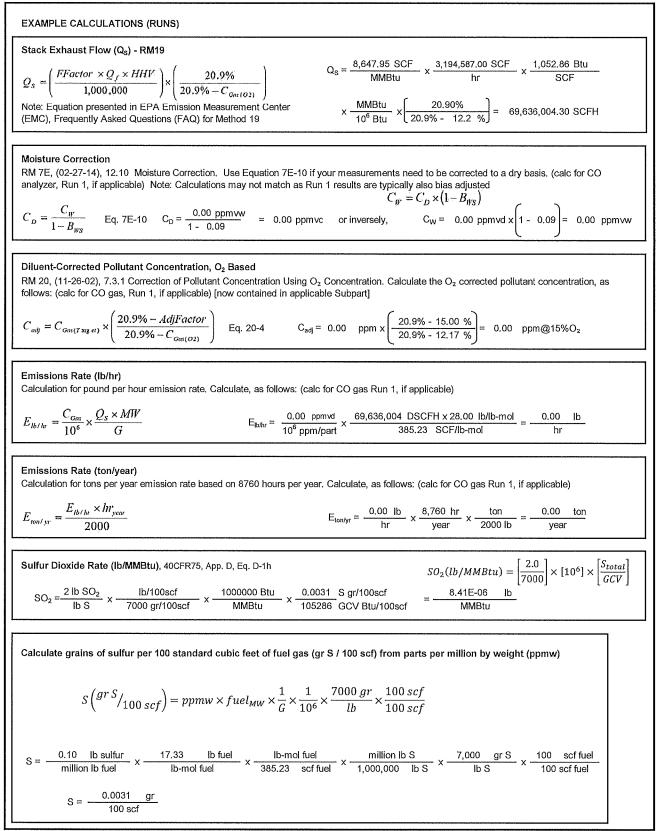

 $t_{0.95}$ = Values shown in Table 19-3 for the indicated number of data points n,

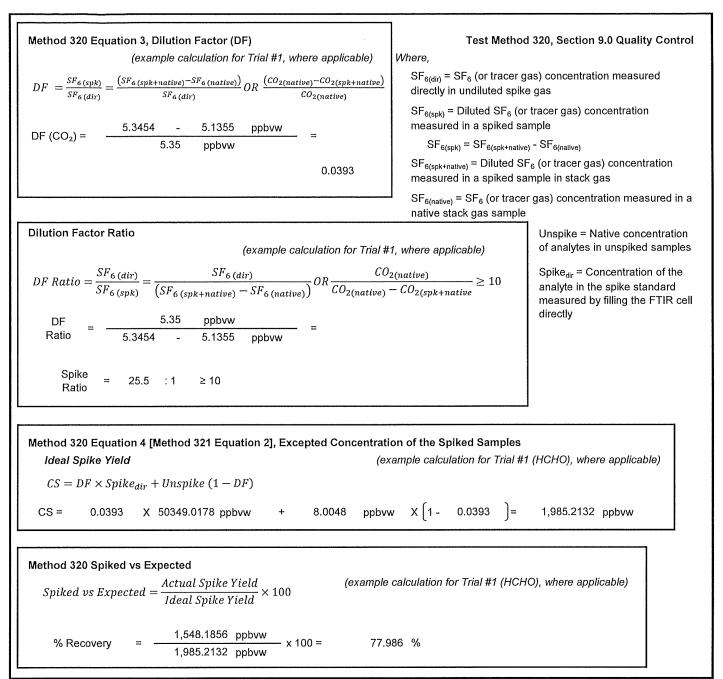

 T_{arro} = ambient temperature, °F W/D Factor = 1.0236 = conv. at 14.696 psia and

