FINAL REPORT

RECEIVED DEC 28 2010 AIR QUALITY DIVISIONI

Boiler 12 DETROIT RENEWABLE POWER

DETROIT, MICHIGAN

2018 SOURCE TESTING PROGRAM (BOILER 12)

RWDI #1804672 December 24, 2018

SUBMITTED TO

Mr. Jeff Korniski Assistant District Supervisor, Detroit District Korniskij@michigan.gov

Michigan Department of Environmental Quality Cadillac Place, 3058 West Grand Blvd, Suite 2-300 Detroit, Michigan 48202-6058

Ms. Karen Kajiya-Mills Dept. of Environmental Quality – ADQ kajiya-millsk@michigan.gov

Michigan Department of Environmental Quality Constitution Hall, 3 North 525 West Allegan Lansing, Michigan 48909-7760

Detroit Renewable Power Mark Fletcher Director, EHS mfletcher@detroitrenewable.com MILIILB TEST_20181029

SUBMITTED BY

Brad Bergeron, A.Sc.T., d.E.T. Senior Project Manager | Principal Brad.Bergeron@rwdi.com

Matthew Lantz, B.Sc., C.Tech., QSTI Project Manager | Senior Scientist Matt.Lantz@rwdi.com

RWDI AIR Inc. Consulting Engineers & Scientists 4510 Rhodes Drive | Suite 530 Windsor, Ontario N8W 5K5

T:519.823.1311 | ext. 2428 F: 519.823.1316

This document is intended for the sole use of the party to whom it is addressed and may contain information that is privileged and/or confidential. If you have received this in error, please notify us immediately. Accessible document formats provided upon request. @ RWDI name and logo are registered trademarks in Canada and the United States of America.

EXECUTIVE SUMMARY

RWDI AIR Inc. (RWDI) was retained by Detroit Renewable Power to conduct emission sampling on the exhaust of Boiler 12 (EUBOILER012) at their facility located at 5700 Russell Street, Detroit, Michigan. The test program was conducted in order to fulfill the requirements of the Michigan Department of Environmental Quality (MDEQ) Title V Renewable Operating Permit (ROP) # MI-ROP-M4148-2011a dated August 19, 2011.

The Sampling Plan for this testing program was submitted August 2, 2018 to the Michigan Department of Environmental Quality (MDEQ). Approval for the testing program was granted by the MDEQ on September 13, 2018. The 2018 sampling program on Boiler 12 (EUBOILER012) was completed from October 29th to October 31st, 2018. A copy of the MDEQ approval letter can be found in **Appendix B**.

Parameter	Stack Testing Results ¹¹	ROP Limit ^{(1)[3]}		
Limits from ROP: MI-ROP-M4148-2011a	EUBOILER012			
Particulate Matter (PM)	0.0050	0.010 gr/dscf		
Cadmium	0.69	37 μg/dscm		
Hexavalent Chromium	<0.61	4,2 μg/dscm		
Total Chromium	9.6	200 µg/dscm		
Lead	0.015	0.440 mg/dscm		
Mercury	1.9	80 µg/dscm		
Dioxins/Furans (CDD/CDF)	14.07	30 ng/dscm		
Hydrogen Chloride (HCl)	3.35	25 ppmv		
Sulfur Dioxide (SO ₂)	15.8	29 ppmv		
Total Fluoride	0,23	5 ppmv		
Carbon Monoxide (CO)	43.7	200 ppmv		
Volatile Organic Compounds (VOC)	7.6	65 ppmv		
Nitrogen Oxides (NO _x) ^[2]	209	247 ppmv		

The following table represents a summary of the stack testing results and compares the testing results to the limits set out in Detroit Renewable Power's Renewable Operating Permit.

Notes:

[1] Concentration values are expressed at 101.3 kPa, 68 °F, and 7% oxygen

[2] NOx based on 1-Hr average excluding start up and shutdown

[3] Refer to Appendix A for Renewable Operating Permit: MI-ROP-M4148-2011a

The results of the testing indicate that all parameters are in compliance with respect to the ROP limits. A summary of all testing results can be found in the **Tables** section of the report with detailed sampling results in the Appendices.

