APEX COMPANIES, LLC

Air Emissions Testing of EUBOILER#1 and EUBOILER#2

PREPARED FOR: Decorative Panels International 416 Ford Street Alpena, Michigan 49707

State Registration No. B1476

Project No. 11019-000034.01 May 4, 2020

Apex Companies, LLC 46555 Humboldt Drive, Suite 103 Novi, Michigan 48377

© 2016 Apex Companies, LLC

May 4, 2020

Scott Ickes Senior Manager, Compliance **Decorative Panels International, Inc.** 416 Ford Avenue Alpena, Michigan 49707 scott.ickes@decpanels.com

Apex Project No. 11019-000034.01

Subject: Air Emissions Test Report EUBOILER#1 and EUBOILER#2 Decorative Panels International SRN B1476 416 Ford Avenue Alpena, Michigan Renewable Operating Permit MI-ROP-B1476-2015a

Dear Mr. Ickes:

Apex Companies, LLC submits this report for compliance air emissions testing at the Decorative Panels International facility in Alpena, Michigan. The compliance testing was conducted on March 17, 2020.

If you have any questions, please contact us.

Sincerely,

Classific

David Kawasaki, QSTI Staff Consultant Apex Companies, LLC <u>david.kawasaki@apexcos.com</u> Telephone 248.590.5134

n R. M Derek R. Wong, Ph.D., P.E.

National Account Manager Apex Companies, LLC <u>derek.wong@apexcos.com</u> Telephone 248.875.7581

Table of Contents

Exe	Executive Summaryvi				
1.0	Introduction	1			
1.2	Key Personnel	1			
2.0	Source and Sampling Locations	3			
2.1	Process Description	3			
2.2	Control Equipment Description				
2.2.1	EUBOILER#1 and EUBOILER#2	3			
2.3	Flue Gas Sampling Locations				
2.3.1	EUBOILER#1 Outlet Sampling Location				
2.3.2					
3.0	Summary and Discussion of Results	7			
3.1	Objectives and Test Matrix	7			
3.2	Field Test Changes and Issues	7			
3.3	Summary of Results	7			
<i>л</i> о	Sampling and Analytical Procedures	Q			
T.U	Emission Tost Methods	······································			
4.1	Volumetric Flowrate (USEPA Method 1)	99 ۵			
4.1.2	Oxygen, Carbon Dioxide, and Nitrogen Oxides (USEPA Methods 3A and 7E)				
4.1.3	Emission Rate (USEPA Method 19)	11			
4.1.4	Gas Dilution (USEPA Method 205)	11			
4.2	Process Data	11			
5.0	Quality Assurance and Quality Control				
51	OA/OC Procedures	12			
5.2	OA/OC Audits				
5.2.1	Audit Sample Results OA/OC				
5.2.2	Instrument Analyzer QA/QC				
5.3	Data Reduction and Validation	12			
5.4	QA/QC Problems	13			
60	Limitations	4 Л			
0.0	LIIIII(AUVII)	*********			

Tables

1-1 1-2	Sources Tested, Parameter, and Test Date Key Contact Information	1 2
2-1 2-2	Summary of EUBOILER#1 Operating Data Summary of EUBOILER#2 Operating Data	4
3-1	Sampling and Analytical Matrix	7
4-1	Emission Testing Methods	9
5-1	Calibration Gas Cylinder Information1	2

Figures

2-1	EUBOILER#1 Outlet Sampling Location
2-2	EUBOILER#2 Outlet Sampling Location
4-1	USEPA Methods 3A and 7E Sampling Train10

Appendix

Tables

1. EUBOILER#1 NO_x Results

2. EUBOILER#2 NO_x Results

Figures

- 1. EUBOILER#1 Outlet Sampling Ports and Traverse Point Locations
- 2. EUBOILER#2 Outlet Sampling Ports and Traverse Point Locations

Graphs

- 1. EUBOILER#1 Outlet NO_x and O₂ Concentrations Run 1
- 2. EUBOILER#1 Outlet NO_x and O_2 Concentrations Run 2
- 3. EUBOILER#1 Outlet NO_X and O₂ Concentrations Run 3
- 4. EUBOILER#2 Outlet NO_x and O₂ Concentrations Run 1
- 5. EUBOILER#2 Outlet NO_x and O_2 Concentrations Run 2
- 6. EUBOILER#2 Outlet NO_X and O₂ Concentrations Run 3