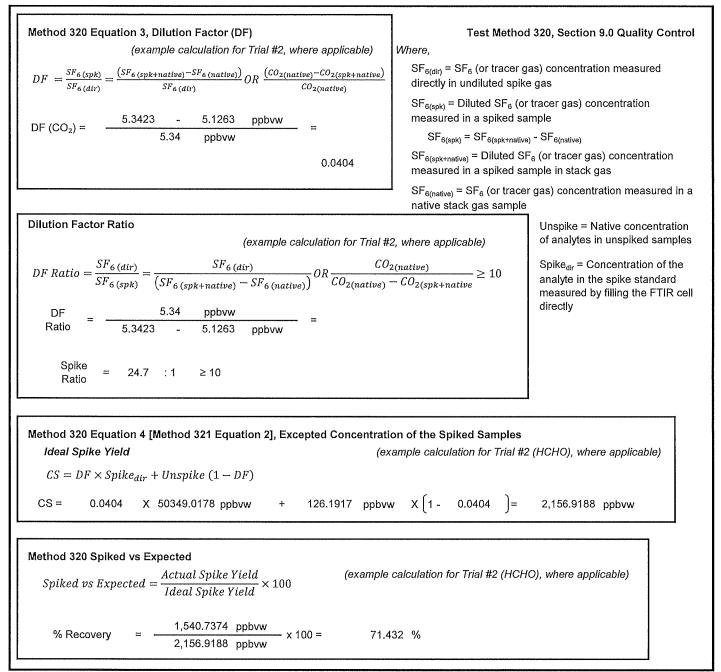

68 deg F (ref. Civil Eng. Ref. Manual, 7th Ed.)

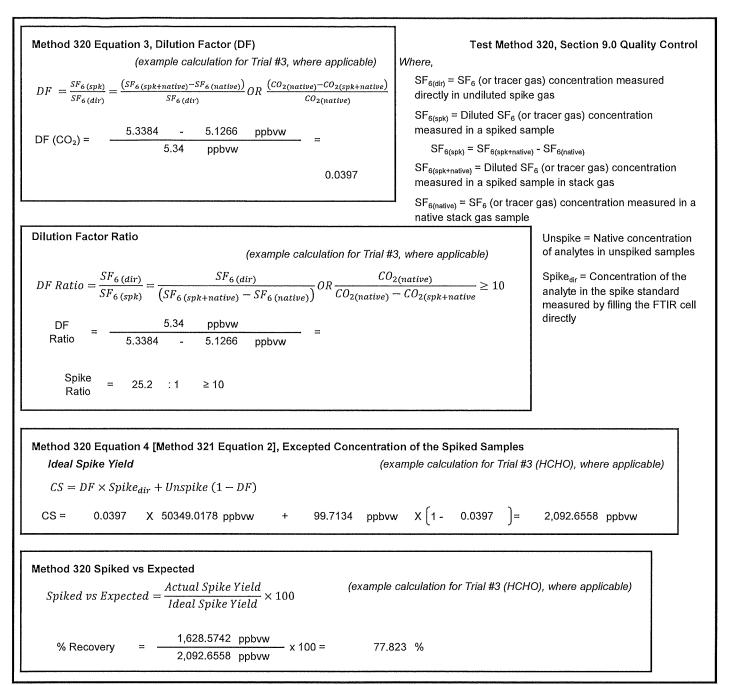
Xco2=CO2 Correction factor, percent.

 X_k = Fraction of total heat input from each type of fuel k.




928.19 Btu/SCF


EXAMPLE CALCULATIONS (INFORMATION) Specific Humidity (RH_{sp}) Note: RHsp (gr/lb) calculated using temperature, relative humidity, and barometric pressure with psychrometric chart, psychrometric calculator, or built in psychrometric algorithm. $RH_{sp}(lb / lb) = \left[\left(\frac{gr}{lb} \right) \right]$ $\left(\right) \times \frac{1}{7000 gr}$ lb $RH_{sp} = \frac{78.40 \text{ gr}}{\text{lb}} \times \frac{1 \text{ lb}}{7000 \text{ gr}} =$ 0.011200 <mark>lb H₂O</mark> lb Air **EXAMPLE CALCULATIONS (CALIBRATION)** Analyzer Calibration Error RM 7E, (02-27-14), 12.2 Analyzer Calibration Error. For non-dilution systems, use Equation 7E-1 to calculate the analyzer calibration error for the low-, mid-, and high-level calibration gases. (calc for CO analyzer mid gas, if applicable) $ACE = \left(\frac{C_{Dir} - C_{\nu}}{CS}\right) \times 100$ Eq. 7E-1 9.11 ppm Calibration Error and Estimated Point, RM 25A, THC/VOC Analyzer RM 25A, (02-27-14), 8.4 Calibration Error Test. Immediately prior to the test series (within 2 hours of the start of the test), introduce zero gas and high-level calibration gas at the calibration valve assembly. Adjust the analyzer output to the appropriate levels, if necessary. Calculate the predicted


