Survey of Source Emissions for:

> Weyerhaeuser 4111 West Four Mile Road Grayling, MI 49738

Sources: EUPRESSLINE Biofilter

40 CFR Part 63 Subpart DDDD PCWP MACT

EGLE Renewable Operating Permit No. MI-ROP-B7302-2016c

> Test Date: November 28, 2023 Project ID: 2311520004

Environmental Services Company, Inc.

Arkansas Little Rock & Springdale

New Mexico Carlsbad & Albuquerque

1-888-ESC-First (3477) www.esclabs.com

REVIEWED AND CERTIFIED BY:

Baxter Woosley Digitally signed by Baxter Woosley Date: 2024.01.16 11:35:05 -06'00'

BAXTER S. WOOSLEY, AIR PROJECTS MANAGER/QSTI

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the sources tested in the scope of this project.

Table of Contents

1.0	Introduction	
1.1	Summary of Test Program	3
1.2	Regulatory Information	3
1.3	Source Information	3
1.4	Test Location and Facility Contact	3
1.5	Regulatory Contact	
1.6	Test Company and Personnel	4
1.7	Site-Specific Test Plan and Testing Notes	4
2.0 Su	mmary of Results	
2.1	Results Table	
2.2	Data Summary	
2.3	Run 1 Calculations	
3.0 Fa	cility and Sampling Location Descriptions	
3.1	Process Description and Operation	
3.2	Flue Gas Sampling Locations	
3.3	Stack Schematics	
3.4	Operating Data	
4.0 Sa	mpling and Analytical Procedures	
4.1	Sampling Methods	
4.	1.1 U.S. EPA Method 1	
4.	1.2 U.S. EPA Method 320	24
5.0 Qu	ality Assurance/Quality Control (QA/QC)	
5.1	Quality Assurance (QA)	
5.2	Testing Limitations	27
Appen	dix A: Field Data	
Annen	div B: Quality Assurance Data	73
Appen	I' C. Deriest Manager Deserves	03
Appen	idix C: Project Manager Resumes	
Appen	dix D: Correspondence	

1.0 Introduction

1.1 Summary of Test Program

At the request of Mr. Tim Tadlock of Weyerhaeuser, Environmental Services Company, Inc. (ESC) performed air emissions testing at Weyerhaeuser's Grayling, Michigan facility. The scope of work consisted of testing the EUPRESSLINE Biofilter for formaldehyde (HCHO) destruction efficiency. The testing was in accordance with the United States Environmental Protection Agency (EPA) regulations, the facility's EGLE permit, 40 CFR Part 63 Subpart DDDD Plywood and Composite Wood Products (PCWP) Maximum Achievable Control Technology (MACT) standards.

1.2 Regulatory Information

Permit No. Regulatory Citation Regulatory Information EGLE Renewable Operating Permit No. MI-ROP-B7302-2016c 40 CF Part 60 US EPA Region 5

1.3 Source Information

Source names: Source ID: Target Parameters: EUPRESSLINE Biofilter SVBIOFILTER Formaldehyde

1.4 Test Location and Facility Contact

Mr. Tim Tadlcok timothy.tadlock@weyerhaeuser.com Weyerhaeuser 4111 West Four Mile Road Grayling, Michigan 49378 Phone: (989) 348-3411

1.5 Regulatory Contact

Mr. Trevor Drost drostt@michigan.gov Michigan Department of Environment, Great Lakes & Energy (EGLE) Phone: (517) 245-5781

1.6 Test Company and Personnel

Environmental Services Company, Inc. 13715 West Markham Little Rock, AR 72211 Phone: (501) 221-2565

Project Manager	Field Team Leader
Steve Woosley	Baxter Woosley
stevew@esclabs.com	baxterw@esclabs.com

1.7 Site-Specific Test Plan and Testing Notes

All testing was performed in accordance with the Site-Specific Test Plan (SSTP) submitted to Michigan Department of Environment, Great Lakes and Energy dated October 26, 2023. Prior to sampling ESC Labs and Weyerhaeuser petitioned EGLE for several variances in testing that were originally planned in the SSTP. The variations included not running EPA Method 326 for MDI, the use of EPA Method 320 for determining moisture content on the EUPRESSLINE Biofilter, and utilizing section 8.6 of US EPA Method 2. This section was used to eliminate the use of US EPA Method 3A on EUPRESSLINE Biofilter. Section 8.6 of US EPA Method 2 states, " For processes emitting essentially air, an analysis need not be conducted: use a dry molecular weight of 29.0."

