

COMPLIANCE TEST REPORT

for

QUARTERLY HYDROGEN CHLORIDE (HCL) EMISSIONS

UNIT 2

(SRN: B2796)

2nd Quarter 2018

RECEIVED

AUG 06 2018

AIR QUALITY DIVISION

St. Clair Power Plant East China, Michigan

June 26, 2018

Prepared By: Environmental Management & Resources Environmental Field Services Group DTE Corporate Services, LLC 7940 Livernois H-136 Detroit, MI 48210

EXECUTIVE SUMMARY

DTE Energy's Environmental Management and Resources (EM&R) Field Services Group performed 2nd Quarter – 2018 Hydrogen Chloride (HCl) emissions testing on the exhaust of Unit 2 at the St. Clair Power Plant, located in East China, Michigan. The testing was required by the 40 CFR Part 63, Subpart UUUUU (Mercury and Air Toxics Standards - MATS) to document quarterly HCl stack emissions. The testing was conducted on June 26, 2018.

A summary of the emission test results are shown below:

Emissions Testing Summary St. Clair Power Plant Unit 2

Unit 2	6-26-18	125	<0.0002
Source	Date	Load (GMW)	HCl (lbs/MmBtu) ⁽¹⁾
NAME AND A			

(1) MATS Limit 0.002 lbs/MMBtu

1.0 INTRODUCTION

DTE Energy's Environmental Management and Resources (EM&R) Field Services Group performed 2nd Quarter – 2018 Hydrogen Chloride (HCl) emissions testing on the exhaust of Unit 2 at the St. Clair Power Plant, located in East China, Michigan. The testing was required by the 40 CFR Part 63, Subpart UUUUU (Mercury and Air Toxics Standards - MATS) to document quarterly HCl stack emissions. The testing was conducted on June 26, 2018.

Testing was performed pursuant to ASTM Method D6348.

The fieldwork was performed in accordance with EPA Reference Methods and DTE Energy Intent to Test¹, which was approved in a letter by Mr. Tom Gasloli from the Michigan Department of Environmental Quality (MDEQ), dated January 13, 2018². The following DTE Energy personnel participated in the testing program: Mr. Thomas Snyder, Environmental Specialist, Mr. Mark Grigereit, Principal Engineer, and Mr. Fred Meinecke, Senior Environmental Technician. Mr. Snyder was the project leader. Mr. Joe Neruda, Senior Environmental Specialist at the plant provided process coordination for the testing program.

2.0 SOURCE DESCRIPTION

The St Clair Power Plant (SCPP) located at 4901 Pointe Drive in East China, Michigan, employs the use of six (6) coal-fired boilers (Units 1-4, 6, and 7). Units 1-4 each have Babcock and Wilcox boilers capable of producing 1,070,000 pounds per hour of steam. Units 1 and 4 are equipped with General Electric turbine generators each with a nominally rated capability of 167 megawatts (MW). Units 2 and 3 have Allis Chalmers turbine generators each with a nominally rated capability of 170 MW. Full load capability for Units 1-4, while firing coal only, are 135 MW and 150 MW while over-firing with oil.

Units 6 and 7 have Combustion Engineering boilers capable of producing 2,100,000 and 3,580,000 pounds of steam per hour respectively. The turbine generators on each unit were manufactured by Westinghouse and have a nominally rated capability of 325 and 500 megawatts respectively. Full load capability for Units 6 and 7 while firing coal only is approximately 315 MW and 470 MW respectively.

The air pollution control equipment on Units 1-4 consists of Wheelebrator Frye electrostatic precipitators on each unit that have design collection efficiencies of 99.6%. Each exhaust stack is 599 feet tall with an internal diameter of 13.3 feet. The air pollution control equipment on Unit 6 consists of Research Corporation electrostatic

¹ MDEQ, Test Plan, Submitted January 5, 2017. (Attached-Appendix A)

² MDEQ, Approval Letter, dated January 13, 2017. (Attached-Appendix A)

precipitators that have design collection efficiencies of 99.6%. The exhaust stack is 425 feet tall with an internal diameter of 19.0 feet. The air pollution control equipment on Unit 7 consists of an American Standard electrostatic precipitator that has design collection efficiency of 99.6%. The exhaust stack is 600 feet tall with an internal diameter of 16.0 feet

Each boiler is equipped with a Dry Sorbent Injection (DSI) and Activated Carbon Injection (ACI) air quality control system. The DSI system is used to control acid gas, PM, PM10, PM2.5, and NOx emissions from each unit. Trona is received at the plant where inline mills further refine the Trona. The ACI system is used to control Mercury emissions from each unit.

Testing was performed on Unit 2 while operating at normal load conditions, per Subpart UUUUU.

