# SOURCE TEST REPORT COMPLIANCE TESTING C-BLAST FURNACE BAGHOUSE AK STEEL DEARBORN WORKS DEARBORN, MICHIGAN

Prepared for:



Michigan Department of Environment, Great Lakes, and Energy (EGLE) Air Quality Division Compliance Support Unit Constitution Hall 525 W. Allegan Street – 3rd Floor North Lansing, Michigan 48909

Prepared by:



Environmental Quality Management, Inc. 1800 Carillon Boulevard Cincinnati, Ohio 45240-2788 (800) 229-7495 www.eqm.com

EQM PN: 050074.0210

July 2019

### **CONTENTS**

| See | tion                                                                                                                                                                                                                                                                                                                                                                     | age                                                  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--|--|--|
| 1.  | Introduction1                                                                                                                                                                                                                                                                                                                                                            |                                                      |  |  |  |
| 2.  | Summary of Test Results                                                                                                                                                                                                                                                                                                                                                  | 2-1                                                  |  |  |  |
| 3.  | <ul> <li>Sampling and Analytical Procedures</li> <li>3.1 Location of Measurement Sites</li> <li>3.2 Stack Gas Volumetric Flow Rate</li> <li>3.3 Stack Gas Dry Molecular Weight</li> <li>3.4 Stack Gas Moisture Content</li> <li>3.5 Filterable Particulate and Condensable</li> <li>3.6 Opacity</li> <li>3.7 Test Comments</li> <li>3.8 NESHAP Considerations</li> </ul> | 3-1<br>3-1<br>3-1<br>3-2<br>3-2<br>3-3<br>3-3<br>3-3 |  |  |  |
| 4.  | Process Description/Sampling Locations                                                                                                                                                                                                                                                                                                                                   |                                                      |  |  |  |
| 5.  | Quality Assurance and Quality Control5-15.1Calibration Procedures and Frequency5-1                                                                                                                                                                                                                                                                                       |                                                      |  |  |  |

### APPENDICES

Appendix A Example Calculations Appendix B Field Data

Appendix B Freid Data Appendix C Analytical Data Appendix D QA/QC Data Appendix E Process Data Appendix F Visible Emissions Data Appendix G Test Protocol and Regulatory Letter

## **FIGURES**

| <u>No.</u>  |                         | Page |
|-------------|-------------------------|------|
| Figure 3-1. | Method 5 Sampling Train | 3-2  |
| Figure 4-1. | Sampling Location       | 4-2  |

### TABLES

## <u>No.</u>

### Page

| Table 1-1. | Sampling Requirements for AK Steel                        | 1-2 |
|------------|-----------------------------------------------------------|-----|
| Table 1-2. | Project Participants                                      | 1-2 |
| Table 2-1. | Average Results and Limit Comparison                      | 2-1 |
| Table 2-2. | Stack Gas Conditions C-Blast Furnace Baghouse             | 2-2 |
| Table 2-3. | Filterable Particulate Emissions C-Blast Furnace Baghouse | 2-3 |
| Table 3-1. | NESHAP and ROP Testing Requirements                       | 3-3 |
| Table 5-1. | Field Equipment Calibration Summary                       | 5-2 |
| Table 5-2. | Field Checks of Sampling Equipment                        | 5-2 |
|            |                                                           |     |

### 1. INTRODUCTION

Environmental Quality Management, Inc. (EQM) was retained by AK Steel Dearborn Works to plan and conduct a compliance air sampling program at the C-Blast Furnace Baghouse exhaust. The compliance program was conducted to evaluate emissions of filterable particulate (PM) from the C-Blast Furnace Baghouse and visible emissions (VEs) from the C-Blast Furnace Casthouse Roof Monitors. Five sampling runs (each run at least 1 cast in duration) were conducted for each method. Visible emissions observations were conducted concurrently with the PM testing to the extent that all operating scenarios were observed. EPA-approved sampling methods and laboratory analysis procedures were used to meet the objectives of the sampling program.

