RECEIVED JUN 09 2022 AIR QUALITY DIVISION

Source Test Report for 2022 Compliance Testing RTO Atlas Molded Products Byron Center, Michigan

Prepared For:

Atlas Molded Products 8240 Byron Center Ave SW Byron Center, MI 49315

Prepared By:

Montrose Air Quality Services, LLC 1371 Brummel Avenue Elk Grove Village, IL 60007

For Submission To:

Michigan Department of Environment, Great Lakes and Energy 525 West Allegan Street Lansing, MI 48933

OUNTER SERVECTS

Document Number: MW023AS-015689-RT-1334 Test Date: March 22, 2022 Submittal Date: June 7, 2022

Review and Certification

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

Signature:	KutWest	Date:	04 / 18 / 2022	
Name:	Kurt Wepprecht, QI	Title:	Vice President, Technical	

I have reviewed, technically and editorially, details, calculations, results, conclusions, and other appropriate written materials contained herein. I hereby certify that, to the best of my knowledge, the presented material is authentic, accurate, and conforms to the requirements of the Montrose Quality Management System and ASTM D7036-04.

Signature:	Henry M. Taylor	Date:	04 / 18 / 2022	
Name:	Henry M. Taylor, QSTO	Title:	Senior Reporting Sepcialist	

Page 2 of 115

MONTROSE AIR QUALITY SERVICES

Table of Contents

Se	<u>ctio</u>	<u>n</u>	<u>age</u>
1.0	Intro	duction	5
	1.1	Summary of Test Program	5
	1.2	Key Personnel	
2.0	Plant	t and Sampling Location Descriptions	8
	2.1	Process Description, Operation, and Control Equipment	8
	2.2	Flue Gas Sampling Locations	8
	2.3	Operating Conditions and Process Data	9
3.0	Sam	pling and Analytical Procedures	10
	3.1	Test Methods	10
		3.1.1 EPA Method 1	10
		3.1.2 EPA Method 2	10
		3.1.3 EPA Method 3A	11
		3.1.4 EPA Method 4	12
		3.1.5 EPA Method 25A	13
	3.2	Process Test Methods	14
4.0	Test	Discussion and Results	15
	4.1	Field Test Deviations and Exceptions	15
	4.2	Presentation of Results	15
5.0	Inter	rnal QA/QC Activities	17
	5.1	QA/QC Audits	17
	5.2	QA/QC Discussion	17
	5.3	Quality Statement	17

List of Appendices

А	Field	Data and Calculations	
	A.1	Sampling Locations	
	A.2	Data Sheets	
	A.3	Instrumental Test Method Data	
	A.4	Calculations/Results	
	A.5	Example Calculations	
в	Facil	ity Process Data	63
С	Qual	ity Assurance/Quality Control	
	C .1	Units and Abbreviations	70
	C.2	QA/QC Data	78
	C.3 A	ccreditation Information/Certifications	105

	D Regulatory Information1	13
Lis	tofTables	
1-1	Summary of Test Program	.5
1-2	Summary of Average Compliance Results – RTO Outlet	.6
1-3	Test Personnel and Observers	.7
2-1	Sampling Locations	.8
4-1	THC Emissions and DE Results - RTO	16
LÌS		
3-1	EPA METHOD 3A SAMPLING TRAIN	12
3-2	EPA METHOD 4 DETACHED WITH PITOTS SAMPLING TRAIN	13

3-3 EPA METHOD M25A SAMPLING TRAIN......14

Page 4 of 115

1.0 Introduction

1.1 Summary of Test Program

Atlas Molded Products (Atlas) contracted Montrose Air Quality Services, LLC (Montrose) to perform a compliance emissions test program on the RTO at their facility located in Byron Center, Michigan.

The tests were conducted to determine compliance with the conditions set forth in the Atlas permit issued by the Michigan Department of Environmental, Great Lakes and Energy (EGLE).

The specific objectives were to:

- Determine the THC concentration, emission rate, and DE of the RTO
- Conduct the test program with a focus on safety

Montrose performed the tests to measure the emission parameters listed in Table 1-1.