TABLE OF CONTENTS

1	INTRODUCTION
2	SOURCE DESCRIPTION2
2.1	Facility Description
2.2	Process Description
3	SAMPLING LOCATION
3.1	Compliance Source Sample Location Description3
4	SAMPLING METHODOLOGY5
4.1	Stack Velocity, Temperature, and Volumetric Flow Rate Determination
4.2	Sampling for Filterable Particulate Matter (PM) and Metals
4.3	Sampling for Total Fluorides and Hexavalent Chromium
4.4	Sampling for Dioxins (PCDD) and Furans (PCDF)6
4.5	Sampling for Hydrogen Chloride
4.6	Sampling for Total Hydrocarbons (as Methane)7
4.7	Sampling for Gases (Continuous Emissions Monitoring)7
4.8	Sampling for Opacity
4.9	Quality Assurance/ Quality Control Activities8
5	RESULTS9
5.1	Discussion of Results9
6	OPERATING CONDITIONS
7	CONCLUSIONS

C

LIST OF TABLES

Tables Found within the Report:

- Table 1.1:Test Personnel
- Table 3.1:
 Summary of Sampling Program EUBOILERS012
- Table 5.1:
 Summary of Table & Appendix IDs for Corresponding Test Parameter

Tables Found Following the Report:

Table 1:	Summary of Sampling Parameters and Methodology
Table 2:	Sampling Summary and Sample Log
Table 3:	Sampling Summary - Flow Characteristics
Table 4:	Filterable Particulate Matter and Metals - Averaged Results
Table 5:	Dioxins and Furans - Averaged Results
Table 6:	Total Fluoride and Hexavalent Chromium - Averaged Results
Table 7:	Hydrogen Chloride - Averaged Results
Table 8:	Opacity- Averaged Results
Table 9:	RWDI CEM - Averaged Results
Table 10:	24 Hour Average CEM Data
Table11:	Renewable Operating Permit Limit Comparisons

LIST OF FIGURES

Figures Found within the Report:

Figure 2.1:	Process Flow Diagram
Figure 3.1a:	Diagram of Flow Disturbance Distance and Stack Diameters for EUBOILERS011,
•	012, and 013
Figure 3.1b:	Photo of Stack Exit Point for EUBOILERS011, 012 and 013

•

.

LIST OF APPENDICES

Appendix A:	Source Testing Plan & Renewable Operating Permit
Appendix B:	Approval Letter
Appendix C:	Filterable Particulate Matter and Metals Sampling
Appendix D:	Dioxins and Furans Sampling
Appendix E:	Total Fluoride and Hexavalent Chromium Sampling
Appendix F:	Hydrogen Chloride Sampling
Appendix G:	Opacity
Appendix H:	Continuous Emission Monitoring (Gaseous Pollutants)
Appendix: H1:	DRP CEMs Data
Appendix: H2:	RWDI Oxygen & CO2 Data
Appendix: H3	RWDI THC Data
Appendix I:	Field Notes
Appendix I1:	PM & Metals Field Notes
Appendix l2:	Dioxin & Furan Field Notes
Appendix I3:	Total Fluoride & Hexavalent Chromium Field Notes
Appendix l4:	Hydrogen Chloride Field Notes
Appendix I5:	CEM Field Notes
Appendix J:	Equipment Calibrations
Appendix K:	Laboratory Results
Appendix K1:	PM & Metals Laboratory Report
Appendix K2:	Dioxins & Furan Laboratory Report
Appendix K3:	Total Fluoride and Hexavalent Chromium Laboratory Report
Appendix K4:	Hydrogen Chloride Laboratory Report
Appendix K5:	Audit Sample Laboratory Report
Appendix L:	Boiler Process Information
Appendix M:	Sample Calculations

1 INTRODUCTION

RWDI AIR Inc. (RWDI) was retained by Detroit Renewable Power to conduct emission sampling on the exhaust of Boiler 12 (EUBOILER012) at their facility located at 5700 Russell Street, Detroit, Michigan. The test program was conducted in order to fulfill the requirements of the Michigan Department of Environmental Quality (MDEQ) Title V Renewable Operating Permit (ROP) # MI-ROP-M4148-2011a dated August 19, 2011.

The Sampling Plan for this testing program was submitted August 2, 2018 to the Michigan Department of Environmental Quality (MDEQ Approval for the testing program was granted by the MDEQ on September 13, 2018. The 2018 sampling program for Boiler 12 was completed October 29th to October 31st. A copy of the MDEQ approval letter can be found in **Appendix B**.

This stack testing study consisted of the following parameters:

- Filterable Particulate matter (PM);
- Velocity, flow rate and temperature;
- Metals;
- Dioxins and furans (PCDDs and PCDFs);
- Total Fluoride;
- Hexavalent Chromium;
- Hydrogen chloride (HCl);
- Nitrogen oxides (NO_x);
- Sulphur dioxide (SO₂);
- Oxygen (O₂);
- Carbon dioxide (CO₂);
- Carbon monoxide (CO); and
- Total Hydrocarbons (THC).

