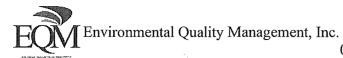
COMPLIANCE TEST REPORT ANR PIPELINE CENTRAL CHARLTON COMPRESSOR STATION UNITS EUCTCOMPENG0001 & EUCTCOMPENG0002

July 2, 2021

Prepared for:

TC Energy's ANR Pipeline Company Johannesburg, MI


Prepared by:

Environmental Quality Management, Inc. 1280 Arrowhead Court Suite 2 Crown Point, IN 46307 (219) 661-9900 www.eqm.co m

> PN: 050614.0099.014 August 2021

. , s • 4

PREFACE

I, Karl Mast, do hereby certify that the source emissions testing conducted at TC Energy in Johannesburg, MI was performed in accordance with the procedures set forth by the United States Environmental Protection Agency, and that the data and results submitted within this report are an exact representation of the testing.

Karl Mast Test Supervisor

I, Karl Mast, do hereby attest that all work on this project was performed under my direct supervision, and that this report accurately and authentically presents the source emissions testing conducted at ANR's Johannesburg Compressor Station in Johannesburg, MI.

Mast

Karl Mast Test Supervisor

SUMMARY

The compliance emissions testing was performed on Units No. EUCTCOMPENG001 (Unit 1) and No. EUCTCOMPENG002 (Unit 2) in accordance with the requirements of Michigan Department of Environment, Great lakes, and Energy (MEGLE), Permit No. MI-ROP-B7390-2021. The testing was performed utilizing USEPA Methods 3A and 7E at the Exhaust Stack sampling location. The results of the testing are detailed in the following tables.

	Unit No. 1 Emission Test Results					
Run No.	NOx Emissions (g/bhp/hr)	NOx (lb/hr)				
1	2.3516	19.4616				
2	2.9674	24.4011				
3	2.6602	22.1096				
Average	2.6597	21.9907				
Emission Limit	6 at 100 % Speed and Torque	53				

Unit No. 2 Emission Test Results						
Run No.	NOx Emissions (g/bhp/hr)	NOx (lb/hr)				
1	3.1517	23.7143				
2	2.6111	19.8540				
3	2.3580	18.0387				
Average	2.7070	20.5357				
Emission Limit	6 at 100 % Speed and Torque	53				

Environmental Quality Management, Inc.

CONTENTS

Prefac	e	ii
Summ	aryi	ii
	Introduction	
2	Test Results Summary	.2
3	Test Results Summary Facility and Process Conditions	.7
4.	Test Procedures	1
5	Quality Assurance Procedures	5
6	Conclusions	.6

TABLES

1	Unit 1 Test Results Summary	2
2	Unit 2 Test Results Summary	
3	Unit 1 Operating & Ambient Conditions, Concentrations, & Emissions	
4	Unit 1 Emissions Concentrations/Calculated Emissions & Concentrations, Flows	4
5	Unit 2 Operating & Ambient Conditions, Concentrations, & Emissions	5
6	Unit 2 Emissions Concentrations/Calculated Emissions & Concentrations, Flows	6
7	Unit 1 Production Data	7
8	Unit 2 Production Data	7
9	Unit 1 Engine Rating & General Information	8
10	Unit 2 Engine Rating & General Information	9

FIGURES

1	Flow Schematic1	0
2	Stack Configuration1	1

APPENDICES

A – Field Test Data

B – Process Operating Data

C – Gas Certifications

D – Correspondence

E – Sample Calculations

Equip Environmental Quality Management, Inc.

1. INTRODUCTION

This report presents the results of the source emissions testing conducted by Environmental Quality Management, Inc. (EQM) for TC Energy's ANR (ANR) Central Charlton Compressor Station near Johannesburg, MI. The Air Compliance Team of TC Energy's ANR Pipeline Company, contracted EQM which conducted the source emissions testing at the ANR Central Charlton Compressor Station in fulfillment of the Michigan Department of Environment, Great lakes, and Energy (MEGLE), permit no. MI-ROP-B7390-2021.