2.0 Summary of Results

2.1 Results Table

On November 28, 2023, ESC performed formaldehyde destruction efficiency testing on the EUPRESSLINE Biofilter at the Weyerhaeuser facility in Grayling, Michigan to determine compliance with EGLE Renewable Operating Permit No. MI-ROP-B7302-2016c, and provisions of the 40 CFR 60.

The summary of results from the testing compared to PCWP MACT limits are summarized in the table in the table below. Section 2.2 of the report contains all field data and calculated results for each run and the calculations used in this sampling program.

		Results Table	MENALDINE	S. B. Marson Barrow				
	V	Veyerhaeuser		and a solution	With the state			
Grayling, Michigan								
	EUPR	ESSLINE Biofi	lter					
	Run #1	Run #2	Run #3	Average	Regulatory			
Sample Date	11/28/23	11/28/22	11/28/22	Average	Linin			
Sample Time	1132-1237	1258-1358	11/28/25					
	1154-1457	1230-1330	1400-1300					
Stack Parameters - Inlet								
Flow, acfm	98,808.73	103,306.99	104,612.98	102,242.90				
Flow, dscf/hr	5,021,744.47	5,243,249.74	5,315,147.87	5,193,380.69				
Temperature, °F	130	129	129	129				
Stack Parameters - Outlet								
Flow, acfm	98,893.99	102,565.09	105,868.07	102,442.38				
Flow, dscf/hr	5,563,861.25	5,788,963.00	5,973,691.51	5,775,505.25				
Temperature, °F	77	75	75	76				
Formaldehyde - Inlet								
Concentration, ppmvd	10.11	12.67	11.96	11.58				
Inlet mass, lbs/hr	3.96	5.18	4.96	4.70				
Formaldehyde - Outlet								
Concentration, ppmvd	0.06	0.06	0.25	0.12				
Emission rate, lbs/hr	0.03	0.03	0.12	0.06	1.0			
Destruction Rate Efficiency								
Destruction rate efficiency, %	99.34	99.47	97.62	98.81	90.0			

40 CFR part 63 subpart DDDD Table 1B allows facilities to demonstrate compliance in one of 6 ways.

(1) Reduce emissions of total HAP, measured as THC (as carbon)a, by 90 percent; or

(2) Limit emissions of total HAP, measured as THC (as carbon)a, to 20 ppmvd; or

(3) Reduce methanol emissions by 90 percent; or

(4) Limit methanol emissions to less than or equal to 1 ppmvd if uncontrolled methanol

emissions entering the control device are greater than or equal to 10 ppmvd; or

(5) Reduce formaldehyde emissions by 90 percent; or

(6) Limit formaldehyde emissions to less than or equal to 1 ppmvd if uncontrolled formaldehyde emissions entering the control device are greater than or equal to 10 ppmvd.

Weyerhaeuser has elected to demonstrate compliance using option number five.

Per 63.2262 (g) all nondetect data (runs #1 and 2) must be reported as half of the method detection limit (MDL).

2.2 Data Summary

The following provides a detailed summary of the field data, calculated data, and calculations.