An outline of the test program is presented in Table 1-1. Project participants and responsibilities are presented in Table 1-2.

| Test<br>Point No. | Test Point Name          | Parameter Tested | Test Method  |  |  |  |  |
|-------------------|--------------------------|------------------|--------------|--|--|--|--|
| 1                 | C-Blast Furnace Baghouse | Flow             | EPA Method 2 |  |  |  |  |
|                   |                          | Moisture         | EPA Method 4 |  |  |  |  |
|                   |                          | PM               | EPA Method 5 |  |  |  |  |
|                   |                          | $O_2, CO_2$      | EPA Method 3 |  |  |  |  |
| 2                 | C-Blast Furnace North    | Opacity          | EPA Method 9 |  |  |  |  |
|                   | Casthouse                |                  |              |  |  |  |  |
| 3                 | C-Blast Furnace East     | Opacity          | EPA Method 9 |  |  |  |  |
|                   | Casthouse                |                  |              |  |  |  |  |

Table 1-1.Sampling Requirements for AK Steel<br/>Dearborn, Michigan

Table 1-2.Project Participants

| Name/Company                    | Responsibility                                       |
|---------------------------------|------------------------------------------------------|
| David Pate/AK Steel             | Coordinate process operation and sampling activities |
|                                 | Site/Process preparation                             |
|                                 | Process information                                  |
| Regina Angellotti/EGLE          | Agency Review of Process and Sampling Procedures     |
| Jonathan Lamb/EGLE              |                                                      |
| Dan Scheffel/EQM                | Project Manager                                      |
| Chris Janzen/EQM                | Field sampling crew                                  |
| Ben Fern/EQM                    | Field sampling crew                                  |
| Doug Allen/EQM                  | Field sampling crew                                  |
| Eric Zang/EQM                   | Field sampling crew                                  |
| Robert Bingham/Smoke Reader LLC | VE observations                                      |

#### 2. SUMMARY OF TEST RESULTS

The emission measurement program was performed on June 18-20, 2019. Table 2-1 presents the average results and limit comparison. Table 2-2 presents a summary of stack gas conditions. Table 2-3 presents filterable particulate concentrations and mass emission rates. The first three runs were conducted with two fans operating. The last two runs were conducted while running a single fan. The emissions reported for particulate matter are an average of all five test runs. The opacity reported is the highest 6-minute block average observed during the testing on each casthouse.

Appendix A summarizes emission and example calculations, Appendix B presents field data, Appendix C presents laboratory results, Appendix D presents calibration data, Appendix E presents process data, Appendix F presents visible emissions data, and Appendix G presents the test protocol and regulatory letter regarding the test effort.

| Table 2-1. Average Results and Limit Comparison |                    |                             |                 |  |  |
|-------------------------------------------------|--------------------|-----------------------------|-----------------|--|--|
| Source                                          | Parameter          | Emission Limit              | Test Result     |  |  |
| C-Blast Furnace                                 |                    | 0.01 gr/dscf <sup>a</sup>   | 0.00018 gr/dscf |  |  |
| Baghouse                                        | Particulate Matter | $0.003 \text{ gr/dscf}^{b}$ | 0.57 lb/hr      |  |  |
|                                                 |                    | 13.87 lb/hr <sup>b</sup>    |                 |  |  |
| C-Blast Furnace North                           |                    | 200/ (6 minute              |                 |  |  |
| Casthouse Roof                                  | Opacity            | 20% (0-minute               | 6%              |  |  |
| Monitor                                         |                    | block average)              |                 |  |  |
| C-Blast Furnace East                            |                    | 200/ (6 minute              |                 |  |  |
| Casthouse Roof                                  | Opacity            | 20% (0-minute               | 4%              |  |  |
| Monitor                                         |                    | block average)              |                 |  |  |