Table 1-1 Summary of Test Program

Test Date	Unit ID/ Source Name	Activity/Parameters	Test Methods	No. of Runs	Duration (Minutes)
3/22/22	RTO Inlet &	Velocity/Volumetric Flow	EPA 1 & 2	3	60
	Outlet	O ₂ , CO ₂	ЕРА ЗА	3	60
		Moisture	EPA 4	3	60
		ТНС	EPA 25A	3	60

To simplify this report, a list of Units and Abbreviations is included in Appendix C.1. Throughout this report, chemical nomenclature, acronyms, and reporting units are not defined. Please refer to the list for specific details.

This report presents the test results and supporting data, descriptions of the testing procedures, descriptions of the facility and sampling locations, and a summary of the quality assurance procedures used by Montrose. The average emission test results are summarized and compared to their respective permit limits in Table 1-2. Detailed results for individual test runs can be found in Section 4.0. All supporting data can be found in the appendices.

The tests were conducted according to the test plan (protocol) dated February 21, 2022 that was submitted to and approved by the EGLE.

Page 5 of 115

Table 1-2Summary of Average Compliance Results - RTO Outlet

March 22, 2022

Parameter/Units	Average Results	Emission Limits	
Total Hydrocarbons (THC), a	s Propane		
ppmvw	10.80	en en	
lb/hr	0.240		
DE, %	99.6	> 98%	
Total Hydrocarbons (THC), a	s Pentane	fanning () yn fan fan troch annen fan de fan fan fan geffan yn ar yn af fan de fan fan de fan de fan de fan d T	
ppmvw	6.82		
lb/hr	0.248		
DE, %	99.6	> 98%	

Page 6 of 115

1.2 Key Personnel

A list of project participants is included below:

Facility Information

Source Location:	Atlas Molded Products
	8240 Byron Center Ave SW
	Byron Center, MI 49315
Project Contact:	Tim Van Hoeven
Telephone:	616-644-2454
Email:	tvanhoeven@atlasroofing.com

Agency Information

Regulatory Agency:	Michigan Department of Environment, Great Lakes and Energy
Agency Contact:	Karen Kajiya-Mills
Telephone:	517-256-0880
Email:	kajiya-millsk@michigan.gov

Testing Company Information

Testing Firm:	Montrose Air Quality Services, LLC
Contact:	Kurt Wepprecht
Title:	Vice President, Technical
Telephone:	630-860-4740
Email:	kwepprecht@montrose-env.com

Test personnel and observers are summarized in Table 1-3.

Table 1-3

Test Personnel and Observers

Name	Affiliation	Role/Responsibility
Kurt Wepprecht	Montrose	Vice President, Technical/QI/Field Team Leader/Trailer Operator
Michael Hess	Montrose	Client Project Manager/QI/Sample Recovery/Sample Train Operator
Paul Repuyan	Montrose	Field Technician/Sample train operator
Jacob Cartee	Montrose	Report preparation
Tim Van Hoeven	Atlas	Client Liaison/Test Coordinator

2.0 Plant and Sampling Location Descriptions

2.1 Process Description, Operation, and Control Equipment

Atlas Molded Products manufactures expanded polystyrene (EPS) foam and foam products. The facility receives as its primary raw material EPS beads. EPS beads are made using a polymerization process which produces translucent spherical beads of polystyrene, about the size of sugar granules. During this process, pentane gas is added to the material to assist expansion during subsequent processing.

EPS foam is produced in a three-stage process:

Pre-expansion - Upon contact with steam the pentane contained in the beads starts to boil and the beads are expanded to between 40 to 50 times their original volume.

Conditioning – After Expansion, the beads undergo a maturing period in order to reach an equilibrium temperature and pressure.

Molding - The beads are placed within a mold and again reheated with steam. The prefoamed beads expand further, completely fill the mold cavity, and fuse together. The beads are molded to form blocks or customized shape products.

There are two molding processes for EPS. Block molding produces large blocks of EPS which can then be cut into shapes or sheets for use in both packaging and building/construction applications. Shape molding produces parts which have custom designed specifications such as electronic product packaging.

2.2 Flue Gas Sampling Locations

Information regarding the sampling locations is presented in Table 2-1.