USEPA Method 320 Data Summary Formaldehyde Destruction Rate Efficiency

Inlet		Run #1	Run #2	Run #3
	Identification:		EUPRESSLIN	E Biofilter Inlet
	Date:	11/28/23	11/28/23	11/28/23
	Run Time:	1132-1237	1258-1358	1408-1508
Снсно	Formaldehyde concentration, ppmvw	9.98	12.46	11.78
B _{ws}	Water vapor in the gas stream, proportion by volume	0.0129	0.0163	0.0147
Q _{std}	Stack gas dry volumetric flow rate, dscf/hr	5,021,744.47	5,243,249.74	5,315,147.87
C _{HCHO(dry)}	Formaldehyde concentration, ppmvd	10.11	12.67	11.96
EHCHOID	Formaldehyde inlet mass, lbs/hr	3.96	5.18	4.96

Outlet		Run #1	Run #2	Run #3
	Identification:		EUPRESSLINE	Biofilter Outlet
	Date:	11/28/23	11/28/23	11/28/23
	Run Time:	1132-1237	1258-1358	1408-1508
Снсно	Formaldehyde concentration, ppmvw	0.06	0.06	0.08
B _{ws}	Water vapor in the gas stream, proportion by volume	0.0056	0.0055	0.0056
Q _{std}	Stack gas dry volumetric flow rate, dscf/hr	5,563,861.25	5,788,963.00	5,973,691.51
C _{HCHO(dry)}	Formaldehyde concentration, ppmvd	0.06	0.06	0.25
E _{HCHOOut}	Formaldehyde inlet mass, lbs/hr	0.03	0.03	0.12
DRE	Destruction rate efficiency, %	99.34%	99.47%	97.62%

USEPA Method 2 Data Summary Volumetric Flow Rate

Inlet		Run #1	Run #2	Run #3
	Identification:	Contraction of the second second	EUPRESSLIN	E Biofilter Inlet
	Date:	11/28/23	11/28/23	11/28/23
	Start Time:	1155	1335	1425
	Stop Time:	1200	1340	1430
C _p	Pitot correction factor, dimensionless	0.840	0.840	0.840
VΔP	Average of the square roots of the pressure heads, in. H ₂ O	0.7059	0.7383	0.7477
Ds	Stack diameter, ft.	7.0000	7.0000	7.0000
Ts	Average stack temperature, °F	130	129	129
P _{bar}	Barometric pressure at sampling site, in. Hg	28.68	28.68	28.68
Pg	Stack static pressure, in. Hg	0.00	0.00	0.00
B _{ws}	Water vapor in the gas stream, proportion by volume	0.0129	0.0163	0.0147
M _d	Dry molecular weight of stack gasses, lb/lb-mole	29.0000	29.0000	29.0000
Ps	Absolute stack gas pressure, in. Hg	28.68	28.68	28.68
M _s	Wet molecular weight of stack gasses, lb/lb-mole	28.8577	28.8211	28.8383
A	Area of the stack, ft ²	38.4846	38.4846	38.4846
Vs	Velocity in the stack, ft/sec	42.7915	44.7395	45.3051
Vacfm	Velocity in the stack, acfm	98,808.73	103,306.99	104,612.98
Q _{std}	Stack gas dry volumetric flow rate, dscf/hr	5,021,744.47	5,243,249.74	5,315,147.87

USEPA Method 2 Data Summary Volumetric Flow Rate

Outlet		Run #1	Run #2	Run #3
No. of the second second second	Identification:		EUPRESSLINE	Biofilter Outlet
	Date:	11/28/23	11/28/23	11/28/23
	Start Time:	1145	1300	1440
	Stop Time:	1150	1305	1445
C _p	Pitot correction factor, dimensionless	0.840	0.840	0.840
V∆P	Average of the square roots of the pressure heads, in. H_2O	0.7416	0.7704	0.7951
D _s	Stack diameter, ft.	7.0000	7.0000	7.0000
Ts	Average stack temperature, °F	77	75	75
P _{bar}	Barometric pressure at sampling site, in. Hg	28.68	28.68	28.68
Pg	Stack static pressure, in. Hg	0.00	0.00	0.00
B _{ws}	Water vapor in the gas stream, proportion by volume	0.0056	0.0055	0.0056
M _d	Dry molecular weight of stack gasses, lb/lb-mole	29.0000	29.0000	29.0000
Ps	Absolute stack gas pressure, in. Hg	28.68	28.68	28.68
M _s	Wet molecular weight of stack gasses, lb/lb-mole	28.9388	28.9395	28.9389
A	Area of the stack, ft ²	38.4846	38.4846	38.4846
V_s	Velocity in the stack, ft/sec	42.8284	44.4182	45.8487
Vacfm	Velocity in the stack, acfm	98,893.99	102,565.09	105,868.07
Q _{std}	Stack gas dry volumetric flow rate, dscf/hr	5,563,861.25	5,788,963.00	5,973,691.51