Table 2-1.Average Results and Limit Comparison

<sup>a</sup>NESHAP FFFFF Emission Limit

<sup>b</sup>ROP MI-ROP-A8640-2016a Emission Limit

#### Table 2-2. **Stack Gas Conditions C-Blast Furnace Baghouse**

June 18-20, 2019

AK Steel, Dearborn Works

|           |                       |           | Stack Gas        | Volumetri         | c Flow Rate        | Stack        | Moisture           |                   |                         |
|-----------|-----------------------|-----------|------------------|-------------------|--------------------|--------------|--------------------|-------------------|-------------------------|
|           |                       |           | Velocity,        |                   |                    | Temperature, | Content,           | CO <sub>2</sub> , | <b>O</b> <sub>2</sub> , |
| Run No.   | Date/Ti               | me        | fps <sup>a</sup> | acfm <sup>b</sup> | dscfm <sup>c</sup> | °F           | % H <sub>2</sub> O | %                 | %                       |
| Two Fan   | s Condition Te        | est Runs  |                  |                   |                    |              |                    |                   |                         |
| 1         | 6/18/2019 0           | )916-1456 | 53.1             | 401,116           | 343,184            | 147          | 1.6                | 0.0               | 21.0                    |
| 2         | 6/18/2019 1           | 506-1916  | 75.0             | 566,763           | 484,930            | 147          | 1.6                | 0.0               | 21.0                    |
| 3         | 6/19/2019 1           | 313-1718  | 77.0             | 581,849           | 493,579            | 148          | 1.7                | 0.0               | 21.0                    |
| Average   |                       |           | 68.3             | 516,576           | 440,564            | 147          | 1.6                | 0.0               | 21.0                    |
| Single Fa | an Condition T        | est Runs  |                  |                   |                    |              |                    |                   |                         |
| 4         | 6/20/2019 0           | )819-1037 | 48.1             | 363,756           | 311,412            | 135          | 2.3                | 0.0               | 21.0                    |
| 5         | 6/20/2019 1           | 058-1302  | 49.3             | 372,612           | 315,085            | 142          | 2.4                | 0.0               | 21.0                    |
| Average   |                       |           | <b>48.</b> 7     | 368,184           | 313,249            | 139          | 2.4                | 0.0               | 21.0                    |
|           | <b>Overall</b> Averag | ge        | 60.5             | 457,219           | 389,638            | 144          | 1.9                | 0.0               | 21.0                    |

<sup>a</sup>Feet per second. <sup>b</sup>Actual cubic feet per minute. <sup>c</sup>Dry standard cubic feet per minute.

#### Table 2-3. Filterable Particulate Emissions **C-Blast Furnace Baghouse**

| June 18                       | June 18-20, 2019 AK Steel, Dearbox |                      |                    |  |  |  |  |
|-------------------------------|------------------------------------|----------------------|--------------------|--|--|--|--|
| Filterable Particulate Matter |                                    |                      |                    |  |  |  |  |
| Run                           |                                    | Concentration,       | Mass Rate,         |  |  |  |  |
| No.                           | Date/Time                          | gr/dscf <sup>a</sup> | lb/hr <sup>b</sup> |  |  |  |  |
| Two I                         | Fans Condition Test Runs           |                      |                    |  |  |  |  |
| 1                             | 6/18/2019 0916-1456                | 1.61E-04             | 0.47               |  |  |  |  |
| 2                             | 6/18/2019 1506-1916                | 1.88E-04             | 0.78               |  |  |  |  |
| 3                             | 6/19/2019 1313-1718                | 9.52E-05             | 0.40               |  |  |  |  |
| Average                       |                                    | 1.48E-04             | 0.55               |  |  |  |  |
| Single                        | e Fan Condition Test Runs          |                      |                    |  |  |  |  |
| 4                             | 6/20/2019 0819-1037                | 1.90E-04             | 0.51               |  |  |  |  |
| 5                             | 6/20/2019 1058-1302                | 2.51E-04             | 0.68               |  |  |  |  |
|                               | Average                            | 2.21E-04             | 0.59               |  |  |  |  |
|                               | <b>Overall Average</b>             | 1.77E-04             | 0.57               |  |  |  |  |

<sup>a</sup>Grains per dry standard cubic foot. <sup>b</sup>Pounds per hour.