response for the low-level and mid-level gases based on a linear response line between the zero and high-level response. Then introduce low-level and mid-level calibration gases successively to the measurement system. ... These differences must be less than 5 percent of the respective

calibration gas value. (calc for THC/VOC analyzer mid gas, if applicable)
$E_{p} = \frac{C_{Dir(H)} - C_{Dir(Z)}}{C_{r(H)} - C_{r(Z)}} \times C_{Dir(M)} + C_{Dir(Z)} \qquad \qquad$
$ACE = \left(\frac{C_{Dir} - C_{V}}{CS}\right) \times 100$ Eq. 7E-1 $ACE_{voc} = \frac{5.31 \text{ ppm} - 5.26 \text{ ppm}}{5.19 \text{ ppm}} \times 100 = 0.92 \%$
Note: Lack of significant figures may cause rounding errors between actual calculations and example calculations.
EXAMPLE CALCULATIONS (BIAS, DRIFT, AND CORRECTED RAW AVERAGE)
System Bias RM 7E, (02-27-14), 12.3 System Bias. For non-dilution systems, use Equation 7E-2 to calculate the system bias separately for the low-level and upscale calibration gases. (calc for CO analyzer upscale gas, Run 1 initial bias, if applicable)
$SB = \left(\frac{C_s - C_{Dtr}}{CS}\right) \times 100$ Eq. 7E-2 SB = $\frac{5.10 \text{ ppm} - 5.12 \text{ ppm}}{9.11 \text{ ppm}} \times 100 = -0.22 \%$
1
Drift Assessment RM 7E, (02-27-14), 12.5 Drift Assessment. Use Equation 7E-4 to separately calculate the low-level and upscale drift over each test run. (calc for CO analyzer upscale drift, Run 1, if applicable)
$D = SB_{final} - SB_r $ Eq. 7E-4 $D = -1.32 \%0.22 \% = 1.10 \%$
Alternative Drift and Bias RM 7E, (02-27-14), 13.2 / 13.3 System Bias and Drift. Alternatively, the results are acceptable if $ Cs - Cdir $ is ≤ 0.5 ppmv or if $ Cs - Cv $ is ≤ 0.5 ppmv (as applicable). (calc for CO analyzer initial upscale, Run 1, if applicable)
$SB/D_{Alt} = C_s - C_{Dlr} $ Eq. Section 13.2 and 13.3 SB / D _{Alt} = 5.10 ppm - 5.12 ppm = 0.02 ppm
Bias Adjusted Average
RM 7E, (02-27-14), 12.6 Effluent Gas Concentration. For each test run, calculate Cavg, the arithmetic average of all valid CO concentration values (e.g., 1-minute averages). Then adjust the value of Cavg for bias, using Equation 7E-5b. (calc for CO analyzer, Run 1, if applicable)
$C_{Gas} = (C_{Avg} - C_o) \times \left(\frac{C_{M}}{C_M - C_o}\right) = 6.01 \text{ ppm} = 0.01 \text{ ppm} = 0.01 \text{ ppm} = -0.01 \text{ ppm}$

TEST RESULTS AND CALCULATIONS

PM Emissions Data

METHOD 5 (FRONT) AND 202 (BACK) - RESULTS

Plant Name	Indeck Niles Energy Center
Sampling Location	CTG1
Project #	kie-22-niles.mi-start#1