The primary purpose of this testing program was to conduct emissions testing of the internal combustion reciprocating engines Unit No. EUCTCOMPENG001 (Unit 2) and Unit No. EUCTCOMPENG002 (Unit 2), with each having an emission limit of 6 G/BHP-HR at 100 % Speed and Torque NO_x and 53 lb/hr of NO_x. EQM's responsibility was to conduct the compliance testing for the NOx and O2 emissions rates and perform data reduction for conformance evaluation. ANR's responsibility was to maintain process operating parameters and to assist in providing process operating data per compliance test requirements.

The following report provides information pertaining to TC Energy's process operations, and compliance testing. The compliance testing conducted on the Unit No. 1 and Unit No. 2 was performed on July 2, 2021 from 10:15 A.M. to 1:54 P.M.

The following requirements were specific for the testing program:

- 1. Equipment calibrations performed and calibration data provided.
- 2. Three (3) one (1) -hour, minimum, NOx and O2 test runs performed at the Unit 1 and Unit 2 pursuant to EPA Reference methods as described in 40 CFR, Part 60, Appendix A.
- 3. Process manufacturing operations maintained at 100% of capacities based on pipeline conditions.
- 4. Production and fuel consumption rates recorded during the emissions testing periods.
- 5. All testing and analyses performed in accordance with current EPA test methodologies and analytical procedures for NO_x and O₂ emissions determinations.
- 6. The analyzer's calibration was checked offsite at the higher concentration to ensure linearity at the concentrations during the test runs per MEGLE approval.

The testing program was approved by and/or coordinated with Tyrah Lydia, TC Energy's ANR Pipeline Company. The emission testing program was performed by Karl Mast, Manager, Emission Measurement and Project Manager, EQM and Zach Hill, Field Activities Lead, and Greg Tress, Test Technician, EQM. The emission testing was observed by Jeremy Howe, Environmental Quality Analysts, Air Quality Division, MEGLE.

Environmental Quality Management, Inc.

2. TEST RESULTS SUMMARY

The compliance testing was performed on Unit No. 2 and Unit No. 2 in accordance with the requirements of permit MIROP-B7390-2021 issued by MEGLE. A summary of the test results is given below in Tables 1 and 2:

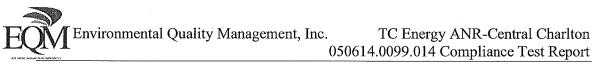
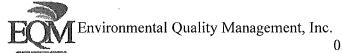

	Table 1. Unit No. 1 Emission Test Results					
Run No.	NOx Emissions (g/bhp/hr)	NOx (lb/hr)				
1	2.3516	19.4616				
2	2.9674	24.4011				
3	2.6602	22.1096				
Average	2.6597	21.9907				
Emission Limit	6 at 100 % Speed and Torque	53				

	Table 2. Unit No. 2 Emission Test Results					
Run No.	NOx Emissions (g/bhp/hr)	NOx (lb/hr)				
1	3.1517	23.7143				
2	2.6111	19.8540				
3	2.3580	18.0387				
Average	2.7070	20.5357				
Emission Limit	6 at 100 % Speed and Torque	53				

Based on the information provided above, the Unit No. 1 and Unit No. 2 met the acceptance criteria during the course of the testing. A complete list of performance parameters for each test run that was performed at the stack sampling locations can be found in Table 3 through 6.

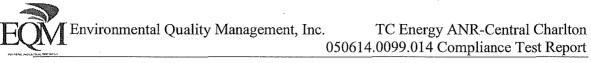

Additional testing information may be found in Appendix A.

.