2-3

### 3. SAMPLING AND ANALYTICAL PROCEDURES

The sampling and analytical procedures used in this test program conform to EPA Reference Methods 1 through 4, 5, and 9, as published in the Federal Register.

#### 3.1 Location of Measurement Sites

EPA Method 1, "Sample Velocity Traverses for Stationary Sources," was used to select representative measurement sites. The sampling location was at the exhaust of the C-Blast Furnace baghouse. A schematic of the test location is shown in Figure 4-1 in Section 4.

#### 3.2 Stack Gas Volumetric Flow Rate

EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rates," was used to determine stack gas volumetric flow rates. Type "S" pitot tubes meeting EPA specifications and an inclined manometer were used to measure velocity pressures. A calibrated Type "K" thermocouple attached directly to the pitot tube was used to measure stack gas temperature. The stack gas velocity was calculated from the average square root of the stack gas velocity pressure, average stack gas temperature, stack gas molecular weight, and absolute static pressure. The volumetric flow rate is the product of velocity and stack cross-sectional area.

#### 3.3 Stack Gas Dry Molecular Weight

EPA Reference Method 3, "Gas Analysis for the Determination of Dry Molecular Weight," was used for the compliance testing on the C-Blast Furnace Baghouse to determine CO<sub>2</sub> and O<sub>2</sub> concentrations. Grab samples were collected and analyzed with a Fyrite gas analyzer once per run.

#### 3.4 Stack Gas Moisture Content

EPA Reference Method 4, "Determination of Moisture Content in Stack Gases," was used to determine stack gas moisture content. This method was conducted as part of each particulate measurement run. The initial and final contents of all impingers were determined gravimetrically.

#### **3.5** Filterable Particulate and Condensable

EPA Method 5 was used to measure the concentration and mass emission rate of filterable particulate matter. Five sampling runs were collected at the baghouse stack outlet location. Figures 3-2 presents schematics of the sampling train for Method 5.



Figure 3-1. Method 5 Sampling Train

#### 3.6 Opacity

EPA Method 9, "Visual Determination of the Opacity of Emissions from Stationary Sources," was used to measure visible emissions from the C-Blast Furnace North and East Casthouse for the test program. Observations were conducted to overlap with the particulate matter test while also covering all operating scenarios. Results are reported as the highest 6minute block average opacity observed.

#### **3.7** Test Comments

Test comments are presented below:

- 1. If EQM completed a full traverse with the sampling prior to the cast being completed, the traverse was restarted at Point 1. Sampling was continued until the cast was completed. All traverse points sampled were used in the velocity calculations.
- 2. The test plan presented the methodology for testing under single-fan and dual-fan operating conditions. AK Steel performed the testing as stated in the test plan, and all opacity and particulate matter results were verified to be in compliance with the standards for each fan condition. Because of this, results are reported as a 5-run average for PM. The results reported for opacity include the single-fan operating condition in the data set.

#### **3.8** NESHAP Considerations

Table 3-1 summarizes the NESHAP and ROP conditions as they relate to testing and notification requirements.

|               | 14010 5 11           | The first and Roll resting Require          |                              |
|---------------|----------------------|---------------------------------------------|------------------------------|
| NESHAP        |                      |                                             |                              |
| Reference     | <b>ROP Reference</b> | NESHAP/ROP Language                         | Comments                     |
| 40 CFR        | EUCFURNACE           | Conduct performance tests for particulate   | This was the first test      |
| 63.7821(c)    | V.1                  | matter emissions and opacity at least once  | conducted within the current |
|               |                      | every 5 years. (No less frequently than     | ROP Renewal Period           |
|               |                      | once during each term of the Title V        | (commenced April 22, 2016).  |
|               |                      | operating permit stated in the MACT         | Testing was conducted within |
|               |                      | regulation)                                 | 5 years of the previous test |
|               |                      |                                             | (Dec. 2014).                 |
| 40 CFR        | N/A                  | Determine the concentration of particulate  | The particulate matter       |
| 63.7822(b)(1) |                      | matter according to the listed test methods | concentration was determined |
|               |                      | in 40 CFR 63.7822(b)(1)(i-v).               | in accordance with the       |
|               |                      |                                             | required test methods.       |