Historical Data	CTG1_PM-1	CTG1_PM-2	CTG1_PM-3	CTG1_PM-4	Average	Units
Run Start Time	13:38	17:11	21:01	00:39		hh:mm
Run Stop Time	16:49	20:20	00:09	03:47		hh:mm
Test Date	06/22/22	06/22/22	06/22/22	06/23/22		mm/dd/yy
Load	BaseDB	BaseDB	BaseDB	BaseDB		% or w/DE
Meter Calibration Factor	1.105	1.105	1.105	1.105		
Pitot Tube Coefficient	0.8350	0.8350	0.8350	0.8350		
Average Nozzle Diameter	0.256	0.256	0.256	0.256		in
Stack Test Data	CTG1_PM-1	CTG1_PM-2	CTG1_PM-3	CTG1_PM-4	Average	Units
Initial Meter Volume	0.000	164.230	0.000	0.000		ft³
Final Meter Volume	163.490	343.620	180.880	181.800		ft³
Total Meter Volume	163.490	179.390	180.880	181.800	176.390	ft³
Total Sampling Time	180.00	180.00	180.00	180.00	180.00	min
Average Meter Temperature	80.50	81.54	81.08	79.83	80.74	°F
Average Stack Temperature	200.13	196.79	191.38	189.00	194.32	°F
Barometric Pressure	29.24	29.20	29.23	29.24	29.23	in Hg
Stack Static Pressure	-1.10	-1.10	-1.10	-1.10	-1.10	in H₂O
Absolute Stack Pressure	29.16	29.12	29.15	29.16	29.15	in Hg
Average Orifice Pressure Drop	3.34	4.06	3.93	3.95	3.82	in H ₂ O
Absolute Meter Pressure	29.37	29.33	29.36	29.37	29.36	in Hg
Avg Square Root Pitot Pressure	1.04	1.13	1.13	1.13	1.11	√(in H₂O)
Moisture Content Data	CTG1_PM-1	CTG1_PM-2	CTG1_PM-3	CTG1_PM-4	Average	Units
Impinger Water Weight Gain	376.80	410.10	423.50	425.20	408.90	g
Silica Gel Weight Gain	47.00	47.60	43.20	50.30	47.03	g
Total Water Volume Collected	424.56	458.53	467.54	476.36	456.75	ml
Standard Water Vapor Volume	19.98	21.58	22.00	22.42	21.50	scf
Standard Meter Volume	173.9	190.5	192.4	193.9	187.7	dscf
Standard Metric Meter Volume	4.9	5.4	5.4	5.5	5.3	dscm
Calculated Stack Moisture	10.31	10.17	10.26	10.36	10.28	%
Saturated Stack Moisture	80.59	75.29	67.06	63.71	71.66	%
Reported Stack Moisture Content	10.31	10.17	10.26	10.36	10.28	%
Gas Analysis Data	CTG1_PM-1	CTG1_PM-2	CTG1_PM-3	CTG1_PM-4	Average	Units
Carbon Dioxide Content	5.3	5.3	5.3	5.3	5.3	%
Oxygen Content	12.0	12.0	12.0	12.0	12.0	%
Carbon Monoxide Content	0.0	0.0	0.0	0.0	0.0	ppm
Nitrogen Content	82.7	82.7	82.7	82.7	82.7	%
Stack Dry Molecular Weight	29.33	29.33	29.33	29.33	29.33	lb/lb-mole
Stack Wet Molecular Weight		28.18	28.17	28.15	28.16	lb/lb-mole
Calculated Fuel Factor	1.679	1.679	1.679	1.679	1.679	
Fuel F-Factor	8647.95	8647.95	8647.95	8647.95	8647.95	dscf/MMBtu
Percent Excess Air	122.0	122.0	122.0	122.0	122.0	%

METHOD 5 (FRONT) AND 202 (BACK) - RESULTS

Plant Name	Indeck Niles Energy Center
Sampling Location	CTG1
Project #	kie-22-niles.mi-start#1