2.3 Run 1 Calculations

ESC Project #2311520004

11

	Run 1 Calculations					
		_				
	Method 2					
Absolute sta	ick gas pressure (P_s), in. Hg = $P_{bar} + P_g$					
where,						
	P_{bar} 28.68 = Barometric pressure at sampling site, in. Hg					
	P_g 0.00 = Stack static pressure, in. Hg					
	P_s 28.68 = Absolute stack gas pressure, in. Hg					
Wet molecu	lar weight of stack gasses (M) $ \mathbf{b}/\mathbf{b}_{m}\mathbf{a} = \mathbf{M} (1 \mathbf{D}_{m}) + 18.0\mathbf{D}$					
wet molect	$M_{d}(I - D_{ws}) + 18.0 D_{ws}$					
where,						
	M_d 29.0000 = Dry molecular weight of stack gasses, lb/lb-mole					
	B_{ws} 0.0060 = Water vapor in the gas stream, proportion by volume					
	M_s 28.9340 = Wet molecular weight of stack gasses, lb/lb-mole					
	2					
Area of sta	$(\frac{D_s}{2})^2 \times 3.1416$					
where						
where,	D_s 7.0000 = Stack diameter or dimensions, ft					
	A $38.4846 = \text{Area of stack. ft}^2$					
	2 2 <u></u>					