The following lists personnel on site during testing:

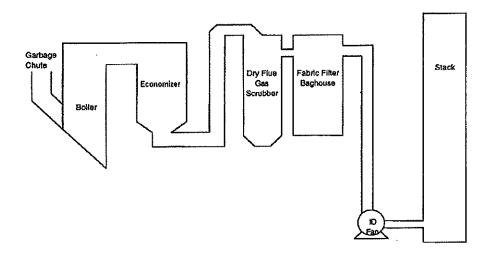
Table 1.1: Test Personnel

Company	Position	Individual
RWDI	Supervising Engineer	Mark Vanderheyden
RWDI	Project Manager Field Technician	Brad Bergeron Matt Lantz
RWDI	Field Technician	Alec Smith Derek Ottens Thomas Langille
etroit Renewable Power	Detroit Renewable Power	Mark Fletcher
Michigan Department of Environmental Quality	Test Observer	Mark Dziadosz Todd Zynda Regina Hines

2 SOURCE DESCRIPTION

2.1 Facility Description

Detroit Renewable Power is a refuse-derived fuel (RDF) plant that began commercial operation in October 1991. The facility is permitted to receive up to 20,000 tons of municipal solid waste (MSW) per week. The MSW is processed into RDF, which is then combusted in the furnaces, producing a maximum 362,800 pounds of steam per hour per unit. The steam is used to generate up to 68 megawatts of electricity and supply export steam at a rate of up to 550,000 pounds per hour. The energy products are sold to DTE Corporation and Detroit Thermal.


2.2 Process Description

Detroit Renewable Power is located in Detroit, Michigan. The facility consists of three (3) identical Combustion Engineering (VU40) refuse derived fuel (RDF) fired boilers or municipal waste combustors (MWC). Normal operation of the facility consists of two (2) boilers on-line with one boiler in stand-by mode.

Refuse is prepared and purged of non-processible and non-combustible materials through a series of conveyors and shredders. Waste is then combusted in furnaces at temperatures exceeding 1,800 degrees Fahrenheit and reduced to an inert ash residue.

Flue gases pass through each MWC unit pollution control system before exhausting through a separate flue stack in a common stack. The air pollution equipment for each independent train includes lime injection dry flue gas scrubbers for controlling acid gases and fabric filter baghouses for particulate removal. Each unit is also equipped with a continuous emission monitoring system to demonstrate compliance and to provide feedback on the effectiveness of the air pollution control (APC) equipment.

Figure 2.1: Process Flow Diagram

3 SAMPLING LOCATION

3.1 Compliance Source Sample Location Description

The outlet sampling locations for each stack are identical for EUBOILERS011, 012 and 013. Each stack had an inside diameter of 92 inches. Each flue had two sampling ports, 90 degrees apart and 4 inches in diameter. The sampling ports were located 9 duct diameters upstream from the ID fan and 19.8 duct diameters downstream before the stack outlet.

	Boiler 12-(EUBOILER012)
Emission Unit Description [Including Process Equipment & Control Device(s)]	EUBOILERS011, 012 & 013 consisted of three (3) identical Refused Derived Fuel (RDF) fired spreader-stoker boilers rated at 520 MMBTU/hr heat input, 390,000 lb/hr steam at 900 psig and 825°F. The units operated an electric generator with a nameplate capacity of 68 MWe to convert unsold steam into power for internal consumption and for sale to the grid. Air emissions were controlled using a lime slurry injection from the top of each unit followed by a baghouse fabric filter system.
Parameter Tested	Particulate matter, hydrogen chloride, mercury, lead, cadmium, total chromium, hexavalent chromium, dioxins/furans, sulfur dioxide, carbon monoxide, carbon dioxide, oxygen, total fluorides, nitrogen oxides, volatile organic compounds (VOCs), opacity, in addition to stack gas velocity, stack gas composition, and moisture.
Operating Conditions / Stack Dimensions	320°F / 92 inches
Testing Monitoring Methods	Refer to Section 4.0
Testing Schedule	Refer to Table 2 of the Tables Section

 Table 3.1: Summary of Sampling Program – EUBOILERS012

Figure 3.1a: Diagram of Flow Disturbance Distance and Stack Diameters for EUBOILERS011, 012, and 013

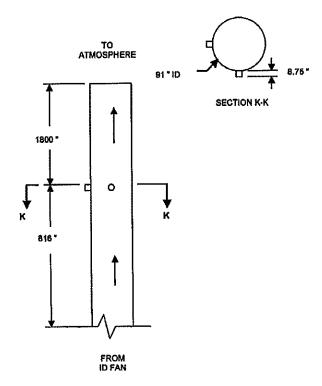


Figure 3.1b: Photo of Stack Exit Point for EUBOILERS011, 012 and 013

M

4 SAMPLING METHODOLOGY

The following section provides an overview of the sampling methodologies used in this program. **Table 1**, located in the **Tables** section, summarizes the testing parameters and corresponding methodologies.

4.1 Stack Velocity, Temperature, and Volumetric Flow Rate Determination

The exhaust velocities and flow rates were determined following the US EPA Method 2, "Determination of Stack Gas Velocity and Flow Rate (Type S Pitot Tube)". Velocity measurements were taken with a pre-calibrated S-Type pitot tube and incline manometer. Volumetric flow rates were determined following the equal area method as outlined in US EPA Method 2. Temperature measurements were made simultaneously with the velocity measurements and were conducted using a chromel-alumel type "k" thermocouple in conjunction with a digital temperature indicator.