Run	1	2	3	
Date	07/02/21	07/02/21	07/02/21	
Time	10:15	11:40	12:55	
Engine Operating Conditions	нร-нг	HS-HT	HS-HT	Averages
Unit Horsepower from Control Panel	3,754.0	3,730.0	3,770.0	3,751.3
Unit Speed (rpm)	447.0	451.0	451.0	449.7
Compressor Suction Pressure (PSIG)	869.0	873.0	867.0	869.7
Compressor Suction Temperature (°F)	58.1	58.3	58.2	58.2
Compressor Discharge Pressure (PSIG)	1321.0	1301.0	1298.0	1,306.7
Compressor Discharge Temperature (°F)	131.5	129.9	130.3	130.6
Compressor Flow (MMSCF/D)	73.5	71.6	71.6	72.2
% Load	93.9	93.3	94.3	93.8
% Torque	97.6	96.1	97.2	97.0
Heat Rate (BTU/HP-hr)	6,503.8	6,533.1	6,389.5	6,475.5
Ambient Conditions		• .		87 g
Ambient Temperature (°F)	82.60	81.70	83.40	82.57
Barometric Pressure (psi)	14.02	14.02	14.01	14.02
Ambient Relative Humidity (%)	48.00	44.00	42.00	44.67
Absolute Humidity (grains/LB)	174.34	154.64	156.03	161.67

Table 3. Unit No. 1 Operating & Ambient Conditions

Table 4. Unit 1 Emissions Concentrations/Calculated Mass Emissions& Concentrations, Calculated Flows & Fuel Flow Measurements


Run	1	2	3	
Date	07/02/21	07/02/21	07/02/21	
Time	10:15	11:40	12:55	
Emissions Concentrations & Calculated Mass En	nissions			er nepste på er er hjeldet. Ne
NO _x ppm (BIAS Corrected)	207.300	240.830	228.390	225.507
NO _X g/BHP-HR	2.3516	2.9674	2.6602	2.6597
NO _X LB/HR	19.4616	24.4011	22.1096	21.9907
% O2 (BIAS Corrected)	14.65	15.12	14.92	14.90
Calculated Emissions Concentrations	iopa in agenci	en en de Service de Las Services de Las	engele herringe ein noch Stat	
% CO ₂ (Wet) *	3.19722	3.00022	3.08904	3.09549
%CO ₂ (Diy) *	3.55212	3.30542	3.41073	3.42276
% H ₂ O *	9.99110	9.23323	9.43185	9.55206
% O ₂ (Wet) *	13.18630	13.72394	13.51277	13.47434
% N ₂ + CO (Wet) *	73.62538	74.04261	73.96635	73.87811
Calculated Flows			n an an an Anna Anna An Anna Anna Anna A	kon a sea a la contrata de proper a la contrata de la c
Fuel Flow - (SCFM)	435.6667	434.8333	429.8333	433.4444
Fuel Flow - (SCFH)	26140.0	26090.0	25790.0	26006.6667
Fuel Flow (LB/HR)	1165.5910	1163.3615	1149.9844	1159.6456
Fuel Flow (MMcf/hr)	2.6140E-02	2.6090E-02	2.5790E-02	2.6007E-02
Exhaust Flow (LB/HR)	48,894.8	52,399.7	50,245.8	50,513
Exhaust Flow (WSCFM)	13,538.1	14,455.1	13,874.5	13,956
Air Flow (WSCFM)	12,608.7855	13,598.6447	12,996.6663	13,068.0322
Exhaust Flow Method 19 (wscfm)	13,078.3461	14,114.7601	13,485.8219	13,559.6427
Exhaust Flow Method 19 (lbm/min)	591.8526	637.7987	609.4457	613.0324
Exhaust Flow Carbon Balance (lbm/min)	1,009.9823	1,086.5787	1,039.5737	1,045.3782
Air flow Beshouri (scfin)	13,140.8444	14,137.4376	13,525.8572	13,601.3797
BSAC, #/BHP-hr	15.3075	16.6155	15.7115	15.8782
Fuel Flow Measurements				
Fuel Flow From Screen(MSCFH)	26.14	26.09	25.79	26.01
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION	Run 1	Run 2	Run 3	
* BASED ON CARBON BALANCE (STOICH. + O2)				
- A/F IS TOTAL MASS RATIO				