Volumetric Flow Rate Data	CTG1_PM-1	CTG1_PM-2	CTG1_PM-3	CTG1_PM-4	Average	Units
Average Stack Gas Velocity	66.40	72.27	71.67	71.64	70.50	ft/sec
Stack Cross-Sectional Area	368.70	368.70	368.70	368.70	368.70	ft²
Actual Stack Flow Rate	1,468,827	1,598,815	1,585,597	1,584,841	1,559,520	acfm
Wet Standard Stack Flow Rate	68,698	75,054	75,130	75,394	73,569	wkscfh
Dry Standard Stack Flow Rate	61,618,084	67,418,204	67,419,641	67,581,420	66,009,337	dscfh
Percent of Isokinetic Rate	97.9	99.9	98.5	98.8	98.7	%
Gravimetric Analysis	CTG1_PM-1	CTG1_PM-2	CTG1_PM-3	CTG1_PM-4	Average	Units
NH₄OH Correction	0.0000	0.0000	0.0000	0.0000	0.0000	ml
NH₄OH Correction	0.0000	0.0000	0.0000	0.0000	0.0000	mg
Emission Rate Data	CTG1_PM-1	CTG1_PM-2	CTG1_PM-3	CTG1_PM-4	Average	Units
Total PM ₁₀ /PM _{2.5} Mass	4.10	3.07	9.37	3.96	5.13	mg
Total PM ₁₀ /PM _{2.5} Concentration	2.36E-05	1.61E-05	4.87E-05	2.04E-05	2.72E-05	g/dscf
	3.64E-04	2.49E-04	7.52E-04	3.15E-04	4.20E-04	gr/dscf
Total PM ₁₀ /PM _{2.5} Emission Rate	1.45	1.09	3.28	1.38	1.80	kg/hr
	3.20	2.40	7.24	3.04	3.97	lb/hr
	14.02	10.50	31.71	13.32	17.39	tpy
	0.0011	0.0007	0.0022	0.0009	0.0012	lb/MMBtu
Filterable PM Mass	2.10	1.67	0.17	0.66	1.15	mg
Filterable PM Concentration	1.21E-05	8.78E-06	8.93E-07	3.40E-06	6.28E-06	g/dscf
	1.86E-04	1.35E-04	1.38E-05	5.25E-05	9.70E-05	gr/dscf
Filterable PM Emission Rate	0.74	0.59	0.06	0.23	0.41	kg/hr
	1.64	1.30	0.13	0.51	0.90	lb/hr
	7.18	5.72	0.58	2.22	3.92	tpy
	0.0005	0.0004	0.0000	0.0002	0.0003	lb/MMBtu
Condensable PM Mass	2.00	1.40	9.20	3.30	3.98	mg
Condensable PM Concentration	1.15E-05	7.35E-06	4.78E-05	1.70E-05	2.09E-05	g/dscf
	1.77E-04	1.13E-04	7.38E-04	2.63E-04	3.23E-04	gr/dscf
Condensable PM Emission Rate	0.71	0.50	3.22	1.15	1.39	kg/hr
	1.56	1.09	7.11	2.54	3.07	lb/hr
	6.84	4.78	31.13	11.10	13.46	tpy
	0.0005	0.0003	0.0021	0.0008	0.0009	lb/MMBtu

.

