

Permit: MI-ROP-A4033-2017b HWC MACT Subpart EEE Michigan Operations Incineration Complex

NO_x/SO₂/CO/O₂ (CEM1 and CEM2) Annual RATA Testing Midland Rotary Kiln Incinerator SVEG32INCIN01 (Stack SK-3300)

Project number: 60699646

September 21, 2023

The Dow Chemical Company Midland, Michigan

Delivering a better world

Quality information

Prepared by

Christopher Trevillian Air Quality Scientist III

Rob Sava, QSTI Env. Engineering IV

asslad

Checked by

Reviewed by

James Edmister Project Manager

Prepared for:

Ms. Becky Meyerholt, Air Specialist The Dow Chemical Company 1400 Building Midland, Michigan 48674 (989) 638-7824 rmeyerholt@dow.com

Managed by:

Mr. James Edmister Project Manager M: (585) 721-9128 (cell) E: James.Edmister@aecom.com

AECOM 3700 James Savage Rd Bld. 1602 Midland, MI 48642 USA www.aecom.com

<u>Please note</u>: The Dow process unit is the final copyholder and owner of this document. A temporary electronic copy will be retained by the AECOM test team for a short period of time.

Copyright © 2023 by AECOM

All rights reserved. No part of this copyrighted work may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of AECOM.

Table of Contents

1.	Intro	duction	1-1
	1.1	Background	1-1
	1.2	Overview of the Test Program	1-1
	1.3	Key Personnel	1-2
	1.4	Executive Summary	1-3
2.	Sum	mary and Discussion of Results	
	2.1	Relative Accuracy Test Results - NOx/SO2/CO/O2 CEMS CEM1 and CEMS CEM2	2-1
	2.2	Relative Accuracy Test Results - Stack SK-3300 CERMS	
3.	Facil	ity and CEMS Description	3-1
	3.1	Process Description	
	3.2	Process Emissions Control Description	3-1
	3.3	Flue Gas Sampling Locations	3-1
	3.4	Facility CEMS Description	3-2
4.	RAT	A Test Procedures	4-1
	4.1	Relative Accuracy Test Methods	
	4.2	Transportable Instrumental Analyzer Laboratory	4-1
	4.3	RM Calibration Procedures	
5.	Qua	lity Assurance/ Quality Control Measures	5-1
	5.1	Overview	5-1
	5.2	Leak Check Procedure	
	5.3	System Calibrations	
	5.4	Interference Checks	
6.	Data	Reduction	
	6.1	Overview	
	6.2	Calculation of Relative Accuracy	
App	endix A	A – AECOM Reference Method Emissions Data	
	A.1	RM RATA Summary Data and Calculated Results	
	A.2	RM Stratification Determination Printouts	
	A.3	RM RATA Bias Corrected Data and Test Runs Printouts	
	A.4	RM RATA Example Calculations	
	A.5	RM RATA Flow and Moisture Measurements Data	
App		3 – Dow Facility Data	
	B.1	RATA Test Runs Data and Process Data	
App		C – AECOM Reference Method Quality Assurance Data	
	C.1	RM Calibration Error, System Bias, and System Drift Checks	
	C.2	RM System Response Time Tests	
	C.3	RM Gas Cylinder Certificates of Analysis	
	C.4	RM Instrumental Analyzer Operator Logs	
	C.5	RM Manual Equipment Calibration Data	
App	endix I	D – Field Data Sheets	D-1

Figures

Figure 3-1. Facility	Process Diagram	3-:	3
----------------------	-----------------	-----	---

Tables

Table 1-1. Responsible Groups	1-2
Table 1-2. Key Personnel	
Table 1-3. Relative Accuracy Test Audit Summary of Results	1-5
Table 2-1. Relative Accuracy Results for CEM1 and CEM 2 O2 (percent by volume, dry)	2-2
Table 2-2. Relative Accuracy Results for CEM1 and CEM2 CO (ppmv and ppmvd @ 7% O2)	2-3
Table 2-3. Relative Accuracy Results for CEM1 and CEM2 NOx (lb/hr)	2-4
Table 2-4. Relative Accuracy Results for CEM1 and CEM2 SO2 (lb/hr)	2-5
Table 2-5. Relative Accuracy Results for CERMS Flow Rate, wet (scfm) and dry (dscfm)	2-6
Table 3-1. Facility CEMS/CERMS Equipment Specifications	3-2

Appendices

Appendix A – AECOM Reference Method Emissions Data

Appendix B - Dow Facility Data

Appendix C – AECOM Reference Method Quality Assurance Data

Appendix D - Field Data Sheets

1. Introduction

1.1 Background

Dow retained AECOM to conduct Relative Accuracy Test Audit (RATA) on the Dual Nitrogen Oxides (NO_x), Sulfur Dioxide (SO₂), Carbon Monoxide (CO) and Oxygen (O₂) continuous emissions monitoring systems (CEMS) and the continuous emission rate monitoring system (CERMS) serving the 32 Rotary Kiln Incinerator (EU-32Incinerator-S1) located in the Michigan Operations Incineration Complex at the Dow Chemical Company (Dow) facility in Midland, MI (Permit: MI-ROP-A4033-2017b; SRN: A4033). The RATA was conducted on August 28, 2023.

Dow operates a hazardous waste incineration complex at its Midland, Michigan chemical manufacturing facility. This unit is equipped with dual redundant NO_x, SO₂, CO, and O₂, CEMS, called CEM1 and CEM2, and an exhaust gas volumetric flow rate CERMS serving the 32 Incinerator exhaust stack (Stack SK-3300). The initial performance specification test was performed for the CEMS and CERMS on August 23-24, 2003.

Pursuant to 40CFR63.12U9(a) of the HWC MACT, Dow uses CEMS and CERMS to demonstrate compliance with the CO standard. The MACT CEMS each include a CO analyzer and an O_2 analyzer to allow the stack gas measured CO concentrations to be continuously corrected to seven (7) percent O_2 . Each CEMS also includes monitors for measuring non-MACT parameters of NOx and SO₂. The stack employs an exhaust gas volumetric flow rate monitor as part of CERMS that allow the measured concentrations of each CEMS to be equated to mass emission rates expressed in units of pounds per hour (lb/hr) and tons per year (ton/yr).

Dow has redundant CEMS/CERMS; each redundant system works independent of the other. The CEMS are extractive systems that each consist of three subsystems:

- 1. An extractive sample acquisition/conditioning system
- 2. Analyzers (CO, O₂, NOx, and SO₂)
- Programmable logic controller (PLC). All RATAs were performed according to the procedures detailed in 40 CFR Part 60, Appendix B, Performance Specifications (PS) 2, 3, 4B, and 6 for NO_x, SO₂, O₂, CO, and Flow Rate.

This document presents the results of the Annual RATA.

1.2 Overview of the Test Program

This report contains the results of the Performance Specification RATA performed for the 32 Incinerator MACT CEMS and CERMS, which serve the Midland Kiln (SVEG32INCIN01) outlet stack (Stack SK-3300) located in the Michigan Operations Incineration Complex owned and operated by Dow.

The following table (Table 1-1) summarizes the pertinent data for this performance test:

Table 1-1	. Responsible	Groups
-----------	---------------	--------

Responsible Groups	The Dow Chemical Company
	Michigan Department of Environmental Quality (MDEQ)
	United States Environmental Protection Agency (US EPA)
Applicable	 Permit: MI-ROP-A4033-2017b; SRN: A4033
Regulations	
	Hazardous Waste MACT (40 CFR 63, Subpart EEE)
	• 40 CFR 60, Appendix B, Performance Specifications (PS) 2/3/4B/6.
Industry / Plant	Environmental Operations (Incineration)
Plant Location	The Dow Chemical Company
	Midland, Michigan 48667
Unit Initial Start-up	• 2003
Date of Last	• August 17, 2022
Performance	
Specification Test	
(PST)	
Air Pollution Control	NOx Abatement Control
Equipment	Quench Tower
	Condenser Venturi Scrubber
	 Venturi Scrubber Cl₂ Scrubber
	Nine Ionizing Wet Scrubbers (IWS)
Emission Points	SVEG32INCIN01 (Stack SK-3300)
Pollutants/Diluents	NO _x
Monitored	• SO ₂
	• O ₂
	• CO
	Flow Rate
Test Date	• August 28, 2023

1.3 Key Personnel

The contact for the source and test report is:

Ms. Becky Meyerholt, Air Specialist The Dow Chemical Company 1400 Building Midland, Michigan 48674 (989) 638-7824 rmeyerholt@dow.com

Names and affiliations of personnel, including their roles in the test program, are summarized in the following table.