The dry molecular weight of the stack gas was determined following calculations outlined in US EPA Method 3, "Determination of Molecular Weight of Dry Stack Gas". Stack moisture content was determined through direct condensation and according to US EPA Method 4, "Determination of Moisture Content of Stack Gas".

4.2 Sampling for Filterable Particulate Matter (PM) and Metals

Sampling for PM in the exhaust stacks was performed in accordance with US EPA Method 5, "Sampling of Total Particulate Matter from Stationary Sources". Sampling was conducted using an Environmental Supply C-5000 Source Sampling System. Triplicate sampling runs were conducted for each stack. Particulate matter concentrations and emission rates were determined utilizing EPA Method 5. Mercury, Lead, Chromium, and Cadmium concentrations and emission rates were determined utilizing Method 29. Particulate and metals were sampled using combined trains as follows:

The combined sample train consisted of a glass nozzle, a heated glass probe, a heated tared quartz filter, two chilled impingers each with 100 mL of 5% HNO₃/10% H₂O₂, an empty impinger, two chilled impingers each with 100 mL of 4% KMnO₄/10% H₂SO₄, an impinger with 200 grams of silica gel, and a dry gas metering console. The temperature of the filter was monitored and controlled to 248 \pm 25°F.

At the end of each test run, the nozzle, probe, and filter front half were first rinsed and brushed with acetone into a sample jar. The nozzle, probe, and filter front half were then rinsed with 100 mL of 0.1 N nitric acid into a second sample jar. The filter was then recovered into the original labeled petri dish.

The contents of the 5% $HNO_3/10\%$ H_2O_2 impinger were poured back into the original reagent jar. Any condensate in the empty impinger was poured into a sample jar. The 4% $KMnO_4/10\%$ H_2SO_4 impingers were then recovered into another sample jar.

The moisture catch was then determined gravimetrically. The filter back half and 5% $HNO_3/10\%$ H_2O_2 impingers were rinsed with 100 mL of 0.1 N nitric acid into a sample jar.

The empty impinger was rinsed with 100 mL of 0.1 nitric acid into a sample jar. The 4% KMnO₄/10% H₂SO₄ impingers were then rinsed with 100 mL 4% KMnO₄/10% H₂SO₄ and 100 mL of DI water into the jar containing the 4% KMnO₄/10% H₂SO₄ reagent. The 4% KMnO₄/10% H₂SO₄ impingers and connecting glassware were rinsed with 25 mL of 8 N HCl if any brown residue remained. This HCl rinse was added to a jar containing 200 mL of DI water.

Samples were then packaged for transport to ALS Global Laboratories in Burlington, Ontario for analysis.

4.3 Sampling for Total Fluorides and Hexavalent Chromium

Total fluorides as hydrogen fluoride and hexavalent chromium concentrations and emission rates were determined utilizing a combined EPA Method 13B and CARB Method 425 sampling train. The sampling train consisted of a glass nozzle, a heated glass probe, a heated filter (with stainless steel frit), and two chilled impingers each with 100mL of 0.5N NaOH, an empty impinger, an impinger with 200 grams of silica gel, and a dry gas metering console. The equipment was operated in accordance with EPA Method 13B and CARB Method 425.

At the end of each test run, the contents of the first three impingers were collected into a sample jar. The moisture catch was then determined gravimetrically. The nozzle, probe, filter holder, impingers, and connecting glassware were rinsed with DI into the sample jar. The filter was placed into the sample jar.

The samples were analyzed in accordance with EPA Method 13B for total fluorides as hydrogen fluoride. The samples were analyzed in accordance with CARB Method 425 for hexavalent chromium.

Samples were packaged for transport to Element One, Inc. in Wilmington, North Carolina for analysis.

4.4 Sampling for Dioxins (PCDD) and Furans (PCDF)

The concentrations and emissions rates of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDF) or dioxins/furans) were determined utilizing EPA Method 23. The EPA Method 23 sampling train consisted of a glass nozzle, a heated glass probe, a heated glass filter, a condenser, and XAD resin trap, an empty impinger, two chilled impingers each with 100mL of DI water, an empty impinger, an impinger with 200 grams of silica gel, and a dry gas metering console.

Methylene Chloride was not used for recovery, as per approval from MDEQ. At the end of each test run, the nozzle, probe and filter front half were rinsed with acetone into a sample jar. The filter was recovered dry into a glass petri dish. The filter backhalf, and condenser were rinsed with acetone into a sample jar. All of the components listed above up to the XAD resin trap were then rinsed again with toluene into a sample jar. The XAD resin trap was sealed and placed into a chilled ice chest. The contents of the first three impingers were poured back into the original reagent jar. The silica gel was poured back into its original container.

