RECEIVED AUG 14 2017 AIR QUALITY DIVISION # **COMPLIANCE TEST REPORT** for # Oxides of Nitrogen (NO_x) and Carbon Monoxide (CO) Emissions CTG's UNITs 11-1, 11-2, 12-1, and 12-2 Dean Peaker Station East China, Michigan June 13 through June 22, 2017 Prepared By Environmental Management & Resources Environmental Field Services Group DTE Corporate Services, LLC 7940 Livernois H-136 Detroit, MI 48210 **DTE Energy**[®] #### **EXECUTIVE SUMMARY** DTE Energy's Environmental Management and Resources (EMR) Field Services Group performed gaseous emissions testing at the DTE Energy, Dean Peaker Station, located in East China, Michigan. The fieldwork, performed during the period of June 13 - June 22, 2017, was conducted to satisfy testing requirements of Michigan Renewable Operating Permit No. MI-ROP-B2796-2015b. Emissions tests were performed on four natural gas-fired Combustion Turbine Generators (CTG's) (Units 11-1, 11-2, 12-1, and 12-2) for oxides of nitrogen (NO_x) and carbon monoxide (CO). The average results of the emissions testing are highlighted below: ### Emissions Testing Summary CTG's 11-1, 11-2, 12-1, and 12-2 Dean Peaker Station June 13 – June 22, 2017 | Unit ¹ | Parameter ²
(ppm @ 15% O2) | High Load | Mid-High Load | Mid-Low Load | Low-Load | |-------------------|--|-----------|---------------|--------------|----------| | 44.4 | NOx | 6.4 | 6.0 | 5.9 | 6.0 | | 11-1 | СО | 5.2 | 12.8 | 16.4 | 9,8 | | 11-2 | NOx | 6.3 | 6.1 | 6,2 | 6.2 | | 11-2 | CO | 9,3 | 12.3 | 8.4 | 6,7 | | 12-1 | NOx | 7 | 7.2 | 6,6 | 6.2 | | 7.2-7 | СО | 10.7 | 9.3 | 10.2 | 11.4 | | 42.2 | NO _x | 7.4 | 7.7 | 7.7 | 7.8 | | 12-2 | СО | 3.5 | 3.3 | 3.7 | 2.7 | ⁽¹⁾ Permit Limits: NOx-9.0 ppm @ 15% O2 CO - 25.0 ppm @15% O2 ⁽²⁾ Concentration corrected per USEPA Method 7E #### 1.0 INTRODUCTION DTE Energy's Environmental Management and Resources (EMR) Field Services Group performed gaseous emissions testing at the DTE Energy, Dean Peaker Station, located in East China, Michigan. The fieldwork, performed during the period of June 13 – June 22, 2017, was conducted to satisfy testing requirements of Michigan Renewable Operating Permit No. MI-ROP-B2796-2015b. Emissions tests were performed on four natural gas-fired Combustion Turbine Generators (CTG's) (Units 11-1, 11-2, 12-1, and 12-2) for oxides of nitrogen (NO_x) and carbon monoxide (CO). Testing was performed pursuant to Title 40, *Code of Federal Regulations*, Part 60, Appendix A (40 CFR §60 App. A), Methods 3A, 7E, 10 and 19. The fieldwork was performed in accordance with EPA Reference Methods and DTE Energy's Intent to Test¹, which was approved in a letter² by Mr. Tom Gasloli from the Michigan Department of Environmental Quality – Air Quality Division (MDEQ-AQD). The following DTE Energy personnel participated in the testing program: Mr. Mark Westerberg, Environmental Specialist, Mr. Ken St. Amant, Senior Environmental Technician and Mr. Jacob Maas, Summer Student. Mr. Westerberg was the project leader. Mr. Bob Graves, Lead O & M Technician, with the DTE Energy Peaker Group provided process coordination for the testing program. Mr. Tom Gasloli with the Air Quality Division of the Michigan Department of Environmental Quality (MDEQ) reviewed the Test Plan and observed portions of the testing. #### 2.0 SOURCE DESCRIPTION The DTE Energy, Dean Peaker Station, located at 4490 North River Road, East China, Michigan, employs the use of four General Electric Frame 7, simple-cycle, combustion