Table 2-1

Sampling Locations

	Stack Inside	Distance from Nea		
Sampling Location	Diameter (in.)	Downstream EPA "B" (in./dia.)	Upstream EPA "A" (in./dia.)	Number of Traverse Points
RTO Inlet	15	70/4.7	45/3.0	Flow: 16 (8/port) Gaseous: 1
RTO Outlet	22	88/4.0	160/7.3	Flow: 16 (8/port) Gaseous: 1

The sample locations were verified in the field to conform to EPA Method 1. Absence of cyclonic flow conditions was confirmed following EPA Method 1, Section 11.4. See Appendix A.1 for more information.

Page 8 of 115

2.3 Operating Conditions and Process Data

Emission tests were performed while the source and air pollution control devices were operating at the conditions required by the permit.

Plant personnel were responsible for establishing the test conditions and collecting all applicable unit-operating data. The process data that was provided is presented in Appendix B.

3.0 Sampling and Analytical Procedures

3.1 Test Methods

The test methods for this test program have been presented in Table 1-1. Additional information regarding specific applications or modifications to standard procedures is presented below.

3.1.1 EPA Method 1, Sample and Velocity Traverses for Stationary Sources

EPA Method 1 is used to assure that representative measurements of volumetric flow rate are obtained by dividing the cross-section of the stack or duct into equal areas, and then locating a traverse point within each of the equal areas. Acceptable sample locations must be located at least two stack or duct equivalent diameters downstream from a flow disturbance and one-half equivalent diameter upstream from a flow disturbance.

Pertinent information regarding the performance of the method is presented below:

- Method Options:
 - ି None
- Method Exceptions:
 - ି None

The sample port and traverse point locations are detailed in Appendix A.

3.1.2 EPA Method 2, Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)

EPA Method 2 is used to measure the gas velocity using an S-type pitot tube connected to a pressure measurement device, and to measure the gas temperature using a calibrated thermocouple connected to a thermocouple indicator. Typically, Type S (Stausscheibe) pitot tubes conforming to the geometric specifications in the test method are used, along with an inclined manometer. The measurements are made at traverse points specified by EPA Method 1. The molecular weight of the gas stream is determined from independent measurements of O_2 , CO_2 , and moisture. The stack gas volumetric flow rate is calculated using the measured average velocity head, the area of the duct at the measurement plane, the measured average temperature, the measured duct static pressure, the molecular weight of the gas stream, and the measured moisture.

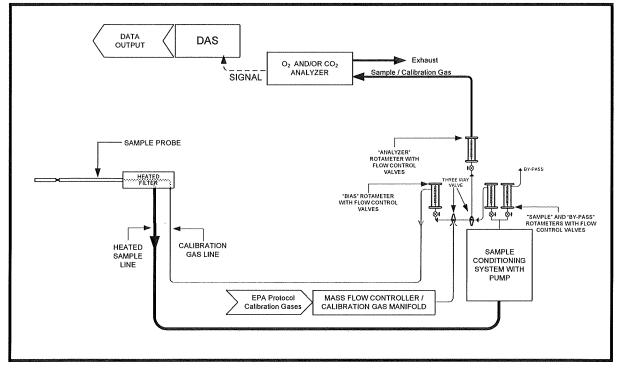
Pertinent information regarding the performance of the method is presented below:

- Method Options:
 - S-type pitot tube coefficient is 0.84
- Method Exceptions:
 - o None

The typical sampling system is detailed in Figure 3-2.

3.1.3 EPA Method 3A, Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedures)

Concentrations of O_2 and CO_2 are measured simultaneously using EPA Method 3A which is an instrumental test method. Conditioned gas is sent to a series of analyzers to measure the gaseous emission concentrations. The performance requirements of the method must be met to validate the data.


Pertinent information regarding the performance of the method is presented below:

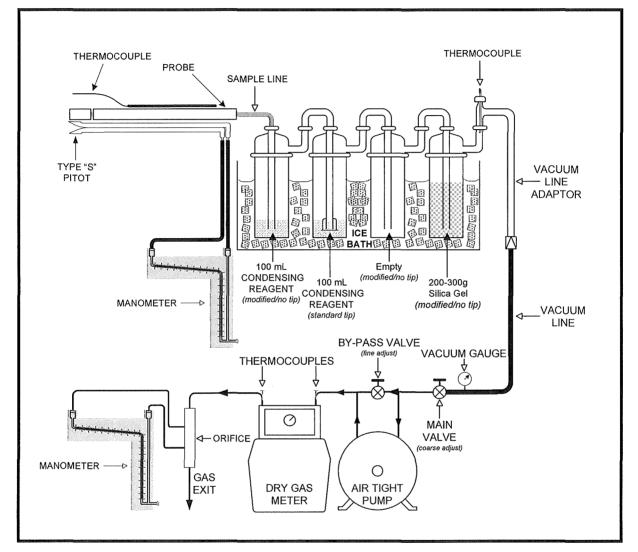
- Method Options:
 - $\circ~$ A dry extractive sampling system is used to report emissions on a dry basis
 - \circ A paramagnetic analyzer is used to measure O₂
 - \circ A nondispersive infrared analyzer is used to measure CO₂
 - $\circ~$ An integrated bag sample was collected during each sampling run and analyzed for CO_2 and O_2 using the calibrated reference Method 3A analyzers
- Method Exceptions:
 - o None
- Target and/or Minimum Required Sample Duration: 60 minutes

The typical sampling system is detailed in Figure 3-1.

FIGURE 3-1 EPA METHOD 3A SAMPLING TRAIN

3.1.4 EPA Method 4, Determination of Moisture Content in Stack Gas

EPA Method 4 is a manual, non-isokinetic method used to measure the moisture content of gas streams. Gas is sampled at a constant sampling rate through a probe and impinger train. Moisture is removed using a series of pre-weighed impingers containing methodology-specific liquids and silica gel immersed in an ice water bath. The impingers are weighed after each run to determine the percent moisture.


Pertinent information regarding the performance of the method is presented below:

- Method Options:
 - Moisture sampling is performed as part of the pollutant sample trains
 - Since it is theoretically impossible for measured moisture to be higher than psychrometric moisture, the psychrometric moisture is also calculated, and the lower moisture value is used in the calculations
- Method Exceptions:
 - Moisture sampling is performed as a stand-alone method at a single point in the centroid of the stack
- Target and/or Minimum Required Sample Duration: 60 minutes

The typical sampling system is detailed in Figure 3-2.

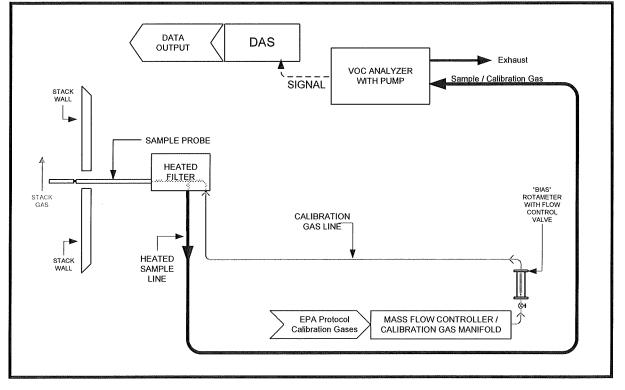
Atlas Molded Products 2022 DE Compliance Source Test Report, Byron Center

FIGURE 3-2 EPA METHOD 4 DETACHED WITH PITOTS SAMPLING TRAIN

3.1.5 EPA Method 25A, Determination of Total Gaseous Organic Concentration Using a Flame Ionization Analyzer

EPA Method 25A is an instrumental test method used to measure the concentration of THC in stack gas. A gas sample is extracted from the source through a heated sample line and glass fiber filter to a FIA. Results are reported as volume concentration equivalents of the calibration gas or as carbon equivalents.

Page 13 of 115


Pertinent information regarding the performance of the method is presented below:

- Method Options:
 - Results are reported in terms of propane
- Method Exceptions:
 - ି None
- Target and/or Minimum Required Sample Duration: 60 minutes

The typical sampling system is detailed in Figure 3-3.

FIGURE 3-3 EPA METHOD M25A SAMPLING TRAIN

3.2 Process Test Methods

The test plan did not require that process samples be collected during this test program; therefore, no process sample data are presented in this test report.

JUN 09 2022

Atlas Molded Products 2022 DE Compliance Source Test Report, Byron Center AIR QUALITY DIVISION

4.0 Test Discussion and Results

4.1 Field Test Deviations and Exceptions

It should be noted that one of the calibration gas cylinder standards used to calibrate the Method 25A THC analyzer (Cylinder #CC89362 – 3002 ppmv propane) exceeded its expiration date by 5 days. The cylinder will be recertified to ensure the accuracy of its content and to support the accuracy and acceptability of the test results.