The moisture catch was then determined gravimetrically. The samples were analyzed in accordance with EPA Method 23 for dioxins/furans.

Samples were then packaged for transport to ALS Global Laboratories in Burlington, Ontario for analysis.

4.5 Sampling for Hydrogen Chloride

Hydrogen chloride concentrations and emission rates were determined utilizing EPA Method 26 modified to use large impingers. The EPA Method 26 sampling train consisted of a heated glass probe, a heated quartz filter, and two chilled impingers each with 100mL of 0.1N H₂SO₄, one empty impinger, an impinger with 200 grams of silica gel, and a dry gas metering console.

At the end of each test run, the contents of the impingers were poured into a sample jar. The silica gel was returned to its original container. The moisture catch in the train components was then determined gravimetrically. The filter backhalf and H₂SO₄ impingers were rinsed with DI water into the H₂SO₄ reagent jar.

Samples were then packaged for transport to ALS Global Laboratories in Burlington, Ontario for analysis.

The H₂SO₄ portion of the sample was analyzed in accordance with EPA Method 26 for hydrogen chloride.

4.6 Sampling for Total Hydrocarbons (as Methane)

Testing for THC (as methane) was accomplished using continuous emission monitors (CEM). The exhaust gas sample was drawn from a single point at the center of the stack using a stainless steel probe. The sample then proceeded to a heated filter, where particulate matter was removed, and then transferred via a heated Teflon line that was heated to 320°F to prevent any condensation. The stack gas was routed through a manifold system and introduced to the CEMs for measurement.

Prior to testing, sample system bias checks and instrument linearity checks (calibration error) were conducted. In addition, the analyzers were calibrated (zeroed and span checked) at the completion of each run. Data acquisition was provided using a data logger system that generates one minute averages concentrations.

4.7 Sampling for Gases (Continuous Emissions Monitoring)

RWDI operated continuous emission monitors for oxygen and carbon dioxide in accordance with the applicable US EPA reference method. Prior to testing, a 3-point analyzer calibration error check was conducted using US EPA protocol gases. The calibration error check was performed by introducing zero; mid and high level calibration gases directly into the analyzer. The calibration error check was performed to confirm that the analyzer response was within $\pm 2\%$ of the certified calibration gas introduced. Prior to each test run, a system-bias test was performed where known concentrations of calibration gases were introduced at the probe tip to measure if the analyzers response was within $\pm 5\%$ of the introduced calibration gas concentrations. At the conclusion of each test run a system-bias check was performed to evaluate the percent drift from pre and post-test system bias checks. The system bias checks confirmed that the analyzer did not drift greater than $\pm 3\%$ throughout a test run.

Data acquisition was provided using a data logger system programmed to collect and record data at one second intervals. Average one minute concentrations were calculated from the one second measurements.

RWDI recorded data is presented in the **tables** section and appendices. DRP's CEM data was recorded of NO_x , SO₂, O₂, CO₂ and CO. For comparison with the facilities permit the DRP CEMs data was used.

4.8 Sampling for Opacity

Opacity (visible emissions) data was collected by the facility Continuous Opacity Monitors (COMs) in lieu of Method 9 observations.

4.9 Quality Assurance/ Quality Control Activities

Applicable quality assurance measures were implemented during the sampling program to ensure the integrity of the results. These measures included detailed documentation of field data, equipment calibrations for all measured parameters, completion of Chain of Custody forms when submitting laboratory samples, and submission of field blank samples to the laboratories. **Table 2** presents a sample log and summarizes the sampling times, sample ID's, filter ID's, and XAD trap ID's.

Stationary Source Audit Samples (SSAS) were provided from ERA and sent to ALS Global Laboratories for analysis. All results were deemed acceptable. The final report of the SSAS program is provided in **Appendix K.**

Quality control procedures specific to the CEM monitoring included linearity checks, to determine the instrument performance, and reproducibility checks prior to its use in the field. Regular performance checks on the analyzer were also carried out during the testing program by performing hourly zero checks and span calibration checks using primary gas standards. Sample system bias checks were also done. These checks were used to verify the ongoing accuracy of the monitor and sampling system over time. Pollutant-free (zero) air was introduced to perform the zero checks, followed by a known calibration (span) gas into the monitor. The response of the monitor to pollutant-free air and the corresponding sensitivity to the span gas were recorded regularly during the tests.

Leak checks were performed on the Method 5 sampling train by plugging the sample inlet and pulling a representative vacuum. This check was done before and after each test. Similar leak check procedures for Pitot tube and pressure lines were also conducted. Daily temperature sensor audits were completed by noting the ambient temperature, as measured by a reference thermometer, and comparing these values to those obtained from the stack sensor. Leak checks for each test were documented on the field data sheets presented in the applicable appendices for each sample parameter.