August 2021

RECEIVED

AUG 3 0 2021

AIR QUALITY DIVISION

Run	1	2	3	
Date	07/02/21	07/02/21	07/02/21	
Time	10:15	11:40	12:55	
Engine Operating Conditions	HS-HT	HS-HT	HS-HT	Averages
Unit Horsepower from Control Panel	3,413.0	3,449.0	3,470.0	3,444.0
Unit Speed (rpm)	450.0	450.0	450.0	450.0
Compressor Suction Pressure (PSIG)	870.0	874.0	867.0	870.3
Compressor Suction Temperature (°F)	61.7	62.0	61.8	61.8
Compressor Discharge Pressure (PSIG)	1006.0	1012.0	1008.0	1,008.7
Compressor Discharge Temperature (°F)	100.7	101.6	102.2	101.5
Compressor Flow (MMSCF/D)	53.0	53.0	52.6	52.9
% Load	85.3	86.2	86.8	86.1
% Torque	88.2	89.1	89.6	89.0
Heat Rate (BTU/IIP-hr)	7,208.3	7,211.6	7,165.3	7,195.1
Ambient Conditions	· · · · · ·			e e la constant la constant de la constant la constant de la constant
Ambient Temperature (°F)	82.40	81.30	83.30	82.33
Barometric Pressure (psi)	14.02	14.02	14.01	14.02
Ambient Relative Humidity (%)	48.00	44.00	42.00	44.67
Absolute Humidity (grains/LB)	173.17	152.58	155.51	160.42

Table 5. Unit No. 2 Operating & Ambient Conditions

August 2021

5

Table 6. Unit 2 Emissions Concentrations/Calculated Mass Emissions& Concentrations, Calculated Flows & Fuel Flow Measurements

Run	1	2	3	
Date	07/02/21	07/02/21	07/02/21	
Time	10:15	11:40	12:55	
Emissions Concentrations & Calculated Mass En	nissions			
NOx ppm (BLAS Corrected)	224.61	192.31	193.51	203.4767
NO _X g/BHP-HR	3.1517	2.6111	2.3580	2.7070
NO _S LB/HR	23.7143	19.8540	18.0387	20.5357
% O2 (BLAS Corrected)	15.30	15.11	14.49	14.9667
Calculated Emissions Concentrations				
% CO ₂ (Wet) *	2.8872	2.9837	3.2530	3.0413
%CO ₂ (Dry) *	3.1857	3.2846	3.6041	3.3581
% H ₂ O *	9.3713	9.1628	9.7402	9.4248
% O ₂ (Wet) *	13.8662	13.7255	13.0786	13.5568
% N ₂ + CO (Wet) *	73.8754	74.1280	73.9281	73.9772
Calculated Flows				· · · · · · · · · · · · · · · · · · ·
Fuel Flow - (SCFM)	439.0000	443.8333	443.6667	442.1667
Fuel Flow - (SCFII)	26340.0	26630.0	26620.0	26530.0
Fuel Flow (LB/HR)	1174.5091	1187.4403	1186.9943	1182.9812
Fuel Flow (MMcf/hr)	2.6340E-02	2.6630E-02	2.6620E-02	2.6530E-02
Exhaust Flow (LB/HR)	54,145.0495	53,482,4558	48,916.1942	52,181.2332
Exhaust Flow (WSCFM)	15,108.6842	14,841.9645	13,600.8572	14,517.1686
Air Flow (WSCFM)	14,166.0965	13,856.3491	12,522.4615	13,514.9690
Exhaust Flow Method 19 (wscfm)	14,708.0469	14,382.0192	12,986.0564	14,025.3741
Exhaust Flow Method 19 (lbm/min)	665.5400	649.7764	586.8439	634.0534
Exhaust Flow Carbon Balance (lbm/min)	1,130,8457	1,107.2285	1,003.9117	1,080.6620
Air flow Beshouri (scfm)	14,713.3941	14,406.1122	13,061.8605	14,060.4556
BSAC, #/BHP-hr	18.9165	18.3097	16.4470	17.8911
Fuel Flow Measurements	na de la carra de		na da serente de	·
Fuel Flow From Screen(MSCFH)	26.34	26.63	26.62	26.53
** BASED ON FUEL SPECIFIC DRY F-FACTOR CALCULATION	Run 1	Run 2	Run 3	
* BASED ON CARBON BALANCE (STOICH, + O2) - A/FIS TOTAL MASS RATIO				

3. PROCESS DESCRIPTION

TC Energy's ANR Pipeline Company Central Charlton Compressor Station (ANR) is located in Johannesburg, MI and operates a natural gas fired compressor station. The plant is located at 14490 Beckett Road, Johannesburg, MI. The facility has two Cooper Bessemer model 12Q145-HM natural gas fired internal combustion reciprocating engines labeled EUCTCOMPENG001 (Unit 1) and EUCTCOMPENG002 (Unit 2).