Role	Role Description	Name	Affiliation
Process Focal Point	 Coordinate plant operation during test Ensure the unit is operating at the agreed upon conditions in the test plan Collect any process data and provide all technical support related to process operation 	Dan Bruck	Dow
Environmental Focal Point	 Ensure all regulatory requirements and citations are reviewed and considered for the testing 	Becky Meyerholt	Dow
Air SME	 Leadership of the sampling program Develop the overall testing plan Determine the correct sample methods Completes technical review of test data 	Chuck Glenn	Dow
Process Analyzer	 Conducts all other QA testing and provides records for 7-day drift tests, response time tests, CGAs, etc. 	Stephanie Moreno	Dow
Technical Reviewer	Completes technical review of test data	Rob Sava	AECOM
Field Team Leader	Ensures field sampling meets quality assurance objectives of plan	Pete Becker	AECOM
Sample Project Leader	Ensures data generated meets the quality assurance objectives of the plan	James Edmister	AECOM

Table 1-2. Key Personnel

1.4 Executive Summary

A results summary for the RATA is presented in **Table 1-1**. The accuracy results indicate that the dual redundant MACT CO/O_2 CEMS and CERMS were operating within the required accuracy criteria. Relative accuracy results were calculated for each CEMS/CERMS for the following:

- NO_x Mass Emission Rate (lb/hr)
- SO₂ Mass Emission Rate (lb/hr)
- O₂ Concentration (%vd)
- CO Concentration (ppmvd)
- CO Concentration (ppmvd @ 7% O₂)
- Exhaust Gas Volumetric Flow Rate (scfm)
- Exhaust Gas Volumetric Flow Rate (dscfm)

The results of the RATA indicate that both of the 32-Incinerator MACT CEMS/CERMS have passed under the requirements for annual RATA Testing.

The remainder of this document is organized as follows. Section 2 of this document provides a summary and discussion of results for the RATA; Section 3 provides a description of the flue gas monitoring sample port locations and the facility CEMS system; Section 4 describes the test procedures that were followed and a description of AECOM's portable instrumental analyzer laboratory; Section 5 describes the Quality Assurance/Quality control measures for the test program; and Section 6 describes how the data reduction was performed.

Test program participants included: Pete Becker, Quincy Crawford, Brady Dangler, and Erik Drake from AECOM; as well as Becky Meyerholt from The Dow Chemical Company.

Additional information is contained in the Appendices as follows: **Appendix A** provides Reference Method (RM) Emissions Data from AECOM's test activities during the RATA program, **Appendix B** contains Facility Data for the RATA and initial certification QA tests and supporting documentation, **Appendix C** contains RM Quality Assurance Data, including Calibration Error Tests, System Bias and Drift Checks, System Response Times, Interference Response Tests, Gas Cylinder Certification Sheets, and QSTI Certificates, and **Appendix D** contains the Test Protocol.

This Performance Specification Test for the 32-Incinerator consisted of up to 12 total 21-minute runs. A maximum of three runs were not used for RATA calculations as allowed by 40 CFR Part 60, PS 2 and 3.

Monitoring System	Parameter / Analyzer	RA Result	Relative Accuracy Criteria – Part 60	Pass / Fail
	O ₂ percent, dry (AT33105)	0.7% of RM 0.03% O ₂	≤20.0% of RM (PS 3) ¹ ≤1.0% O ₂ (PS 3) ¹	Pass
CEMS – CEM1	CO ppmv, dry (CEM1CO)	0.6% of ES 0.60 ppm CO	≤5% of ES (PS 4B) ^{2, 3} ≤5 ppm CO (including CC, PS 4B) ²	Pass
	CO ppmvd @ 7% O ₂ (CEM1COCr)	1.0% of ES 1.04 ppm CO	≤5% of ES (PS 4B) ^{2, 3} ≤5 ppm CO (including CC, PS 4B) ²	Pass
	O ₂ percent, dry (AT33112)	1.6% of RM 0.13% O ₂	≤20.0% of RM (PS 3) ¹ ≤1.0% O ₂ (PS 3) ¹	Pass
CEMS – CEM2	CO ppmv, dry (CEM2CO)	0.90% of ES 0.92 ppm CO	≤5% of ES (PS 4B) ^{2, 3} ≤5 ppm CO (including CC, PS 4B) ²	Pass
	CO ppmvd @ 7% O ₂ (CEM2COCr)	1.50% of ES 1.53 ppm CO	≤5% of ES (PS 4B) ^{2, 3} ≤5 ppm CO (including CC, PS 4B) ²	Pass
CEMS –	NOx, lb/hr	11.3% of RM 2.1% of ES	≤20.0% of RM (PS 2) ⁵ or ≤10% of ES (PS 2) ⁵	Pass
CEM1/2	SO ₂ lb/hr	0.2% of ES	≤20.0% of RM (PS 2) ⁵ or ≤10% of ES (PS 2) ⁵	Pass
CERMS	Gas Flow Rate, wet (scfm, SFIT3300)	18.7% of RM	≤20% of RM (PS 6) ⁴	Pass
(Stack SK-3300)	Gas Flow Rate, dry (dscfm, FIT33009)	10.1% of RM	≤20% of RM (PS 6) ⁴	Pass

Table 1-3. Relative Accuracy Test Audit Summary of Results

1. Part 60 RA results for O2 under PS 3 must be either no greater than 20.0% of RM or 1.0% O2 by difference.

 Part 60 RA results for CO under PS 4B must be either no greater than 10% of RM, 5% of ES, or 5 ppm CO by difference that includes the CC.

3. Part 60 RA results for CO under PS 4B expressed as a percentage of ES are based on a general emission standard of 100 ppm.

4. Part 60 RA results for CERMS under PS 6 must be no greater than 20% of RM. Exhaust gas volumetric flow rate and moisture are not required to be evaluated by US EPA but are evaluated as required by Michigan EGLE.

5. Part 60 RA results for NOx and SO2 must be either no greater than 20.0% of RM or 10% of ES.

2. Summary and Discussion of Results

The purpose of this Test Event was to demonstrate compliance with Annual RATA Requirements for the 32 Incinerator CEMS (CEM1 and CEM2) NO_x, SO₂, CO, and O₂ monitors and CERMS exhaust gas volumetric flow rate monitor at the Michigan Operations Incineration Complex in Midland, Michigan. The specific objectives were:

 Determine the relative accuracy of the 32 Incinerator MACT NO_x/SO₂CO/O₂ CEMS/CERMS on the Kiln SK-3300 stack.

During the RATA Testing, the process was operated at greater than 50% of normal operating rates in accordance with Part 60 guidelines. Summaries of the results for the Performance Specification Test of the 32 Incinerator CEMS (CEM1 and CEM2) NO_x, SO₂, CO and O₂ monitors and CERMS exhaust gas volumetric flow rate monitor are presented below. This section summarizes and discusses the results of the Annual RATA Testing.

2.1 Relative Accuracy Test Results – NO_x/SO₂/CO/O₂ CEMS CEM1 and CEMS CEM2

Relative accuracy testing was conducted by AECOM using the instrumental analyzer procedures detailed in 40 CFR 60, Appendix A, Reference Methods (RM) 3A for O₂, 6C for SO₂, 7E for NOx, and 10 for CO. The instrumental analysis results are referred to as the Reference Method Results, which were measured on a dry concentration basis. The results of the RATA program for the facility MACT CEMS CEM1 and CEMS CEM 2 NOx, SO₂, CO and O₂ monitors are presented in **Tables 2-1 through 2-4** for NOx as lb/hr, SO₂ as lb/hr, O₂ as percent by volume on a dry basis (%vd), CO measured as parts per million by volume on a dry basis (ppmvd), CO measured as ppmvd corrected to seven (7) percent exhaust gas oxygen (ppmvd @ 7% O₂). AECOM field data and calculations are presented in **Appendix A**. Facility CEMS test data corresponding to the RM test run times are presented in **Appendix B**. The MACT CEMS CEM1 NOx, SO₂, O₂ and CO monitors passed the RA criteria in PS 2, PS 3 and PS 4B.