- %CO = carbon monoxide concentration (%)
- %CO₂ = carbon dioxide concentration (%)
- %N₂ = nitrogen concentration (%)
- %O₂ = oxygen concentration (%)
- %O_{2,wet} = Oxygen content of gas stream, % by volume of wet gas. (Note: The oxygen percentage used in Method 201A, Equation 3 is on a wet gas basis. That means that since oxygen is typically measured on a dry gas basis, the measured percent O2 must be multiplied by the quantity (1 B_{ws}) to convert to the actual volume fraction. Therefore, %O_{2,wet} = (1 B_{ws}) * %O_{2, dry})
- (%EA)_{avg} = average excess air (%)
- (F_o)_{avg} = average calculated fuel factor
- [(Δp)^{0.5}]_{avg} = Average of square roots of the velocity pressures measured during the preliminary traverse, inches W.C.
- µ = Gas viscosity, micropoise
- 12.0 = Constant calculated as 60 percent of 20.5 square inch cross-sectional area of combined cyclone head, square inches
- 17.03 = mg/milliequivalents for ammonium ion
- 22.4 = liters of ideal gas per lb-mol of substance at 0°C and 1 atm (ref. Civil Engineering Reference Manual, 7th ed. - Michael R. Lindeburg)
- 24.04 = liters of ideal gas per lb-mol of substance at 20°C and 1 atm (ref. Civil Engineering Reference Manual, 7th ed. - Michael R. Lindeburg)
- 5.02 x 10⁴ = constant derived from the molecular weight and correcting standard temperature and pressure (ref. Bay Area Air Quality Management District, Source Test Procedure ST-1B, Ammonia Integrated Sampling, Adopted January 20, 1982, Regulation 7-303)
- A = distance upstream (in.)
- A_D = stack diameters upstream (dia.)
- An = Area of nozzle, square feet
- A_s = area of stack (ft²)
- B = distance downstream (in.)
- B_D = stack diameters downstream (dia.)
- b_f = Average blockage factor calculated in Equation 26, dimensionless
- B_{wm} = meter moisture content (%)
- B_{ws} = stack moisture content (%)
- C = Cunningham correction factor for particle diameter, Dp, and calculated using the actual stack gas temperature, dimensionless
- C₁ = -150.3162 (micropoise)
- $C_2 = 18.0614$ (micropoise/K^{0.5}) = 13.4622 (micropoise/R^{0.5})
- $C_3 = 1.19183 \times 10^6$ (micropoise/K²) = 3.86153 × 10⁶ (micropoise/R²)
- C₄ = 0.591123 (micropoise)
- C₅ = 91.9723 (micropoise)
- $C_6 = 4.91705 \times 10^{-5}$ (micropoise/K²) = 1.51761 × 10⁻⁵ (micropoise/R²)
- C_a = Acetone blank concentration, mg/mg
- C_b = Concentration of NH3 ion in the back half of train (breakthrough)
- C_f = Concentration of NH3 ion in the front half of train (main catch)
- C_{fPM10} = Conc. of filterable PM₁₀, gr/dscf
- C_{fPM2.5} = Conc. of filterable PM_{2.5}, gr/dscf
- C_k = K Factor Constant, 849.8

- $C_n = nozzle diameter constant, 0.03575$
- C_p' = Coefficient for the pitot used in the preliminary traverse, dimensionless
- C_p = Pitot coefficient for the combined cyclone pitot, dimensionless
- C_{cpm} = Concentration of the condensable PM in the stack gas, dry basis, corrected to standard conditions, milligrams/dry standard cubic foot.
- C_r = Re-estimated Cunningham correction factor for particle diameter equivalent to the actual cut size diameter and calculated using the actual stack gas temperature, dimensionless
- D₅₀ = Particle cut diameter, micrometers
- D_{50(N+1)} = D₅₀ value for cyclone IV calculated during the N+1 iterative step, micrometers
- D_{50-1} = Re-calculated particle cut diameters based on re-estimated C_r, micrometers
- D_{50LL} = Cut diameter for cyclone I corresponding to the 2.25 micrometer cut diameter for cyclone IV, micrometer
- $D_{50N} = D_{50}$ value for cyclone IV calculated during the Nth iterative step, micrometers
- D_{50T} = Cyclone I cut diameter corresponding to the middle of the overlap zone shown in Method 201A, Figure 10 of Section 17, micrometers
- D_e = equivalent stack diameter (in.)
- ΔH@ = ΔH @ 0.75 scfm (in. H2O)
- ΔH_{avg} = average orifice pressure (in. H₂O)
- D_n = Inner diameter of sampling nozzle mounted on Cyclone I, inches
- D_{na} = actual nozzle diameter (in.)
- D_p = Physical particle size, micrometers
- $\Delta p =$ velocity head (in. H₂O)
- Δp_1 = velocity head at first current traverse point (in. H₂O)
- $\Delta p'_1$ = velocity head at first preliminary traverse point (in. H₂O)
- Δp_{avg} = average pitot tube differential pressure (in. H₂O)
- Δp_n = velocity head at subsequent current traverse point (in. H₂O)
- Δp_{RM2} = method 2 velocity head (in. H₂O)
- D_s = diameter of stack (in.)
- F_d = fuel f-factor (dscf/MMBtu)
- f_{O2} = stack gas fraction of O_2 , by volume, dry basis
- I = Percent isokinetic sampling, dimensionless
- K_1 = standard volume correction, 17.65°R/in. Hg
- K₄ = isokinetic conversion constant, 0.0945min•in.Hg/sec•^oR
- K₅ = water mass to std water vapor, 0.04715 ft³/g
- $K_p = 85.49$, ((ft/sec)/(pounds/mole ${}^{o}R$))
- L = length of stack (in.)
- L_{fw} = distance to far wall of stack (in.)
- L_{nw} = distance to near wall of stack (in.) [reference]
- m_{#x} = weight measurements (g)
- M₁ = Milligrams of PM collected on the filter, less than or equal to 2.5 micrometers
- M₂ = Milligrams of PM recovered from Container #2 (acetone blank corrected), greater than 10 micrometers
- M₃ = Milligrams of PM recovered from Container #3 (acetone blank corrected), less than or equal to 10 and greater than 2.5 micrometers
- M₄ = Milligrams of PM recovered from Container #4 (acetone blank corrected), less than or equal to 2.5 micrometers