Appendix

A Calibration and Inspection Sheets

- B Sample Calculations
- C Field Data Sheets
- D Computer-Generated Data Sheets
- E Facility Operating Data

Executive Summary

Decorative Panels International retained Apex Companies, LLC to conduct air emissions testing at the Decorative Panels International facility in Alpena, Michigan. The purpose of the air emission testing was to evaluate compliance with certain emission limits in Michigan Department of Environment, Great Lakes, and Energy Renewable Operating Permit MI-ROP-B1476-2015a, effective April 6, 2016. The emission units tested were:

• EUBOILER#1

• EUBOILER#2

The testing followed United States Environmental Protection Agency Reference Methods 1, 3A, 7E, 19, and 205.

Detailed results are presented in Tables 1 and 2 after the Tables Tab of this report. The following table summarizes the results of the testing conducted on March 17, 2020.

Source	Unit	Average Result	Permit Limit
	lb/MMBtu	0.078	0.10
EUBOILER#1	lb/hour	7.8	11.53
	lb/MMBtu	0.066	0.10
EUBOILER#2	lb/hour	7.3	11.53

Nitrogen Oxide Emissions Results

Ib/MMBtu: pound per million British thermal units Ib/hr: pound per hour

1.0 Introduction

1.1 Summary of Test Program

Decorative Panels International retained Apex Companies, LLC to conduct air emissions testing at the DPI facility in Alpena, Michigan. The purpose of the air emission testing was to evaluate compliance with certain emission limits in Michigan Department of Environment, Great Lakes, and Energy (EGLE) Renewable Operating Permit (ROP) MI-ROP-B1476-2015a, effective April 6, 2016.

The testing followed United States Environmental Protection Agency (USEPA) Reference Methods 1, 3A, 7E, 19, and 205.

Table 1-1 lists the emission sources tested, parameter, and test date.

Table 1-1Sources Tested, Parameter, and Test Date

Source	Test Parameter	Test Date(s)
EUBOILER#1	Nitrogen oxides (NO _x)	March 17, 2020
EUBOILER#2	Nitrogen oxides	March 17, 2020

1.2 Key Personnel

The key personnel involved in this test program are listed in Table 1-2. Mr. David Kawasaki, Staff Consultant with Apex, led the emission testing program. Mr. Scott Ickes, Senior Manager, Compliance with DPI, provided process coordination and recorded operating parameters.

1

Key Contact Information			
Client	Apex		
Scott Ickes	David Kawasaki, QSTI		
Senior Manager, Compliance	Staff Consultant		
Decorative Panels International	Apex Companies, LLC		
416 Ford Avenue	46555 Humboldt Drive, Suite 103		
Alpena, Michigan 49707	Novi, Michigan 48377		
Phone: 989.356.8568	Phone: 248.590.5134		
scott ickes@decnanels.com	david kawasaki@apexcos.com		

Table 1-2

Phone: 989.356.8568 scott.ickes@decpanels.com	Phone: 248.590.5134 david.kawasaki@apexcos.com
D.L.	1LE
Karen Kajiya-Mills Technical Programs Unit Supervisor EGLE Air Quality Division Technical Programs Unit Constitution Hall, 2 nd Floor, South 525 West Allegan Street Lansing, Michigan 48909 Phone: 517.256.0880 kajiya-millsk@michigan.gov	Rebecca Radulski Environmental Engineer EGLE Air Quality Division Gaylord Field Office 2100 West M-32 Gaylord, Michigan 49735 Phone: 989.705.3404 radulskir@michigan.gov

Apex Project No. 11019-000034.01 Decorative Panels International, Alpena, Michigan

.

2.0 Source and Sampling Locations

2.1 Process Description

Decorative Panels International produces a variety of hardboard products including wall paneling, pegboard, and marker board. Hardwood chips, such as aspen, ash, maple, and beech chips, are purchased and stored in an outdoor raw material storage area and reclaimed into silos. The wood chips are cooked and softened in one of four digesters using steam injection and ground into wood pulp fibers.

The pulp fibers are conveyed to a forming machine, which forms a mat of un-pressed hardboard. The mats are processed through a Coe[®] dryer and cut using a trimmer and panel brush. The mats are conveyed to one of two hardboard lines, Line 1 or 3. Line 2 was historically operated but has since been decommissioned.