2.2 Relative Accuracy Test Results – Stack SK-3300 CERMS

Relative accuracy testing was conducted by AECOM using the source emissions testing procedures detailed in 40 CFR 60, Appendix A, Reference Methods (RM) 2, 3A, and 4 for exhaust gas velocity, O₂/CO₂, and moisture, respectively that were used to calculate exhaust gas volumetric rate. The source emissions testing results are referred to as the Reference Method Results, which were measured both on a wet and dry basis. The results of the RATA program for the facility Stack SK-3300 CERMS exhaust gas flow rate monitors are presented in **Table 2-5** for flow rate measured as standard cubic feet per minute on a wet basis (scfm), and for flow rate measured as standard cubic feet per minute on a dry basis (dscfm). AECOM field data and calculations are presented in **Appendix A**. Facility CERMS test data corresponding to the RM test run times are presented in **Appendix B**. The Stack SK-3300 CERMS exhaust gas flow rate monitor passed the RA criteria in PS 6.

Table 2-1. Relative Accuracy Results for CEM1 and CEM 2 O₂ (percent by volume, dry)

		REFERENCE	Correction	for Moisture	STA	CK AN	ALYZERS		ARITHME RAT	THE CONTRACTOR	FFERENCE	and
		METHOD	Correction	for moisture	CEM1 O2 AT	33105	CEM2 O2 AT	33112	CEM1 C AT3310		CEM2 C AT3311	
8/28/2023	TIME	Oxygen (%)	Moisture (%)	Oxygen(%, wet)	Oxygen (%, dry)	Use of Run ¹	Oxygen (%, dry)	Use of Run ¹	Oxygen (%, dry)	Use of Run 1	Oxygen (%, dry)	Us of Ru 1
EU-32Incinerator Run 1	09:10-09:31	11.92	4.16	11.43	12.05		12.14		0.13		0.22	
EU-32Incinerator Run 2	09:31-09:52	12.14	4.16	11.64	12.31	×	12.35		0.16	X	0.20	
EU-32Incinerator Run 3	09:52-10:13	12.15	4.16	11.64	12.20		12.42		0.06		0.28	
EU-32Incinerator Run 4	10:46-11:07	12.18	4.11	11.68	12.14		12.25		-0.04		0.07	
EU-32Incinerator Run 5	11:07-11:28	12.44	4.11	11.93	12.60	×	12.74	×	0.16	×	0.30	X
U-32Incinerator Run 6	11:28-11:49	12.15	4.11	11.65	12.17		12.48	×	0.02		0.33	X
U-32Incinerator Run 7	12:48-13:09	12.39	4.16	11.88	12.30		12.46		-0.09		0.07	
EU-32Incinerator Run 8	13:09-13:30	12.94	4.16	12.40	12.89		13.06		-0.04		0.12	
EU-32Incinerator Run 9	13:30-13:51	12.64	4.16	12.12	12.63		12.70		-0.02		0.06	
U-32Incinerator Run 10	14:33-14:54	13.05	4.11	12.51	13.21		13.08		0.16		0.04	
U-32Incinerator Run 11	14:54-15:15	11.38	4.11	10.91	11.43		11.45		0.06	1967	0.07	20
U-32Incinerator Run 12	15:15-15:36	12.15	4.11	11.65	12.37	х	12.65	x	0.22	X	0.50	X
					Number of	Runs U	sed in Calcu	lation (n)	9		9	
							erage Differe		10000000000000000000000000000000000000		0.13	
							andard Devi		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.09	
								ue (to.975)			2.306	5
						Confi	dence Coeffi				0.066	5
							rence Metho	CANSES SAMULA ACA CALL	20.822628		12.3	
					0				100.000.00000000		0.13	
							Accuracy (O ₂		Decort			
							acy (O ₂) (d _A				0.2	
					ative Accuracy	(% of R	eference Met	hod) (RA)	0.7		1.6	
An X in this column denot	es a run which is r	not used in calculati	on of relative accu	uracy.		_		_			E CRITERI	

Performance Specification 3 (and 4B)		
Absolute value of difference between mean RM and mean CEMS (% O2)	1.0	1.0
Relative Accuracy (% of Reference Method) (RA)	20	20

Table 2-2. Relative Accuracy Results for CEM1 and CEM2 CO (ppmv and ppmvd @ 7% O₂)

		_					Carbon	wonoxid	e Relative	e At						1					1 1 12	
				REFE	RENCE M	ETHOD					STAC	K AI	NALYZERS	-		ARITH	IMET	IC DIFFERENC	E and RAT	A Ca	Iculatio	15
				Conc for tion (%)	7			ction for isture	CEM1CORa alc	ngeC	CEM2CORar alc	ngeC	CEM1CORangeC alc	10 10 10 10 10 10 10 10 10 10 10 10 10 1	DRangeC ilc	CEM1CORa alc	ingeC	CEM2CORangeC alc	CEM1CORar alc	nge C	CEM2COR alc	
8/28/2023	TIME	Flow (dscfm)	Oxygen (%, dry)		Carbon Monoxide (ppm, dry) (Oxygen Corrected)	Carbon Monoxide (Ib/hr)	Moisture (%)	Carbon Monoxide (ppm, wet)	Carbon Monoxide (ppm, dry)	Use of Run i	Carbon Monoxide (ppm, dry)	Use of Run	Carbon Use Monoxide of (ppm, dry) Run (Oxygen i Corrected)	Carb Mono (ppm, (Oxy) Correc	ide of dry) Run en 1	Carbon Monoxide (ppm, dry)	Run	Carbon Use Monoxide Run (ppm, dry) 3	Carbon Monoxide (ppm, dry) (Oxygen Corrected)	1	Carbon Monoxide (ppm, dry (Oxygen Corrected) Ri
EU-32Incinerator Run 1	09:10-09:31	39,701	11.92	0.1	0.1	0.0	4.2	0.1	0.87	×	0.97		1.36 x	1.5		0.79	x	0.89	1.24	x	1.42	
EU-32Incinerator Run 2	09:31-09:52	39,263	12.14	0.0	0.1	0.0	4.2	0.0	0.68		1.00		1.10	1.6		0.65		0.96	1.05		1.56	
EU-32Incinerator Run 3	09:52-10:13	39,359	12.15	0.0	0.0	0.0	4.2	0.0	0.67		1.10	×	1.07	1.8	x	0.65		1.08 X	1.04		1.78	1
EU-32Incinerator Run 4	10:46-11:07	38,689	12.18	0.1	0.2	0.0	4.1	0.1	0.76		0.90		1.21	1.4	5	0.67		0.81	1.06		1.30	
EU-32Incinerator Run 5	11:07-11:28	39,440	12.44	0.1	0.1	0.0	4.1	0.1	0.71		0.91		1.19 x	1.5	5	0.65		0.85	1.09	X	1.45	
EU-32Incinerator Run 6	11:28-11:49	39,020	12.15	0.1	0.1	0.0	4.1	0.1	0.61		0.95		0.97	1.5	7	0.56		0.90	0.89		1.49	
EU-32Incinerator Run 7	12:48-13:09	39,160	12.39	0.2	0.3	0.0	4.2	0.2	0.70		0.97		1.13	1.5	6	0.51		0.78	0.82		1.28	
EU-32Incinerator Run 8	13:09-13:30	39,113	12.94	0.1	0.2	0.0	4.2	0.1	0.64		0.87		1.11	1.5		0.53		0.76	0.91		1.34	
EU-32Incinerator Run 9	13:30-13:51	39,392	12.64	0.1	0.2	0.0	4.2	0.1	0.68		1.01		1.14	1.7	<u>.</u>	0.55		0.88	0.92		1.50	
U-32Incinerator Run 10	14:33-14:54	37,516	13.05	0.0	0.1	0.0	4.1	0.0	0.74	×	0.97		1.34 x	1.7	3 x	0.71	X	0.94	1.28	×	1.67	
EU-32Incinerator Run 11	14:54-15:15	40,617	11.38	0.0	0.1	0.0	4.1	0.0	0.73	×	1.15	х	1.07	1.6		0.68	×	1.10 X	1.00		1.62	
EU-32Incinerator Run 12	15:15-15:36	39,544	12.15	0.1	0.1	0.0	4.1	0.1	0.70	_	1.08	x	1.14	1.8	L X	0.64		1.01 X	1.05	-	1.72	3
												Nur		age Diffe	culation (rence (d _{Av} eviation (S /alue (t _{e sa}	G) 0.60 G) 0.06	i	9 0.86 0.07 2.306	9 0.97 0.09 2.306		9 1.44 0.12 2.30	2
													Confid		fficient (C			0.05	0.07		0.09	3
												A	oplicable Stand		and the stress way	11000		100	100		100	1
													Average of Refere			0	1	0.09	0.14		0.15	*
										Re	elative Accur		(CO, NOx, SO2, O					0.92	1.04		1.53	\$
													curacy (% of Ref					Land Card	10000			
													tive Accuracy (%			1223		0.9	1.0		1.5	
An X in this column denote	s a run which i	s not used	in calcula	tion of relat	ive accurac	v.																
er a in this corumn denote		and a stat										-	Performanc	e Spec	fication	4						
											Relati	ve Ac	curacy (% of Ref	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				10	10		10	T
													tive Accuracy (%					5	5		5	T
													Performance									
											Relative		racy (CO) (IdAvg					5	5		5	T
													curacy (% of Ref	are a second				10	10		10	T
													tive Accuracy (%					5	5		5	T
													Performance									-
											Relativo		racy (CO) (dayg					5	5		5	T
													curacy (% of Rel				1	10	10		10	+
													tive Accuracy (%					5	5		5	+