Unit No. 1 and Unit 2 are two-stroke lean-burn natural gas fired internal combustion reciprocating engine driving gas compressors. The energy released during the combustion process drives integral reciprocating gas compressors, thus raising the pressure of the incoming natural gas to inject or withdraw natural gas from a natural gas storage field.

The following tables provide a summary of the production rates and general information for the Unit No. 1 and Unit No. 2 during the test:

	Table 7. Unit 1 Horsepower (HP)					
Run No.	НР	RPM				
1	3,754.0	447.0				
2	3,730.0	451.0				
3	3,770.0	451.0				
Average	3,751.3	449.7				
Rated	4,000	465				

Table 8. Unit 2 Horsepower (HP)				
Run No.	HP	RPM		
· 1	3,413.0	450.0		
2	3,449.0	450.0		
3	3,470.0	450.0		
Average	3,444.0	450.0		
Rated	4,000	465		

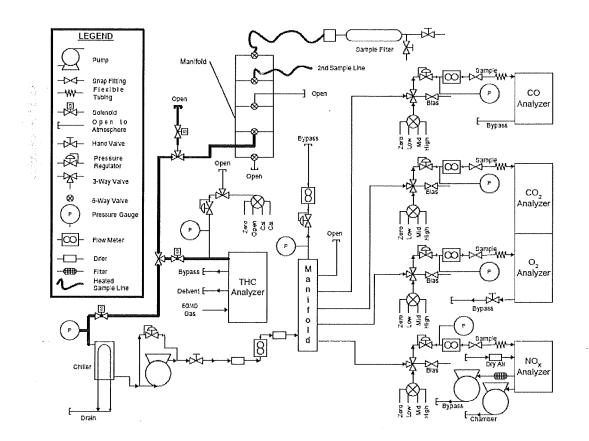

Genera	l Information		
Date:	2-Jul-21	Permit Limits	5
Company:	TC Energy	ppm@15% g/Bhp-Hr NOx: 6	lb/hr 53
Station:	Central Charlton	CO: VOC:	
Unit:	1	H2CO:	
		Limits are actually listed a	s average value
Engine Type:	Cooper Bessemer		
Model No. [12Q145-HM		
Rated RPM:	465 RPM	erdi. ang ^a ra di dina	
Rated RPM: [Rated BHP: [465 RPM 4000 BHP	en i Sping⊄e in S	
Rated BHP:			
Rated BHP: [4000 BHP	Fuel Meter Typ	<u>e</u>
Rated BHP:	4000 BHP		
Rated BHP: [Fuel G Constituent	4000 BHP Cas Analysis Mole Percent	Fuel Meter Typ Enter Type from List Below	<u>е</u>
Rated BHP: [4000 BHP	Fuel Meter Typ Enter Type from List Below Orifice Meter (upstream pressure tap):	<mark>е</mark>
Rated BHP: [Fuel G Constituent Nitrogen [4000 BHP Eas Analysis Mole Percent 0.502 0.621	Fuel Meter Type Enter Type from List Below Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap):	<u>е</u>
Rated BHP: [Fuel G Constituent Nitrogen Carbon Dioxide	4000 BHP Cas Analysis Mole Percent	Fuel Meter Typ Enter Type from List Below Orifice Meter (upstream pressure tap):	<mark>ж</mark>
Rated BHP: [Fuel G Constituent Nitrogen Carbon Dioxide Methane	4000 BHP Eas Analysis Mole Percent 0.502 0.621 94.678	Fuel Meter Type Enter Type from List Below Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Electronic Flow Meter (EFM):	<mark>е</mark> 2 1 2 3
Rated BHP: [Fuel G Constituent Nitrogen Carbon Dioxide Methane Ethane	4000 BHP Sas Analysis Mole Percent 0.502 0.621 94.678 4.080	Fuel Meter Type Enter Type from List Below Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Electronic Flow Meter (EFM): Venturi (Nozzle) Meter:	<mark>же</mark> 2 1 2 3 4
Rated BHP: [Fuel G Constituent Nitrogen Carbon Dioxide Methane Ethane Propane	4000 BHP Sas Analysis Mole Percent 0.502 0.621 94.678 4.080 0.113	Fuel Meter Type Enter Type from List Below Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Electronic Flow Meter (EFM): Venturi (Nozzle) Meter:	<mark>же</mark> 2 1 2 3 4
Rated BHP: [Fuel G Constituent Nitrogen Carbon Dioxide Methane Ethane Propane I-Butane	4000 BHP Sas Analysis Mole Percent 0.502 0.621 94.678 4.080 0.113 0.004	Fuel Meter Type Enter Type from List Below Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Electronic Flow Meter (EFM): Venturi (Nozzle) Meter: Roots Meter v# Accumulator:	<mark>же</mark> 2 1 2 3 4
Rated BHP: [Fuel G Constituent Nitrogen Carbon Dioxide Methane Ethane Propane I-Butane N-Butane	4000 BHP Sas Analysis Mole Percent 0.502 0.621 94.678 4.080 0.113 0.004 0.003	Fuel Meter Type Enter Type from List Below Orifice Meter (upstream pressure tap): Orifice Meter (downstream pressure tap): Electronic Flow Meter (EFM): Venturi (Nozzle) Meter: Roots Meter v# Accumulator:	<mark>же</mark> 2 1 2 3 4