On the hardboard lines, the mats enter a predryer, a press, cooler, and tempering area. The predryer ensures the mat has the desired moisture content before the mat enters presses that heat and form hardboard. The hardboard is coated with linseed or Oxi-Cure[®] oil in the tempering area. The oil tempers the board thereby increasing its strength and "paintability." Once the board has been tempered, it is superheated to cure the binding resins in the bake ovens (No. 3 Press Line only). The hardboard is humidified to approximate atmospheric conditions to limit warping. The boards are inspected, graded, cut, and packed for shipping.

2.2 Control Equipment Description

2.2.1 EUBOILER#1 and EUBOILER#2

EUBOILER#1 and EUBOILER#2 use multi-clone collectors and an electrostatic precipitator (ESP) to control emissions. The multi-clone collectors use cyclones and centrifugal action to remove particles from the gas stream. As the flue gas enters the cyclones, centrifugal force is applied using Venturis and a conical shaped chamber. The incoming gas is forced into a cyclonic motion, down and along the walls of the chamber. As the air nears the bottom of the chamber it changes directions and flows up through the center of a cyclone tube. The inertial momentum of the entrained particles causes them to move along the side walls and collect at the bottom of the chamber where they accumulate in a hopper. The particle-reduced air exits the cyclone tube and is ducted to another cyclone chamber or into the ESP for further pollution control.

The ESP uses voltage to generate an electrostatic charge on vertically hung collection plates, which attract particulate matter in the flue. By removing the charge from the collection plates and using a series of plate rappers, the particulate matter is released from the plates and collected at the bottom of the ESP in a hopper for removal. The air is then directed to the common SVBOIL123-STK58 stack where it is discharged to atmosphere.

The sampling locations for EUBOILER #1 and EUBOILER#2 are prior to the control equipment. The control equipment is designed for particulate matter control and does not affect results of this testing.

Operating parameters were measured and recorded by DPI personnel during testing. Tables 2-1 and 2-2 summarize the operating conditions during compliance testing of the EUBOILER#1 and EUBOILER#2 sources. Additional operating parameter data are included in Appendix E.

Table 2-1Summary of EUBOILER#1 Operating Data

Test Run	Natural Gas Use Rate (ft³/hr)	Heat Input (MMBtu/hr)	Steam Load (lb/hr)
1	97,000	106	68,220
2	88,000	96	66,820
3	88,000	96	68,040
Average	91,000	99	67,693

ft³/hr: cubic foot per hour

MMBtu/hr: million British thermal unit per hour lb/hr: pound per hour

Table 2-2 Summary of EUBOILER#2 Operating Data

Test Run	Natural Gas Use Rate (ft³/hr)	Heat Input (MMBtu/hr)	Steam Load (lb/hr)
1	109,000	119	70,760
2	. 98,000	107	62,780
3	96,000	105	63,600
Average	101,000	110	65,713

ft³/hr: cubic foot per hour

MMBtu/hr: million British thermal unit per hour lb/hr: pound per hour

2.3 Flue Gas Sampling Locations

2.3.1 EUBOILER#1 Outlet Sampling Location

USEPA Methods 1 and 7E describe the sampling point location requirements. Prior to testing, a three-point stratification check was conducted following USEPA Method 7E. Based on the results of the stratification check, one sampling point was used for sampling.

The sampling port is located in a section of a 45.5-inch by 69.5-inch rectangular duct. The sampling port is accessible via the roof. Figure 2-1 presents a photograph of the EUBOILER#1 outlet sampling location. Figure 1 in the Appendix depicts the EUBOILER#1 outlet sampling port and traverse point locations.

Figure 2-1. EUBOILER#1 Outlet Sampling Location

2.3.2 EUBOILER#2 Outlet Sampling Location

USEPA Methods 1 and 7E describe the sampling points location requirements in comparison to their physical layout. Prior to testing, a three-point stratification check was conducted following USEPA Method 7E. Based on the results of the stratification check, one sampling point was used for sampling.

The sampling port is located in a section of a 47-inch width by 70-inch length rectangular duct. The sampling port is accessible via the roof. A photograph of the EUBOILER#2 outlet sampling location is presented in Figure 2-1. Figure 2 in the Appendix depicts the EUBOILER#2 outlet sampling port and traverse point locations.