Table 2-3. Relative Accuracy Results for CEM1 and CEM2 NO_x (lb/hr)

			REFE	RENCE M	ETHOD		ST	ACK ANALYZE	RS	ARITHMET	IC DIFFERENCE	E and RATA
			1.775	Conc for tion (%)	7		CEM1NOxRange Calc	Be service Be served as a serv				AIR1_NOX_FL OMA
8/28/2023	TIME	Flow (dscfm)	Oxygen (%, dry)	Nitrogen Oxides (ppm dry)	Nitrogen Oxides (ppm, dry) (Oxygen Corrected)	Nitrogen Oxides (Ib/hr)	Nitrogen of Oxides Run (ppm, dry) 1	Nitrogen Use Oxides Run (ppm, dry) 1	Nitrogen Use Oxides Run (Ib/hr) 1	Nitrogen Use Oxides Run (ppm, dry) 1	Use Nitrogen of Oxides Run (ppm, dry) 1	Nitrogen Oxides R (Ib/hr)
EU-32Incinerator Run 1	09:10-09:31	39,701	11.92	107.1	165.9	30.5	112.15	111.27	32.96	5.02	4.15	2.49
EU-32Incinerator Run 2	09:31-09:52	39,263	12.14	109.0	173.1	30.7	115.66	114.64	34.19	6.63	5.61	3.52
EU-32Incinerator Run 3	09:52-10:13	39,359	12.15	103.2	163.9	29.1	109.91	109.33	32.44	6.71	6.13	3.34
EU-32Incinerator Run 4	10:46-11:07	38,689	12.18	90.7	144.6	25.1	95.77	95.47	27.84	5.06	4.76	2.70
EU-32Incinerator Run 5	11:07-11:28	39,440	12.44	95.5	156.9	27.0	100.91	100.45	29.43	5.37	4.92	2.43
EU-32Incinerator Run 6	11:28-11:49	39,020	12.15	100.0	158.9	28.0	105.64	105.13	30.83	5.60	5.09	2.87
EU-32Incinerator Run 7	12:48-13:09	39,160	12.39	96.7	158.0	27.1	99.75	99.19	29.27	3.00	2.44	2.12
EU-32Incinerator Run 8	13:09-13:30	39,113	12.94	98.5	171.9	27.6	101.40	100.91	29.96	2.92	2.44	2.37
EU-32Incinerator Run 9	13:30-13:51	39,392	12.64	100.9	169.9	28.5	103.83	103.42	30.54	2.91	2.50	2.06
U-32Incinerator Run 10	14:33-14:54	37,516	13.05	102.3	181.0	27.5	109.08	108.51	31.11	6.82	6.24	3.62
U-32Incinerator Run 11	14:54-15:15	40,617	11.38	105.1	153.4	30.6	111.57	110.51	33.52	6.46	5.40	2.94
U-32Incinerator Run 12	the stand of the stand of the stand of the	39,544	12.15	103.0	163.7	29.2	109.95	109.32	32.80	6.95	6.32	3.62
							Nur	nber of Runs Use	d in Calculation (n) 12	12	12
								Avera	ge Difference (davo	5.29	4.67	2.84
								Stan	dard Deviation (So	1.57	1.48	0.57
									t-Value (to 975		2.201	2.201
								Confide	nce Coefficient (CC		0.94	0.36
							Δ		rd (or Permit Limit		151	151
								A MARSHARE SHEPPING - 1 Junit Commenter	nce Method (RMAVC	The second second	101.01	28.40
								and the second second second	,CO ₂) (d _{AVG} + CC		5.6	3.2
						R	U.C.			here a second	5.5	5.4
									erence Method) (RA		5.5	2.1
An X in this column den	the second second second	h 1		lation of co	lativo accur	2.04	Relat	ive Accuracy (% (of Permit Limit) (RA	4		2.1
An A in this column den	otes a run whic	n is not us	eu în calci	nation of re	rative accur	acy.		Performance	Specification	2		
							Relative Ac		erence Method) (RA		20	20
									of Permit Limit) (RA		10	10

Table 2-4. Relative Accuracy Results for CEM1 and CEM2 SO₂ (lb/hr)