Table 9. Unit 1 Engine Rating and General Information

and Information		
2-Jul-21 Permit Lin	nits	
y: Tc Energy ppm@15% g/Bhp-Hr NOx: 6	lb/hr 53	
n: Central Chatriton CO: VOC:		
t: 2. H2CO;		
Limits are actually liste	d as average	valu
e: Cooper Bessemer		
p. <u>12Q145-HM</u>		
E 465 DDM	17.	
I: 465 RPM	ii e	
i: 465 RPM	HT.	
	IP.	
*: 4000 BHP		
*: 4000 BHP	Гуре	
*: 4000 BHP BHP I Gas Analysis Fuel Meter It Mole Percent Enter Type from List Below	Гуре у2	
4000 BHP I Gas Analysis Fuel Meter It Mole Percent Enter Type from List Below 0.502 Orifice Meter (upstream pressure tap):	Гуре v 2	
4000 BHP I Gas Analysis Fuel Meter It Mole Percent Enter Type from List Below 0.502 Orifice Meter (upstream pressure tap): 0.621 Orifice Meter (downstream pressure tap):	Fype v 2 1 2	
4000 BHP Fuel Meter I Gas Analysis Fuel Meter It Mole Percent Enter Type from List Below 0.502 Orifice Meter (upstream pressure tap): 0.621 Orifice Meter (downstream pressure tap): 94.678 Electronic Flow Meter (EFM)	Гуре v 2 1 2 3	
4000 BHP Fuel Meter I Gas Analysis Fuel Meter It Mole Percent Enter Type from List Below 0.502 Orifice Meter (upstream pressure tap): 0.621 Orifice Meter (downstream pressure tap): 94.678 Electronic Flow Meter (EFM) 4.080 Venturi (Nozzle) Meter	Гуре ▼ 2 1 2 3 4	
4000 BHP Fuel Meter I Gas Analysis Fuel Meter It Mole Percent Enter Type from List Below 0.502 Orifice Meter (upstream pressure tap): 0.621 Orifice Meter (downstream pressure tap): 94.678 Electronic Flow Meter (EFM) 4.080 Venturi (Nozzle) Meter 0.113 Roots Meter w/ Accumulator:	Гуре ▼ 2 1 2 3 4	
4000 BHP I Gas Analysis Fuel Meter It Mole Percent Enter Type from List Below 0.502 Orifice Meter (upstream pressure tap): 0.621 Orifice Meter (downstream pressure tap): 94.678 Electronic Flow Meter (EFM) 4.080 Venturi (Nozzle) Meter 0.113 Roots Meter w/ Accumulator:	Гуре ▼ 2 1 2 3 4	
4000 BHP I Gas Analysis Fuel Meter It Mole Percent Enter Type from List Below 0.502 Orifice Meter (upstream pressure tap): 0.621 Orifice Meter (downstream pressure tap): 94.678 Electronic Flow Meter (EFM) 4.080 Venturi (Nozzle) Meter 0.113 Roots Meter w/ Accumulator: 0.004 Pipe I.D.: 3.068	Гуре ▼ 2 1 2 3 4	
4000 BHP I Gas Analysis Fuel Meter It Mole Percent Enter Type from List Below 0.502 Orifice Meter (upstream pressure tap): 0.621 Orifice Meter (downstream pressure tap): 94.678 Electronic Flow Meter (EFM) 4.080 Venturi (Nozzle) Meter 0.113 Roots Meter w/ Accumulator:	Гуре ▼ 2 1 2 3 4	