turbines nominally rated at 82.4 megawatts (MW) each at 100% load (dependent upon ambient conditions). Flue gases from each unit exhaust through a separate rectangular stack (108" x 228") that has an exit height of 56.0 feet above ground level. See Figure 1 for a diagram of the units' sampling locations and stack dimensions. #### 3.0 SAMPLING AND ANALYTICAL PROCEDURES DTE Energy obtained emissions measurements in accordance with procedures specified in the USEPA *Standards of Performance for New Stationary Sources*. The sampling and analytical methods used in the testing program are indicated in the table below: ¹ DTE Test Plan, Submitted May 1, 2017. (Attached-Appendix A) ² MDEQ Approval Letter received May 30, 2017 (Attached-Appendix A) | Sampling Method | Parameter | Analysis | |-----------------|------------------------|---| | USEPA Method 3A | Oxygen | Instrumental Analyzer Method | | USEPA Method 7E | Oxides of Nitrogen | Chemiluminecent
Instrumental Analyzer Method | | USEPA Method 10 | Carbon Monoxide | NDIR
Instrumental Analyzer Method | | USEPA Method 19 | Exhaust Gas Flow rates | Stoichiometric Calculations | | USEPA Method 20 | Oxides of Nitrogen | Ref. Method 7E | #### 3.1 OXYGEN AND CARBON DIOXIDE (USEPA METHOD 3A) #### 3.1.1 Sampling Method Stack gas Oxygen (O_2) and Carbon Dioxide (CO_2) emissions were evaluated using USEPA Method 3A, "Gas Analysis for Carbon Dioxide, Oxygen, Excess Air, and Dry Molecular Weight (Instrumental Analyzer Method)". The O_2/CO_2 analyzers utilize paramagnetic sensors. #### 3.1.2 O_2/CO_2 Sampling Train The EPA Method 3A sampling system (Figure 2) consisted of the following: - (1) Stainless Steel sampling probe (traversed across 12 points of each stack) - (2) Heated Teflon™ sampling line - (3) MAK® gas conditioner with gaseous filter - (4) Flexible unheated Teflon™ sampling line - (5) Servomex O₂/CO₂ gas analyzer - (6) Appropriate USEPA Protocol 1 calibration gases - (7) Data Acquisition System. #### 3.1.3 Sampling Train Calibration The sampling train was calibrated per procedures outlined in USEPA Method 7E. Zero, span, and mid-range calibration gases were introduced directly into the analyzer to determine the instruments linearity. A zero and mid-range span gas for each pollutant was then introduced through the entire sampling system to determine sampling system bias for the analyzer at the completion of each test. #### 3.2 OXIDES OF NITROGEN AND CARBON MONOXIDE (USEPA METHODS 7E AND 10) #### 3.2.1 Sampling Method Oxides of nitrogen (NO_x) emissions were evaluated using USEPA Method 7E, "Determination of Oxides of Nitrogen Emissions from Stationary Sources". The NO_x analyzer utilizes a Chemiluminecent detector. Carbon monoxide (CO) emissions were evaluated using USEPA Method 10, "Determination of Carbon Monoxide Emissions from Stationary Sources". The CO analyzer utilizes an NDIR detector. The EPA Methods 7E and 10 sampling system (Figure 2) consisted of the following: - Stainless Steel sampling probe (traversed across 12 points of each stack) - (2) Heated Teflon™ sampling line - (3) MAK® gas conditioner with gaseous filter - (4) Flexible unheated Teflon™ sampling line - (5) 42i Chemiluminecent NO/NO_x gas analyzer and TECO 48i NDIR CO gas analyzer - (6) Appropriate USEPA Protocol 1 calibration gases - (7) Data Acquisition System. Oxides of Nitrogen and carbon monoxide emissions testing were performed per Method 20, and Sub-Part GG. Testing at each of four loads (equally spaced between max load and 50 MW) was performed. Each load was tested in triplicate with a run consisting of sampling for 1-minute at each of 12 points. The probe was moved to each point with sufficient time to allow for sampling system response per the guidelines of Sub-Part GG. Diluent (O_2) concentrations were measured simultaneously during all sampling. #### 3.2.2 Quality Control and Assurance All sampling and analytical equipment were calibrated per the guidelines referenced in Methods 7E and 10. Calibration gases were EPA Protocol 1 gases and the concentrations were within the acceptable ranges (40-60% mid-range and span) specified in Method 7E. Calibration gas certification sheets are in Appendix C. Zero, span, and mid-range calibration gases were introduced directly into the analyzer to determine the instruments linearity. A zero and mid-range span gas for each pollutant was then introduced through the entire sampling system to determine sampling system bias for each analyzer at the completion of each test. DTE performed NO_x converter efficiency testing by directly challenging the NO_x analyzer with a nitrogen dioxide (NO_2) calibration gas of 15.60 ppm. Results from the converter efficiency test demonstrated that the analyzer met the requirements of Method 7E (Eq-1). Eq. 1 $$Eff_{NO2} = \frac{C_{Dir}}{C_{v}} = \frac{14.4}{15.6} = 92.3\%$$ #### 3.2.3 Data Reduction Data was recorded at 10-second intervals and averaged in 1-minute increments. The NO_x and CO emissions were reported in parts per million corrected to 15% oxygen (ppm @ 15% O_2). The 1-minute readings collected can be found in Appendix B. #### 4.0 OPERATING PARAMETERS The test program included the collection of turbine operating data during each test run. Parameters recorded included fuel flowrate (pounds per second), power generation (MW), inlet guide vane angle (%), compressor discharge temperature (°F), compressor discharge pressure (psi), and exhaust temperature (°F). Unit operational data collected during each test can be found in Appendix E. Natural gas samples were collected once during the testing of each unit and analyzed for heat content. The results of the fuel analysis can be found in Appendix E. #### 5.0 DISCUSSION OF RESULTS #### 11-1: Table No. 1 presents the nitrogen oxides (NO_x) and carbon monoxide (CO) emission testing results for CTG Unit 11-1 at four (4) operating loads between 50 MW and the highest load attainable. The NO_x and CO emissions are presented in parts per million corrected to fifteen percent oxygen (ppm @ 15% O_2). The NO_x and CO emissions for each of the 4 loads were below the permit limits of 9 ppm @15% O_2 and 25 ppm @ 15% O_2 respectively. #### 11-2: Table No. 2 presents the nitrogen oxides (NO_x) and carbon monoxide (CO) emission testing results for CTG Unit 11-2 at four (4) operating loads between 50 MW and the highest load attainable. The NO_x and CO emissions are presented in parts per million corrected to fifteen percent oxygen (ppm @ 15% O₂). The NO_x and CO emissions for each of the 4 loads were below the permit limits of 9 ppm @15% O₂ and 25 ppm @ 15% O₂ respectively. #### 12-1: Table No. 3 presents the nitrogen oxides (NO_x) and carbon monoxide (CO) emission testing results for CTG Unit 12-1 at four (4) operating loads between 50 MW and the highest load attainable. The NO_x and CO emissions are presented in parts per million corrected to fifteen percent oxygen (ppm @ 15% O_2). The