Figure 2-2. EUBOILER#2 Outlet Sampling Location

3.0 **Summary and Discussion of Results**

3.1 Objectives and Test Matrix

The objective of the air emission testing was to evaluate compliance with certain emission limits in EGLE ROP MI-ROP-B1476-2015a, effective April 6, 2016.

Table 3-1 summarizes the sampling and analytical matrix.

Sampling Location	Sample/Type of Pollutant	Sample Method	Date (2020)	Run	Start Time	End Time
EUBOILER#1	Oxygen, carbon dioxide pitrogen	USEPA 1, 3A, 7E,	March 17	1	12:25	13:25
	oxides, emission rate	13, 203		2	13:32	14:32
				3	14:40	15:40
EUBOILER#2 Oxygen, carbon USEPA 1 diavida pitragap 10, 205	USEPA 1, 3A, 7E,	March 17	1	8:00	9:00	
	oxides, emission rate	19,203		2	9:07	10:07
				3	10:17	11:17

Table 3-1Sampling and Analytical Matrix

3.2 Field Test Changes and Issues

Communication between DPI, Apex, and EGLE allowed the testing to be completed as proposed in the March 6, 2020 Intent-to-Test Plan.

3.3 Summary of Results

The results of testing are presented in Table 3-2. Detailed results are presented in the Appendix Tables 1 and 2 after the Tables Tab of this report. Graphs are presented after the Graphs Tab of this report. Sample calculations are presented in Appendix B.

Source	Unit	Average Result	Permit Limit
	lb/MMBtu	0.078	0.10
EOBOILER#1	lb/hour	7.8	11.53
	lb/MMBtu	0.066	0.10
EUDUILER#2	lb/hour	7.3	11.53

Table 3-2 Nitrogen Oxide Emissions Results

lb/MMBtu: pound per million British thermal units lb/hr: pound per hour

4.0 Sampling and Analytical Procedures

Apex measured emissions in accordance with USEPA sampling methods. Table 4-1 presents the emissions test parameters and sampling methods.

Parameter	Testing Unit		USEPA Reference
		Method	Title
Sampling ports and traverse points	•	1	Sample and Velocity Traverses for Stationary Sources
Oxygen (O2) and carbon dioxide (CO2)	۲	3A	Determination of Oxygen and Carbon Dioxide Emissions from Stationary Sources (Instrument Analyzer Procedure)
Nitrogen oxides (NO _x)	•	7E	Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrument Analyzer Procedure)
Emission rate	•	19	Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates
Gas dilution	6	205	Verification of Gas Dilution Systems for Field Instrument Calibrations

Table 4-1 Emission Testing Methods

4.1 Emission Test Methods

4.1.1 Volumetric Flowrate (USEPA Method 1)

USEPA Method 1, "Sample and Velocity Traverses for Stationary Sources," was used to evaluate the sampling locations and the number of traverse points for sampling and the measurement of velocity profiles. Figures 1 and 2 in the Appendix depict the source locations.

4.1.2 Oxygen, Carbon Dioxide, and Nitrogen Oxides (USEPA Methods 3A and 7E)

USEPA Method 3A, "Determination of Oxygen and Carbon Dioxide Concentrations from Stationary Sources (Instrumental Analyzer Procedure)," was used to measure O₂ and CO₂ concentrations in the flue gas. USEPA Method 7E, "Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)," was used to measure NO_x concentrations in the flue gas. Flue gas was continuously sampled in the duct and conveyed to an analyzer for concentration measurements. Flue gas was extracted from the duct through:

- A stainless-steel probe.
- Heated Teflon sample line to prevent condensation.

- A chilled Teflon impinger train (equipped with a peristaltic pump) to remove moisture from the sampled gas stream prior to entering the analyzer.
- O₂, CO₂, and NO_x analyzers.

Figure 4-1 depicts the USEPA Methods 3A and 7E sampling train. Data was recorded at 1-second intervals on a computer equipped with data acquisition software. Recorded concentrations were averaged over the duration of each test run.

Figure 4-1. USEPA Methods 3A and 7E Sampling Train

Prior to testing, a 3-point stratification test was conducted at 17, 50, and 83% of the duct diameter for at least twice the response time to determine the minimum number of traverse points to be sampled.

The pollutant concentrations were measured using an analyzer calibrated with zero-, mid-, and high USEPA-Traceability- Protocol-certified calibration gases. The mid-level gas was 40 to 60% of the high-level (also referred to as span) gas.