3.0 SAMPLING AND ANALYTICAL PROCEDURES

DTE Energy obtained emissions measurements in accordance with procedures specified in the USEPA *Standards of Performance for New Stationary Sources* or listed as an approved *"Other Test Method"*. The sampling and analytical methods used in the testing program are indicated in the table below:

Sampling Method	Parameter	Analysis
ASTM Method D6348	HCl, CO ₂ , and, Moisture Content	FTIR
USEPA Method 19	Emission Rate Calculations	Stoichiometric Calculations

3.1 MOISTURE (ASTM D6348)

3.1.1 Sampling Method

Moisture content in the exhaust was evaluated using ASTM D6348, "Measurement of Vapor Phase Organic Emissions by Extractive Fourier Transform Infrared (FTIR)".

3.2 CARBON DIOXIDE (ASTM D6348)

3.2.1 Sampling Method

Carbon dioxide (CO₂) emissions were evaluated using ASTM D6348, "Measurement of Vapor Phase Organic Emissions by Extractive Fourier Transform Infrared (FTIR)".

3.2.2 Sampling Train Calibration

The CO₂ analyzer was calibrated according to procedures outlined in USEPA Methods 3A and 7E. Zero, span, and mid range calibration gases were introduced directly into the analyzer to verify the instruments linearity, prior to sampling, and again at the completion of each test run. The CO₂ emissions were corrected for bias according to USEPA Method 7E.

3.3 HYDROGEN CHLORIDE (ASTM D6348)

3.3.1 Sampling Method

Hydrogen chloride emissions were evaluated using ASTM D6348, "Measurement of Vapor Phase Organic Emissions by Extractive Fourier Transform Infrared (FTIR)". Single point sampling was performed. Triplicate 60-minute test runs were performed. HCl emissions reported were corrected to analyte spike recovery (%R), according to Table 5 of Part 63 Subpart UUUUU.

The ASTM D6348 sampling system (Figure 2) consisted of the following:

- (1) Single-point sampling probe (located in the centroid of the exhaust stack)
- (2) Flexible heated PTFE sampling line
- (3) Air Dimensions Heated Head Diaphram Pump
- (4) MKS MultiGas 2030 FTIR spectrometer
- (5) Appropriate calibration gases
- (6) Data Acquisition System

The FTIR was equipped with a temperature controlled, 5.11 meter multipass gas cell maintained at 191°C. Gas flows and sampling system pressures were monitored using a rotometer and pressure transducer. All data was collected at 0.5 cm⁻¹ resolution.

3.3.2 Sampling Train Calibration

The FTIR was calibrated according to procedures outlined in ASTM D6348. Direct measurements of Nitrogen (N_2), Hydrogen Chloride (HCl), Carbon Dioxide (CO_2), and Ethylene (C_2H_4) gas standards were made at the test location to confirm concentrations.

A calibration transfer standard (CTS) was analyzed before and after testing at each location. The concentration determined for all CTS runs were within $\pm 5\%$ of the certified value of the standard. Ethylene was passed through the entire system to

determine the sampling system response time and to ensure that the entire sampling system was leak-free.

Nitrogen was purged through the sampling system at each test location to confirm the system was free of contaminants.

HCl spiking was performed to verify the ability of the sampling system to quantitatively deliver a sample containing HCl from the base of the probe to the FTIR. Analyte spiking assures the ability of the FTIR to quantify HCl in the presence of effluent gas.

As part of the spiking procedure, samples of effluent stack gas were measured to determine HCl concentrations to be used in the spike recovery calculations. The determined sulfur hexafluoride (SF_6) concentration in the spiked and unspiked samples was used to calculate the dilution factor of the spike and thus used to calculate the concentration of the spiked HCl. The following equation illustrates the percent recovery calculation.

$$DF = \frac{SF_{6(spike)}}{SF_{6(direct)}}$$
(Sec. A5.6 ASTM D6348)

$$CS = DF * Spike_{dir} + Unspike (1 - DF)$$
 (Sec. A5.7 ASTM D6348)

DF = Dilution factor of the spike gas $SF_{6(direct)} = SF6 concentration measured directly in undiluted spike gas$ $SF_{6(spike)} = Diluted SF_6 concentration measured in a spiked sample$ $Spike_{dir} = Concentration of the analyte in the spike standard measured by the FTIR directly$ CS = Expected concentration of the spiked samplesUnspike = Native concentration of analytes in unspiked samples

All analyte spikes were introduced using an instrument grade stainless steel rotometer. The spike target dilution ratio was 1:10 or less. All spike recoveries were within the ASTM D6348 allowance of ±30%. HCl emissions reported were corrected to analyte spike recovery (%R), according to Table 5 of Part 63 Subpart UUUUU.