5 RESULTS

The average emission results for this study are presented in the **Tables** section of this report. **Table 2** presents a summary of test dates and times. A minimum of three (3) tests on the stack was performed for all of the parameters tested in the study. Detailed information regarding each test run can be found in the corresponding Appendix. Below is a summary of the applicable Table and Appendix ID with corresponding test parameter.

Table 5.1: Summary of Table & Appendix IDs with Corresponding Test Parameter

Parameter	Table	Appendix
Stack Gas Characteristics	3	C/D/E
Filterable Particulate Matter and Selected Metals	4	С
Dioxins and Furans	5	D
Total Fluoride and Hexavalent Chromium	6	E
Hydrogen chloride	7	F
Opacity	8	G
Continuous Emission Monitoring	9/10	Н
ROP Limit Comparison	11	_

All calibration information for the equipment used for this study is included in **Appendix J**. All laboratory results are included in **Appendix K**.

5.1 Discussion of Results

Results for Boiler 12 indicated that all parameters are in compliance with respect to the ROP limits.

When the laboratory reported values less than their method detection limit for a specific component, the respective concentration and emission rates were calculated using this method detection limit. This method is a conservative approach when calculating the emissions.

Table 11 shows a comparison of the sampling results to the incinerator performance limits defined in the ROP.

6 OPERATING CONDITIONS


Operating conditions during the sampling were monitored by Detroit Renewable Power personnel. All equipment was operated under normal maximum operating conditions.

Radio contact was kept between the process operators and the sampling team. A member of the RWDI sampling team contacted the operator before each test, to ensure that the process was at normal operating conditions. **Appendix L** contains the process information supplied by Detroit Renewable Power.

7 CONCLUSIONS

Testing was successfully completed from October 29th to October 31st, 2018 on Boiler 12. All sources were tested in accordance with referenced methodologies following the MDEQ approved Sampling Plan submitted August 2, 2018.

TABLES

Source Location	No. of Tests per Stack	Sampling Parameter	Sampling Method				
an a	9	Velocity, Temperature and Flow Rate	U.S. EPA ^[2] Methods 1-4				
	3	Total Particulate Matter	U.S. EPA ^[2] Method 5				
	3	Metals	U.S. EPA ^[2] Method 29				
	3	4-8 PCDD/PCDF	U.S. EPA ^[2] Method 23				
	3	Fluoride	U.S. EPA ^[2] Method 13B				
	3	CR ⁺⁶ Hexavalent Chromium	CARB ^[1] Method 425				
Boiler 12	3	Hydrogen Chloride	U.S. EPA ^[2] Method 26				
	3	Sulphur Dioxide	U.S. EPA ^[2] Method 6C (CEM)				
	3	Total Oxides of Nitrogen	U.S. EPA ^[2] Method 7E (CEM)				
	3	Oxygen	U.S. EPA ^[2] Method 3A (CEM)				
	3	Carbon Dioxide	U.S. EPA ^[2] Method 3A (CEM)				
	3	Carbon Monoxide	U.S. EPA ^[2] Method 10 (CEM)				
	3	Total Hydrocarbons (THC)	U.S. EPA ^[2] Method 25A (CEM)				

Table 1: Summary of Sampling Parameters and Methodology

Notes:

[1] CARB- California Air Resource Board

[2] U.S. EPA - United States Environmental Protection Agency

Table 2: Sampling Summary and Sample Log Boiler #12

Source and Test #	Sampling Date	Start Time End Time		Filter ID / Trap ID	Lab Sample ID				
Velocity / Total Particulate / Metals									
Blank	Oct. 31, 2018			Q25728	L2192492-4				
Test #1	Oct. 30, 2018	9:25 AM	12:15 PM	Q25729	L2192492-1				
Test #2	Oct. 30, 2018	1:22 PM	3:50 PM	Q25730	L2192492-2				
Test #3	Oct. 31, 2018	8:45 AM	11:00 AM	Q25731	L2192492-3				
Velocity / Dioxins and Furans									
	Oct. 31, 2018		[#13	L2192502-4				
Test #1	Oct. 29, 2018	10:05 AM	2:22 PM	#12	L2192502-1				
Test #2	Oct. 29, 2018	3:21 PM	7:28 PM	#10	L2192502-2				
Test #3	Oct. 30, 2018	9:03 AM	1:11 PM	#11	L2192502-3				
Hydrogen Chloride					Harrickovaninan Annan an				
Blank	Oct. 31, 2018			N/A	L2192804-7				
Test #1	Oct. 29, 2018	12:18 PM	1:32 PM	N/A	L2192804-2				
Test #2	Oct. 29, 2018	2:10 PM	3:20 PM	N/A	L2192804-4				
Test #3	Oct. 29, 2018	4:10 PM	5:10 PM	N/A	L2192804-6				
Velocity/ Fluoride/ Hexavalent Chromium	z en el l'active s'actor de la presentation de la constitución de la definidada de la definidada de la definida	a felle första för a geförar som der som av det som	er oan startste ind staal - boosers	**************************************	den formen de besternen plearen de fan de				
Blank	Oct. 31, 2018		-	N/A	e32047-4				
Test #1	Oct. 30, 2018	2:51 PM	5:00 PM	N/A	e32047-1				
Test #2	Oct. 31, 2018	8:42 AM	10:58 AM	N/A	e32047-2				
Test #3	Oct. 31, 2018	12:25 PM	2:32 PM	N/A	e32047-3				