Calibration Error Check. A calibration error check was performed by introducing zero-, mid-, and high-level calibration gases directly into the analyzer. The calibration error check was performed to verify the analyzer response is within $\pm 2\%$ of the certified calibration gas introduced.

System Bias Test. Prior to each test run, a system bias test was performed where known concentrations of calibration gases are introduced at the probe tip to measure if an analyzer's response is within $\pm 5\%$ of the introduced calibration gas concentrations. At the conclusion of each test run, an additional system-bias check was performed to

evaluate the analyzer drift from pre- and post-test system-bias checks. The system-bias check evaluates the analyzer drift against the \pm 3% quality assurance/quality control (QA/QC) requirement.

The analyzer drift data was used to correct the measured flue gas concentrations. Recorded concentrations were averaged over the duration of each test run.

NO/NO₂ Conversion Check. A NO/NO₂ conversion check was performed prior to testing by introducing an NO₂ calibration gas into the NO_x analyzer. If the analyzer's NO_x concentration response is greater than 90% of the introduced NO₂ calibration gas concentration, the analyzer's NO/NO₂ conversion will meet the converter efficiency requirement of Section 13.5 of USEPA Method 7E.

4.1.3 Emission Rate (USEPA Method 19)

USEPA Method 19, "Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxide Emission Rates," was used to calculate emission rates of nitrogen oxides in pounds per million British thermal units and pounds per hour. Calculations utilized O_2 concentrations, NO_x concentrations, and natural gas fuel usage rates. Standard values for F factors and higher heating values of natural gas were used in the calculations.

4.1.4 Gas Dilution (USEPA Method 205)

USEPA Method 205, "Verification of Gas Dilution Systems for Field Instrument Calibrations," was used to introduce known values of calibration gases into the analyzers. The gas dilution system consists of calibrated orifices or mass flow controllers and dilutes a high-level calibration gas to within $\pm 2\%$ of predicted values. The gas divider is capable of diluting gases at set increments and was evaluated for accuracy in the field in accordance with USEPA Method 205.

Prior to testing, the gas divider dilutions were measured to evaluate that they were within $\pm 2\%$ of predicted values. Two sets of three dilutions of the high-level calibration gas were performed. In addition, a certified mid-level calibration gas was introduced into an analyzer; this calibration gas concentration was within \pm 10% of a gas divider dilution concentration.

4.2 Process Data

DPI personnel recorded the following parameters during testing:

- Natural gas usage rate
- Heat input
- Steam load

Process data are included in Appendix E.

5.0 **Quality Assurance and Quality Control**

5.1 QA/QC Procedures

Equipment used in this emissions test program passed QA/QC procedures. Refer to Appendix A for equipment calibrations. Before testing, the sampling equipment was cleaned, inspected, and calibrated according to procedures outlined in the applicable USEPA sampling method and USEPA's "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III, Stationary Source-Specific Methods."

5.2 QA/QC Audits

Onsite QA/QC procedures (i.e., calibrations) were performed in accordance with the respective USEPA sampling methods. Equipment inspection and calibration measurements are presented in Appendix A.

5.2.1 Audit Sample Results QA/QC

Quality assurance audit samples were not proposed during this test program. Currently, audit samples for the parameters to be measured are not available from the USEPA Stationary Source Audit Program.

5.2.2 Instrument Analyzer QA/QC

The instrument analyzer sampling trains described in Section 4.1 were audited for measurement accuracy and data reliability. The analyzers passed the applicable calibration criteria. Table 5-1 summarizes the gas cylinders used during this test program. Analyzer calibration, bias, and drift data are included in Appendix A.

Parameter	Gas Vendor	Cylinder Serial Number	Cylinder Value	Expiration Date
Nitrogen	Airgas	1535054Y	99.9995%	February 4, 2024
Nitrogen dioxide	Airgas	CC507540	50.94	January 4, 2021
Nitrogen oxides	Airgas	XC034375B	100.6 ppm	August 17, 2025
Nitrogen oxides	Airgas	XC034410B	1,008 ppm	January 3, 2026
Oxygen/carbon monoxide	Airgas	SG9161438BAL	11.04/11.10%	June 8, 2024
Oxygen/carbon monoxide	Airgas	XC035409B	22.05 / 22.59 %	March 13, 2028

Table 5-1 Calibration Gas Cylinder Information

5.3 Data Reduction and Validation

The emissions testing Project Manager validated computer spreadsheets. The computer spreadsheets were used to ensure that field calculations were accurate. Random inspection of the field data sheets were conducted to verify

data have been recorded appropriately. At the completion of a test, the raw field data were entered into computer spreadsheets to provide applicable onsite emissions calculations.