No other field deviations or exceptions from the test plan or test methods occurred during this test program.

4.2 Presentation of Results

The average results are compared to the permit limits in Table 1-2. The results of individual compliance test runs performed are presented in Table 4-1. Emissions are reported in units consistent with those in the applicable regulations or requirements. Additional information is included in the appendices as presented in the Table of Contents.

AIR QUALITY SERVICES

Table 4-1 THC Emissions and DE Results -RTO

Parameter/Units	Run 1	Run 2	Run 3	Average
Date	3/22/2022	3/22/2022	3/22/2022	
Time	09:32-10:32	11:38-12:38	13:30-14:30	23 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m
Inlet Flue Gas Parameters	per en en elle per per per en per en per en per en per en per per per per per	Bentra dama fanan (anan da ang ada ga gang ang ang ang ang ang ang ang an	kennen met er et er promotionet kennen provinsieren provinsieren provinsieren provinsieren provinsieren provins	
flue gas temperature, °F	135.1	145.1	147.8	142.6
volumetric flow rate, acfm	1,841	1,892	1,623	1,785
volumetric flow rate, scfm	1,600	1,617	1,381	1,533
volumetric flow rate, dscfm	1,318	1,249	1,052	1,206
CO ₂ , % volume dry	0.3	0.3	0.2	0.3
O ₂ , % volume dry	21.4	21.4	21.4	21.4
moisture content, % volume	17.65	22.83	23.85	21.44
Inlet Total Hydrocarbons (THC	2), as propane	€ =1, , , , , , , , , , , , , , , , , , ,	ter en	
ppmvw	5,445	5,199	5,177	5,274
lb/hr	59.8	57.7	49.1	55.6
Inlet Total Hydrocarbons (THC	c), as pentane	\$	a ana tanàna mandritra dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia	nama na mangangang mang na pangang napan térénéhémanéh majé ké (ké (no da
ppmvw	3,724	3,555	3,541	3,607
lb/hr	66.9	64.6	55.0	62.2
Outlet Flue Gas Parameters				n Eine eine merschachten wennen eine die sonderstand deut Terrer (nel Verschaft deut der Unter
flue gas temperature, °F	249	266	260	258
volumetric flow rate, acfm	4,516	4,293	4,603	4,471
volumetric flow rate, scfm	3,313	3,077	3,324	3,238
volumetric flow rate, dscfm	2,932	2,730	2,894	2,852
CO2, % volume dry	1.0	1.0	0.9	1.0
O2, % volume dry	19.4	19.6	19.5	19.5
moisture content, % volume	11.54	11.30	12.92	11.92
Outlet Total Hydrocarbons (TH	C), as propane		anana a an	
ppmvw	10.00	10.52	11.87	10.80
lb/hr	0.227	0.222	0.271	0.240
DE, %	99.6	99.6	99.4	99.6
Outlet Total Hydrocarbons (TH	C), as pentane			
ppmvw	6.32	6.65	7.50	6.82
lb/hr	0.235	0.230	0.280	0.248
DE, %	99.6	99.6	99.5	99.6

5.0 Internal QA/QC Activities

5.1 QA/QC Audits

The meter boxes and sampling trains used during sampling performed within the requirements of their respective methods. All post-test leak checks, minimum metered volumes, and minimum sample durations met the applicable QA/QC criteria.

EPA Method 3A calibration audits were all within the measurement system performance specifications for the calibration drift checks, system calibration bias checks, and calibration error checks.

EPA Method 25A FIA calibration audits were within the measurement system performance specifications for the calibration drift checks and calibration error checks.

5.2 QA/QC Discussion

All QA/QC criteria were met during this test program.

5.3 Quality Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one QI as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is included in the report appendices. The content of this report is modeled after the EPA Emission Measurement Center Guideline Document (GD-043).

Page 17 of 115

Appendix A Field Data and Calculations

Atlas Molded Products 2022 DE Compliance Source Test Report, Byron Center

Page 18 of 115

Appendix A.1 Sampling Locations

Atlas Molded Products 2022 DE Compliance Source Test Report, Byron Center

Page 19 of 115 MW023AS-02