B/28/2023 TIME Fow (dscfm) Suffur (0scm)	ATA	and RA	NCE	C DIFFERE	METI	ARITH		RS	LYZE	ACK ANA	ST/				THOD	RENCE ME	REFE				
8/28/2023 TIME Flow (dx.fm) Oxygen (dy.fm) Dioxide (ppm,dry) (orygen, corrected) Sulfur (by, dry) (by, dry) Sulfur (by, dry) (by, dry) 	_	AIR1_SO2						and the second sec	and a start of		Service 1	A RECEIPTION OF A RECEIPTION	CARD-Department (7					
Line Line and M 09310951 39,04 1.24 0.2 0.05 1.02 0.10 0.14 0.04 Line inerator R 09310952 39,05 12.14 0.2 0.3 0.01 4.2 0.2 0.06 0.02 0.02 0.23 0.23 0.27 0.09 Line inerator R 1046-11.07 38,69 12.18 0.2 0.3 0.11 4.1 0.2 0.06 0.02 0.02 0.14 -0.18 0.06 Line inerator R 1107-1128 39,400 12.44 0.2 0.3 0.11 4.1 0.2 0.06 0.02 0.02 0.14 -0.18 -0.06 Line inerator R 112.814.309 39,160 12.39 -0.5 0.08 N.02 X 0.02 X <th>de Ri</th> <th>Sulfur Dioxide (lb/hr)</th> <th>of</th> <th>Sulfur Dioxide</th> <th>of</th> <th>Dioxide</th> <th>of</th> <th>Dioxide</th> <th>of</th> <th>Dioxide</th> <th>of Run</th> <th>Dioxide</th> <th>Dioxide</th> <th></th> <th>Dioxide</th> <th>Dioxide (ppm, dry) (Oxygen</th> <th>Dioxide</th> <th></th> <th></th> <th>TIME</th> <th>8/28/2023</th>	de Ri	Sulfur Dioxide (lb/hr)	of	Sulfur Dioxide	of	Dioxide	of	Dioxide	of	Dioxide	of Run	Dioxide	Dioxide		Dioxide	Dioxide (ppm, dry) (Oxygen	Dioxide			TIME	8/28/2023
221ncinerator R 0931-0952 39,263 12.14 0.2 0.3 0.1 4.2 0.2 0.06 0.02 0.02 0.02 0.23 0.23 0.27 0.00 121ncinerator R 0952-1013 39,59 12.15 0.3 0.5 0.1 4.2 0.2 0.06 0.02 0.02 0.02 0.14 -0.14 -0.04 -0.05 121ncinerator R 1046-1107 38,69 12.18 0.2 0.3 0.1 4.1 0.2 0.06 0.02 0.02 -0.14 -0.18 -0.05 121ncinerator R 112.81-140 39,20 0.5 0.3 0.1 4.1 0.2 0.06 0.02 0.02 0.02 -0.2 -0.2 -0.26 -0.08 -0.06 1.02 1.02 1.03 1.01 0.06 1.02 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.04 1.04 1.06 0.02 0.02 0.02 0.02 0.02 0.06 0.02 0.02 1.03 0.06	1	0.00		-0.05	_	-0.01		0.02	_	0.02	_	0.06	0.1	4.2	0.0	0.1	0.1	11.92	39 701	09.10-09.31	2Incinerator B
21ncinerator R 99.52 0.03 99.52 0.03 99.52 0.03 90.1 4.2 0.3 0.06 0.02 0.02 -0.23 -0.27 0.09 21ncinerator R 10.61-11.07 38,689 12.18 0.2 0.3 0.1 4.1 0.2 0.06 0.02 0.02 -0.14 -0.18 -0.06 21ncinerator R 112.41:49 39,020 12.15 0.3 0.4 0.1 4.1 0.3 0.06 0.02 0.02 0.02 -0.23 -0.26 -0.06 -0.02 2.02 -0.26 -0.06 -0.02 2.02 -0.26 -0.02 -0.02 -0.02 -0.25 -0.06 -0.02 2.02 1.01 -0.05 -0.02 2.02 2.02 -0.25 -0.05 4.02 1.01 1.05 1.01 1.03 1.01 1.00 1.01 1.00 1.01 1.00 0.06 x 0.02 x 0.02 0.02 -0.02 -0.02 -0.03 -0.07 0.06 0.02 0.02 0.02 -0.03 -0.07 0.06 0.00 -0.01 <t< td=""><td>4</td><td>-0.04</td><td></td><td>-0.14</td><td></td><td>-0.10</td><td></td><td>0.02</td><td></td><td>0.02</td><td></td><td>0.06</td><td>2012 0000</td><td></td><td></td><td>VALUE I</td><td></td><td></td><td>and a state of the state of the</td><td></td><td></td></t<>	4	-0.04		-0.14		-0.10		0.02		0.02		0.06	2012 0000			VALUE I			and a state of the		
21nc inerator R 10.46-11:07 38,689 12.18 0.2 0.3 0.1 4.1 0.2 0.06 0.02 0.02 0.14 -0.18 -0.08 21nc inerator R 11.07-11:28 39,40 12.44 0.2 0.3 0.1 4.1 0.2 0.06 0.02 0.02 0.02 0.14 -0.18 -0.06 0.02 21nc inerator R 11.28-11:49 39,020 12.15 0.3 0.4 0.1 4.1 0.2 0.06 0.02 0.02 0.02 K 0.05 0.01 0.06 0.02 0.02 X 0.05 V 0.02 X 0.05 X 0.02 X 0.05 V 0.02 X 0.05 V 0.02 X 0.05 X 0.02 X 0.05 X 0.02 X 0.05 X 0.02 X 0.05 0.02 X 0.02 <td< td=""><td>)</td><td>-0.09</td><td></td><td>-0.27</td><td></td><td>-0.23</td><td></td><td>0.02</td><td></td><td></td><td></td><td>DATE OF DESCRIPTION</td><td>(NOTON-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>)	-0.09		-0.27		-0.23		0.02				DATE OF DESCRIPTION	(NOTON-								
21ncinerator R 11.07-11:28 39,440 12.44 0.2 0.3 0.1 4.1 0.2 0.06 0.02 0.03 0.03 0.00 0.00 0.02 0.02 0.03 0.03 0.00 0.02 0.03 <td< td=""><td>ż</td><td>-0.05</td><td></td><td>-0.18</td><td></td><td>-0.14</td><td></td><td>0.02</td><td></td><td>0.02</td><td></td><td>0.06</td><td>0.2</td><td></td><td>0.1</td><td></td><td></td><td></td><td></td><td>The second section in the second second</td><td>and a state of the second</td></td<>	ż	-0.05		-0.18		-0.14		0.02		0.02		0.06	0.2		0.1					The second section in the second second	and a state of the second
21ncinerator R 11.28-11:49 39,020 12.15 0.3 0.4 0.1 4.1 0.3 0.06 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td< td=""><td>5</td><td>-0.06</td><td></td><td>-0.18</td><td> ()</td><td>-0.14</td><td></td><td>0.02</td><td></td><td>0.02</td><td></td><td>0.06</td><td></td><td></td><td></td><td></td><td></td><td></td><td>The second s</td><td>Sector and the second</td><td></td></td<>	5	-0.06		-0.18	()	-0.14		0.02		0.02		0.06							The second s	Sector and the second	
21 248-13:09 39,160 12.39 -0.5 -0.08 -0.05 x 0.02 x 0.03 x 0.03 x 0.03 x 0.03 x 0.02 x 0.02 x 0.03 x 0.02 x 0.03 x 0.03 x 0.03 x 0.03 x 0.03 x 0.02 x 0.03 x	3	-0.08		-0.26		-0.22		0.02		0.02		0.06								CONTRACTOR CARDINALES	
211 cincinerator R 13.09-13:30 39,11 12.94 -0.8 -1.4 -0.3 4.2 -0.8 0.06 x 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.00 -0.03 -0.04 0.00 0.00 1.1 0.0 0.0 0.06 0.02 0.02 0.02 0.02 0.00 -0.03 -0.07 -0.01 <td></td> <td>0.21</td> <td>X</td> <td>0.50</td> <td>X</td> <td>0.54</td> <td>×</td> <td>0.02</td> <td>×</td> <td>0.02</td> <td>x</td> <td>0.06</td> <td>-0.5</td> <td>4.2</td> <td>-0.2</td> <td>-0.8</td> <td></td> <td></td> <td>and Barrens</td> <td>AND ADDRESS INTO ADDRESS</td> <td>11</td>		0.21	X	0.50	X	0.54	×	0.02	×	0.02	x	0.06	-0.5	4.2	-0.2	-0.8			and Barrens	AND ADDRESS INTO ADDRESS	11
21ncinerator R 13:30-13:51 39,392 12.64 -0.9 -1.5 -0.3 4.2 -0.8 0.06 x 0.02 x 0.02 x 0.92 x 0.88 x 0.36 Procinerator R 14:33-14:54 37,516 13.05 0.1 0.1 0.0 4.1 0.1 0.06 0.02 0.02 0.00 -0.04 0.00 -0.04 0.00 -0.07 -0.01 -0.04 0.00 -0.01	1 1	0.34	х	0.83	X	0.88	×	0.02	×	0.02	x	0.06	-0.8	4.2	-0.3	-1.4	-0.8	12.94	Startin Savara	The West Distillance	And the second second second second
21ncinerator Ru 14:33-14:54 37,516 13.05 0.1 0.1 0.0 4.1 0.1 0.06 0.02 0.02 0.02 0.00 <t< td=""><td>5 1</td><td>0.36</td><td>x</td><td>0.88</td><td>x</td><td>0.92</td><td>×</td><td>0.02</td><td>×</td><td>0.02</td><td>x</td><td>0.06</td><td>-0.8</td><td>4.2</td><td>-0.3</td><td>-1.5</td><td>-0.9</td><td>12.64</td><td>and the second</td><td></td><td>200 C 20 C 20 C 20 C 20 C 20 C 20 C 20</td></t<>	5 1	0.36	x	0.88	x	0.92	×	0.02	×	0.02	x	0.06	-0.8	4.2	-0.3	-1.5	-0.9	12.64	and the second		200 C 20
221ncinerator Ru 14:54-15:15 40,617 11.38 0.1 0.0 4.1 0.1 0.06 0.02 0.02 0.00 -0.03 -0.07 -0.01 22ncinerator Ru 15:15-15:36 39,544 12.15 0.1 0.0 4.1 0.1 0.06 0.02 0.02 0.02 0.00 -0.03 -0.07 -0.01 21ncinerator Ru 15:15-15:36 39,544 12.15 0.1 0.0 4.1 0.1 0.06 0.02 0.02 0.02 0.00 -0.03 -0.07 -0.01 21ncinerator Ru 15:15-15:36 39,544 12.15 0.1 0.0 4.1 0.1 0.06 0.02 0.02 0.02 0.00 -0.03 -0.07 -0.01 21ncinerator Ru 15:15-15:36 39,544 12.15 0.1 0.0 4.1 0.1 0.06 0.02 0.02 0.02 0.00 -0.03 -0.04 0.00 -0.01 -0.14 -0.05 -0.16 -0.00 -0.16 0.00 -0.07 0.02 0.07 0.07 0.02 0.07	1	0.00		-0.06		-0.02		0.02		0.02		0.06	0.1	4.1	0.0	0.1	0.1	13.05	Section 1995	STATISTICS.	EGOVERN NEWSTRAND
21ncinerator Ru 15:15:15:36 39,544 12.15 0.1 0.0 4.1 0.1 0.06 0.02 0.02 -0.03 -0.03 -0.07 -0.01 V V V V V V V V V V 0.01<	1	0.00		-0.04		0.00		0.02		0.02		0.06	0.1	4.1	0.0	0.1	0.1	11.38	40,617	医马克尔氏 网络哈拉巴	Sele na Brunere en de caracter de
Average Difference (daws) -0.10 -0.14 -0.14 Average Difference (daws) -0.10 -0.14 -0.14 Standard Deviation (Sd) 0.09 0.09 0.0 -t-Value (to.975) 2.306 2.306 2.30 -t-Value (to.975) 2.306 2.306 2.30 Confidence Coefficient (CC) 0.07 0.07 0.07 Applicable Standard (or Pernit Limit) 27 27 33 Average of Reference Method (RMavs) 0.16 0.16 0.16 0.16 Relative Accuracy (CO, NO _X , SO ₂ , O ₂ , CO ₂) (davs + CC) 0.2 0.2 0.2 0.2 Relative Accuracy (% of Reference Method) (RA) Relative Accuracy (% of Reference Method) (RA) Relative Accuracy (% of Reference Method) (RA) 20 20 20 20 20 20 20 20 20 20 20 20 20 2	1	-0.01		-0.07		-0.03		0.02		0.02		0.06	0.1	4.1	0.0	0.1	0.1	12.15	39,544	And the second second	DOLUMED WORKSY & STOCK WORKS
1 An X in this column denotes a run which is not used in calculation of relative accuracy. 2.306 2.306 2.306 2.306 2.306 2.306 2.306 2.306 2.306 2.306 2.306 0.07 <t< td=""><td>0.04</td><td></td><td></td><td>-0.14</td><td></td><td>-0.10</td><td>Con Carl West</td><td></td><td></td><td></td><td>Num</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0.04			-0.14		-0.10	Con Carl West				Num										
Confidence Coefficient (CC) 0.07 0.07 0.7 3 Applicable Standard (or Permit Limit) 27 27 3 Average of Reference Method (RMavo) 0.16 0.16 0.16 0. Relative Accuracy (CO, NOx, SO ₂ , O ₂ , CO ₂) (davoj + CC) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2		0.0		0.09		i) 0.09	tion (S _d	dard Devia	Stan												
Applicable Standard (or Permit Limit) 27 27 3 Average of Reference Method (RMavo) 0.16 0.16 0.16 0. Relative Accuracy (CO, NOX, SO ₂ , O ₂ , CO ₂) (d _{AVG} + CC) 0.2 0.2 0.2 0.2 0.2 0.2 Relative Accuracy (% of Reference Method) (RA) 0.6 0.8 0.8 0 An X in this column denotes a run which is not used in calculation of relative accuracy. Performance Specification 2 Relative Accuracy (% of Reference Method) (RA) 20 20 20 20		2.30	\$		6	2.306	e (to.975	t-Valu													
Average of Reference Method (RMavG) 0.16 0.16 0. Average of Reference Method (RMavG) 0.16 0.16 0. Relative Accuracy (CO, NOx, SO ₂ , O ₂ , CO ₂) (d _{AVG} + CC) 0.2 0.2 0.2 0.2 0.2 Relative Accuracy (% of Reference Method) (RA) 0.6 0.8 0 An X in this column denotes a run which is not used in calculation of relative accuracy. Performance Specification 2 Relative Accuracy (% of Reference Method) (RA) 20 20 20		0.0		0.07		0.07	ent (CC	nce Coeffici	nfider	Co											
Relative Accuracy (CO, NOx, SO2, O2, CO2) (d _{AVG} + CC) 0.2 0.2 0 Relative Accuracy (% of Reference Method) (RA) 0.6 0.8 0 An X in this column denotes a run which is not used in calculation of relative accuracy. Performance Specification 2 V V Relative Accuracy (% of Reference Method) (RA) 0.6 0.8 0 An X in this column denotes a run which is not used in calculation of relative accuracy. V V V Relative Accuracy (% of Reference Method) (RA) 20 20 20 20	36	36		27		t) 27	it Limit	rd (or Perm	tanda	plicable St	Ap										
Relative Accuracy (% of Reference Method) (RA) 0.6 0.8 0 An X in this column denotes a run which is not used in calculation of relative accuracy. Performance Specification 2	.06	0.0		0.16		s) 0.16	(RMAVG	ce Method	eferen	verage of Re	A										
Relative Accuracy (% of Permit Limit) (RA) 0.6 0.8 0 An X in this column denotes a run which is not used in calculation of relative accuracy. Performance Specification 2 Relative Accuracy (% of Reference Method) (RA) 20 20 20 20	0.1	0.1		0.2) 0.2	+ CC	CO2) (dAVG	D ₂ , O ₂ ,	CO, NO _x , SC	racy (0	elative Accu	R								
An X in this column denotes a run which is not used in calculation of relative accuracy. Performance Specification 2 Relative Accuracy (% of Reference Method) (RA) 20 20 20 2																					
Performance Specification 2 Relative Accuracy (% of Reference Method) (RA) 20 20 2	0.2	0.2		0.8		A) 0.6	nit) (RA	f Permit Lir	y (% o	ve Accurac	Relati										
Relative Accuracy (% of Reference Method) (RA) 20 20 20					-									cy.	tive accura	ation of relat	ed in calcula	n is not use	run which	lumn denotes a	An X in this co
Relative Accuracy (nor neter check hours of page	20	20	_	20	_	0.00000		and the second s													
Relative Accuracy (% of Permit Limit) (RA) 10 10 1	10		-	10		·/															