	the stack (N	(s), ft/sec =	$85.49C_p \sqrt{\Delta P_{avg}} \frac{460 + T_s}{P_s M_s}$
where,			V V -33
	C _p	0.84 =	Pitot correction factor, dimensionless
	$\sqrt{\Delta P}$	0.8899 =	Average of the square roots of the pressure heads, in. H2O
	Ts	77 =	Average stack temperature, °F
	Ps	28.68 =	Absolute stack gas pressure, in. Hg
	Ms	28.9340 =	Wet molecular weight of stack gasses, lb/lb-mole
	V _s	51.40 =	Velocity in the stack, ft/sec
Velocity in	the stack (V	(_{acfm}), acfm =	$= 60 x A x V_s$
where,			
	A	38.4846 =	Area of stack, ft ²
	Vs	51.40 =	Velocity in the stack, ft/sec
	V _{acfin}	118,677.55 =	Velocity in the stack, acfm
	V _{acfm}	118,677.55 =	Velocity in the stack, acfm
Stack gas d	V _{acfm}	118,677.55 =	Velocity in the stack, acfm $(\mathbf{Q}_{std}), \mathbf{dscf/hr} = \frac{3600 \left(1 - \mathbf{B}_{ws}\right) \mathbf{V}_{s} \mathbf{A} \left[\frac{528}{460 + \mathrm{T}_{s}} \times \frac{\mathbf{P}_{s}}{29.92}\right]$
Stack gas d where,	V _{acfin}	118,677.55 =	Velocity in the stack, acfm $(\mathbf{Q}_{std}), \mathbf{dscf/hr} = 3600 \left(1 - \mathbf{B}_{ws}\right) \mathbf{V}_{s} \mathbf{A} \left[\frac{528}{460 + \mathrm{T}_{s}} \times \frac{\mathrm{P}_{s}}{29.92}\right]$
Stack gas d where,	V _{acfm}	118,677.55 = ric flow rate 0.0060 =	Velocity in the stack, acfm $(\mathbf{Q}_{std}), \mathbf{dscf/hr} = \frac{3600 \left(1 - \mathbf{B}_{ws}\right) \mathbf{V}_{s} \mathbf{A} \left[\frac{528}{460 + \mathrm{T}_{s}} \times \frac{\mathrm{P}_{s}}{29.92}\right]$ Water vapor in the gas stream, proportion by volume
Stack gas d where,	V _{acfm}	$\frac{118,677.55}{ric flow rate} = \frac{0.0060}{51.40} = \frac{118}{100}$	Velocity in the stack, acfm $(Q_{std}), dscf/hr = 3600 (1 - B_{ws})V_s A \left[\frac{528}{460 + T_s} \times \frac{P_s}{29.92}\right]$ Water vapor in the gas stream, proportion by volume Velocity in the stack, ft/sec
Stack gas d where,	V _{acfm}	$\frac{118,677.55}{ric flow rate} = \frac{0.0060}{51.40} = \frac{38.4846}{3} = \frac{1100}{380} = \frac{1000}{100} $	Velocity in the stack, acfm $(Q_{std}), dscf/hr = 3600 (1 - B_{ws})V_s A \left[\frac{528}{460 + T_s} \times \frac{P_s}{29.92}\right]$ Water vapor in the gas stream, proportion by volume Velocity in the stack, ft/sec Area of stack, ft ²
Stack gas d where,	V _{acfm}	$\frac{118,677.55}{118,677.55} = \frac{118,677.55}{118,677.55} = \frac{118,677.55}{118,677} = \frac{118,677}{118,677} = 118$	Velocity in the stack, acfm $(Q_{std}), dscf/hr = 3600 (1 - B_{ws})V_s A \left[\frac{528}{460 + T_s} \times \frac{P_s}{29.92}\right]$ Water vapor in the gas stream, proportion by volume Velocity in the stack, ft/sec Area of stack, ft ² Average stack temperature, °F
Stack gas d where,	V _{acfm}	$\frac{118,677.55}{0.0060} = \frac{0.0060}{51.40} = \frac{38.4846}{77} = \frac{77}{28.68} = \frac{28.68}{77} = \frac{118,677.55}{28.68} = \frac{118,677.55}{1.40} = \frac{118,577.55}{1.40} = \frac{118,577.55}{1.4$	Velocity in the stack, acfm $(Q_{std}), dscf/hr = 3600 (1 - B_{ws})V_s A \left[\frac{528}{460 + T_s} \times \frac{P_s}{29.92}\right]$ Water vapor in the gas stream, proportion by volume Velocity in the stack, ft/sec Area of stack, ft ² Average stack temperature, °F Absolute stack gas pressure, in. Hg

		Method 320
nlet Form	naldehyde co	ncentration (C), ppmvd = (\underline{C})
where,		$\left(1 - B_{WS}\right)$
	C _{HCHO}	9.98 = Average formaldehyde concentration indicated by the gas analyzer,
		ppmvw
	B _{ws}	0.0129 = Water vaport in the gas stream indicated by the gas analyzer,
	C	10.11 = Formaldebyde concentration_ppmyd
	CHCHOIn	
Inlat Forn	aaldahyda ar	mission rate (HCHO) lbs/hr $C = x 20.021 \times 0$
inter rorn	laidenyde ei	$\frac{c_{nox} \times 50.051 \times Q_{std}}{385.1 \times 106}$
where,		303.1200
	Снсно	10.11 = Formaldehyde concentration, ppmvd
	Q _{std}	5,021,744.47 = Stack gas dry volumetric flow rate, dscf/hr
	E _{HCHOIn}	3.96 = Formaldehyde emission rate, lbs/hr
Outlet Fo	rmaldehyde	concentration (C), ppmvd =
		$\left(\frac{c}{1-B_{\rm urg}}\right)$
where,	C	0.06 - A way formal debude concentration indicated by the approximation
	CHCHO	0.06 = Average formaldenyde concentration indicated by the gas analyzer,
	B	0.006 = Water vaport in the gas stream indicated by the gas analyzer.
	- ws	unitless
	C _{HCHOOut}	0.06 = Formaldehyde concentration, ppmvd
Outlat Fo	rmaldahyda	amission rate (HCHO) lbs/br = 0 are 20.021 m O
Outlet Fo	rmaluenyue	$\frac{c_{nox} \times 30.051 \times Q_{std}}{3851F06}$
where,		565.1200
	C _{HCHO}	0.06 = Formaldehyde concentration, ppmvd
	Q _{std}	5,563,861.25 = Stack gas dry volumetric flow rate, dscf/hr
	E _{HCHOOut}	0.03 = Formaldehyde emission rate, lbs/hr
Destruct	ion rate eff	iciency (DRE), % = $E_{HCHOIn} \approx 100$
where		$1 - \frac{1}{E_{HCHOOut}} x100$
where,	Eucuor	3.96 = Formaldehyde emission rate as carbon. lbs/hr
	Engine	0.03 = Formaldehyde inlet mass as carbon lbs/hr
	DRF	99.34% = Destruction rate efficiency %
	DICE	