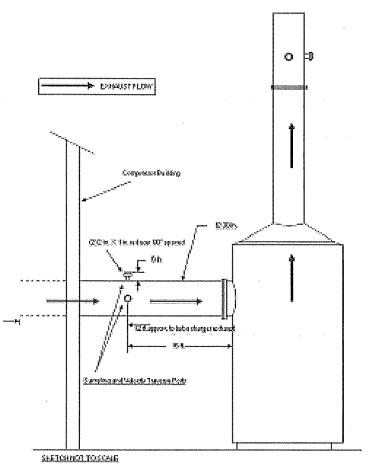

Table 10. Unit 2 Engine Rating and General Information

Figure 1. Flow Schematic

Additional Information pertaining to the Fuel Flows may be found in Appendix B.

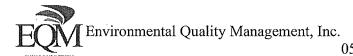
AIRC was it is the first Cariparies

EQM

Environmental Quality Management, Inc.

4. TEST PROCEDURES

EQM and EQM's affiliates and subcontractors use current U.S. EPA accepted testing methodologies in their Air Quality Programs as listed in the U.S. Code of Federal Regulations, Title 40, Part 60, Appendix A. For this testing program, the following specific methodologies were utilized:


- U.S. EPA Method 3A Determination of Oxygen and Carbon Dioxide Concentrations in Emissions From Stationary Sources (Instrumental Analyzer Procedure)
- U.S. EPA Method 7E Determination of Nitrogen Oxides Emissions From Stationary Sources (Instrumental Analyzer Procedure)
- U.S. EPA Method 19– Determination of Stack Gas Volumetric Flow Rate by Fuel "F" Factor and Heat Input

USEPA Methods 3A and 7E were performed at the Exhaust Stack sampling location by continuously extracting a gas sample from the stack through a single point stainless steel sample probe. The extracted sample was pulled through a series of filters to remove any particulate matter. Directly after the probe, the sample was conditioned by a series of refrigeration dryers to remove moisture from the gas stream. After the refrigeration dryers, the sample was transported through a Teflon® line to the analyzers. The flow of the stack gas sample was regulated at a constant rate to minimize drift.

At the start of the day, each monitor was checked for calibration error by introducing zero, midrange and high-range EPA Protocol 1 gases to the measurement system at a point upstream of the analyzers. In this report, the calibration error test is referred to as instrument calibration. The gas was injected into the sampling valve located at the outlet of the sampling probe. The bias test was conducted before and after each consecutive test run by introducing zero and upscale calibration gases for each monitor. The upscale calibration gases used for each monitor were the high calibration gases.

Measurement System Performance Specifications were as follows:

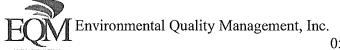
- Analyzer Calibration Error Less than +/- 2% of the span of the zero, mid-range and high-range calibration gases.
- Sampling System Bias Less than +/-5% of the span for the zero, mid-range and high-range calibration gases.
- Zero Drift Less than +/-3% of the span over the period of each test run.
- Calibration Drift Less than +/-3% of the span over the period of each set of runs.