- m_a = Mass of residue of acetone after evaporation, mg
- m_c = Mass of the NH4+ added to sample to form ammonium sulfate, mg
- m_{cpm} = Mass of the total condensable PM, mg
- M_d = Molecular weight of dry gas, pounds/pound mole
- m_{fb} = Mass of total CPM in field train recovery blank, mg
- m_{fx} = final weight, avg of last two measurements (g)
- mg = Milligram
- mg/L = Milligram per liter
- m_i = Mass of inorganic CPM, mg
- m_{ib} = Mass of inorganic CPM in field train recovery blank, mg
- M_n = total particulates (mg)
- m_o = Mass of organic CPM, mg
- m_{ob} = Mass of organic CPM in field train blank, mg
- m_r = Mass of dried sample from inorganic fraction, mg
- m_{tx} = tare weight (g)
- MW = molecular weight (lb/lb-mole)
- M_w = Molecular weight of wet gas, pounds/pound mole
- N = Normality of ammonium hydroxide titrant
- N_a = null angle (deg.)
- N_{re} = Reynolds number, dimensionless
- N_{tp} = Number of iterative steps or total traverse points
- P_b = P_{bar} = barometric pressure (in. Hg)
- P_{bar} = barometric pressure (in. Hg)
- ppmCO = carbon monoxide concentration (ppm)
- ppmv = Parts per million by volume
- ppmw = Parts per million by weight
- P_s = absolute stack pressure (in. Hg)
- P_{static} = static pressure (in. H₂O)
- P_{std} = standard pressure, 29.92 in. Hg
- Θ = total sampling time (min)
- Q_{aw} = average stack wet flow rate (ascf/min)
- Q_I = Sampling rate for cyclone I to achieve specified D₅₀
- Q_m = estimated orifice flow rate, 0.750 acfm, else Vm/Q from previous run
- Q_s = Sampling rate for cyclone I to achieve specified D₅₀
- Q_{s(std)} = total cyclone flow rate at standard conditions (dscf/min)
- Q_{sd} = dry standard stack flow rate (dscfm)
- Q_{sST} = Dry gas sampling rate through the sampling assembly, dscfm
- Q_{sw} = wet standard stack flow rate (ascfm)
- R_{max} = Nozzle/stack velocity ratio parameter, dimensionless
- R_{min} = Nozzle/stack velocity ratio parameter, dimensionless
- t₁ = Sampling time at point 1, min
- t_m = average gas meter temperature (°F)
- t_m = average meter temperature (^oF)
- T_m = Meter box and orifice gas temperature, ^oR
- t_n = Sampling time at point n, min