Table 3: Sampling Summary - Flow Characteristics	

Boiler #12

			Test No. 1			Test No. 2			Test No. 3		
Stack Gas Parameter		SVOC ^{III}	TPM ¹²¹	Fluoride, CR ^{**}	SVOC	TPM ^[2]	Fluoride, CR ⁶⁺	SVOC ^{III}	TPM ^[2]	Fluoride, CR ⁶⁺	AVERAGE
Tes	ting Date	29-Oct-18	30-Oct-18	30-Oct-18	29-Oct-18	30-Oct-18	31-Oct-16	30-Oct-18	31-Oct-16	31-Oct-18	-
Stack Temperature	۴F	317	320	322	318	325	317	318	321	318	320
	°C	158	160	161	159	163	159	159	161	159	160
Moisture	%	13.1%	13.4%	13.5%	14.0%	14.3%	15.7%	13.4%	16.9%	16.0%	14.5%
Velocity	ft/s	134.66	130.88	126.01	133.19	131.83	134.22	129.42	136.15	138.65	132.78
· · · · · · ·	m/s	41.04	39.89	38.41	40.60	40.18	40.91	39.45	41.50	42.26	40.47
Actual Flow Rate	CFM	373,221	362,508	349,026	360,831	365,135	371,767	350,829	377,115	384,046	366,053
Referenced Flow Rate ^[3]	CFM	220,058	212,482	203,934	215,115	210,367	212,375	210,843	210,603	218,337	212,679
	m ³ /s	103.83	100.26	96.22	101.50	99.26	100.21	99.48	99.37	103.02	100.35
Sampling Isokinetic Rate	%	104	102	104	105	106	101	104	108	107	104

Notes:

[1] SVOC = Sampling for Dioxins, and Furans

[2] TPM = Sampling for total particulate matter and metals

[3] Referenced flow rate expressed as dry at 101.3 kPa, 68 °F, and Actual Oxygen

Detailed sampling results including individual test results can be found in Appendix C,D and E

RECEVED DEC 28 2011 AIR QUALITY DIVISION

- Aller

Boiler #12	Concentration Actual O ₂	Concentration 7% O ₂	Emission Rate
Particulate	(gr/dscf)	(gr/dscf)	(lbs/hr)
Total Particulate Matter	0.0036	0.0050	6.5
Metals	(ug/m ³)	(ug/m ³)	(mg/sec)
Total Cadmium (Cd)	0.48	0.69	0.048
Total Chromium (Cr)	6.7	9.60	0.67
Total Lead (Pb)	11.0	15.0	1.10
Metals	(ug/m ³)	(ug/m ³)	(mg/sec)
Total Mercury (Hg)	1.30	1.9	0.130

Table 4: Total Particulate Matter and Metals – Averaged Results

Notes:

[1] Sampling followed U.S. EPA Method 5 (TPM) and U.S. EPA Method 29 (Metals)

[2] All referenced concentration values are expressed as dry at 101.3 kPa, 68 °F, and 7% Oxygen

[3] When laboratory analysis was below the reportable detection limit, this detection limit was used to calculate the concentration and emission rate

Detailed sampling results including individual test results can be found in Appendix C

Boiler #12	Concentration @ Actual O ₂	Concentration @ 7% O ₂	Emission Rate
Parameter	(pg/m3)	(ng/m ³)	(ng/s)
1,2,3,4,6,7,8,9-Octa CDD *	192	0.29	20
Total Tetra CDD*	1330	1.97	140
Total Penta CDD*	754	1.12	77
Total Hexa CDD*	652	0.97	67
Total Hepta CDD*	280	0.41	28
1,2,3,4,6,7,8,9-Octa CDF **	28	0.04	2.8
Total Tetra CDF*	4100	6.09	420
Total Penta CDF*	1500	2.23	150
Total Hexa CDF*	480	0.71	49
Total Hepta CDF*	160	0.23	16
	Total =	14.07	

Table 5:Dioxins and Furans - Average Results

Notes:

[1] Sampling followed U.S. EPA Method 23; average of three tests

[2] Concentration values are expressed at 101.3 kPa, 68 °F, and at 7 % oxygen

*CDD = chlorodibenzo-p-dioxin

**CDF = chlorodibenzo-p-furan

Detailed sampling results including individual test results can be found in Appendix D