Calculations that were used in this testing event are as follows:

Calibration Correction

$$C_{GAS} = \left(C_R - C_O\right) \frac{C_{MA}}{C_M - C_O}$$

Where:


CGAS:	Corrected flue gas concentration (ppmvd)
C _R :	Flue gas concentration (ppmvd)
Co:	Average of initial and final zero checks (ppmvd)
C _M :	Average of initial and final span checks (ppmvd)
C _{MA} :	Actual concentration of span gas (ppmvd)

EPA F-Factor

$$F_{d} = \frac{\left[(3.64 \cdot H_{W1\%} \cdot 100) + (1.53 \cdot C_{W1\%} \cdot 100) \right]}{\frac{GCV}{\rho_{FuelGas}}} \cdot 10^{6} + \frac{\left[(0.14 \cdot N_{2W1\%} \cdot 100) - (0.46 \cdot O_{2W1\%} \cdot 100) \right]}{\frac{GCV}{\rho_{FuelGas}}} \cdot 10^{6}$$

Where:

F_d :	Fuel specific F-factor, dscf/MMBtu
Hwt%:	Hydrogen weight percent
$C_{Wt\%}$:	Carbon weight percent
N2W1%:	Nitrogen weight percent
$O_{2Wt\%}$:	Oxygen weight percent
GCV:	Heating value of the fuel, BTU/dscf
hoFuel Gas:	Density of the fuel gas, lb/scf

Mass Emissions g/bhp-hr)

$$Em = Cd \times Fd \times \frac{20.9}{(20.9 - \%O_2)} \times Qh \times \frac{GCV}{10^6} \times \frac{453.6}{BHP}$$

Where:

Cd:	Pollutant concentration, NOx lb/scf
%O2:	Oxygen concentration in percent, measured on a dry basis
Fd:	Fuel specific F-factor, dscf/MMBtu
Qh:	Fuel rate, scf/hr
GCV:	Heating value fuel, Btu/scf

Mass Emission Calculations lb/hr

$$NOx_{lb} = C_d \times F_d \times \frac{20.9}{20.9 - \%O_2} \times Q_h \times \frac{GCV}{10^6}$$

Where:

Cd:	Pollutant concentration, lb/scf	
-----	---------------------------------	--

F_d: Fuel specific F-factor, dscf/MMBtu

 Q_h : Fuel flow, scf/hr

 $%O_2$: Oxygen concentration in percent, measured on a dry basis

GCV: Upper dry heating value of fuel, Btu/dscf

EQM Envi

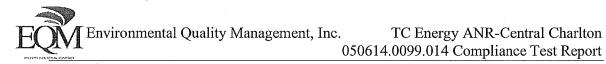
Environmental Quality Management, Inc.

5. QUALITY ASSURANCE PROCEDURES

Each reference method presented in the U.S. Code of Federal Regulations details the instrument calibration requirements, sample recovery and analysis, data reduction and verification, types of equipment required, and the appropriate sampling and analytical procedures to ensure maximum performance and accuracy. EQM and EQM's affiliates and subcontractors adhere to the guidelines for quality control set forth by the United States Environmental Protection Agency. These procedures are outlined in the following documents:

- Code of Federal Regulations, Title 40, Part 51
- Code of Federal Regulations, Title 40, Part 60
- Quality Assurance Handbook, Volume 1, EPA 600/9-76-005
- Quality Assurance Handbook, Volume 2, EPA 600/4-77-027a
- Quality Assurance Handbook, Volume 3, EPA 600/4-77-027b

Environmental Quality Management, Inc.


6. CONCLUSIONS

An emissions testing program was conducted on the Unit No.1 and Unit No. 2 at TC Energy's ANR Pipeline Company's Central Charlton Compressor Station located in Johannesburg, Michigan. The testing was conducted on July 2, 2021.

During the testing, the Engine Unit No. 1 and Unit No. 2 conformed to the requirements of Code Of Federal Regulations, Title 40, Part 60, Appendix A, National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines.

The usefulness and/or significance of the emissions values presented in this document as they relate to the compliance status of the Unit No. 1 and Unit No. 2 emissions shall be determined by others.

For additional information pertaining to the testing program see Appendix E of this report.

A. FIELD TEST DATA

.....