#### Table 3-1. NESHAP and ROP Testing Requirements

| NESHAP                                |                      |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                 |
|---------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference                             | <b>ROP Reference</b> | NESHAP / ROP Language                                                                                                                                                                                                                                                                  | Comments                                                                                                                                                                                                                        |
| 40 CFR<br>63.7822(b)(2)               | N/A                  | Collect a minimum of 60 dscf of gas<br>during the particulate matter test run.<br>Three valid test runs are needed to<br>comprise a performance test.                                                                                                                                  | Between 76 and 227 dscf of<br>gas were collected during<br>each particulate matter test<br>run. A total of 5 particulate<br>matter test runs were<br>performed.                                                                 |
| 40 CFR<br>63.7822(e)                  | EUCFURNACE<br>V.2    | Sample for an integral number of furnace<br>tapping operations to obtain at least 1<br>hour of sampling for each test run.                                                                                                                                                             | Each test run consisted of 1 to<br>2 integral heats and was<br>greater than 1 hour in<br>duration.                                                                                                                              |
| 40 CFR<br>63.7823(b)                  | EUCFURNACE<br>V.3    | Performance tests for visible emissions<br>shall be conducted such that the opacity<br>observations overlap with the<br>performance test for particulate.                                                                                                                              | All visible emission<br>observations overlapped with<br>the PM testing.                                                                                                                                                         |
| 40 CFR<br>63.7823(c)(1)<br>and (c)(2) | EUCFURNACE<br>V.4    | The permittee shall demonstrate<br>compliance with the opacity limitation<br>with a certified observer of Method 9<br>visible emissions using Method 9. The<br>performance test for visible emissions<br>shall consist of 30 6-minute block<br>averages during tapping of the furnace. | Observations were conducted<br>in accordance with Method 9<br>using a certified Method 9<br>observer. More than 30 6-<br>minute block averages were<br>observed on both the North<br>and East Casthouses during<br>the testing. |
| 40 CFR<br>63.7840(d)                  | EUCFURNACE<br>VII.4  | Submit a notification of intent to perform<br>any performance testing under 40 CFR<br>Part 63, Subpart FFFFF, at least 60 days<br>before testing is to begin.                                                                                                                          | The notification was<br>submitted on April 17, 2019,<br>62 days prior to testing.                                                                                                                                               |
| 40 CFR<br>63.7824(a)                  | EUCFURNACE<br>V.5    | Certify that the baghouse capture system<br>operated during the performance test at<br>the site-specific operating limits<br>established in the operation and<br>maintenance plan using procedures in 40<br>CFR 63.7824(a)(1-4)                                                        | The relevant certification is<br>attached to this report. The<br>O&M plan will be revised to<br>reflect the new operating<br>limits.                                                                                            |
| 40 CFR<br>63.7824(c)                  | EUCFURNACE<br>V.6    | The operating limits for the baghouse<br>capture system may be changed if the<br>requirements in 40 CFR 63.7824(c)(1-3)<br>are met.                                                                                                                                                    | All requirements of 40 CFR<br>63.7824(c)(1-3) were met.<br>The O&M plan will be<br>revised to reflect the new<br>operating limits.                                                                                              |

 Table 3-1. NESHAP and ROP Testing Requirements (continued)

#### 4. PROCESS DESCRIPTION/SAMPLING LOCATIONS

Molten iron (hot metal) is produced in the blast furnaces by heating iron ore pellets and other iron-bearing materials, coke, limestone, slag, or other fluxing material. Burden materials consisting of iron ore pellets, flux material (slag, limestone, or dolomite), and a carbon source (usually coke) are delivered to and charged into the top of the furnace. Additional carbon is supplied to the furnace by injecting natural gas and pulverized coal into the hot blast section of the furnace. Preheated combustion (hot blast) air is pushed vertically through the burden material in the furnace from tuyeres located at the bottom of the furnace. The components of the burden chemically react with the hot blast air to reduce the iron oxides into elemental iron and melt. The blast furnace produces molten iron, blast furnace gas, and slag.