NO_x and CO emissions for each of the 4 loads were below the permit limits of 9 ppm @15% O_2 and 25 ppm @ 15% O_2 respectively. #### <u>12-2:</u> Table No. 4 presents the nitrogen oxides (NO_x) and carbon monoxide (CO) emission testing results for CTG Unit 12-2 at four (4) operating loads between 50 MW and the highest load attainable. The NO_x and CO emissions are presented in parts per million corrected to fifteen percent oxygen (ppm @ 15% O₂). The NO_x and CO emissions for each of the 4 loads were below the permit limits of 9 ppm @15% O₂ and 25 ppm @ 15% O₂ respectively. The Auxiliary test data presented in each NO_x/CO Emissions Table for each test includes the Unit Load in gross megawatts (GMW), stack temperature in degrees Fahrenheit (°F), fuel flow in pounds per second (lbs/sec), inlet guide vane angle in degrees (°), Compressor discharge temperature in degrees Fahrenheit (°F), Compressor discharge pressure in pounds per square inch (PSI), and heat input in Million British Thermal units per hour (MMBtu/hr). The results of the testing indicate that Units 1 through 4 are in compliance with Permit Requirements for NO_x & CO. # DTE Energy[.] ### 6.0 <u>CERTIFICATION STATEMENT</u> | "I certify that I believe the information provided in this document is true, accurate, and | |--| | complete. Results of testing are based on the good faith application of sound professional | | judgment, using techniques, factors, or standards approved by the Local, State, or Federal | | Governing body, or generally accepted in the trade." | | Mark R. Grigereit, QSTI | | |--------------------------|---| | | | | | | | This report prepared by: | | | | Mr. Mark R. Grigereit, QSTI | | | Principal Engineer, Environmental Field Services Environmental Management and Resources | | | DTE Energy | | | | | This report reviewed by: | und a houting | | | Mr. Mark Westerberg, QSTI | | | Environmental Specialist, Environmental Field Services | | | Environmental Management and Resources | | | DTE Energy | # TABLE NO. 1 ${\rm NO_x}\,\&$ CO EMISSIONS TESTING RESULTS Dean Peaker Station - Unit 11-1 June 13 & 14, 2017 | Test | Test Date | Test Time | Unit
Load
(GMW) | Stack
Temperature
(°F) | Fuef
Flow
(lb/sec) | inlet Guide
Vane Angle | Compressor
Discharge
Temperature | Compressor
Discharge
Pressure | Heat
Input
(MMBtu/hr) | NOx Emissions
(ppm@15%0;j ¹³⁾ | CO Emissions (ppm@15%O ₃) ⁽²⁾ | |----------|-----------|-------------|-----------------------|------------------------------|--------------------------|---------------------------|--|-------------------------------------|-----------------------------|---|--| | High | 13-Jun-17 | 8:06-9:48 | 76.6 | 1011.0 | 11.1 | 84.0 | 686.7 | 158.8 | 974.9 | 6.4 | 5.2 | | Mid-High | | 10:19-11:57 | 66.7 | 1028.4 | 9.9 | 65.0 | 652.8 | 136.5 | 864.7 | 6.0 | 12.8 | | Mid-Low | 14-jun-17 | 7:30-9:12 | 58.5 | 1047.0 | 9.1 | 57 <i>.</i> 7 | 630,0 | 124,5 | 795.4 | 5.9 | 16.4 | | Low | | 9:35-11:14 | <u>49.6</u> | <u> 1081.9</u> | <u>8.3</u> | <u>53.7</u> | <u>630.9</u> | <u>111.8</u> | <u>726.1</u> | <u>6.0</u> | <u>9.8</u> | | | Average: | | 62.9 | 1042.1 | 9.6 | 65.1 | 650.1 | 132.9 | 840.3 | 6.1 | 11.1 | ⁽¹⁾ Permit Limit = 9 ppm@15%02 ⁽²⁾ Permit Limit = 25 ppm@15%02 ## TABLE NO. 2 NO_x & CO EMISSIONS TESTING RESULTS Dean Peaker Station - Unit 11-2 June 15 & 16, 2017 | | | | Unit | Stack | Fuel | i ja var ja ilmestitui ket | Compressor | Compresso | Heat | | | |----------|-----------|-------------|-------------|---------------|------------|----------------------------|--------------|--------------|--------------|---|--| | Test | Test Date | Test Time | Load | Temperature | Flow | Inlet Guide | Discharge | Discharge | Input | NOx Emissions | CO Emissions | | email of | | | (GMW) | (°F) | (lb/sec) | Vane Angle | Temperature | Pressure | (MMBtu/hr) | [ppm@15%O ₂] ^[1] | (ppm@15%0 ₂) ⁽⁰ | | High | 15-Jun-17 | 8:08-9:45 | 75.3 | 998.3 | 10.6 | 83.9 | 673.1 | 157.1 | 933.1 | 6,3 | 9.3 | | Mid-High | | 10:12-11:52 | 67.0 | 1020.3 | 9.6 | 66.3 | 644.8 | 139.2 | 841.7 | 6,1 | 12.3 | | Mid-Low | 16-Jun-17 | 7:39-9:21 | 58.2 | 1046.8 | 8.8 | 59.1 | 639.3 | 124.8 | 773.5 | 6.2 | 8.4 | | Low | | 9:38-11:16 | <u>49.9</u> | <u>1074.7</u> | <u>8.0</u> | <u>54.4</u> | <u>634.6</u> | <u>112.5</u> | <u>702.1</u> | <u>6.2</u> | <u>6.7</u> | | | Average: | | 62.6 | 1035.0 | 9.2 | 65. 9 | 648.0 | 133.4 | 812.6 | 6.2 | 9.2 | ⁽¹⁾ Permit Limit = 9 ppm@15%02 (2) Permit Limit = 25 ppm@15%02 ### TABLE NO. 3 NO_x & CO EMISSIONS TESTING RESULTS Dean Peaker Station - Unit 12-1 June 21 & 22, 2017 | Test | Test/Date | Test Time | Unit
Load | Stack
Temperature | Fuel
Flow | inlet Guide | Compressor
Discharge | Compressor
Discharge | Heaf
Input | NOx Emissions | CO Emissions | |------------------|-----------|--------------------------|---------------------|-------------------------|-------------------|---------------------|-------------------------|-------------------------|-----------------------|---|---| | | | | (GMM) | (°F) | (lb/sec) | Vane Angle | Temperature | Pressure | (MMBtu/hr) | (ppm@15%O ₂) ⁽¹⁾ | (ppm@15%0 ₂) ⁽²⁾ | | High
Mid-High | 21-Jun-17 | 8:06-9:47
10:10-11:50 | 79.2
69.9 | 991.3
1012.4 | 11.1
10.0 | 84.1
66.4 | 665.7
642.2 | 157.8
140.0 | 1,003.1
902.2 | 7.0
7.2 | 10.7
9:3 | | Mid-Low
Low | 22-Jun-17 | 7:33-9:15
9:33-11:20 | 59.9
<u>49.9</u> | 1042.0
<u>1075.9</u> | 9.0
<u>8.1</u> | 56.9
<u>51.8</u> | 621.5
<u>618.8</u> | 121.8
<u>107.5</u> | 812.8
<u>732.1</u> | 5.6
<u>5.2</u> | 10.2
<u>11.4</u> | | | Average: | | 64.7 | 1030.4 | 9.6 | 54.8 | 637.1 | 131.8 | 862.6 | 6.8 | 10.4 | ⁽¹⁾ Permit Limit = 9 ppm@15%02 (2) Permit Limit = 25 ppm@15%02 # $\label{eq:table no. 4} {\rm NO_x\&\ CO\ EMISSIONS\ TESTING\ RESULTS}$ Dean Peaker Station - Unit 12-2 June 19 & 20, 2017 | 2 19 2 3 | | | Unit | Stack | Fuel | | Compressor | Compressor | Heat | | | |----------|-----------|------------|---------------|---------------------|------------------|---------------------------|--------------------------|-----------------------|---------------------|--|--| | Test | Test Date | Test Time | Load
(GMW) | Temperature
(°F) | Flow
(lb/sec) | Inlet Guide
Vane Angle | Discharge
Temperature | Discharge
Pressure | Input
(MMBtu/hr) | NOX Emissions
(ppm@15%O ₂) ^(t) | CD Emissions
(ppm@15%O ₂) ²⁷ | | High | 19-Jun-17 | 7:50-9:36 | 75.9 | 1003.7 | 10.8 | 83.8 | 682.4 | 156.4 | 978.8 | 7.4 | 3.5 | | Mid-High | | 9:52-11:31 | 67.7 | 1028.7 | 9.8 | 66.6 | 654.9 | 138.1 | 879.6 | 7.7 | 3.3 | | Mid-Low | 20-Jun-17 | 7:19-8:57 | 58.6 | 1052.4 | 8.9 | 56.5 | 622.3 | 122.2 | 798.9 | 7.7 | 3.7 | | Low | | 9:22-11:02 | <u>49.6</u> | <u> 1085.7</u> | <u>8.0</u> | <u>52.0</u> | <u>624.5</u> | <u> 109.4</u> | <u>723.8</u> | <u>7.8</u> | <u>2.7</u> | | | Average: | | 63.0 | 1042.6 | 9.4 | 64.7 | <i>646.</i> 1 | 131.5 | 845.3 | 7.7 | 3.3 | ⁽¹⁾ Permit Limit = 9 ppm@15%O2 5 ⁽²⁾ Permit Limit = 25 ppm@15%02 Figure 1 – Sampling Location DTE Dean Peaker Station June 13-22, 2017