			STACK ANALYZERS			ARITHMETIC DIFFERENCE					
		REFERENCI	E METHOD	SK3300 Dry FIT3300	100000	SK3300 Total SFIT3300		SK3300 Dry FIT3300	C1.52.200	SK3300 To Flow SFIT3	
Run Number	TIME	Flow (dscfm)	Flow (scfm)	Flow Rate (dscfm)	Use of Run ¹	Flow Rate (scfm)	Use of Run ¹	Flow Rate (dscfm)	Use of Run ¹	Flow Rate (scfm)	Use of Rur
Flow Run 1	09:15-09:22	39,701	41,423	46,097		45,063		6,396		3,640	
Flow Run 2	09:35-09:42	39,263	40,966	46,258		45,094		6,995	1	4,128	
Flow Run 3	09:53-10:00	39,359	41,067	46,104		45,153		6,744		4,087	
Flow Run 4	10:51-10:57	38,689	40,347	45,991		44,840		7,302		4,493	
Flow Run 5	11:13-11:18	39,440	41,130	46,032		45,063		6,593	,	3,933	
Flow Run 6	11:34-11:44	39,020	40,692	46,263		45,132		7,244		4,440	
Flow Run 7	12:54-12:59	39,160	40,859	46,723		45,861	×	7,563		5,002	>
Flow Run 8	13:15-13:21	39,113	40,809	46,995	x	45,968	×	7,883	х	5,159	×
Flow Run 9	13:36-13:41	39,392	41,101	46,801		45,911		7,408		4,810	
Flow Run 10	14:39-14:44	37,516	39,125	45,530	x	44,280	×	8,014	х	5,155	X
Flow Run 11	15:00-15:05	40,617	42,359	47,848		46,967		7,231		4,608	
Flow Run 12	15:20-15:25	39,544	41,240	47,243	x	46,231		7,699	Х	4,991	
				Number of	Runs L	Ised in Calcul	ation (n)	9		9	
					Ave	erage Differen	ice (d _{AVG})	7,053		4,348	
Standard Deviation (S _d) 397 t-Value (t _{0.925}) 2.306							435				
							2.306				
					Confi	dence Coeffic	ient (CC)	305		334	
						Perr	nit Limit				
				Average o	of Refer	ence Method	(RMAVG)	39,405	5	46,515	5
			F	Relative Accur	acy (in	dscfm) (dave	+ CC)	7,358		4,682	
			Relativ	ve Accuracy (% of Re	ference Meth	nod) (RA)	18.7		10.1	

Table 2-5. Relative Accuracy Results for CERMS Flow Rate, wet (scfm) and dry (dscfm)

ACCEPTANCE

Performance Specification	CRITERIA
Relative Accuracy (% of Reference Method) (RA)	20
Note: There is no specification for Relative Accuracy of a Flow Monitor by EPA Performance Specifications. PS6 speaks of CERMS, and provides spe emission rate monitors. Flow rate is a component, and the individual addressed.	ecifications for

3. Facility and CEMS Description

3.1 Process Description

This section briefly describes the 32 Incinerator. The unit is designed to thermally treat liquid and solid wastes. As necessary, fuel gas is used as a supplemental fuel. The 32 Incinerator is a hazardous waste incinerator with a rotary kiln and secondary combustion chamber (SCC). Destruction of organic compounds takes place in the combustion chambers. The rotary kiln typically operates above 800°C and the SCC typically operates above 980°C. The permitted nominal thermal output capacity of this unit is 130 million British thermal units per hour (MMBtu/hr). The waste supplies most of the heat. Natural gas is used to maintain the temperature when the Btu content of the waste is limited and to maintain the flame during startups and shutdowns. After the combustion gases exit the SCC, they enter the NOx reactor. A urea solution is air atomized into this chamber to control NOx generation as required. Next, the combustion gases enter the quench section. In the quench section, the process vapors are contacted with water that is injected into the quench to cool the gases.