3.3.3 Quality Control and Assurance

As part of the data validation procedure, reference spectra are manually fit to that of the sample spectra and a concentration is determined. The reference spectra are scaled to match the peak amplitude of the sample, thus providing a scale factor. The scale factor multiplied by the reference spectra concentration is used to determine the concentration value for the sample spectra. Sample

pressure and temperature corrections are then applied to compute the final sample concentration. The manually calculated results are then compared with the software-generated results. The data is then validated if the two concentrations are within \pm 5% agreement. If there is a difference greater than \pm 5%, the spectra are reviewed for possible spectral interferences or any other possible causes that might lead to inaccurately quantified data. PRISM Analytical Technologies, Inc. validated the FTIR data. The data validation reports are located in Appendix C.

3.3.4 Data Reduction

Each spectrum was derived from the coaddition of 64 scans, with a new data point generated approximately every one minute. The emissions were recorded in parts per million (ppm) wet volume basis. The CO_2 emissions were recorded in percent (%) wet volume basis. The moisture content was recorded in percent (%).

4.0 OPERATING PARAMETERS

The test program included the collection of boiler load and stack emissions CEMs data during each test run. Parameters recorded included gross Megawatts (GMW) and CEMs data (SO₂, NO_x, CO₂, and opacity). Additionally, dry sorbent injection rates (DSI) and activated carbon injection rates (ACI), in pounds per hour (lb/hr), are reported. Operational Data collected during the testing is presented in Appendix D.

During each day of emissions sampling, a representative coal sample was collected from the unit and analyzed for ultimate and proximate analysis, including % Sulfur, % Ash, and heat content. The results of the coal analysis was used to calculate an Fc value for each day of testing and used in the lb/MMBtu calculations. Results of the fuel analysis can be referred to in Appendix F.

5.0 DISCUSSION OF RESULTS

Table 1 presents the HCl emission testing results from Unit 2. HCl emissions are presented in parts per million on a wet basis (ppm_w) and pounds per million BTU (lbs/MMBtu). The Unit 2 HCl emissions during the testing averaged less than the minimum detectable concentration of 0.07ppm. Unit 2 demonstrated average HCl emissions below the Subpart UUUUU limit of 0.002 lb/MMBtu.

The auxiliary test data presented in the results table for each test includes the unit load in gross megawatts (GMW), DSI injection rate (lb/hr), ACI injection rate (lb/hr), and CO_2 concentration (%_{wet}).

6.0 CERTIFICATION STATEMENT

"I certify that I believe the information provided in this document is true, accurate, and complete. Results of testing are based on the good faith application of sound professional judgment, using techniques, factors, or standards approved by the Local, State, or Federal Governing body, or generally accepted in the trade."

The Sough

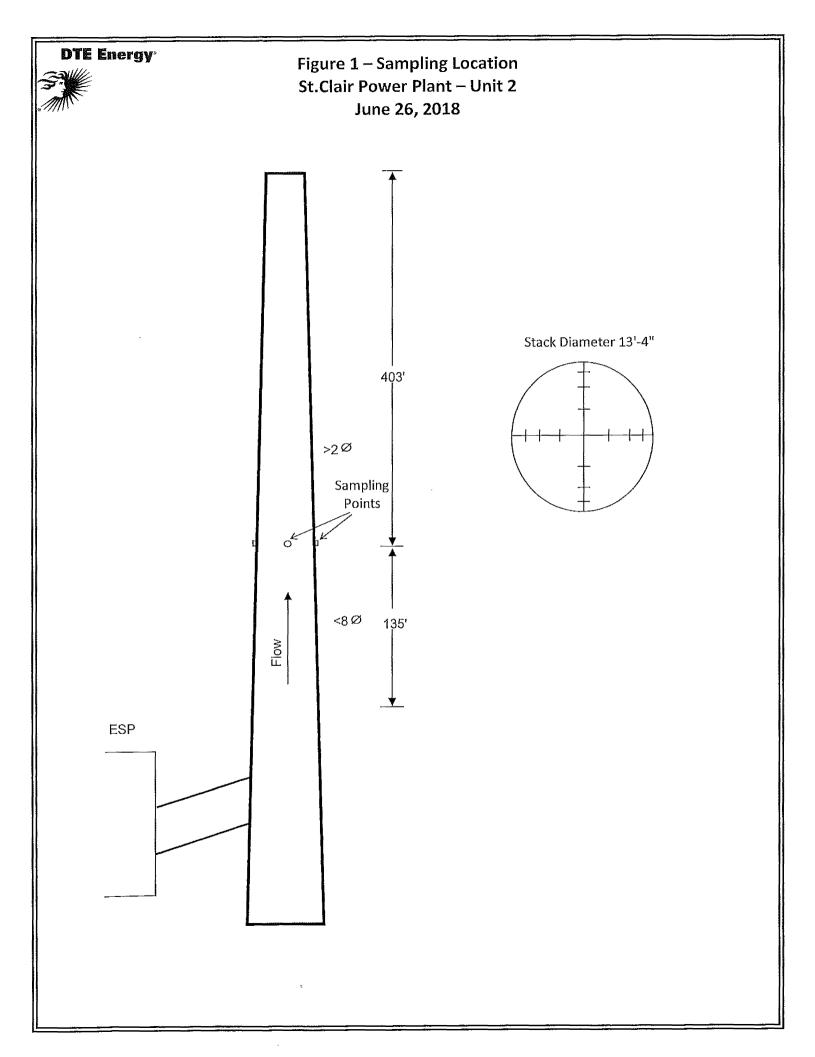
Mr. Thomas Snyder, QSTI

This report prepared by:

Mr. Thorkas Snyder, QSTI Environmental Specialist, Field Services Group Environmental Management and Resources DTE Energy Corporate Services, LLC

This report reviewed by: ____/

Mr. Mark Grigereit, QSTI Principal Engineer, Field Services Group Environmental Management and Resources DTE Energy Corporate Services, LLC


DTE Energy[.]

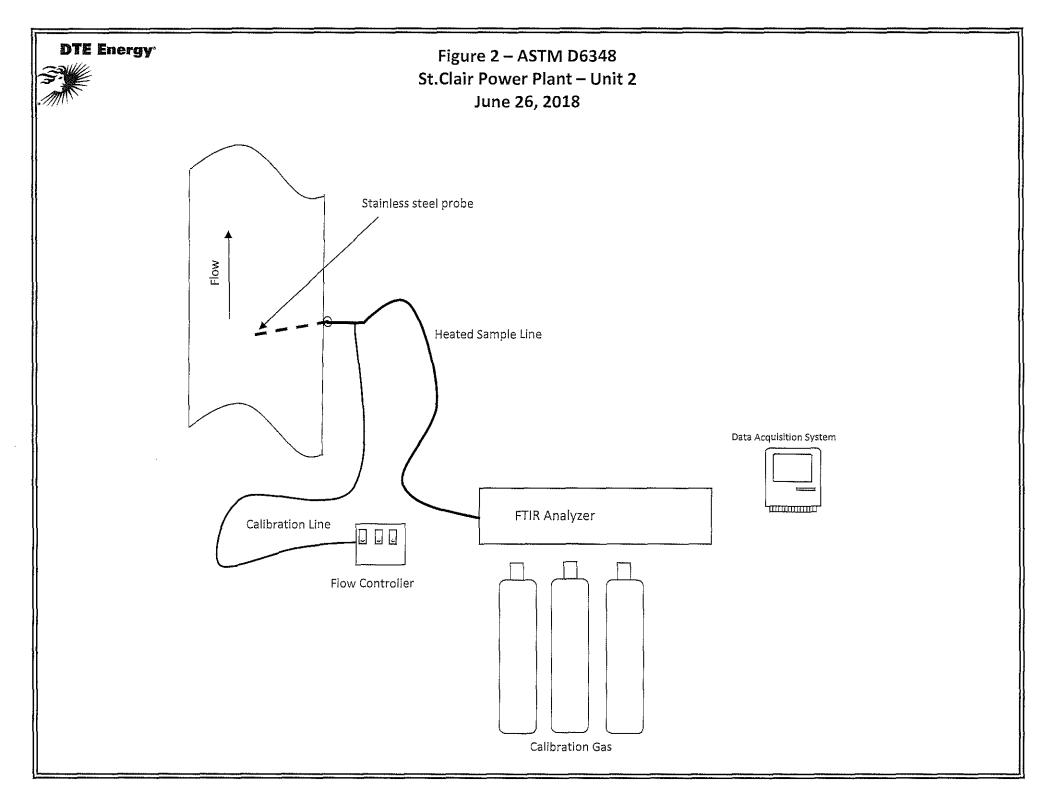


TABLE NO. 1HYDROGEN CHLORIDE EMISSIONS TESTING RESULTSSt.Clair Power Plant - Unit 2June 26, 2018

Test	Test Date	Test Time	Unit Load (GMW)	DSI Injection Rate (lb/hr)	ACI Injection Rate (lb/hr)	CO ₂ Concentration (% _{wet,corrected})	HCl Concentration (ppmv _{wet})	HCI Emissions (lbs/MMBtu) ⁽¹⁾⁽²⁾
HCI-1	26-Jun-18	7:18-8:18	125	310	37	7.5	<0.07	<0.0002
HCI-2		8:35-9:35	125	307	31	7.5	<0.07	<0.0002
HCl-3		9:50-10:50	<u>125</u>	<u>303</u>	<u>10</u>	<u>7.4</u>	<u><0.07</u>	<u><0.0002</u>
	Average:		125	307	26	7.5	<0.07	<0.0002

(1) Corrected to (%R)(2) MATS Limit = 0.002 lb/MMBtu