Table 6: Total Fluoride and Hexavalent Chromium - Average Results

Boiler #12	Concentration Actual O ₂	Concentration @ 7% O ₂	Concentration @ 7% O ₂	Emission Rate
Parameter	(ug/m3)	(ug/m3)	(ppm)	(mg/s)
Hexavalent Chromium	< 0.43	< 0.61		< 0.044
Total Fluoride	120	180	0.23	12

Notes:

[1] Sampling followed U.S. EPA Method 13B and CARB Method 425; average of three tests

[2] Concentration values are expressed at 101.3 kPa, 68 °F, and at 7 % oxygen

Detailed sampling results including individual test results can be found in Appendix E

Boiler #12	Concentration Actual O ₂	Concentration @ 7% O ₂	Concentration @ 7% O ₂	Emission Rate
Parameter	(mg/m ³)	(mg/m ³)	(ppm)	(mg/s)
Hydrogen Chloride	3.45	5.09	3.35	354

Notes:

[1] Sampling followed U.S. EPA Method 26 (non-isokinetic); average of three tests

[2] Concentration values are expressed at 101.3 kPa, 68 °F, and at 7 % oxygen

[3] Emissions rate calculated based on average volumetric flow rate of all isokinetic tests

Detailed sampling results including individual test results can be found in Appendix F

Table 8: Opacity- Averaged Results

Boiler 12 Opacity				Average Opacity	
Boller 12	29-Oct-18	30-Oct-18	31-Oct-18	Average Opacity	
Parameter	(%)	(%)	(%)	(%)	
Opacity	2	2	2	2	

Notes:

[1] Values from Detroit Renewable Power Opacity Meter

Detailed sampling results including individual test results can be found in Appendix G

Table 9 - RWDI CEM - Averaged Results

Boiler #12	Average Test Concentration			Emission Rate	
Reference Conditions> Units>	68°F and actual O ₂ (ppm)	68°F and actual O ₂ (mg/m ³)	68 [°] F and 7% O ₂ (ppm)	68°F and 7% O ₂ (mg/m ³)	(g/sec)
Total Hydrocarbons (expressed as Methane) [5.0	3.3	7.6	5.3	0.33
	%		***************************************		*****
Oxygen (O ₂)	11.8 (DRP)	11.0 (RWDI	, All 3 days)		-
Carbon Dioxide (CO ₂)	8.3	TTT			

Notes:

[1] Sampling followed U.S. EPA Method 3 (O $_2$ and CO $_2$), and Method 25A (THC)	DRP	' O₂ Data (%)
[2] Average of three tests	THC Test 1:	11.7
[3] Emissions rate calculated based on average volumetric flow rate of all isokinetic tests	THC Test 2:	12.0
[4] Average O $_2$ value was taken from DRP CEMs data from testing periods	THC Test 3:	11.6
[5] Corrected O ₂ to 7% equation $a^*((20.9-7)/(20.9-b))$ a = concentration @ original O ₂ b = original O ₂ %		

Detailed sampling results including individual test results can be found in Appendix H

Table 10: 24 Hour Averaged CEM Data

Boiler 12	29-Oct-18	30-Oct-18	31-Oct-18	Average
Parameter	(ppm)	(ppm)	(ppm)	(ppm)
Nitrogen Oxides (NO _x)	208.8	206.9	212.1	209.3
Sulfur Dioxide (SO ₂)	12.3	20.6	14.5	15.8
Carbon Monoxide (CO)	42.0	44.3	44.9	43.7
Oxygen (O ₂)	11.8	11.8	11.6	11.7

Notes:

[1] Data from Detroit Renewable Power Continuos Emissions Monitors

Detailed sampling results including individual test results can be found in Appendix H

Table 11: Renewable Operating Permit (ROP) Limit Comparisons

Parameter	Stack Testing Results	ROP Limit ^[2]
Limits from ROP: MI-ROP-M4148-2011a	EUBOILER012	
Particulate Matter (PM)	0.005	0.010 gr/dscf
Cadmium	0.69	37 μg/dscm
Hexavalent Chromium	< 0.61	4.2 µg/dscm
Total Chromium	9.60	200 µg/dscm
Lead	0.015	0.440 mg/dscm
Mercury	1.9	80 µg/dscm
Dioxins/Furans (CDD/CDF)	14.07	30 ng/dscm
Hydrogen Chloride (HCI)	3.4	25 ppmv
Sulfur Dioxide (SO ₂)- 24 hour average	15.8	29 ppmv
Total Fluoride	0.23	5 ppmv
Carbon Monoxide (CO)- 24 hour average	43.7	200 ppmv
Volatile Organic Compounds (VOC)	7.6	65 ppmv
Nitrogen Oxides (Nox) ^{2]}	209	247 ppmv

Notes:

[1] Concentration values are expressed at 101.3 kPa, 68 °F, and 7% oxygen

[2] Refer to Appendix A for Renewable Operating Permit: MI-ROP-M4148-2011a