3.2 Process Emissions Control Description

The air pollution control system consists of a packed tower condenser, venturi scrubber, chlorine scrubber, and ionizing wet scrubbers.

The packed tower condenser is a counter current vessel, where gas is contacted with recycled water over a packed bed. The tower serves to scrub gases and further lower the temperature of the combustion gas. The high-energy venturi scrubber removes the major portion of the very fine particulate material from the gas stream. The pH of the venturi scrubber recycle water is controlled by the addition of caustic to the chlorine scrubber, which is the source of water for the venturi scrubber.

The chlorine scrubber removes the remainder of the hydrogen chloride and chlorine from the gas stream by contact with pH-controlled scrubber liquor across a packed bed, and it serves to remove entrained water droplets from the gas stream. The ionizing wet scrubbers remove the low levels of fine particulate matter from the gas stream. The gas passes through charged fields. Under these conditions, the charged sub-micron particles are attracted to the charged plates and rods and are then removed by a continuous flow of water through the beds.

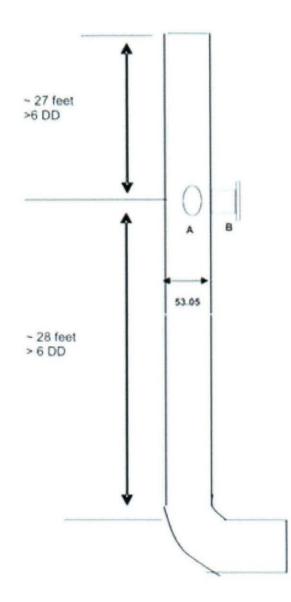
The emission test point for this test was the Rotary Kiln Incinerator Stack identified as SVEG32INCIN01 (Stack SK-3300).

3.3 Flue Gas Sampling Locations

Sampling was conducted on the Kiln outlet stack (Stack SK-3300). The CEMS sample points for the Kiln stack are at least two equivalent diameters downstream from the nearest control device, the point of pollutant generation, or other point at which a change in the pollutant concentration occurs, and at least one-half equivalent diameters upstream from the effluent exhaust or control device. The stack has sampling ports installed as shown in **Figure 3.1**. The samples were drawn from the stack for a period of 21 minutes continuously following a stratification test conducted at the three traverse points of 16.7, 50.0, and 83.3 percent of the measurement line that passes through the centroidal area of the stack cross section.

3.4 Facility CEMS Description

The facility employs two redundant MACT CO/O₂ CEMS, CEM1 and CEM2, along with a flow rate CERMS in order to comply with the HWC MACT monitoring requirements of and to demonstrate continuous compliance with the CO emission limits specified in their air permit (Michigan EGLE Permit MI-ROP-A4033-2017b).


Each MACT CEMS is a dry-extractive non-dilution type that was designed and installed to meet emissions monitoring requirements outlined in 40 CFR Part 60, Appendix B, Performance Specifications (PS) 3 and 4B.

Each CEMS consists of an extractive sample probe, with a sintered metal element filter at the probe inlet tip. A heated sample line runs between the probe and CEMS cabinet to a sample conditioning system. The CEMS analyzers are housed in a climate-controlled shelter, which is located at the base of the stack. The CEMS analyzers are wired into the DAHS, which in turn calculates emissions from analyzer outputs and provides the required regulatory reports. Specifications for each CEMS/CERMS monitor are presented in **Table 3-1**. A schematic of the facility emissions stack layout showing the sample test port locations is provided in **Figure 3-1**.

CEMS / CERMS	Parameter	Units	Manufacturer	Model	Serial No.
	со	ppmvd	ABB, Inc.	Uras 14	3.244193.2
	NOx	ppmvd	ABB, Inc.	Limas 11	3.244191.2
CEM1	SO ₂	ppmvd	ABB, Inc.	Limas 11	3.244191.2
	O ₂	Vol%, dry	ABB, Inc.	Magnos 16	3.244195.2
	со	ppmvd	ABB, Inc.	Uras 14	3.244192.2
	NOx	ppmvd	ABB, Inc.	Limas 11	3.244190.2
CEM2	SO ₂	ppmvd	ABB, Inc.	Limas 11	3.244190.2
	O ₂	Vol%, dry	ABB, Inc.	Magnos 16	3.244194.2
CERMS	Flow Rate	scfm / dscfm	Panametric	GM868-1-11- 10003-S	1289 & 1878

Table 3-1. Facility CEMS/CERMS Equipment Specifications

Figure 3-1. Facility Process Diagram

AECOM 3-3

4. RATA Test Procedures

The following is a description of the testing that was completed on the 32 Incinerator MACT NO_x/SO₂/CO/O₂ CEMS/CERMS to fulfill the monitoring system requirements in the HWC MACT as well as the certification requirements of 40 CFR Part 60 as specified in the Michigan EGLE air permit (MI-ROP-A4033-2017b).

4.1 Relative Accuracy Test Methods

AECOM followed the instrumental analyzer procedures specified in EPA Methods 3A, 6C, 7E, and 10 (40 CFR Part 60, Appendix A) for the determination of O₂. SO₂, NO_x, and CO concentrations, respectively. Exhaust gas volumetric flow rates were calculated using measurements made following the source testing procedures specified in EPA Methods 2 and 4 (40 CFR Part 60, Appendix A) for the determination of gas velocity and moisture, respectively. The following subsections describe the sample procedures in more detail.

AECOM conducted a minimum of nine 21-minute test periods using the AECOM transportable instrumental analyzer laboratory, which is described later in this section. Average undiluted dry concentrations by volume of O₂, SO₂, NO_x, and CO were determined for each test run. During each test run, the sample probe extracted a continuous sample along a traverse line through the center of the stack cross section as is specified in Performance Specification 2 (PS 2) of 40 CFR Part 60, Appendix B. Prior to sampling, a stratification test was completed where the sample probe was traversed across the stack at three points (16.7%, 50.0%, and 83.3%) of a measurement line passing through the stack centroid. The results of the Stratification Test are presented in **Appendix A**.

Relative accuracy (RA) determinations followed calculations delineated in PS 2, PS 3, PS 4B, and PS 6 (40 CFR 60, Appendix B) for O₂, SO₂, NO_x, and CO, and flow rate. RA results are evaluated in accordance with the criteria specified in 40 CFR Part 60 (Appendix B, PS 2, PS 3, PS 4B, and PS 6). Each monitor of the CEMS/CERMS passes the RATA if it meets the least restrictive RA criterion in the applicable performance specification. The least restrictive Part 60 RA criterion for each O₂ analyzer is \leq 20 percent of the average RM value or \leq 1% absolute difference from the average reference method value. The least restrictive Part 60 RA criterion for each CO analyzer is \leq 5 percent of the emission standard (100 ppm regulatory emission limit) or 5 ppm CO by difference plus the confidence coefficient (CC). The least restrictive Part 60 RA criterion for each NO_x and SO₂ analyzer is \leq 20 percent of the average RM value or \leq 1% of the emission standard. The criterion for the flow rate analyzers is \leq 20 percent of the average RM value.

The O_2 , SO_2 , NO_x , CO, and flow rate RM test run data and calculation results are presented in **Appendix A**.

4.2 Transportable Instrumental Analyzer Laboratory

A transportable instrumental analyzer laboratory (i.e., Mobile Lab) was used to provide an environmentally controlled shelter to house RM analyzers and the sample delivery and conditioning system to measure NO_x, SO₂, CO, O₂, and CO₂ by volume on a dry basis. The AECOM RM monitoring system is contained in a temperature controlled portable shelter that was delivered to the site and set up prior to the start of the RATA program. The sample delivery and conditioning system consists of a stainless-steel sample probe, a heated particulate filter assembly, a heat-traced Teflon sample line, a refrigerated gas conditioning system (for moisture and condensable particulate removal), a sample gas manifold, and a sample pump. The clean dry sample was then delivered to the gas analyzers for the determination of undiluted NO_x, SO₂, CO, O₂, and CO₂ concentrations.