3.0 Facility and Sampling Location Descriptions

3.1 Process Description and Operation

Weyerhaeuser manufactures oriented-strand board (OSB) at its facility in Grayling, Michigan. Wood logs are sorted by species and stored in the wood yard. Logs are transferred to heated vats to clean and thaw (in winter months) the wood. The wood logs are conveyed from the vats to a debarking machine that removes the other layers of the logs. A ring-strander cuts the logs into thin wood chips (strands). The strands are conveyed to a storage bin where they are fed into four wood-fired dryers. The dryers remove moisture from the strands to product-specific content. The strands exit the dryers and are sorted according to size using shaker screens.

The fine strands are collected and used as fuel in the dryers and RTOs. The larger strands are conveyed to a blending area where wax and resins are added for adhesion purposes. The strands are then layered, at different angles for strength, onto an 8-foot-wide conveyor belt. The layered strands are cut into 8-foot-by-24-foot sections and formed into mats. The mats are stacked and the press is used to heat and compact the strands to form OSB. Depending on the thickness of the product (i.e., 7/16 or 3/8 inch) up to 16 mats can be compacted in less than 4 minutes. The OSB is cut, labeled, and prepared for shipment.

As part of the manufacturing process, emissions are generated by wood debarking and stranding, conveyance, drying, binding, pressing, milling, and painting (sides of wood). Weyerhaeuser operates pollution control equipment to control the discharge of pollutants to the atmosphere. The biofilter, wet electrostatic precipitator (WESP), and RTOs control emissions from the drying and pressing operations.

The VOC CERMS installed on the EUPRESSLINE Biofilter, and the VOC and CO CERMS and COMS on the FGDRYERS RTO exhaust stacks are used to evaluate continuous compliance with permit limits.

The pages included in Section 3.4 of this report detail the production/throughput data maintained by the facility during the testing program, which were provided to ESC after the completion of the sampling event.

3.2 Flue Gas Sampling Locations

Gas stream sampling was conducted in accordance with U.S. EPA Method 1 for the sources tested. Attached in Section 3.3 are the schematics of the sampling locations and traverse points that provide a representative sample of the sources.

3.3 Stack Schematics

.

ESC Project #2311520004

Sample Point	Location
1 and 9	5.7"
2 and 10	11.8"
3 and 11	19.3"
4 and 12	30.1"
5 and 13	59.9"
6 and 14	70.7"
7 and 15	78.2"
8 and 16	84.3"

Weyerhaeuser - Grayling, MI

EUPRESSLINE Biofilter Inlet

Sample Points

Sample Point	Location	
1 and 9	5.7"	
2 and 10	11.8"	
3 and 11	19.3"	
4 and 12	30.1"	
5 and 13	59.9"	
6 and 14	70.7"	
7 and 15	78.2"	
8 and 16	84.3"	

Weyerhaeuser - Grayling, MI

EUPRESSLINE Biofilter Outlet

Sample Points