- t_r = Total projected run time, min
- T_s = Absolute stack gas temperature, ^oR
- T_{std} = standard temperature, 68°F, 528°R
- T_u = absolute temperature offset, 460°R
- V_a = Volume of acetone blank, ml
- V_{aw} = Volume of acetone used in sample recovery wash, ml
- V_b = Volume of aliquot taken for IC analysis, ml
- V_c = Quantity of water captured in impingers and silica gel, ml
- V_f = final impinger volume (ml)
- V_i = initial impinger volume (ml)
- V_{ic} = Volume of impinger contents sample, ml
- V_m = Dry gas meter volume sampled, acf
- V_{m(std)} = standard meter volume (dscf)
- v_{max} = Maximum gas velocity calculated from Equations 18 or 19, ft/sec
- v_{max} = maximum nozzle velocity (ft/sec)
- V_{mf} = final dry gas meter reading (dcf)
- V_{mi} = initial dry gas meter reading (dcf)
- v_{min} = Minimum gas velocity calculated from Method 201A, Equations 16 or 17, ft/sec
- V_{ms} = Dry gas meter volume sampled, corrected to standard conditions, dscf
- v_n = Sample gas velocity in the nozzle, ft/sec
- v_{org} = organics wash volume (ml)
- V_p = Volume of water added during train purge
- v_s = average stack gas velocity (ft/sec)
- v_{sl} = local velocity (ft/sec)
- V_t = total impinger volume (ml) = ;(V_f - V_i)
- V_t = Volume of NH4OH titrant, ml
- V_{w(std)} = volume of water vapor in gas sample at standard conditions (scf)
- v_x = blank volume (ml)
- W = width of stack (in.)
- W_{2,3,4} = Weight of PM recovered from Containers #2, #3, and #4, mg
- W_a = Weight of blank residue in acetone used to recover samples, mg
- W_f = final impinger weight (g)
- W_i = initial impinger weight (g)
- W_t = total impinger weight (g) = ;(W_f-W_j)
- w_x = blank weight of solids (g)
- Y = meter calibration factor (a.k.a gamma)
- Z = Ratio between estimated cyclone IV D_{50} values, dimensionless
- γ = Dry gas meter gamma value, dimensionless
- $\Delta H = Meter box orifice pressure drop, inches W.C.$
- ΔH@ = Pressure drop across orifice at flow rate of 0.75 scfm at standard conditions, inches W.C. (Note: Specific to each orifice and meter box.)
- Δp_1 = Velocity pressure measured at point 1, inches W.C.
- Δp_{avg} = Average velocity pressure, inches W.C.
- Δp_m = Observed velocity pressure using S-type pitot tube in preliminary traverse, inches W.C.
- Δp_{max} = Maximum velocity pressure, inches W.C.

- Δp_{min} = Minimum velocity pressure, inches W.C.
- Δp_n = Velocity pressure measured at point n during the test run, inches W.C.
- $\Delta p_s =$ Velocity pressure calculated in Method 201a, Equation 25, inches W.C.
- Δp_{s1} = Velocity pressure adjusted for combined cyclone pitot tube, inches W.C.
- Δp_{s2} = Velocity pressure corrected for blockage, inches W.C.
- θ = Total run time, min
- ρ_a = Density of acetone, mg/ml (see label on bottle)
- Σ_n = total number of sampling points

EXAMPLE CALCULATIONS (Reference Method 1 - Circular Stack)

Diameter of Stack (in.) $D(in.) = L_{fw} - L_{mw}$ D (in.) = 266.00 in. - 6.00 in. = 260.00 in. Stack Diameters Downstream $B_D(dia.) = \frac{B}{D}$ $B_D(dia.) = \frac{662.38}{260.00}$ in. = 2.55 diameters Area of Stack (ft²) $A_{s} (ft^{2}) = \pi \times \left(\frac{D}{2 \times 12}\right)^{2}$ $A_{s} (ft^{2}) = 3.14 \times \left(\frac{260.00 \text{ in.}}{2 \times 12 \text{ in./ft}}\right)^{2} = 368.70 \text{ ft}^{2}$ Stack Diameters Upstream $A_{D} (dia .) = \frac{A}{D}$ $A_{D} (dia.) = \frac{132.00}{260.00} \text{ in.} = 0.51 \text{ diameters}$