The analog output signals from each analyzer were connected to a data acquisition system (DAS) using a software package to perform the test calculations. The DAS then stored the data in engineering units and provided 1-minute and 10-second averages based upon a minimum of 60 readings per minute. The CO_2 and O_2 were measured using a Servomex 4900 Series analyzer with paramagnetic and non-dispersive

infrared (NDIR) detectors on an approximate span gas ranges of 0-20%. The CO was measured using a Thermo Model 48i gas filter correlation (GFC)/NDIR analyzer on an approximate span gas range of 0-30 ppm. The NO_x was measured using a Thermo iQ series 42 chemiluminescent analyzer on an approximate span gas range of 0-300 ppm. The SO₂ was measured using an Ametek 900 ultraviolet analyzer on an approximate span gas range of 0-50 ppm.

4.3 RM Calibration Procedures

The initial phase of the instrumental analyzer methods (e.g., Methods 3A, 6C, 7E, and 10) requires initial measurement system performance tests to be performed, including calibration error tests, system bias checks, response-time tests, an NO₂ converter test (for NO_x analyzers), and interference checks, as applicable.

Prior to performing test runs, AECOM conducted direct instrument calibration error tests using zero and two upscale gases each for the NO_x, SO₂, O₂/CO₂ and CO instruments prior to initiation of testing. Following these direct calibrations, an initial system bias check was performed by sending zero and one upscale gas, from one gas cylinder at a time, up to the sample probe and back down through the components of the sampling system. Following the initial system bias checks, response-time data was obtained for each analyzer. Subsequently, system bias and drift checks were performed both prior to and following each test run set of up to three consecutive runs using zero and one upscale calibration gas. These system checks allowed for the determination of initial and final system bias, as well as system drift for each test run set. Test run sets of three 21-minute test runs were performed during a continuous and uninterrupted period of 63 minutes followed by a system bias and drift check. The calibration gases used during this program were prepared in accordance with EPA Protocol G1 procedures as specified by the National Institute of Standards and Technology (NIST). The NO_x/SO₂/O₂/CO₂/CO calibration compressed gas standards were contained in individual cylinders having a purified nitrogen gas balance.

Interference check data provided by each instrument's manufacturer is included to meet the requirements of Method 7E (Subsection 8.2.7) as referenced in Methods 3A and 10.

The RM calibration data, including initial calibration error tests, pre-run and post-run system bias and drift checks, system response time tests, manufacturer interference test data, and certificates of analysis for the RM test calibration gases, are provided in **Appendix A**.

5. Quality Assurance/ Quality Control Measures

5.1 Overview

During the monitoring phase of the program, a strict quality assurance/quality control (QA/QC) program was adhered to. The QA/QC aspects of the program are discussed below.

5.2 Leak Check Procedure

Prior to conducting the RATA, AECOM's Instrumental Measurement System was leak checked and verified to be leak free. Following the initial leak check, the system bias and drift criteria (as referenced in EPA Method 7E, 40 CFR Part 60, Appendix A) served as a continuous sample integrity check.

5.3 System Calibrations

During the test program, AECOM used EPA instrumental analyzer methods (i.e., 3A, 6C, 7E, and 10, in 40 CFR Part 60, Appendix A) for the measurement of NO_x, SO₂, O₂/CO₂ and CO. The initial phase of instrumental analysis requires calibration of the involved monitors. Prior to performing test runs, AECOM conducted direct instrument calibration error tests using zero and two upscale gases each for the NO_x, SO₂, O₂/CO₂, and CO instruments prior to initiation of testing. Following these direct calibrations, an initial system bias check was performed by sending zero and one upscale gas, from one gas cylinder at a time, up to the sample probe and back down through the relevant components of the sampling system. During the initial system bias checks, response-time data was obtained for each analyzer. Subsequently, system bias checks were performed both prior to and following each test run using zero and one upscale calibration gas. These system checks allowed for the determination of initial and final system bias, as well as system drift for each test run. The calibration gases used during this program were prepared to EPA Protocol G1/G2 standards. Certificates of analysis for the calibration gases are presented in Appendix B. The measurement system performance criteria in 40 CFR Part 60, Appendix A, Methods 3A, 6C, 7E, and 10 are listed below and were the performance criteria for the reference method instruments during this program.

Procedure	Performance Criterion			
Calibration error	<±2% of the calibration span			
System bias	<±5% of the calibration span			
System drift	<±3% of the calibration span			

The instrumental analysis methods also require correction of data for calibration drift and/or bias. The values used for the determination of relative accuracy were corrected for system drift and bias observed during each test run. System bias and drift as well as response-time data are presented in **Appendix A** of this report.

5.4 Interference Checks

Interference checks are required for each make and model of instrumental analyzer used for reference method measurements and signed documentation of the results must be included in each test report (as referenced in 40 CFR 60, Appendix A, Method 7E, Subsection 8.2.7). Copies of the instrument specific test results are presented in Appendix A of this document.

6. Data Reduction

6.1 Overview

The objective of the monitoring program was to determine the relative accuracy (RA) of the NO_x/SO₂/CO/O₂ CEMS/CERMS. RA results have been reported on an individual analyzer basis (concentrations) and for exhaust gas volumetric flow rate. Photocopies of the raw field data sheets and data printouts are also presented in the appendices. Equations and example calculations from the data reduction process are presented in **Appendix A**. Equations for the calculation of relative accuracy (RA) are presented in this section.

6.2 Calculation of Relative Accuracy

Standard Deviation

The standard deviation (SD) between the minimum of nine test runs chosen must be calculated. The following equation was used to calculate standard deviation:

$$S_D = \sqrt{\left[\frac{(Sum \ of \ d^2) - \frac{(Sum \ of \ d)^2}{n}}{n-1}\right]}$$

Where:

SD = Standard deviation of a minimum of nine selected runs

d = Arithmetic difference between the facility CEMS and RM test run averages

n = Number of sample test runs used for standard deviation calculation

Confidence Coefficient

The 95% confidence coefficient (CC) of the minimum of nine test runs chosen must be calculated. The student T Value of 2.306 (for nine runs) in the equation comes from Table 2-1 (t-Values) of PS 2 in 40 CFR Part 60, Appendix B. The T Value needs to be adjusted for the chosen number of test runs according to Table 2-1 in PS 2. The following equation was used to calculate the confidence coefficient:

$$CC = 2.306 \times \left(\frac{S_D}{\sqrt{n}}\right)$$

Where:

CC = Confidence coefficient

Sd = Standard deviation of the minimum of nine selected test runs

n = Number of sample test runs used for standard deviation calculation

Relative Accuracy

The relative accuracy of the CEMS/CERMS were calculated as required by PS 3, PS 4B, and PS 6 for O₂ (%vd), CO (ppmvd), and flow rate (scfm and dscfm), respectively. The relative accuracies are calculated to verify:

- RA for O₂ (%vd) is no greater than 20.0% of RM or 1.0% O₂ absolute difference (not including CC) as specified in PS 3 of 40CFR60, Appendix B
- RA for CO (ppmvd) is no greater than 10% of RM, 5% of ES (applicable emission standard), or 5 ppm CO absolute difference plus CC as specified in PS 4B of 40CFR60, Appendix B
- RA for NO_x and SO₂ is no greater than 20.0% of RM or 10% of ES as specified in PS 2 of 40CFR60, Appendix B
- RA for flow rate (scfm and dscfm) is no greater than 20% as specified in PS 6 of 40CFR60, Appendix B

Relative Accuracy (% of RM or % of ES)

$$RA = \left[\frac{(|avg d| + |CC|)}{avg RM}\right] \times 100\%$$

Relative Accuracy (by Absolute Difference)

For Pollutant Parameters (e.g., SO₂, NO_x, CO): RA = |avg d| + |CC|

For Diluent Gas Parameters (e.g., O2 and CO2): RA = |avg d|

Where:

RA = Relative accuracy

CC = Confidence coefficient

d = Arithmetic difference between RM and CEMS values for each test run

avg d = Average arithmetic difference between RM and CEMS values for all test runs

RM = Reference Method value

ES = Emission Standard substituted for RM