Periodically, the molten iron and slag are cast from the furnace into a trough and iron runners in the floor of the casthouse. The slag is separated from the molten iron in the trough prior to entering refractory-lined bottle cars. The slag is then diverted to slag pots. The molten iron is transported in bottle cars to the BOF for use in the steelmaking process.

Emissions generated within the casthouse from the molten iron and slag that are cast from the C Blast Furnace are captured by collection hoods and routed to a baghouse that is used to control particulate emissions from the process. Figure 4-1 presents the sampling location.

4-1



|                          | Upstream                | Downstream   | Inside Diameter          |  |  |
|--------------------------|-------------------------|--------------|--------------------------|--|--|
| Location                 | Α                       | B            | С                        |  |  |
| C Blast Furnace Baghouse | >25 ft                  | >101 ft      | 152 in.                  |  |  |
| 4 Sampling Ports         | Three Tra               | verse Points | 12 Total Sampling        |  |  |
|                          | pe                      |              | Fomis                    |  |  |
| Traverse Pt 1: 5.69 in.  | Travers Pt 2: 22.19 in. |              | Traverse Pt 3: 44.99 in. |  |  |

Figure 4-1. Sampling Location

### 5. QUALITY ASSURANCE AND QUALITY CONTROL

The field sampling quality assurance for this project included the use of calibrated source sampling equipment, reference test methods, and traceability protocols for recording and calculating data. The analytical quality assurance includes use of validated analytical procedures, calibration of equipment, and analysis of control samples and blanks. The calibration and quality control procedures used for this test program are described in the following subsection.

#### 5.1 Calibration Procedures and Frequency

All manual stack gas sampling equipment is calibrated before the start of the test program in accordance with the procedures outlined in the *Quality Assurance Handbook for Air Pollution Measurement Systems, Volume III*, EPA-600/4-72-027B. Table 5-1 is a summary of the stack gas sampling equipment calibrations that are performed in preparation for this project. The meter boxes are re-calibrated after the test.

Table 5-2 lists additional calibration checks performed on the sampling equipment on site, just prior to the testing, to ensure that equipment was not damaged during transport.

5-1

| Equipment                 | <b>Calibrated Against</b> | Allowable Error                |  |  |  |  |
|---------------------------|---------------------------|--------------------------------|--|--|--|--|
|                           |                           | Y ±0.02 Y                      |  |  |  |  |
|                           |                           | $\Delta H@ \pm 0.20 \Delta H@$ |  |  |  |  |
|                           |                           | post-test                      |  |  |  |  |
| Method 5 meter box        | Reference test meter      | Y ±0.05 Y                      |  |  |  |  |
| Pitot tube                | Geometric specifications  | See EPA Method 2               |  |  |  |  |
| Thermocouple              | ASTM-3F thermometer       | ±1.5%                          |  |  |  |  |
| Impinger (or condenser    |                           |                                |  |  |  |  |
| thermometer)              | ASTM-3F                   | $\pm 2^{\circ}F$               |  |  |  |  |
| Dry gas meter thermometer | ASTM-3F                   | ±5°F                           |  |  |  |  |
| Probe nozzles             | Caliper                   | ±0.004 in.                     |  |  |  |  |
| Barometer                 | NBS traceable barometer   | ±0.1 in. Hg                    |  |  |  |  |

Field Equipment Calibration Summary<sup>a</sup> Table 5-1.

<sup>a</sup>As recommended in the *Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III. Stationary\_Source-Specific Methods.* EPA-600/4-77-027b, August 1977.

| 1 able 5-2.   | Field Checks of Sampling Equipment |                      |
|---------------|------------------------------------|----------------------|
| Equipment     | Checked Against                    | Allowable Difference |
| Pitot tube    | Inspection                         | No visible damage    |
| Thermocouples | ASTM 2F or 3F                      | ±1.5%                |
| Probe nozzles | Caliper                            | ±0.004 in.           |