5.4 QA/QC Problems

Equipment audits and QA/QC procedures demonstrate sample collection accuracy and compliance for the test runs.

6.0 Limitations

The information and opinions rendered in this report are exclusively for use by Decorative Panels International. Apex Companies, LLC will not distribute or publish this report without consent of Decorative Panels International except as required by law or court order. The information and opinions are given in response to a limited assignment and should be implemented only in light of that assignment. Apex Companies, LLC accepts responsibility for the competent performance of its duties in executing the assignment and preparing reports in accordance with the normal standards of the profession, but disclaims any responsibility for consequential damages

Submitted by:

Apex Companies, LLC

Leud.

David Kawasaki, QSTI Staff Consultant Apex Companies, LLC david.kawasaki@apexcos.com 248.590.5134

R. M

Derek R. Wong, Ph.D., P.E. National Account Manager Apex Companies, LLC derek.wong@apexcos.com 248.875.7581

Tables

Table 1EUBOILER#1 NOx ResultsDecorative Panels International, Inc.Alpena, MichiganApex Project No. 11019-000034.01Sampling Date: March 17, 2020

Parameter	Run 1	Run 2	Run 3	Average	
Run Start Time	12:25	13:32	14:40		
Test Duration (min)	60	60	60	60	
Natural Gas Usage Rate (ft ³ /hr)	97,000	88,000	88,000	91,000	
Heat Input (MMBtu/hr)	106	96	96	99	
Steam Prodution (lb/hr)	68,220	66,820	68,040	67,693	
O ₂ Concentration (C _{Aves} , %)	5.8	4.9	5.2	5.3	
Corrected O ₂ Concentration (C _{Gas} , %)	5.7	4.9	5.2	5.2	
NO_x Concentration (C_{Avg} , ppmvd)	54.1	. 55.6	55.8	55.2	
Corrected NO _x Concentration (C _{Gas} , ppmvd)	55.7	56.6	56.7	56,3	
NO _x Mass Emission Rate (lb/MMBtu)	0.080	0.077	0.078	0.078	
NO _x Mass Emission Rate (lb/hr)	8.4	7.3	7.5	7.8	
ft	/hr: cubic foot per ho	our			
MMBtu/hr: Million British thermal unit per hour					
lb/hr: pound per hour ppmvd: part per million by volume, dry basis					
					lb/MMBtu: pound per million British thermal unit

Table 2EUBOILER#2 NOx ResultsDecorative Panels International, Inc.Alpena, MichiganApex Project No. 11019-000034.01Sampling Date: March 17, 2020

Parameter	Run 1	Run 2	Run 3	Average	
Run Start Time	8:00	9:07	10:17		
Test Duration (min)	60	60	60	60	
Natural Gas Usage Rate (ft ³ /hr)	109,000	98,000	96,000	101,000	
Heat Input (MMBtu/hr)	119	107	105	110	
Steam Prodution (lb/hr)	70,760	62,780	63,600	65,713	
O ₂ Concentration (C _{Ave} , %)	5.2	4.7	4.8	4.9	
Corrected O ₂ Concentration (C _{Gas} , %)	5.2	4.7	4.8	4.9	
NO_x Concentration (C _{Avg} , ppmvd)	49.3	46.0	46.3	47.2	
Corrected NO _x Concentration (C _{Gas} , ppmvd)	50.5	47.3	47.9	48.6	
NO _x Mass Emission Rate (lb/MMBtu)	0.070	0,063	0.065	0.066	
NO _x Mass Emission Rate (lb/hr)	8.3	6.8	6.7	7.3	
	ft ³ /hr: cubic foot per ho	our			
MMBtu/hr: Million British thermal unit per hour lb/hr: pound per hour					
lb/MMBtu: pound per million British thermal unit					

RECEIVED

MAY 1 1 2020

AIR QUALITY DIVISION

Figures

TRAVERSE POINT	DISTANCE FROM STACK WALL (INCHES)
1	11.9
2	35
3	58.1

